1689 lines
47 KiB
C
1689 lines
47 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare network controllers and boards
|
|
* Copyright 2010-2012 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
#include <linux/pci.h>
|
|
#include <linux/module.h>
|
|
#include "net_driver.h"
|
|
#include "efx.h"
|
|
#include "nic.h"
|
|
#include "io.h"
|
|
#include "mcdi.h"
|
|
#include "filter.h"
|
|
#include "mcdi_pcol.h"
|
|
#include "farch_regs.h"
|
|
#include "siena_sriov.h"
|
|
#include "vfdi.h"
|
|
|
|
/* Number of longs required to track all the VIs in a VF */
|
|
#define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
|
|
|
|
/* Maximum number of RX queues supported */
|
|
#define VF_MAX_RX_QUEUES 63
|
|
|
|
/**
|
|
* enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
|
|
* @VF_TX_FILTER_OFF: Disabled
|
|
* @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
|
|
* 2 TX queues allowed per VF.
|
|
* @VF_TX_FILTER_ON: Enabled
|
|
*/
|
|
enum efx_vf_tx_filter_mode {
|
|
VF_TX_FILTER_OFF,
|
|
VF_TX_FILTER_AUTO,
|
|
VF_TX_FILTER_ON,
|
|
};
|
|
|
|
/**
|
|
* struct siena_vf - Back-end resource and protocol state for a PCI VF
|
|
* @efx: The Efx NIC owning this VF
|
|
* @pci_rid: The PCI requester ID for this VF
|
|
* @pci_name: The PCI name (formatted address) of this VF
|
|
* @index: Index of VF within its port and PF.
|
|
* @req: VFDI incoming request work item. Incoming USR_EV events are received
|
|
* by the NAPI handler, but must be handled by executing MCDI requests
|
|
* inside a work item.
|
|
* @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
|
|
* @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
|
|
* @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
|
|
* @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
|
|
* @status_lock
|
|
* @busy: VFDI request queued to be processed or being processed. Receiving
|
|
* a VFDI request when @busy is set is an error condition.
|
|
* @buf: Incoming VFDI requests are DMA from the VF into this buffer.
|
|
* @buftbl_base: Buffer table entries for this VF start at this index.
|
|
* @rx_filtering: Receive filtering has been requested by the VF driver.
|
|
* @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
|
|
* @rx_filter_qid: VF relative qid for RX filter requested by VF.
|
|
* @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
|
|
* @tx_filter_mode: Transmit MAC filtering mode.
|
|
* @tx_filter_id: Transmit MAC filter ID.
|
|
* @addr: The MAC address and outer vlan tag of the VF.
|
|
* @status_addr: VF DMA address of page for &struct vfdi_status updates.
|
|
* @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
|
|
* @peer_page_addrs and @peer_page_count from simultaneous
|
|
* updates by the VM and consumption by
|
|
* efx_siena_sriov_update_vf_addr()
|
|
* @peer_page_addrs: Pointer to an array of guest pages for local addresses.
|
|
* @peer_page_count: Number of entries in @peer_page_count.
|
|
* @evq0_addrs: Array of guest pages backing evq0.
|
|
* @evq0_count: Number of entries in @evq0_addrs.
|
|
* @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
|
|
* to wait for flush completions.
|
|
* @txq_lock: Mutex for TX queue allocation.
|
|
* @txq_mask: Mask of initialized transmit queues.
|
|
* @txq_count: Number of initialized transmit queues.
|
|
* @rxq_mask: Mask of initialized receive queues.
|
|
* @rxq_count: Number of initialized receive queues.
|
|
* @rxq_retry_mask: Mask or receive queues that need to be flushed again
|
|
* due to flush failure.
|
|
* @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
|
|
* @reset_work: Work item to schedule a VF reset.
|
|
*/
|
|
struct siena_vf {
|
|
struct efx_nic *efx;
|
|
unsigned int pci_rid;
|
|
char pci_name[13]; /* dddd:bb:dd.f */
|
|
unsigned int index;
|
|
struct work_struct req;
|
|
u64 req_addr;
|
|
int req_type;
|
|
unsigned req_seqno;
|
|
unsigned msg_seqno;
|
|
bool busy;
|
|
struct efx_buffer buf;
|
|
unsigned buftbl_base;
|
|
bool rx_filtering;
|
|
enum efx_filter_flags rx_filter_flags;
|
|
unsigned rx_filter_qid;
|
|
int rx_filter_id;
|
|
enum efx_vf_tx_filter_mode tx_filter_mode;
|
|
int tx_filter_id;
|
|
struct vfdi_endpoint addr;
|
|
u64 status_addr;
|
|
struct mutex status_lock;
|
|
u64 *peer_page_addrs;
|
|
unsigned peer_page_count;
|
|
u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
|
|
EFX_BUF_SIZE];
|
|
unsigned evq0_count;
|
|
wait_queue_head_t flush_waitq;
|
|
struct mutex txq_lock;
|
|
unsigned long txq_mask[VI_MASK_LENGTH];
|
|
unsigned txq_count;
|
|
unsigned long rxq_mask[VI_MASK_LENGTH];
|
|
unsigned rxq_count;
|
|
unsigned long rxq_retry_mask[VI_MASK_LENGTH];
|
|
atomic_t rxq_retry_count;
|
|
struct work_struct reset_work;
|
|
};
|
|
|
|
struct efx_memcpy_req {
|
|
unsigned int from_rid;
|
|
void *from_buf;
|
|
u64 from_addr;
|
|
unsigned int to_rid;
|
|
u64 to_addr;
|
|
unsigned length;
|
|
};
|
|
|
|
/**
|
|
* struct efx_local_addr - A MAC address on the vswitch without a VF.
|
|
*
|
|
* Siena does not have a switch, so VFs can't transmit data to each
|
|
* other. Instead the VFs must be made aware of the local addresses
|
|
* on the vswitch, so that they can arrange for an alternative
|
|
* software datapath to be used.
|
|
*
|
|
* @link: List head for insertion into efx->local_addr_list.
|
|
* @addr: Ethernet address
|
|
*/
|
|
struct efx_local_addr {
|
|
struct list_head link;
|
|
u8 addr[ETH_ALEN];
|
|
};
|
|
|
|
/**
|
|
* struct efx_endpoint_page - Page of vfdi_endpoint structures
|
|
*
|
|
* @link: List head for insertion into efx->local_page_list.
|
|
* @ptr: Pointer to page.
|
|
* @addr: DMA address of page.
|
|
*/
|
|
struct efx_endpoint_page {
|
|
struct list_head link;
|
|
void *ptr;
|
|
dma_addr_t addr;
|
|
};
|
|
|
|
/* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
|
|
#define EFX_BUFTBL_TXQ_BASE(_vf, _qid) \
|
|
((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
|
|
#define EFX_BUFTBL_RXQ_BASE(_vf, _qid) \
|
|
(EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \
|
|
(EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
|
|
#define EFX_BUFTBL_EVQ_BASE(_vf, _qid) \
|
|
(EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \
|
|
(2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
|
|
|
|
#define EFX_FIELD_MASK(_field) \
|
|
((1 << _field ## _WIDTH) - 1)
|
|
|
|
/* VFs can only use this many transmit channels */
|
|
static unsigned int vf_max_tx_channels = 2;
|
|
module_param(vf_max_tx_channels, uint, 0444);
|
|
MODULE_PARM_DESC(vf_max_tx_channels,
|
|
"Limit the number of TX channels VFs can use");
|
|
|
|
static int max_vfs = -1;
|
|
module_param(max_vfs, int, 0444);
|
|
MODULE_PARM_DESC(max_vfs,
|
|
"Reduce the number of VFs initialized by the driver");
|
|
|
|
/* Workqueue used by VFDI communication. We can't use the global
|
|
* workqueue because it may be running the VF driver's probe()
|
|
* routine, which will be blocked there waiting for a VFDI response.
|
|
*/
|
|
static struct workqueue_struct *vfdi_workqueue;
|
|
|
|
static unsigned abs_index(struct siena_vf *vf, unsigned index)
|
|
{
|
|
return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
|
|
}
|
|
|
|
static int efx_siena_sriov_cmd(struct efx_nic *efx, bool enable,
|
|
unsigned *vi_scale_out, unsigned *vf_total_out)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
|
|
unsigned vi_scale, vf_total;
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
|
|
MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
|
|
MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
|
|
|
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
|
|
outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
|
|
if (rc)
|
|
return rc;
|
|
if (outlen < MC_CMD_SRIOV_OUT_LEN)
|
|
return -EIO;
|
|
|
|
vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
|
|
vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
|
|
if (vi_scale > EFX_VI_SCALE_MAX)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (vi_scale_out)
|
|
*vi_scale_out = vi_scale;
|
|
if (vf_total_out)
|
|
*vf_total_out = vf_total;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void efx_siena_sriov_usrev(struct efx_nic *efx, bool enabled)
|
|
{
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
efx_oword_t reg;
|
|
|
|
EFX_POPULATE_OWORD_2(reg,
|
|
FRF_CZ_USREV_DIS, enabled ? 0 : 1,
|
|
FRF_CZ_DFLT_EVQ, nic_data->vfdi_channel->channel);
|
|
efx_writeo(efx, ®, FR_CZ_USR_EV_CFG);
|
|
}
|
|
|
|
static int efx_siena_sriov_memcpy(struct efx_nic *efx,
|
|
struct efx_memcpy_req *req,
|
|
unsigned int count)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
|
|
MCDI_DECLARE_STRUCT_PTR(record);
|
|
unsigned int index, used;
|
|
u64 from_addr;
|
|
u32 from_rid;
|
|
int rc;
|
|
|
|
mb(); /* Finish writing source/reading dest before DMA starts */
|
|
|
|
if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
|
|
return -ENOBUFS;
|
|
used = MC_CMD_MEMCPY_IN_LEN(count);
|
|
|
|
for (index = 0; index < count; index++) {
|
|
record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
|
|
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
|
|
count);
|
|
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
|
|
req->to_rid);
|
|
MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
|
|
req->to_addr);
|
|
if (req->from_buf == NULL) {
|
|
from_rid = req->from_rid;
|
|
from_addr = req->from_addr;
|
|
} else {
|
|
if (WARN_ON(used + req->length >
|
|
MCDI_CTL_SDU_LEN_MAX_V1)) {
|
|
rc = -ENOBUFS;
|
|
goto out;
|
|
}
|
|
|
|
from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
|
|
from_addr = used;
|
|
memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
|
|
req->length);
|
|
used += req->length;
|
|
}
|
|
|
|
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
|
|
MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
|
|
from_addr);
|
|
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
|
|
req->length);
|
|
|
|
++req;
|
|
}
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
|
|
out:
|
|
mb(); /* Don't write source/read dest before DMA is complete */
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* The TX filter is entirely controlled by this driver, and is modified
|
|
* underneath the feet of the VF
|
|
*/
|
|
static void efx_siena_sriov_reset_tx_filter(struct siena_vf *vf)
|
|
{
|
|
struct efx_nic *efx = vf->efx;
|
|
struct efx_filter_spec filter;
|
|
u16 vlan;
|
|
int rc;
|
|
|
|
if (vf->tx_filter_id != -1) {
|
|
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
|
|
vf->tx_filter_id);
|
|
netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
|
|
vf->pci_name, vf->tx_filter_id);
|
|
vf->tx_filter_id = -1;
|
|
}
|
|
|
|
if (is_zero_ether_addr(vf->addr.mac_addr))
|
|
return;
|
|
|
|
/* Turn on TX filtering automatically if not explicitly
|
|
* enabled or disabled.
|
|
*/
|
|
if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
|
|
vf->tx_filter_mode = VF_TX_FILTER_ON;
|
|
|
|
vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
|
|
efx_filter_init_tx(&filter, abs_index(vf, 0));
|
|
rc = efx_filter_set_eth_local(&filter,
|
|
vlan ? vlan : EFX_FILTER_VID_UNSPEC,
|
|
vf->addr.mac_addr);
|
|
BUG_ON(rc);
|
|
|
|
rc = efx_filter_insert_filter(efx, &filter, true);
|
|
if (rc < 0) {
|
|
netif_warn(efx, hw, efx->net_dev,
|
|
"Unable to migrate tx filter for vf %s\n",
|
|
vf->pci_name);
|
|
} else {
|
|
netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
|
|
vf->pci_name, rc);
|
|
vf->tx_filter_id = rc;
|
|
}
|
|
}
|
|
|
|
/* The RX filter is managed here on behalf of the VF driver */
|
|
static void efx_siena_sriov_reset_rx_filter(struct siena_vf *vf)
|
|
{
|
|
struct efx_nic *efx = vf->efx;
|
|
struct efx_filter_spec filter;
|
|
u16 vlan;
|
|
int rc;
|
|
|
|
if (vf->rx_filter_id != -1) {
|
|
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
|
|
vf->rx_filter_id);
|
|
netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
|
|
vf->pci_name, vf->rx_filter_id);
|
|
vf->rx_filter_id = -1;
|
|
}
|
|
|
|
if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
|
|
return;
|
|
|
|
vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
|
|
efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
|
|
vf->rx_filter_flags,
|
|
abs_index(vf, vf->rx_filter_qid));
|
|
rc = efx_filter_set_eth_local(&filter,
|
|
vlan ? vlan : EFX_FILTER_VID_UNSPEC,
|
|
vf->addr.mac_addr);
|
|
BUG_ON(rc);
|
|
|
|
rc = efx_filter_insert_filter(efx, &filter, true);
|
|
if (rc < 0) {
|
|
netif_warn(efx, hw, efx->net_dev,
|
|
"Unable to insert rx filter for vf %s\n",
|
|
vf->pci_name);
|
|
} else {
|
|
netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
|
|
vf->pci_name, rc);
|
|
vf->rx_filter_id = rc;
|
|
}
|
|
}
|
|
|
|
static void __efx_siena_sriov_update_vf_addr(struct siena_vf *vf)
|
|
{
|
|
struct efx_nic *efx = vf->efx;
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
|
|
efx_siena_sriov_reset_tx_filter(vf);
|
|
efx_siena_sriov_reset_rx_filter(vf);
|
|
queue_work(vfdi_workqueue, &nic_data->peer_work);
|
|
}
|
|
|
|
/* Push the peer list to this VF. The caller must hold status_lock to interlock
|
|
* with VFDI requests, and they must be serialised against manipulation of
|
|
* local_page_list, either by acquiring local_lock or by running from
|
|
* efx_siena_sriov_peer_work()
|
|
*/
|
|
static void __efx_siena_sriov_push_vf_status(struct siena_vf *vf)
|
|
{
|
|
struct efx_nic *efx = vf->efx;
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
struct vfdi_status *status = nic_data->vfdi_status.addr;
|
|
struct efx_memcpy_req copy[4];
|
|
struct efx_endpoint_page *epp;
|
|
unsigned int pos, count;
|
|
unsigned data_offset;
|
|
efx_qword_t event;
|
|
|
|
WARN_ON(!mutex_is_locked(&vf->status_lock));
|
|
WARN_ON(!vf->status_addr);
|
|
|
|
status->local = vf->addr;
|
|
status->generation_end = ++status->generation_start;
|
|
|
|
memset(copy, '\0', sizeof(copy));
|
|
/* Write generation_start */
|
|
copy[0].from_buf = &status->generation_start;
|
|
copy[0].to_rid = vf->pci_rid;
|
|
copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
|
|
generation_start);
|
|
copy[0].length = sizeof(status->generation_start);
|
|
/* DMA the rest of the structure (excluding the generations). This
|
|
* assumes that the non-generation portion of vfdi_status is in
|
|
* one chunk starting at the version member.
|
|
*/
|
|
data_offset = offsetof(struct vfdi_status, version);
|
|
copy[1].from_rid = efx->pci_dev->devfn;
|
|
copy[1].from_addr = nic_data->vfdi_status.dma_addr + data_offset;
|
|
copy[1].to_rid = vf->pci_rid;
|
|
copy[1].to_addr = vf->status_addr + data_offset;
|
|
copy[1].length = status->length - data_offset;
|
|
|
|
/* Copy the peer pages */
|
|
pos = 2;
|
|
count = 0;
|
|
list_for_each_entry(epp, &nic_data->local_page_list, link) {
|
|
if (count == vf->peer_page_count) {
|
|
/* The VF driver will know they need to provide more
|
|
* pages because peer_addr_count is too large.
|
|
*/
|
|
break;
|
|
}
|
|
copy[pos].from_buf = NULL;
|
|
copy[pos].from_rid = efx->pci_dev->devfn;
|
|
copy[pos].from_addr = epp->addr;
|
|
copy[pos].to_rid = vf->pci_rid;
|
|
copy[pos].to_addr = vf->peer_page_addrs[count];
|
|
copy[pos].length = EFX_PAGE_SIZE;
|
|
|
|
if (++pos == ARRAY_SIZE(copy)) {
|
|
efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
|
|
pos = 0;
|
|
}
|
|
++count;
|
|
}
|
|
|
|
/* Write generation_end */
|
|
copy[pos].from_buf = &status->generation_end;
|
|
copy[pos].to_rid = vf->pci_rid;
|
|
copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
|
|
generation_end);
|
|
copy[pos].length = sizeof(status->generation_end);
|
|
efx_siena_sriov_memcpy(efx, copy, pos + 1);
|
|
|
|
/* Notify the guest */
|
|
EFX_POPULATE_QWORD_3(event,
|
|
FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
|
|
VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
|
|
VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
|
|
++vf->msg_seqno;
|
|
efx_farch_generate_event(efx,
|
|
EFX_VI_BASE + vf->index * efx_vf_size(efx),
|
|
&event);
|
|
}
|
|
|
|
static void efx_siena_sriov_bufs(struct efx_nic *efx, unsigned offset,
|
|
u64 *addr, unsigned count)
|
|
{
|
|
efx_qword_t buf;
|
|
unsigned pos;
|
|
|
|
for (pos = 0; pos < count; ++pos) {
|
|
EFX_POPULATE_QWORD_3(buf,
|
|
FRF_AZ_BUF_ADR_REGION, 0,
|
|
FRF_AZ_BUF_ADR_FBUF,
|
|
addr ? addr[pos] >> 12 : 0,
|
|
FRF_AZ_BUF_OWNER_ID_FBUF, 0);
|
|
efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
|
|
&buf, offset + pos);
|
|
}
|
|
}
|
|
|
|
static bool bad_vf_index(struct efx_nic *efx, unsigned index)
|
|
{
|
|
return index >= efx_vf_size(efx);
|
|
}
|
|
|
|
static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
|
|
{
|
|
unsigned max_buf_count = max_entry_count *
|
|
sizeof(efx_qword_t) / EFX_BUF_SIZE;
|
|
|
|
return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
|
|
}
|
|
|
|
/* Check that VI specified by per-port index belongs to a VF.
|
|
* Optionally set VF index and VI index within the VF.
|
|
*/
|
|
static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
|
|
struct siena_vf **vf_out, unsigned *rel_index_out)
|
|
{
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
unsigned vf_i;
|
|
|
|
if (abs_index < EFX_VI_BASE)
|
|
return true;
|
|
vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
|
|
if (vf_i >= efx->vf_init_count)
|
|
return true;
|
|
|
|
if (vf_out)
|
|
*vf_out = nic_data->vf + vf_i;
|
|
if (rel_index_out)
|
|
*rel_index_out = abs_index % efx_vf_size(efx);
|
|
return false;
|
|
}
|
|
|
|
static int efx_vfdi_init_evq(struct siena_vf *vf)
|
|
{
|
|
struct efx_nic *efx = vf->efx;
|
|
struct vfdi_req *req = vf->buf.addr;
|
|
unsigned vf_evq = req->u.init_evq.index;
|
|
unsigned buf_count = req->u.init_evq.buf_count;
|
|
unsigned abs_evq = abs_index(vf, vf_evq);
|
|
unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
|
|
efx_oword_t reg;
|
|
|
|
if (bad_vf_index(efx, vf_evq) ||
|
|
bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
|
|
if (net_ratelimit())
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
|
|
vf->pci_name, vf_evq, buf_count);
|
|
return VFDI_RC_EINVAL;
|
|
}
|
|
|
|
efx_siena_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
|
|
|
|
EFX_POPULATE_OWORD_3(reg,
|
|
FRF_CZ_TIMER_Q_EN, 1,
|
|
FRF_CZ_HOST_NOTIFY_MODE, 0,
|
|
FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
|
|
efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, abs_evq);
|
|
EFX_POPULATE_OWORD_3(reg,
|
|
FRF_AZ_EVQ_EN, 1,
|
|
FRF_AZ_EVQ_SIZE, __ffs(buf_count),
|
|
FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
|
|
efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, abs_evq);
|
|
|
|
if (vf_evq == 0) {
|
|
memcpy(vf->evq0_addrs, req->u.init_evq.addr,
|
|
buf_count * sizeof(u64));
|
|
vf->evq0_count = buf_count;
|
|
}
|
|
|
|
return VFDI_RC_SUCCESS;
|
|
}
|
|
|
|
static int efx_vfdi_init_rxq(struct siena_vf *vf)
|
|
{
|
|
struct efx_nic *efx = vf->efx;
|
|
struct vfdi_req *req = vf->buf.addr;
|
|
unsigned vf_rxq = req->u.init_rxq.index;
|
|
unsigned vf_evq = req->u.init_rxq.evq;
|
|
unsigned buf_count = req->u.init_rxq.buf_count;
|
|
unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
|
|
unsigned label;
|
|
efx_oword_t reg;
|
|
|
|
if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
|
|
vf_rxq >= VF_MAX_RX_QUEUES ||
|
|
bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
|
|
if (net_ratelimit())
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
|
|
"buf_count %d\n", vf->pci_name, vf_rxq,
|
|
vf_evq, buf_count);
|
|
return VFDI_RC_EINVAL;
|
|
}
|
|
if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
|
|
++vf->rxq_count;
|
|
efx_siena_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
|
|
|
|
label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
|
|
EFX_POPULATE_OWORD_6(reg,
|
|
FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
|
|
FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
|
|
FRF_AZ_RX_DESCQ_LABEL, label,
|
|
FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
|
|
FRF_AZ_RX_DESCQ_JUMBO,
|
|
!!(req->u.init_rxq.flags &
|
|
VFDI_RXQ_FLAG_SCATTER_EN),
|
|
FRF_AZ_RX_DESCQ_EN, 1);
|
|
efx_writeo_table(efx, ®, FR_BZ_RX_DESC_PTR_TBL,
|
|
abs_index(vf, vf_rxq));
|
|
|
|
return VFDI_RC_SUCCESS;
|
|
}
|
|
|
|
static int efx_vfdi_init_txq(struct siena_vf *vf)
|
|
{
|
|
struct efx_nic *efx = vf->efx;
|
|
struct vfdi_req *req = vf->buf.addr;
|
|
unsigned vf_txq = req->u.init_txq.index;
|
|
unsigned vf_evq = req->u.init_txq.evq;
|
|
unsigned buf_count = req->u.init_txq.buf_count;
|
|
unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
|
|
unsigned label, eth_filt_en;
|
|
efx_oword_t reg;
|
|
|
|
if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
|
|
vf_txq >= vf_max_tx_channels ||
|
|
bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
|
|
if (net_ratelimit())
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
|
|
"buf_count %d\n", vf->pci_name, vf_txq,
|
|
vf_evq, buf_count);
|
|
return VFDI_RC_EINVAL;
|
|
}
|
|
|
|
mutex_lock(&vf->txq_lock);
|
|
if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
|
|
++vf->txq_count;
|
|
mutex_unlock(&vf->txq_lock);
|
|
efx_siena_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
|
|
|
|
eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
|
|
|
|
label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
|
|
EFX_POPULATE_OWORD_8(reg,
|
|
FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
|
|
FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
|
|
FRF_AZ_TX_DESCQ_EN, 1,
|
|
FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
|
|
FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
|
|
FRF_AZ_TX_DESCQ_LABEL, label,
|
|
FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
|
|
FRF_BZ_TX_NON_IP_DROP_DIS, 1);
|
|
efx_writeo_table(efx, ®, FR_BZ_TX_DESC_PTR_TBL,
|
|
abs_index(vf, vf_txq));
|
|
|
|
return VFDI_RC_SUCCESS;
|
|
}
|
|
|
|
/* Returns true when efx_vfdi_fini_all_queues should wake */
|
|
static bool efx_vfdi_flush_wake(struct siena_vf *vf)
|
|
{
|
|
/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
|
|
smp_mb();
|
|
|
|
return (!vf->txq_count && !vf->rxq_count) ||
|
|
atomic_read(&vf->rxq_retry_count);
|
|
}
|
|
|
|
static void efx_vfdi_flush_clear(struct siena_vf *vf)
|
|
{
|
|
memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
|
|
vf->txq_count = 0;
|
|
memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
|
|
vf->rxq_count = 0;
|
|
memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
|
|
atomic_set(&vf->rxq_retry_count, 0);
|
|
}
|
|
|
|
static int efx_vfdi_fini_all_queues(struct siena_vf *vf)
|
|
{
|
|
struct efx_nic *efx = vf->efx;
|
|
efx_oword_t reg;
|
|
unsigned count = efx_vf_size(efx);
|
|
unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
|
|
unsigned timeout = HZ;
|
|
unsigned index, rxqs_count;
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(VF_MAX_RX_QUEUES >
|
|
MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
|
|
|
|
rtnl_lock();
|
|
siena_prepare_flush(efx);
|
|
rtnl_unlock();
|
|
|
|
/* Flush all the initialized queues */
|
|
rxqs_count = 0;
|
|
for (index = 0; index < count; ++index) {
|
|
if (test_bit(index, vf->txq_mask)) {
|
|
EFX_POPULATE_OWORD_2(reg,
|
|
FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
|
|
FRF_AZ_TX_FLUSH_DESCQ,
|
|
vf_offset + index);
|
|
efx_writeo(efx, ®, FR_AZ_TX_FLUSH_DESCQ);
|
|
}
|
|
if (test_bit(index, vf->rxq_mask)) {
|
|
MCDI_SET_ARRAY_DWORD(
|
|
inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
|
|
rxqs_count, vf_offset + index);
|
|
rxqs_count++;
|
|
}
|
|
}
|
|
|
|
atomic_set(&vf->rxq_retry_count, 0);
|
|
while (timeout && (vf->rxq_count || vf->txq_count)) {
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
|
|
MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
|
|
NULL, 0, NULL);
|
|
WARN_ON(rc < 0);
|
|
|
|
timeout = wait_event_timeout(vf->flush_waitq,
|
|
efx_vfdi_flush_wake(vf),
|
|
timeout);
|
|
rxqs_count = 0;
|
|
for (index = 0; index < count; ++index) {
|
|
if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
|
|
atomic_dec(&vf->rxq_retry_count);
|
|
MCDI_SET_ARRAY_DWORD(
|
|
inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
|
|
rxqs_count, vf_offset + index);
|
|
rxqs_count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
rtnl_lock();
|
|
siena_finish_flush(efx);
|
|
rtnl_unlock();
|
|
|
|
/* Irrespective of success/failure, fini the queues */
|
|
EFX_ZERO_OWORD(reg);
|
|
for (index = 0; index < count; ++index) {
|
|
efx_writeo_table(efx, ®, FR_BZ_RX_DESC_PTR_TBL,
|
|
vf_offset + index);
|
|
efx_writeo_table(efx, ®, FR_BZ_TX_DESC_PTR_TBL,
|
|
vf_offset + index);
|
|
efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL,
|
|
vf_offset + index);
|
|
efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL,
|
|
vf_offset + index);
|
|
}
|
|
efx_siena_sriov_bufs(efx, vf->buftbl_base, NULL,
|
|
EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
|
|
efx_vfdi_flush_clear(vf);
|
|
|
|
vf->evq0_count = 0;
|
|
|
|
return timeout ? 0 : VFDI_RC_ETIMEDOUT;
|
|
}
|
|
|
|
static int efx_vfdi_insert_filter(struct siena_vf *vf)
|
|
{
|
|
struct efx_nic *efx = vf->efx;
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
struct vfdi_req *req = vf->buf.addr;
|
|
unsigned vf_rxq = req->u.mac_filter.rxq;
|
|
unsigned flags;
|
|
|
|
if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
|
|
if (net_ratelimit())
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"ERROR: Invalid INSERT_FILTER from %s: rxq %d "
|
|
"flags 0x%x\n", vf->pci_name, vf_rxq,
|
|
req->u.mac_filter.flags);
|
|
return VFDI_RC_EINVAL;
|
|
}
|
|
|
|
flags = 0;
|
|
if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
|
|
flags |= EFX_FILTER_FLAG_RX_RSS;
|
|
if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
|
|
flags |= EFX_FILTER_FLAG_RX_SCATTER;
|
|
vf->rx_filter_flags = flags;
|
|
vf->rx_filter_qid = vf_rxq;
|
|
vf->rx_filtering = true;
|
|
|
|
efx_siena_sriov_reset_rx_filter(vf);
|
|
queue_work(vfdi_workqueue, &nic_data->peer_work);
|
|
|
|
return VFDI_RC_SUCCESS;
|
|
}
|
|
|
|
static int efx_vfdi_remove_all_filters(struct siena_vf *vf)
|
|
{
|
|
struct efx_nic *efx = vf->efx;
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
|
|
vf->rx_filtering = false;
|
|
efx_siena_sriov_reset_rx_filter(vf);
|
|
queue_work(vfdi_workqueue, &nic_data->peer_work);
|
|
|
|
return VFDI_RC_SUCCESS;
|
|
}
|
|
|
|
static int efx_vfdi_set_status_page(struct siena_vf *vf)
|
|
{
|
|
struct efx_nic *efx = vf->efx;
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
struct vfdi_req *req = vf->buf.addr;
|
|
u64 page_count = req->u.set_status_page.peer_page_count;
|
|
u64 max_page_count =
|
|
(EFX_PAGE_SIZE -
|
|
offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
|
|
/ sizeof(req->u.set_status_page.peer_page_addr[0]);
|
|
|
|
if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
|
|
if (net_ratelimit())
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"ERROR: Invalid SET_STATUS_PAGE from %s\n",
|
|
vf->pci_name);
|
|
return VFDI_RC_EINVAL;
|
|
}
|
|
|
|
mutex_lock(&nic_data->local_lock);
|
|
mutex_lock(&vf->status_lock);
|
|
vf->status_addr = req->u.set_status_page.dma_addr;
|
|
|
|
kfree(vf->peer_page_addrs);
|
|
vf->peer_page_addrs = NULL;
|
|
vf->peer_page_count = 0;
|
|
|
|
if (page_count) {
|
|
vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
|
|
GFP_KERNEL);
|
|
if (vf->peer_page_addrs) {
|
|
memcpy(vf->peer_page_addrs,
|
|
req->u.set_status_page.peer_page_addr,
|
|
page_count * sizeof(u64));
|
|
vf->peer_page_count = page_count;
|
|
}
|
|
}
|
|
|
|
__efx_siena_sriov_push_vf_status(vf);
|
|
mutex_unlock(&vf->status_lock);
|
|
mutex_unlock(&nic_data->local_lock);
|
|
|
|
return VFDI_RC_SUCCESS;
|
|
}
|
|
|
|
static int efx_vfdi_clear_status_page(struct siena_vf *vf)
|
|
{
|
|
mutex_lock(&vf->status_lock);
|
|
vf->status_addr = 0;
|
|
mutex_unlock(&vf->status_lock);
|
|
|
|
return VFDI_RC_SUCCESS;
|
|
}
|
|
|
|
typedef int (*efx_vfdi_op_t)(struct siena_vf *vf);
|
|
|
|
static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
|
|
[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
|
|
[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
|
|
[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
|
|
[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
|
|
[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
|
|
[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
|
|
[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
|
|
[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
|
|
};
|
|
|
|
static void efx_siena_sriov_vfdi(struct work_struct *work)
|
|
{
|
|
struct siena_vf *vf = container_of(work, struct siena_vf, req);
|
|
struct efx_nic *efx = vf->efx;
|
|
struct vfdi_req *req = vf->buf.addr;
|
|
struct efx_memcpy_req copy[2];
|
|
int rc;
|
|
|
|
/* Copy this page into the local address space */
|
|
memset(copy, '\0', sizeof(copy));
|
|
copy[0].from_rid = vf->pci_rid;
|
|
copy[0].from_addr = vf->req_addr;
|
|
copy[0].to_rid = efx->pci_dev->devfn;
|
|
copy[0].to_addr = vf->buf.dma_addr;
|
|
copy[0].length = EFX_PAGE_SIZE;
|
|
rc = efx_siena_sriov_memcpy(efx, copy, 1);
|
|
if (rc) {
|
|
/* If we can't get the request, we can't reply to the caller */
|
|
if (net_ratelimit())
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"ERROR: Unable to fetch VFDI request from %s rc %d\n",
|
|
vf->pci_name, -rc);
|
|
vf->busy = false;
|
|
return;
|
|
}
|
|
|
|
if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
|
|
rc = vfdi_ops[req->op](vf);
|
|
if (rc == 0) {
|
|
netif_dbg(efx, hw, efx->net_dev,
|
|
"vfdi request %d from %s ok\n",
|
|
req->op, vf->pci_name);
|
|
}
|
|
} else {
|
|
netif_dbg(efx, hw, efx->net_dev,
|
|
"ERROR: Unrecognised request %d from VF %s addr "
|
|
"%llx\n", req->op, vf->pci_name,
|
|
(unsigned long long)vf->req_addr);
|
|
rc = VFDI_RC_EOPNOTSUPP;
|
|
}
|
|
|
|
/* Allow subsequent VF requests */
|
|
vf->busy = false;
|
|
smp_wmb();
|
|
|
|
/* Respond to the request */
|
|
req->rc = rc;
|
|
req->op = VFDI_OP_RESPONSE;
|
|
|
|
memset(copy, '\0', sizeof(copy));
|
|
copy[0].from_buf = &req->rc;
|
|
copy[0].to_rid = vf->pci_rid;
|
|
copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
|
|
copy[0].length = sizeof(req->rc);
|
|
copy[1].from_buf = &req->op;
|
|
copy[1].to_rid = vf->pci_rid;
|
|
copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
|
|
copy[1].length = sizeof(req->op);
|
|
|
|
(void)efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
|
|
}
|
|
|
|
|
|
|
|
/* After a reset the event queues inside the guests no longer exist. Fill the
|
|
* event ring in guest memory with VFDI reset events, then (re-initialise) the
|
|
* event queue to raise an interrupt. The guest driver will then recover.
|
|
*/
|
|
|
|
static void efx_siena_sriov_reset_vf(struct siena_vf *vf,
|
|
struct efx_buffer *buffer)
|
|
{
|
|
struct efx_nic *efx = vf->efx;
|
|
struct efx_memcpy_req copy_req[4];
|
|
efx_qword_t event;
|
|
unsigned int pos, count, k, buftbl, abs_evq;
|
|
efx_oword_t reg;
|
|
efx_dword_t ptr;
|
|
int rc;
|
|
|
|
BUG_ON(buffer->len != EFX_PAGE_SIZE);
|
|
|
|
if (!vf->evq0_count)
|
|
return;
|
|
BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
|
|
|
|
mutex_lock(&vf->status_lock);
|
|
EFX_POPULATE_QWORD_3(event,
|
|
FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
|
|
VFDI_EV_SEQ, vf->msg_seqno,
|
|
VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
|
|
vf->msg_seqno++;
|
|
for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
|
|
memcpy(buffer->addr + pos, &event, sizeof(event));
|
|
|
|
for (pos = 0; pos < vf->evq0_count; pos += count) {
|
|
count = min_t(unsigned, vf->evq0_count - pos,
|
|
ARRAY_SIZE(copy_req));
|
|
for (k = 0; k < count; k++) {
|
|
copy_req[k].from_buf = NULL;
|
|
copy_req[k].from_rid = efx->pci_dev->devfn;
|
|
copy_req[k].from_addr = buffer->dma_addr;
|
|
copy_req[k].to_rid = vf->pci_rid;
|
|
copy_req[k].to_addr = vf->evq0_addrs[pos + k];
|
|
copy_req[k].length = EFX_PAGE_SIZE;
|
|
}
|
|
rc = efx_siena_sriov_memcpy(efx, copy_req, count);
|
|
if (rc) {
|
|
if (net_ratelimit())
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"ERROR: Unable to notify %s of reset"
|
|
": %d\n", vf->pci_name, -rc);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Reinitialise, arm and trigger evq0 */
|
|
abs_evq = abs_index(vf, 0);
|
|
buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
|
|
efx_siena_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
|
|
|
|
EFX_POPULATE_OWORD_3(reg,
|
|
FRF_CZ_TIMER_Q_EN, 1,
|
|
FRF_CZ_HOST_NOTIFY_MODE, 0,
|
|
FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
|
|
efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, abs_evq);
|
|
EFX_POPULATE_OWORD_3(reg,
|
|
FRF_AZ_EVQ_EN, 1,
|
|
FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
|
|
FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
|
|
efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, abs_evq);
|
|
EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
|
|
efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
|
|
|
|
mutex_unlock(&vf->status_lock);
|
|
}
|
|
|
|
static void efx_siena_sriov_reset_vf_work(struct work_struct *work)
|
|
{
|
|
struct siena_vf *vf = container_of(work, struct siena_vf, req);
|
|
struct efx_nic *efx = vf->efx;
|
|
struct efx_buffer buf;
|
|
|
|
if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
|
|
efx_siena_sriov_reset_vf(vf, &buf);
|
|
efx_nic_free_buffer(efx, &buf);
|
|
}
|
|
}
|
|
|
|
static void efx_siena_sriov_handle_no_channel(struct efx_nic *efx)
|
|
{
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"ERROR: IOV requires MSI-X and 1 additional interrupt"
|
|
"vector. IOV disabled\n");
|
|
efx->vf_count = 0;
|
|
}
|
|
|
|
static int efx_siena_sriov_probe_channel(struct efx_channel *channel)
|
|
{
|
|
struct siena_nic_data *nic_data = channel->efx->nic_data;
|
|
nic_data->vfdi_channel = channel;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
efx_siena_sriov_get_channel_name(struct efx_channel *channel,
|
|
char *buf, size_t len)
|
|
{
|
|
snprintf(buf, len, "%s-iov", channel->efx->name);
|
|
}
|
|
|
|
static const struct efx_channel_type efx_siena_sriov_channel_type = {
|
|
.handle_no_channel = efx_siena_sriov_handle_no_channel,
|
|
.pre_probe = efx_siena_sriov_probe_channel,
|
|
.post_remove = efx_channel_dummy_op_void,
|
|
.get_name = efx_siena_sriov_get_channel_name,
|
|
/* no copy operation; channel must not be reallocated */
|
|
.keep_eventq = true,
|
|
};
|
|
|
|
void efx_siena_sriov_probe(struct efx_nic *efx)
|
|
{
|
|
unsigned count;
|
|
|
|
if (!max_vfs)
|
|
return;
|
|
|
|
if (efx_siena_sriov_cmd(efx, false, &efx->vi_scale, &count)) {
|
|
netif_info(efx, probe, efx->net_dev, "no SR-IOV VFs probed\n");
|
|
return;
|
|
}
|
|
if (count > 0 && count > max_vfs)
|
|
count = max_vfs;
|
|
|
|
/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
|
|
efx->vf_count = count;
|
|
|
|
efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_siena_sriov_channel_type;
|
|
}
|
|
|
|
/* Copy the list of individual addresses into the vfdi_status.peers
|
|
* array and auxiliary pages, protected by %local_lock. Drop that lock
|
|
* and then broadcast the address list to every VF.
|
|
*/
|
|
static void efx_siena_sriov_peer_work(struct work_struct *data)
|
|
{
|
|
struct siena_nic_data *nic_data = container_of(data,
|
|
struct siena_nic_data,
|
|
peer_work);
|
|
struct efx_nic *efx = nic_data->efx;
|
|
struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
|
|
struct siena_vf *vf;
|
|
struct efx_local_addr *local_addr;
|
|
struct vfdi_endpoint *peer;
|
|
struct efx_endpoint_page *epp;
|
|
struct list_head pages;
|
|
unsigned int peer_space;
|
|
unsigned int peer_count;
|
|
unsigned int pos;
|
|
|
|
mutex_lock(&nic_data->local_lock);
|
|
|
|
/* Move the existing peer pages off %local_page_list */
|
|
INIT_LIST_HEAD(&pages);
|
|
list_splice_tail_init(&nic_data->local_page_list, &pages);
|
|
|
|
/* Populate the VF addresses starting from entry 1 (entry 0 is
|
|
* the PF address)
|
|
*/
|
|
peer = vfdi_status->peers + 1;
|
|
peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
|
|
peer_count = 1;
|
|
for (pos = 0; pos < efx->vf_count; ++pos) {
|
|
vf = nic_data->vf + pos;
|
|
|
|
mutex_lock(&vf->status_lock);
|
|
if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
|
|
*peer++ = vf->addr;
|
|
++peer_count;
|
|
--peer_space;
|
|
BUG_ON(peer_space == 0);
|
|
}
|
|
mutex_unlock(&vf->status_lock);
|
|
}
|
|
|
|
/* Fill the remaining addresses */
|
|
list_for_each_entry(local_addr, &nic_data->local_addr_list, link) {
|
|
ether_addr_copy(peer->mac_addr, local_addr->addr);
|
|
peer->tci = 0;
|
|
++peer;
|
|
++peer_count;
|
|
if (--peer_space == 0) {
|
|
if (list_empty(&pages)) {
|
|
epp = kmalloc(sizeof(*epp), GFP_KERNEL);
|
|
if (!epp)
|
|
break;
|
|
epp->ptr = dma_alloc_coherent(
|
|
&efx->pci_dev->dev, EFX_PAGE_SIZE,
|
|
&epp->addr, GFP_KERNEL);
|
|
if (!epp->ptr) {
|
|
kfree(epp);
|
|
break;
|
|
}
|
|
} else {
|
|
epp = list_first_entry(
|
|
&pages, struct efx_endpoint_page, link);
|
|
list_del(&epp->link);
|
|
}
|
|
|
|
list_add_tail(&epp->link, &nic_data->local_page_list);
|
|
peer = (struct vfdi_endpoint *)epp->ptr;
|
|
peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
|
|
}
|
|
}
|
|
vfdi_status->peer_count = peer_count;
|
|
mutex_unlock(&nic_data->local_lock);
|
|
|
|
/* Free any now unused endpoint pages */
|
|
while (!list_empty(&pages)) {
|
|
epp = list_first_entry(
|
|
&pages, struct efx_endpoint_page, link);
|
|
list_del(&epp->link);
|
|
dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
|
|
epp->ptr, epp->addr);
|
|
kfree(epp);
|
|
}
|
|
|
|
/* Finally, push the pages */
|
|
for (pos = 0; pos < efx->vf_count; ++pos) {
|
|
vf = nic_data->vf + pos;
|
|
|
|
mutex_lock(&vf->status_lock);
|
|
if (vf->status_addr)
|
|
__efx_siena_sriov_push_vf_status(vf);
|
|
mutex_unlock(&vf->status_lock);
|
|
}
|
|
}
|
|
|
|
static void efx_siena_sriov_free_local(struct efx_nic *efx)
|
|
{
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
struct efx_local_addr *local_addr;
|
|
struct efx_endpoint_page *epp;
|
|
|
|
while (!list_empty(&nic_data->local_addr_list)) {
|
|
local_addr = list_first_entry(&nic_data->local_addr_list,
|
|
struct efx_local_addr, link);
|
|
list_del(&local_addr->link);
|
|
kfree(local_addr);
|
|
}
|
|
|
|
while (!list_empty(&nic_data->local_page_list)) {
|
|
epp = list_first_entry(&nic_data->local_page_list,
|
|
struct efx_endpoint_page, link);
|
|
list_del(&epp->link);
|
|
dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
|
|
epp->ptr, epp->addr);
|
|
kfree(epp);
|
|
}
|
|
}
|
|
|
|
static int efx_siena_sriov_vf_alloc(struct efx_nic *efx)
|
|
{
|
|
unsigned index;
|
|
struct siena_vf *vf;
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
|
|
nic_data->vf = kcalloc(efx->vf_count, sizeof(*nic_data->vf),
|
|
GFP_KERNEL);
|
|
if (!nic_data->vf)
|
|
return -ENOMEM;
|
|
|
|
for (index = 0; index < efx->vf_count; ++index) {
|
|
vf = nic_data->vf + index;
|
|
|
|
vf->efx = efx;
|
|
vf->index = index;
|
|
vf->rx_filter_id = -1;
|
|
vf->tx_filter_mode = VF_TX_FILTER_AUTO;
|
|
vf->tx_filter_id = -1;
|
|
INIT_WORK(&vf->req, efx_siena_sriov_vfdi);
|
|
INIT_WORK(&vf->reset_work, efx_siena_sriov_reset_vf_work);
|
|
init_waitqueue_head(&vf->flush_waitq);
|
|
mutex_init(&vf->status_lock);
|
|
mutex_init(&vf->txq_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void efx_siena_sriov_vfs_fini(struct efx_nic *efx)
|
|
{
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
struct siena_vf *vf;
|
|
unsigned int pos;
|
|
|
|
for (pos = 0; pos < efx->vf_count; ++pos) {
|
|
vf = nic_data->vf + pos;
|
|
|
|
efx_nic_free_buffer(efx, &vf->buf);
|
|
kfree(vf->peer_page_addrs);
|
|
vf->peer_page_addrs = NULL;
|
|
vf->peer_page_count = 0;
|
|
|
|
vf->evq0_count = 0;
|
|
}
|
|
}
|
|
|
|
static int efx_siena_sriov_vfs_init(struct efx_nic *efx)
|
|
{
|
|
struct pci_dev *pci_dev = efx->pci_dev;
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
unsigned index, devfn, sriov, buftbl_base;
|
|
u16 offset, stride;
|
|
struct siena_vf *vf;
|
|
int rc;
|
|
|
|
sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
|
|
if (!sriov)
|
|
return -ENOENT;
|
|
|
|
pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
|
|
pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
|
|
|
|
buftbl_base = nic_data->vf_buftbl_base;
|
|
devfn = pci_dev->devfn + offset;
|
|
for (index = 0; index < efx->vf_count; ++index) {
|
|
vf = nic_data->vf + index;
|
|
|
|
/* Reserve buffer entries */
|
|
vf->buftbl_base = buftbl_base;
|
|
buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
|
|
|
|
vf->pci_rid = devfn;
|
|
snprintf(vf->pci_name, sizeof(vf->pci_name),
|
|
"%04x:%02x:%02x.%d",
|
|
pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
|
|
PCI_SLOT(devfn), PCI_FUNC(devfn));
|
|
|
|
rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
|
|
GFP_KERNEL);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
devfn += stride;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
efx_siena_sriov_vfs_fini(efx);
|
|
return rc;
|
|
}
|
|
|
|
int efx_siena_sriov_init(struct efx_nic *efx)
|
|
{
|
|
struct net_device *net_dev = efx->net_dev;
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
struct vfdi_status *vfdi_status;
|
|
int rc;
|
|
|
|
/* Ensure there's room for vf_channel */
|
|
BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
|
|
/* Ensure that VI_BASE is aligned on VI_SCALE */
|
|
BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
|
|
|
|
if (efx->vf_count == 0)
|
|
return 0;
|
|
|
|
rc = efx_siena_sriov_cmd(efx, true, NULL, NULL);
|
|
if (rc)
|
|
goto fail_cmd;
|
|
|
|
rc = efx_nic_alloc_buffer(efx, &nic_data->vfdi_status,
|
|
sizeof(*vfdi_status), GFP_KERNEL);
|
|
if (rc)
|
|
goto fail_status;
|
|
vfdi_status = nic_data->vfdi_status.addr;
|
|
memset(vfdi_status, 0, sizeof(*vfdi_status));
|
|
vfdi_status->version = 1;
|
|
vfdi_status->length = sizeof(*vfdi_status);
|
|
vfdi_status->max_tx_channels = vf_max_tx_channels;
|
|
vfdi_status->vi_scale = efx->vi_scale;
|
|
vfdi_status->rss_rxq_count = efx->rss_spread;
|
|
vfdi_status->peer_count = 1 + efx->vf_count;
|
|
vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
|
|
|
|
rc = efx_siena_sriov_vf_alloc(efx);
|
|
if (rc)
|
|
goto fail_alloc;
|
|
|
|
mutex_init(&nic_data->local_lock);
|
|
INIT_WORK(&nic_data->peer_work, efx_siena_sriov_peer_work);
|
|
INIT_LIST_HEAD(&nic_data->local_addr_list);
|
|
INIT_LIST_HEAD(&nic_data->local_page_list);
|
|
|
|
rc = efx_siena_sriov_vfs_init(efx);
|
|
if (rc)
|
|
goto fail_vfs;
|
|
|
|
rtnl_lock();
|
|
ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr);
|
|
efx->vf_init_count = efx->vf_count;
|
|
rtnl_unlock();
|
|
|
|
efx_siena_sriov_usrev(efx, true);
|
|
|
|
/* At this point we must be ready to accept VFDI requests */
|
|
|
|
rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
|
|
if (rc)
|
|
goto fail_pci;
|
|
|
|
netif_info(efx, probe, net_dev,
|
|
"enabled SR-IOV for %d VFs, %d VI per VF\n",
|
|
efx->vf_count, efx_vf_size(efx));
|
|
return 0;
|
|
|
|
fail_pci:
|
|
efx_siena_sriov_usrev(efx, false);
|
|
rtnl_lock();
|
|
efx->vf_init_count = 0;
|
|
rtnl_unlock();
|
|
efx_siena_sriov_vfs_fini(efx);
|
|
fail_vfs:
|
|
cancel_work_sync(&nic_data->peer_work);
|
|
efx_siena_sriov_free_local(efx);
|
|
kfree(nic_data->vf);
|
|
fail_alloc:
|
|
efx_nic_free_buffer(efx, &nic_data->vfdi_status);
|
|
fail_status:
|
|
efx_siena_sriov_cmd(efx, false, NULL, NULL);
|
|
fail_cmd:
|
|
return rc;
|
|
}
|
|
|
|
void efx_siena_sriov_fini(struct efx_nic *efx)
|
|
{
|
|
struct siena_vf *vf;
|
|
unsigned int pos;
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
|
|
if (efx->vf_init_count == 0)
|
|
return;
|
|
|
|
/* Disable all interfaces to reconfiguration */
|
|
BUG_ON(nic_data->vfdi_channel->enabled);
|
|
efx_siena_sriov_usrev(efx, false);
|
|
rtnl_lock();
|
|
efx->vf_init_count = 0;
|
|
rtnl_unlock();
|
|
|
|
/* Flush all reconfiguration work */
|
|
for (pos = 0; pos < efx->vf_count; ++pos) {
|
|
vf = nic_data->vf + pos;
|
|
cancel_work_sync(&vf->req);
|
|
cancel_work_sync(&vf->reset_work);
|
|
}
|
|
cancel_work_sync(&nic_data->peer_work);
|
|
|
|
pci_disable_sriov(efx->pci_dev);
|
|
|
|
/* Tear down back-end state */
|
|
efx_siena_sriov_vfs_fini(efx);
|
|
efx_siena_sriov_free_local(efx);
|
|
kfree(nic_data->vf);
|
|
efx_nic_free_buffer(efx, &nic_data->vfdi_status);
|
|
efx_siena_sriov_cmd(efx, false, NULL, NULL);
|
|
}
|
|
|
|
void efx_siena_sriov_event(struct efx_channel *channel, efx_qword_t *event)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct siena_vf *vf;
|
|
unsigned qid, seq, type, data;
|
|
|
|
qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
|
|
|
|
/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
|
|
BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
|
|
seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
|
|
type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
|
|
data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
|
|
|
|
netif_vdbg(efx, hw, efx->net_dev,
|
|
"USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
|
|
qid, seq, type, data);
|
|
|
|
if (map_vi_index(efx, qid, &vf, NULL))
|
|
return;
|
|
if (vf->busy)
|
|
goto error;
|
|
|
|
if (type == VFDI_EV_TYPE_REQ_WORD0) {
|
|
/* Resynchronise */
|
|
vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
|
|
vf->req_seqno = seq + 1;
|
|
vf->req_addr = 0;
|
|
} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
|
|
goto error;
|
|
|
|
switch (vf->req_type) {
|
|
case VFDI_EV_TYPE_REQ_WORD0:
|
|
case VFDI_EV_TYPE_REQ_WORD1:
|
|
case VFDI_EV_TYPE_REQ_WORD2:
|
|
vf->req_addr |= (u64)data << (vf->req_type << 4);
|
|
++vf->req_type;
|
|
return;
|
|
|
|
case VFDI_EV_TYPE_REQ_WORD3:
|
|
vf->req_addr |= (u64)data << 48;
|
|
vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
|
|
vf->busy = true;
|
|
queue_work(vfdi_workqueue, &vf->req);
|
|
return;
|
|
}
|
|
|
|
error:
|
|
if (net_ratelimit())
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"ERROR: Screaming VFDI request from %s\n",
|
|
vf->pci_name);
|
|
/* Reset the request and sequence number */
|
|
vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
|
|
vf->req_seqno = seq + 1;
|
|
}
|
|
|
|
void efx_siena_sriov_flr(struct efx_nic *efx, unsigned vf_i)
|
|
{
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
struct siena_vf *vf;
|
|
|
|
if (vf_i > efx->vf_init_count)
|
|
return;
|
|
vf = nic_data->vf + vf_i;
|
|
netif_info(efx, hw, efx->net_dev,
|
|
"FLR on VF %s\n", vf->pci_name);
|
|
|
|
vf->status_addr = 0;
|
|
efx_vfdi_remove_all_filters(vf);
|
|
efx_vfdi_flush_clear(vf);
|
|
|
|
vf->evq0_count = 0;
|
|
}
|
|
|
|
int efx_siena_sriov_mac_address_changed(struct efx_nic *efx)
|
|
{
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
|
|
|
|
if (!efx->vf_init_count)
|
|
return 0;
|
|
ether_addr_copy(vfdi_status->peers[0].mac_addr,
|
|
efx->net_dev->dev_addr);
|
|
queue_work(vfdi_workqueue, &nic_data->peer_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void efx_siena_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
|
|
{
|
|
struct siena_vf *vf;
|
|
unsigned queue, qid;
|
|
|
|
queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
|
|
if (map_vi_index(efx, queue, &vf, &qid))
|
|
return;
|
|
/* Ignore flush completions triggered by an FLR */
|
|
if (!test_bit(qid, vf->txq_mask))
|
|
return;
|
|
|
|
__clear_bit(qid, vf->txq_mask);
|
|
--vf->txq_count;
|
|
|
|
if (efx_vfdi_flush_wake(vf))
|
|
wake_up(&vf->flush_waitq);
|
|
}
|
|
|
|
void efx_siena_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
|
|
{
|
|
struct siena_vf *vf;
|
|
unsigned ev_failed, queue, qid;
|
|
|
|
queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
|
|
ev_failed = EFX_QWORD_FIELD(*event,
|
|
FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
|
|
if (map_vi_index(efx, queue, &vf, &qid))
|
|
return;
|
|
if (!test_bit(qid, vf->rxq_mask))
|
|
return;
|
|
|
|
if (ev_failed) {
|
|
set_bit(qid, vf->rxq_retry_mask);
|
|
atomic_inc(&vf->rxq_retry_count);
|
|
} else {
|
|
__clear_bit(qid, vf->rxq_mask);
|
|
--vf->rxq_count;
|
|
}
|
|
if (efx_vfdi_flush_wake(vf))
|
|
wake_up(&vf->flush_waitq);
|
|
}
|
|
|
|
/* Called from napi. Schedule the reset work item */
|
|
void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
|
|
{
|
|
struct siena_vf *vf;
|
|
unsigned int rel;
|
|
|
|
if (map_vi_index(efx, dmaq, &vf, &rel))
|
|
return;
|
|
|
|
if (net_ratelimit())
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"VF %d DMA Q %d reports descriptor fetch error.\n",
|
|
vf->index, rel);
|
|
queue_work(vfdi_workqueue, &vf->reset_work);
|
|
}
|
|
|
|
/* Reset all VFs */
|
|
void efx_siena_sriov_reset(struct efx_nic *efx)
|
|
{
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
unsigned int vf_i;
|
|
struct efx_buffer buf;
|
|
struct siena_vf *vf;
|
|
|
|
ASSERT_RTNL();
|
|
|
|
if (efx->vf_init_count == 0)
|
|
return;
|
|
|
|
efx_siena_sriov_usrev(efx, true);
|
|
(void)efx_siena_sriov_cmd(efx, true, NULL, NULL);
|
|
|
|
if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
|
|
return;
|
|
|
|
for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
|
|
vf = nic_data->vf + vf_i;
|
|
efx_siena_sriov_reset_vf(vf, &buf);
|
|
}
|
|
|
|
efx_nic_free_buffer(efx, &buf);
|
|
}
|
|
|
|
int efx_init_sriov(void)
|
|
{
|
|
/* A single threaded workqueue is sufficient. efx_siena_sriov_vfdi() and
|
|
* efx_siena_sriov_peer_work() spend almost all their time sleeping for
|
|
* MCDI to complete anyway
|
|
*/
|
|
vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
|
|
if (!vfdi_workqueue)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void efx_fini_sriov(void)
|
|
{
|
|
destroy_workqueue(vfdi_workqueue);
|
|
}
|
|
|
|
int efx_siena_sriov_set_vf_mac(struct efx_nic *efx, int vf_i, u8 *mac)
|
|
{
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
struct siena_vf *vf;
|
|
|
|
if (vf_i >= efx->vf_init_count)
|
|
return -EINVAL;
|
|
vf = nic_data->vf + vf_i;
|
|
|
|
mutex_lock(&vf->status_lock);
|
|
ether_addr_copy(vf->addr.mac_addr, mac);
|
|
__efx_siena_sriov_update_vf_addr(vf);
|
|
mutex_unlock(&vf->status_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int efx_siena_sriov_set_vf_vlan(struct efx_nic *efx, int vf_i,
|
|
u16 vlan, u8 qos)
|
|
{
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
struct siena_vf *vf;
|
|
u16 tci;
|
|
|
|
if (vf_i >= efx->vf_init_count)
|
|
return -EINVAL;
|
|
vf = nic_data->vf + vf_i;
|
|
|
|
mutex_lock(&vf->status_lock);
|
|
tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
|
|
vf->addr.tci = htons(tci);
|
|
__efx_siena_sriov_update_vf_addr(vf);
|
|
mutex_unlock(&vf->status_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int efx_siena_sriov_set_vf_spoofchk(struct efx_nic *efx, int vf_i,
|
|
bool spoofchk)
|
|
{
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
struct siena_vf *vf;
|
|
int rc;
|
|
|
|
if (vf_i >= efx->vf_init_count)
|
|
return -EINVAL;
|
|
vf = nic_data->vf + vf_i;
|
|
|
|
mutex_lock(&vf->txq_lock);
|
|
if (vf->txq_count == 0) {
|
|
vf->tx_filter_mode =
|
|
spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
|
|
rc = 0;
|
|
} else {
|
|
/* This cannot be changed while TX queues are running */
|
|
rc = -EBUSY;
|
|
}
|
|
mutex_unlock(&vf->txq_lock);
|
|
return rc;
|
|
}
|
|
|
|
int efx_siena_sriov_get_vf_config(struct efx_nic *efx, int vf_i,
|
|
struct ifla_vf_info *ivi)
|
|
{
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
struct siena_vf *vf;
|
|
u16 tci;
|
|
|
|
if (vf_i >= efx->vf_init_count)
|
|
return -EINVAL;
|
|
vf = nic_data->vf + vf_i;
|
|
|
|
ivi->vf = vf_i;
|
|
ether_addr_copy(ivi->mac, vf->addr.mac_addr);
|
|
ivi->max_tx_rate = 0;
|
|
ivi->min_tx_rate = 0;
|
|
tci = ntohs(vf->addr.tci);
|
|
ivi->vlan = tci & VLAN_VID_MASK;
|
|
ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
|
|
ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool efx_siena_sriov_wanted(struct efx_nic *efx)
|
|
{
|
|
return efx->vf_count != 0;
|
|
}
|
|
|
|
int efx_siena_sriov_configure(struct efx_nic *efx, int num_vfs)
|
|
{
|
|
return 0;
|
|
}
|