OpenCloudOS-Kernel/arch/ppc64/mm/hugetlbpage.c

857 lines
20 KiB
C

/*
* PPC64 (POWER4) Huge TLB Page Support for Kernel.
*
* Copyright (C) 2003 David Gibson, IBM Corporation.
*
* Based on the IA-32 version:
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
*/
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
#include <linux/smp_lock.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/sysctl.h>
#include <asm/mman.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/machdep.h>
#include <asm/cputable.h>
#include <asm/tlb.h>
#include <linux/sysctl.h>
#define HUGEPGDIR_SHIFT (HPAGE_SHIFT + PAGE_SHIFT - 3)
#define HUGEPGDIR_SIZE (1UL << HUGEPGDIR_SHIFT)
#define HUGEPGDIR_MASK (~(HUGEPGDIR_SIZE-1))
#define HUGEPTE_INDEX_SIZE 9
#define HUGEPGD_INDEX_SIZE 10
#define PTRS_PER_HUGEPTE (1 << HUGEPTE_INDEX_SIZE)
#define PTRS_PER_HUGEPGD (1 << HUGEPGD_INDEX_SIZE)
static inline int hugepgd_index(unsigned long addr)
{
return (addr & ~REGION_MASK) >> HUGEPGDIR_SHIFT;
}
static pud_t *hugepgd_offset(struct mm_struct *mm, unsigned long addr)
{
int index;
if (! mm->context.huge_pgdir)
return NULL;
index = hugepgd_index(addr);
BUG_ON(index >= PTRS_PER_HUGEPGD);
return (pud_t *)(mm->context.huge_pgdir + index);
}
static inline pte_t *hugepte_offset(pud_t *dir, unsigned long addr)
{
int index;
if (pud_none(*dir))
return NULL;
index = (addr >> HPAGE_SHIFT) % PTRS_PER_HUGEPTE;
return (pte_t *)pud_page(*dir) + index;
}
static pud_t *hugepgd_alloc(struct mm_struct *mm, unsigned long addr)
{
BUG_ON(! in_hugepage_area(mm->context, addr));
if (! mm->context.huge_pgdir) {
pgd_t *new;
spin_unlock(&mm->page_table_lock);
/* Don't use pgd_alloc(), because we want __GFP_REPEAT */
new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT);
BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE));
spin_lock(&mm->page_table_lock);
/*
* Because we dropped the lock, we should re-check the
* entry, as somebody else could have populated it..
*/
if (mm->context.huge_pgdir)
pgd_free(new);
else
mm->context.huge_pgdir = new;
}
return hugepgd_offset(mm, addr);
}
static pte_t *hugepte_alloc(struct mm_struct *mm, pud_t *dir, unsigned long addr)
{
if (! pud_present(*dir)) {
pte_t *new;
spin_unlock(&mm->page_table_lock);
new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT);
BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE));
spin_lock(&mm->page_table_lock);
/*
* Because we dropped the lock, we should re-check the
* entry, as somebody else could have populated it..
*/
if (pud_present(*dir)) {
if (new)
kmem_cache_free(zero_cache, new);
} else {
struct page *ptepage;
if (! new)
return NULL;
ptepage = virt_to_page(new);
ptepage->mapping = (void *) mm;
ptepage->index = addr & HUGEPGDIR_MASK;
pud_populate(mm, dir, new);
}
}
return hugepte_offset(dir, addr);
}
static pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
pud_t *pud;
BUG_ON(! in_hugepage_area(mm->context, addr));
pud = hugepgd_offset(mm, addr);
if (! pud)
return NULL;
return hugepte_offset(pud, addr);
}
static pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
{
pud_t *pud;
BUG_ON(! in_hugepage_area(mm->context, addr));
pud = hugepgd_alloc(mm, addr);
if (! pud)
return NULL;
return hugepte_alloc(mm, pud, addr);
}
static void set_huge_pte(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, struct page *page,
pte_t *ptep, int write_access)
{
pte_t entry;
add_mm_counter(mm, rss, HPAGE_SIZE / PAGE_SIZE);
if (write_access) {
entry =
pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
} else {
entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
}
entry = pte_mkyoung(entry);
entry = pte_mkhuge(entry);
set_pte_at(mm, addr, ptep, entry);
}
/*
* This function checks for proper alignment of input addr and len parameters.
*/
int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
{
if (len & ~HPAGE_MASK)
return -EINVAL;
if (addr & ~HPAGE_MASK)
return -EINVAL;
if (! (within_hugepage_low_range(addr, len)
|| within_hugepage_high_range(addr, len)) )
return -EINVAL;
return 0;
}
static void flush_segments(void *parm)
{
u16 segs = (unsigned long) parm;
unsigned long i;
asm volatile("isync" : : : "memory");
for (i = 0; i < 16; i++) {
if (! (segs & (1U << i)))
continue;
asm volatile("slbie %0" : : "r" (i << SID_SHIFT));
}
asm volatile("isync" : : : "memory");
}
static int prepare_low_seg_for_htlb(struct mm_struct *mm, unsigned long seg)
{
unsigned long start = seg << SID_SHIFT;
unsigned long end = (seg+1) << SID_SHIFT;
struct vm_area_struct *vma;
BUG_ON(seg >= 16);
/* Check no VMAs are in the region */
vma = find_vma(mm, start);
if (vma && (vma->vm_start < end))
return -EBUSY;
return 0;
}
static int open_low_hpage_segs(struct mm_struct *mm, u16 newsegs)
{
unsigned long i;
newsegs &= ~(mm->context.htlb_segs);
if (! newsegs)
return 0; /* The segments we want are already open */
for (i = 0; i < 16; i++)
if ((1 << i) & newsegs)
if (prepare_low_seg_for_htlb(mm, i) != 0)
return -EBUSY;
mm->context.htlb_segs |= newsegs;
/* update the paca copy of the context struct */
get_paca()->context = mm->context;
/* the context change must make it to memory before the flush,
* so that further SLB misses do the right thing. */
mb();
on_each_cpu(flush_segments, (void *)(unsigned long)newsegs, 0, 1);
return 0;
}
int prepare_hugepage_range(unsigned long addr, unsigned long len)
{
if (within_hugepage_high_range(addr, len))
return 0;
else if ((addr < 0x100000000UL) && ((addr+len) < 0x100000000UL)) {
int err;
/* Yes, we need both tests, in case addr+len overflows
* 64-bit arithmetic */
err = open_low_hpage_segs(current->mm,
LOW_ESID_MASK(addr, len));
if (err)
printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
" failed (segs: 0x%04hx)\n", addr, len,
LOW_ESID_MASK(addr, len));
return err;
}
return -EINVAL;
}
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
struct vm_area_struct *vma)
{
pte_t *src_pte, *dst_pte, entry;
struct page *ptepage;
unsigned long addr = vma->vm_start;
unsigned long end = vma->vm_end;
int err = -ENOMEM;
while (addr < end) {
dst_pte = huge_pte_alloc(dst, addr);
if (!dst_pte)
goto out;
src_pte = huge_pte_offset(src, addr);
entry = *src_pte;
ptepage = pte_page(entry);
get_page(ptepage);
add_mm_counter(dst, rss, HPAGE_SIZE / PAGE_SIZE);
set_pte_at(dst, addr, dst_pte, entry);
addr += HPAGE_SIZE;
}
err = 0;
out:
return err;
}
int
follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
struct page **pages, struct vm_area_struct **vmas,
unsigned long *position, int *length, int i)
{
unsigned long vpfn, vaddr = *position;
int remainder = *length;
WARN_ON(!is_vm_hugetlb_page(vma));
vpfn = vaddr/PAGE_SIZE;
while (vaddr < vma->vm_end && remainder) {
if (pages) {
pte_t *pte;
struct page *page;
pte = huge_pte_offset(mm, vaddr);
/* hugetlb should be locked, and hence, prefaulted */
WARN_ON(!pte || pte_none(*pte));
page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
WARN_ON(!PageCompound(page));
get_page(page);
pages[i] = page;
}
if (vmas)
vmas[i] = vma;
vaddr += PAGE_SIZE;
++vpfn;
--remainder;
++i;
}
*length = remainder;
*position = vaddr;
return i;
}
struct page *
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
{
pte_t *ptep;
struct page *page;
if (! in_hugepage_area(mm->context, address))
return ERR_PTR(-EINVAL);
ptep = huge_pte_offset(mm, address);
page = pte_page(*ptep);
if (page)
page += (address % HPAGE_SIZE) / PAGE_SIZE;
return page;
}
int pmd_huge(pmd_t pmd)
{
return 0;
}
struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
pmd_t *pmd, int write)
{
BUG();
return NULL;
}
void unmap_hugepage_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long addr;
pte_t *ptep;
struct page *page;
WARN_ON(!is_vm_hugetlb_page(vma));
BUG_ON((start % HPAGE_SIZE) != 0);
BUG_ON((end % HPAGE_SIZE) != 0);
for (addr = start; addr < end; addr += HPAGE_SIZE) {
pte_t pte;
ptep = huge_pte_offset(mm, addr);
if (!ptep || pte_none(*ptep))
continue;
pte = *ptep;
page = pte_page(pte);
pte_clear(mm, addr, ptep);
put_page(page);
}
add_mm_counter(mm, rss, -((end - start) >> PAGE_SHIFT));
flush_tlb_pending();
}
int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
{
struct mm_struct *mm = current->mm;
unsigned long addr;
int ret = 0;
WARN_ON(!is_vm_hugetlb_page(vma));
BUG_ON((vma->vm_start % HPAGE_SIZE) != 0);
BUG_ON((vma->vm_end % HPAGE_SIZE) != 0);
spin_lock(&mm->page_table_lock);
for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
unsigned long idx;
pte_t *pte = huge_pte_alloc(mm, addr);
struct page *page;
if (!pte) {
ret = -ENOMEM;
goto out;
}
if (! pte_none(*pte))
continue;
idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
page = find_get_page(mapping, idx);
if (!page) {
/* charge the fs quota first */
if (hugetlb_get_quota(mapping)) {
ret = -ENOMEM;
goto out;
}
page = alloc_huge_page();
if (!page) {
hugetlb_put_quota(mapping);
ret = -ENOMEM;
goto out;
}
ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
if (! ret) {
unlock_page(page);
} else {
hugetlb_put_quota(mapping);
free_huge_page(page);
goto out;
}
}
set_huge_pte(mm, vma, addr, page, pte, vma->vm_flags & VM_WRITE);
}
out:
spin_unlock(&mm->page_table_lock);
return ret;
}
/* Because we have an exclusive hugepage region which lies within the
* normal user address space, we have to take special measures to make
* non-huge mmap()s evade the hugepage reserved regions. */
unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long start_addr;
if (len > TASK_SIZE)
return -ENOMEM;
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
if (((TASK_SIZE - len) >= addr)
&& (!vma || (addr+len) <= vma->vm_start)
&& !is_hugepage_only_range(mm, addr,len))
return addr;
}
start_addr = addr = mm->free_area_cache;
full_search:
vma = find_vma(mm, addr);
while (TASK_SIZE - len >= addr) {
BUG_ON(vma && (addr >= vma->vm_end));
if (touches_hugepage_low_range(mm, addr, len)) {
addr = ALIGN(addr+1, 1<<SID_SHIFT);
vma = find_vma(mm, addr);
continue;
}
if (touches_hugepage_high_range(addr, len)) {
addr = TASK_HPAGE_END;
vma = find_vma(mm, addr);
continue;
}
if (!vma || addr + len <= vma->vm_start) {
/*
* Remember the place where we stopped the search:
*/
mm->free_area_cache = addr + len;
return addr;
}
addr = vma->vm_end;
vma = vma->vm_next;
}
/* Make sure we didn't miss any holes */
if (start_addr != TASK_UNMAPPED_BASE) {
start_addr = addr = TASK_UNMAPPED_BASE;
goto full_search;
}
return -ENOMEM;
}
/*
* This mmap-allocator allocates new areas top-down from below the
* stack's low limit (the base):
*
* Because we have an exclusive hugepage region which lies within the
* normal user address space, we have to take special measures to make
* non-huge mmap()s evade the hugepage reserved regions.
*/
unsigned long
arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
const unsigned long len, const unsigned long pgoff,
const unsigned long flags)
{
struct vm_area_struct *vma, *prev_vma;
struct mm_struct *mm = current->mm;
unsigned long base = mm->mmap_base, addr = addr0;
int first_time = 1;
/* requested length too big for entire address space */
if (len > TASK_SIZE)
return -ENOMEM;
/* dont allow allocations above current base */
if (mm->free_area_cache > base)
mm->free_area_cache = base;
/* requesting a specific address */
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr &&
(!vma || addr + len <= vma->vm_start)
&& !is_hugepage_only_range(mm, addr,len))
return addr;
}
try_again:
/* make sure it can fit in the remaining address space */
if (mm->free_area_cache < len)
goto fail;
/* either no address requested or cant fit in requested address hole */
addr = (mm->free_area_cache - len) & PAGE_MASK;
do {
hugepage_recheck:
if (touches_hugepage_low_range(mm, addr, len)) {
addr = (addr & ((~0) << SID_SHIFT)) - len;
goto hugepage_recheck;
} else if (touches_hugepage_high_range(addr, len)) {
addr = TASK_HPAGE_BASE - len;
}
/*
* Lookup failure means no vma is above this address,
* i.e. return with success:
*/
if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
return addr;
/*
* new region fits between prev_vma->vm_end and
* vma->vm_start, use it:
*/
if (addr+len <= vma->vm_start &&
(!prev_vma || (addr >= prev_vma->vm_end)))
/* remember the address as a hint for next time */
return (mm->free_area_cache = addr);
else
/* pull free_area_cache down to the first hole */
if (mm->free_area_cache == vma->vm_end)
mm->free_area_cache = vma->vm_start;
/* try just below the current vma->vm_start */
addr = vma->vm_start-len;
} while (len <= vma->vm_start);
fail:
/*
* if hint left us with no space for the requested
* mapping then try again:
*/
if (first_time) {
mm->free_area_cache = base;
first_time = 0;
goto try_again;
}
/*
* A failed mmap() very likely causes application failure,
* so fall back to the bottom-up function here. This scenario
* can happen with large stack limits and large mmap()
* allocations.
*/
mm->free_area_cache = TASK_UNMAPPED_BASE;
addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
/*
* Restore the topdown base:
*/
mm->free_area_cache = base;
return addr;
}
static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
{
unsigned long addr = 0;
struct vm_area_struct *vma;
vma = find_vma(current->mm, addr);
while (addr + len <= 0x100000000UL) {
BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
if (! __within_hugepage_low_range(addr, len, segmask)) {
addr = ALIGN(addr+1, 1<<SID_SHIFT);
vma = find_vma(current->mm, addr);
continue;
}
if (!vma || (addr + len) <= vma->vm_start)
return addr;
addr = ALIGN(vma->vm_end, HPAGE_SIZE);
/* Depending on segmask this might not be a confirmed
* hugepage region, so the ALIGN could have skipped
* some VMAs */
vma = find_vma(current->mm, addr);
}
return -ENOMEM;
}
static unsigned long htlb_get_high_area(unsigned long len)
{
unsigned long addr = TASK_HPAGE_BASE;
struct vm_area_struct *vma;
vma = find_vma(current->mm, addr);
for (vma = find_vma(current->mm, addr);
addr + len <= TASK_HPAGE_END;
vma = vma->vm_next) {
BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
BUG_ON(! within_hugepage_high_range(addr, len));
if (!vma || (addr + len) <= vma->vm_start)
return addr;
addr = ALIGN(vma->vm_end, HPAGE_SIZE);
/* Because we're in a hugepage region, this alignment
* should not skip us over any VMAs */
}
return -ENOMEM;
}
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
if (len & ~HPAGE_MASK)
return -EINVAL;
if (!cpu_has_feature(CPU_FTR_16M_PAGE))
return -EINVAL;
if (test_thread_flag(TIF_32BIT)) {
int lastshift = 0;
u16 segmask, cursegs = current->mm->context.htlb_segs;
/* First see if we can do the mapping in the existing
* low hpage segments */
addr = htlb_get_low_area(len, cursegs);
if (addr != -ENOMEM)
return addr;
for (segmask = LOW_ESID_MASK(0x100000000UL-len, len);
! lastshift; segmask >>=1) {
if (segmask & 1)
lastshift = 1;
addr = htlb_get_low_area(len, cursegs | segmask);
if ((addr != -ENOMEM)
&& open_low_hpage_segs(current->mm, segmask) == 0)
return addr;
}
printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
" enough segments\n");
return -ENOMEM;
} else {
return htlb_get_high_area(len);
}
}
void hugetlb_mm_free_pgd(struct mm_struct *mm)
{
int i;
pgd_t *pgdir;
spin_lock(&mm->page_table_lock);
pgdir = mm->context.huge_pgdir;
if (! pgdir)
goto out;
mm->context.huge_pgdir = NULL;
/* cleanup any hugepte pages leftover */
for (i = 0; i < PTRS_PER_HUGEPGD; i++) {
pud_t *pud = (pud_t *)(pgdir + i);
if (! pud_none(*pud)) {
pte_t *pte = (pte_t *)pud_page(*pud);
struct page *ptepage = virt_to_page(pte);
ptepage->mapping = NULL;
BUG_ON(memcmp(pte, empty_zero_page, PAGE_SIZE));
kmem_cache_free(zero_cache, pte);
}
pud_clear(pud);
}
BUG_ON(memcmp(pgdir, empty_zero_page, PAGE_SIZE));
kmem_cache_free(zero_cache, pgdir);
out:
spin_unlock(&mm->page_table_lock);
}
int hash_huge_page(struct mm_struct *mm, unsigned long access,
unsigned long ea, unsigned long vsid, int local)
{
pte_t *ptep;
unsigned long va, vpn;
pte_t old_pte, new_pte;
unsigned long hpteflags, prpn;
long slot;
int err = 1;
spin_lock(&mm->page_table_lock);
ptep = huge_pte_offset(mm, ea);
/* Search the Linux page table for a match with va */
va = (vsid << 28) | (ea & 0x0fffffff);
vpn = va >> HPAGE_SHIFT;
/*
* If no pte found or not present, send the problem up to
* do_page_fault
*/
if (unlikely(!ptep || pte_none(*ptep)))
goto out;
/* BUG_ON(pte_bad(*ptep)); */
/*
* Check the user's access rights to the page. If access should be
* prevented then send the problem up to do_page_fault.
*/
if (unlikely(access & ~pte_val(*ptep)))
goto out;
/*
* At this point, we have a pte (old_pte) which can be used to build
* or update an HPTE. There are 2 cases:
*
* 1. There is a valid (present) pte with no associated HPTE (this is
* the most common case)
* 2. There is a valid (present) pte with an associated HPTE. The
* current values of the pp bits in the HPTE prevent access
* because we are doing software DIRTY bit management and the
* page is currently not DIRTY.
*/
old_pte = *ptep;
new_pte = old_pte;
hpteflags = 0x2 | (! (pte_val(new_pte) & _PAGE_RW));
/* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
hpteflags |= ((pte_val(new_pte) & _PAGE_EXEC) ? 0 : HW_NO_EXEC);
/* Check if pte already has an hpte (case 2) */
if (unlikely(pte_val(old_pte) & _PAGE_HASHPTE)) {
/* There MIGHT be an HPTE for this pte */
unsigned long hash, slot;
hash = hpt_hash(vpn, 1);
if (pte_val(old_pte) & _PAGE_SECONDARY)
hash = ~hash;
slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
slot += (pte_val(old_pte) & _PAGE_GROUP_IX) >> 12;
if (ppc_md.hpte_updatepp(slot, hpteflags, va, 1, local) == -1)
pte_val(old_pte) &= ~_PAGE_HPTEFLAGS;
}
if (likely(!(pte_val(old_pte) & _PAGE_HASHPTE))) {
unsigned long hash = hpt_hash(vpn, 1);
unsigned long hpte_group;
prpn = pte_pfn(old_pte);
repeat:
hpte_group = ((hash & htab_hash_mask) *
HPTES_PER_GROUP) & ~0x7UL;
/* Update the linux pte with the HPTE slot */
pte_val(new_pte) &= ~_PAGE_HPTEFLAGS;
pte_val(new_pte) |= _PAGE_HASHPTE;
/* Add in WIMG bits */
/* XXX We should store these in the pte */
hpteflags |= _PAGE_COHERENT;
slot = ppc_md.hpte_insert(hpte_group, va, prpn, 0,
hpteflags, 0, 1);
/* Primary is full, try the secondary */
if (unlikely(slot == -1)) {
pte_val(new_pte) |= _PAGE_SECONDARY;
hpte_group = ((~hash & htab_hash_mask) *
HPTES_PER_GROUP) & ~0x7UL;
slot = ppc_md.hpte_insert(hpte_group, va, prpn,
1, hpteflags, 0, 1);
if (slot == -1) {
if (mftb() & 0x1)
hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;
ppc_md.hpte_remove(hpte_group);
goto repeat;
}
}
if (unlikely(slot == -2))
panic("hash_huge_page: pte_insert failed\n");
pte_val(new_pte) |= (slot<<12) & _PAGE_GROUP_IX;
/*
* No need to use ldarx/stdcx here because all who
* might be updating the pte will hold the
* page_table_lock
*/
*ptep = new_pte;
}
err = 0;
out:
spin_unlock(&mm->page_table_lock);
return err;
}