OpenCloudOS-Kernel/drivers/gpu/drm/i915/i915_gem_gtt.h

563 lines
18 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Please try to maintain the following order within this file unless it makes
* sense to do otherwise. From top to bottom:
* 1. typedefs
* 2. #defines, and macros
* 3. structure definitions
* 4. function prototypes
*
* Within each section, please try to order by generation in ascending order,
* from top to bottom (ie. gen6 on the top, gen8 on the bottom).
*/
#ifndef __I915_GEM_GTT_H__
#define __I915_GEM_GTT_H__
struct drm_i915_file_private;
typedef uint32_t gen6_pte_t;
typedef uint64_t gen8_pte_t;
typedef uint64_t gen8_pde_t;
typedef uint64_t gen8_ppgtt_pdpe_t;
typedef uint64_t gen8_ppgtt_pml4e_t;
#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PTE_CACHE_LLC (2 << 1)
#define GEN6_PTE_UNCACHED (1 << 1)
#define GEN6_PTE_VALID (1 << 0)
#define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
#define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
#define I915_PDES 512
#define I915_PDE_MASK (I915_PDES - 1)
#define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
#define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
#define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
#define GEN6_PDE_SHIFT 22
#define GEN6_PDE_VALID (1 << 0)
#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
#define BYT_PTE_WRITEABLE (1 << 1)
/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
* 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
*/
#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
(((bits) & 0x8) << (11 - 3)))
#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
#define HSW_PTE_UNCACHED (0)
#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
/* GEN8 legacy style address is defined as a 3 level page table:
* 31:30 | 29:21 | 20:12 | 11:0
* PDPE | PDE | PTE | offset
* The difference as compared to normal x86 3 level page table is the PDPEs are
* programmed via register.
*
* GEN8 48b legacy style address is defined as a 4 level page table:
* 47:39 | 38:30 | 29:21 | 20:12 | 11:0
* PML4E | PDPE | PDE | PTE | offset
*/
#define GEN8_PML4ES_PER_PML4 512
#define GEN8_PML4E_SHIFT 39
#define GEN8_PML4E_MASK (GEN8_PML4ES_PER_PML4 - 1)
#define GEN8_PDPE_SHIFT 30
/* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
* tables */
#define GEN8_PDPE_MASK 0x1ff
#define GEN8_PDE_SHIFT 21
#define GEN8_PDE_MASK 0x1ff
#define GEN8_PTE_SHIFT 12
#define GEN8_PTE_MASK 0x1ff
#define GEN8_LEGACY_PDPES 4
#define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
#define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
#define CHV_PPAT_SNOOP (1<<6)
#define GEN8_PPAT_AGE(x) (x<<4)
#define GEN8_PPAT_LLCeLLC (3<<2)
#define GEN8_PPAT_LLCELLC (2<<2)
#define GEN8_PPAT_LLC (1<<2)
#define GEN8_PPAT_WB (3<<0)
#define GEN8_PPAT_WT (2<<0)
#define GEN8_PPAT_WC (1<<0)
#define GEN8_PPAT_UC (0<<0)
#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
enum i915_ggtt_view_type {
I915_GGTT_VIEW_NORMAL = 0,
I915_GGTT_VIEW_ROTATED,
I915_GGTT_VIEW_PARTIAL,
};
struct intel_rotation_info {
unsigned int height;
unsigned int pitch;
unsigned int uv_offset;
uint32_t pixel_format;
uint64_t fb_modifier;
unsigned int width_pages, height_pages;
uint64_t size;
unsigned int width_pages_uv, height_pages_uv;
uint64_t size_uv;
unsigned int uv_start_page;
};
struct i915_ggtt_view {
enum i915_ggtt_view_type type;
union {
struct {
u64 offset;
unsigned int size;
} partial;
struct intel_rotation_info rotation_info;
} params;
struct sg_table *pages;
};
extern const struct i915_ggtt_view i915_ggtt_view_normal;
extern const struct i915_ggtt_view i915_ggtt_view_rotated;
enum i915_cache_level;
/**
* A VMA represents a GEM BO that is bound into an address space. Therefore, a
* VMA's presence cannot be guaranteed before binding, or after unbinding the
* object into/from the address space.
*
* To make things as simple as possible (ie. no refcounting), a VMA's lifetime
* will always be <= an objects lifetime. So object refcounting should cover us.
*/
struct i915_vma {
struct drm_mm_node node;
struct drm_i915_gem_object *obj;
struct i915_address_space *vm;
/** Flags and address space this VMA is bound to */
#define GLOBAL_BIND (1<<0)
#define LOCAL_BIND (1<<1)
unsigned int bound : 4;
/**
* Support different GGTT views into the same object.
* This means there can be multiple VMA mappings per object and per VM.
* i915_ggtt_view_type is used to distinguish between those entries.
* The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
* assumed in GEM functions which take no ggtt view parameter.
*/
struct i915_ggtt_view ggtt_view;
/** This object's place on the active/inactive lists */
struct list_head mm_list;
struct list_head vma_link; /* Link in the object's VMA list */
/** This vma's place in the batchbuffer or on the eviction list */
struct list_head exec_list;
/**
* Used for performing relocations during execbuffer insertion.
*/
struct hlist_node exec_node;
unsigned long exec_handle;
struct drm_i915_gem_exec_object2 *exec_entry;
/**
* How many users have pinned this object in GTT space. The following
* users can each hold at most one reference: pwrite/pread, execbuffer
* (objects are not allowed multiple times for the same batchbuffer),
* and the framebuffer code. When switching/pageflipping, the
* framebuffer code has at most two buffers pinned per crtc.
*
* In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
* bits with absolutely no headroom. So use 4 bits. */
unsigned int pin_count:4;
#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
};
struct i915_page_dma {
struct page *page;
union {
dma_addr_t daddr;
/* For gen6/gen7 only. This is the offset in the GGTT
* where the page directory entries for PPGTT begin
*/
uint32_t ggtt_offset;
};
};
#define px_base(px) (&(px)->base)
#define px_page(px) (px_base(px)->page)
#define px_dma(px) (px_base(px)->daddr)
struct i915_page_scratch {
struct i915_page_dma base;
};
struct i915_page_table {
struct i915_page_dma base;
unsigned long *used_ptes;
};
struct i915_page_directory {
struct i915_page_dma base;
unsigned long *used_pdes;
struct i915_page_table *page_table[I915_PDES]; /* PDEs */
};
struct i915_page_directory_pointer {
struct i915_page_dma base;
unsigned long *used_pdpes;
struct i915_page_directory **page_directory;
};
struct i915_pml4 {
struct i915_page_dma base;
DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
};
struct i915_address_space {
struct drm_mm mm;
struct drm_device *dev;
struct list_head global_link;
u64 start; /* Start offset always 0 for dri2 */
u64 total; /* size addr space maps (ex. 2GB for ggtt) */
struct i915_page_scratch *scratch_page;
struct i915_page_table *scratch_pt;
struct i915_page_directory *scratch_pd;
struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
/**
* List of objects currently involved in rendering.
*
* Includes buffers having the contents of their GPU caches
* flushed, not necessarily primitives. last_read_req
* represents when the rendering involved will be completed.
*
* A reference is held on the buffer while on this list.
*/
struct list_head active_list;
/**
* LRU list of objects which are not in the ringbuffer and
* are ready to unbind, but are still in the GTT.
*
* last_read_req is NULL while an object is in this list.
*
* A reference is not held on the buffer while on this list,
* as merely being GTT-bound shouldn't prevent its being
* freed, and we'll pull it off the list in the free path.
*/
struct list_head inactive_list;
/* FIXME: Need a more generic return type */
gen6_pte_t (*pte_encode)(dma_addr_t addr,
enum i915_cache_level level,
bool valid, u32 flags); /* Create a valid PTE */
/* flags for pte_encode */
#define PTE_READ_ONLY (1<<0)
int (*allocate_va_range)(struct i915_address_space *vm,
uint64_t start,
uint64_t length);
void (*clear_range)(struct i915_address_space *vm,
uint64_t start,
uint64_t length,
bool use_scratch);
void (*insert_entries)(struct i915_address_space *vm,
struct sg_table *st,
uint64_t start,
enum i915_cache_level cache_level, u32 flags);
void (*cleanup)(struct i915_address_space *vm);
/** Unmap an object from an address space. This usually consists of
* setting the valid PTE entries to a reserved scratch page. */
void (*unbind_vma)(struct i915_vma *vma);
/* Map an object into an address space with the given cache flags. */
int (*bind_vma)(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags);
};
/* The Graphics Translation Table is the way in which GEN hardware translates a
* Graphics Virtual Address into a Physical Address. In addition to the normal
* collateral associated with any va->pa translations GEN hardware also has a
* portion of the GTT which can be mapped by the CPU and remain both coherent
* and correct (in cases like swizzling). That region is referred to as GMADR in
* the spec.
*/
struct i915_gtt {
struct i915_address_space base;
size_t stolen_size; /* Total size of stolen memory */
size_t stolen_usable_size; /* Total size minus BIOS reserved */
u64 mappable_end; /* End offset that we can CPU map */
struct io_mapping *mappable; /* Mapping to our CPU mappable region */
phys_addr_t mappable_base; /* PA of our GMADR */
/** "Graphics Stolen Memory" holds the global PTEs */
void __iomem *gsm;
bool do_idle_maps;
int mtrr;
/* global gtt ops */
int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
size_t *stolen, phys_addr_t *mappable_base,
u64 *mappable_end);
};
struct i915_hw_ppgtt {
struct i915_address_space base;
struct kref ref;
struct drm_mm_node node;
unsigned long pd_dirty_rings;
union {
struct i915_pml4 pml4; /* GEN8+ & 48b PPGTT */
struct i915_page_directory_pointer pdp; /* GEN8+ */
struct i915_page_directory pd; /* GEN6-7 */
};
struct drm_i915_file_private *file_priv;
gen6_pte_t __iomem *pd_addr;
int (*enable)(struct i915_hw_ppgtt *ppgtt);
int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req);
void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
};
/* For each pde iterates over every pde between from start until start + length.
* If start, and start+length are not perfectly divisible, the macro will round
* down, and up as needed. The macro modifies pde, start, and length. Dev is
* only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
* and length = 2G effectively iterates over every PDE in the system.
*
* XXX: temp is not actually needed, but it saves doing the ALIGN operation.
*/
#define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
for (iter = gen6_pde_index(start); \
length > 0 && iter < I915_PDES ? \
(pt = (pd)->page_table[iter]), 1 : 0; \
iter++, \
temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
temp = min_t(unsigned, temp, length), \
start += temp, length -= temp)
#define gen6_for_all_pdes(pt, ppgtt, iter) \
for (iter = 0; \
pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
iter++)
static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
{
const uint32_t mask = NUM_PTE(pde_shift) - 1;
return (address >> PAGE_SHIFT) & mask;
}
/* Helper to counts the number of PTEs within the given length. This count
* does not cross a page table boundary, so the max value would be
* GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
*/
static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
uint32_t pde_shift)
{
const uint64_t mask = ~((1 << pde_shift) - 1);
uint64_t end;
WARN_ON(length == 0);
WARN_ON(offset_in_page(addr|length));
end = addr + length;
if ((addr & mask) != (end & mask))
return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
}
static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
{
return (addr >> shift) & I915_PDE_MASK;
}
static inline uint32_t gen6_pte_index(uint32_t addr)
{
return i915_pte_index(addr, GEN6_PDE_SHIFT);
}
static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
{
return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
}
static inline uint32_t gen6_pde_index(uint32_t addr)
{
return i915_pde_index(addr, GEN6_PDE_SHIFT);
}
/* Equivalent to the gen6 version, For each pde iterates over every pde
* between from start until start + length. On gen8+ it simply iterates
* over every page directory entry in a page directory.
*/
#define gen8_for_each_pde(pt, pd, start, length, iter) \
for (iter = gen8_pde_index(start); \
length > 0 && iter < I915_PDES && \
(pt = (pd)->page_table[iter], true); \
({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT); \
temp = min(temp - start, length); \
start += temp, length -= temp; }), ++iter)
#define gen8_for_each_pdpe(pd, pdp, start, length, iter) \
for (iter = gen8_pdpe_index(start); \
length > 0 && iter < I915_PDPES_PER_PDP(dev) && \
(pd = (pdp)->page_directory[iter], true); \
({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT); \
temp = min(temp - start, length); \
start += temp, length -= temp; }), ++iter)
#define gen8_for_each_pml4e(pdp, pml4, start, length, iter) \
for (iter = gen8_pml4e_index(start); \
length > 0 && iter < GEN8_PML4ES_PER_PML4 && \
(pdp = (pml4)->pdps[iter], true); \
({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT); \
temp = min(temp - start, length); \
start += temp, length -= temp; }), ++iter)
static inline uint32_t gen8_pte_index(uint64_t address)
{
return i915_pte_index(address, GEN8_PDE_SHIFT);
}
static inline uint32_t gen8_pde_index(uint64_t address)
{
return i915_pde_index(address, GEN8_PDE_SHIFT);
}
static inline uint32_t gen8_pdpe_index(uint64_t address)
{
return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
}
static inline uint32_t gen8_pml4e_index(uint64_t address)
{
return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
}
static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
{
return i915_pte_count(address, length, GEN8_PDE_SHIFT);
}
static inline dma_addr_t
i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
{
return test_bit(n, ppgtt->pdp.used_pdpes) ?
px_dma(ppgtt->pdp.page_directory[n]) :
px_dma(ppgtt->base.scratch_pd);
}
int i915_gem_gtt_init(struct drm_device *dev);
void i915_gem_init_global_gtt(struct drm_device *dev);
void i915_global_gtt_cleanup(struct drm_device *dev);
int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
int i915_ppgtt_init_hw(struct drm_device *dev);
int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
void i915_ppgtt_release(struct kref *kref);
struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
struct drm_i915_file_private *fpriv);
static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
{
if (ppgtt)
kref_get(&ppgtt->ref);
}
static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
{
if (ppgtt)
kref_put(&ppgtt->ref, i915_ppgtt_release);
}
void i915_check_and_clear_faults(struct drm_device *dev);
void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
void i915_gem_restore_gtt_mappings(struct drm_device *dev);
int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
static inline bool
i915_ggtt_view_equal(const struct i915_ggtt_view *a,
const struct i915_ggtt_view *b)
{
if (WARN_ON(!a || !b))
return false;
if (a->type != b->type)
return false;
if (a->type != I915_GGTT_VIEW_NORMAL)
return !memcmp(&a->params, &b->params, sizeof(a->params));
return true;
}
size_t
i915_ggtt_view_size(struct drm_i915_gem_object *obj,
const struct i915_ggtt_view *view);
#endif