OpenCloudOS-Kernel/drivers/net/chelsio/sge.c

2145 lines
58 KiB
C

/*****************************************************************************
* *
* File: sge.c *
* $Revision: 1.26 $ *
* $Date: 2005/06/21 18:29:48 $ *
* Description: *
* DMA engine. *
* part of the Chelsio 10Gb Ethernet Driver. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License, version 2, as *
* published by the Free Software Foundation. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program; if not, write to the Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
* *
* http://www.chelsio.com *
* *
* Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
* All rights reserved. *
* *
* Maintainers: maintainers@chelsio.com *
* *
* Authors: Dimitrios Michailidis <dm@chelsio.com> *
* Tina Yang <tainay@chelsio.com> *
* Felix Marti <felix@chelsio.com> *
* Scott Bardone <sbardone@chelsio.com> *
* Kurt Ottaway <kottaway@chelsio.com> *
* Frank DiMambro <frank@chelsio.com> *
* *
* History: *
* *
****************************************************************************/
#include "common.h"
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/ktime.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include "cpl5_cmd.h"
#include "sge.h"
#include "regs.h"
#include "espi.h"
/* This belongs in if_ether.h */
#define ETH_P_CPL5 0xf
#define SGE_CMDQ_N 2
#define SGE_FREELQ_N 2
#define SGE_CMDQ0_E_N 1024
#define SGE_CMDQ1_E_N 128
#define SGE_FREEL_SIZE 4096
#define SGE_JUMBO_FREEL_SIZE 512
#define SGE_FREEL_REFILL_THRESH 16
#define SGE_RESPQ_E_N 1024
#define SGE_INTRTIMER_NRES 1000
#define SGE_RX_SM_BUF_SIZE 1536
#define SGE_TX_DESC_MAX_PLEN 16384
#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
/*
* Period of the TX buffer reclaim timer. This timer does not need to run
* frequently as TX buffers are usually reclaimed by new TX packets.
*/
#define TX_RECLAIM_PERIOD (HZ / 4)
#define M_CMD_LEN 0x7fffffff
#define V_CMD_LEN(v) (v)
#define G_CMD_LEN(v) ((v) & M_CMD_LEN)
#define V_CMD_GEN1(v) ((v) << 31)
#define V_CMD_GEN2(v) (v)
#define F_CMD_DATAVALID (1 << 1)
#define F_CMD_SOP (1 << 2)
#define V_CMD_EOP(v) ((v) << 3)
/*
* Command queue, receive buffer list, and response queue descriptors.
*/
#if defined(__BIG_ENDIAN_BITFIELD)
struct cmdQ_e {
u32 addr_lo;
u32 len_gen;
u32 flags;
u32 addr_hi;
};
struct freelQ_e {
u32 addr_lo;
u32 len_gen;
u32 gen2;
u32 addr_hi;
};
struct respQ_e {
u32 Qsleeping : 4;
u32 Cmdq1CreditReturn : 5;
u32 Cmdq1DmaComplete : 5;
u32 Cmdq0CreditReturn : 5;
u32 Cmdq0DmaComplete : 5;
u32 FreelistQid : 2;
u32 CreditValid : 1;
u32 DataValid : 1;
u32 Offload : 1;
u32 Eop : 1;
u32 Sop : 1;
u32 GenerationBit : 1;
u32 BufferLength;
};
#elif defined(__LITTLE_ENDIAN_BITFIELD)
struct cmdQ_e {
u32 len_gen;
u32 addr_lo;
u32 addr_hi;
u32 flags;
};
struct freelQ_e {
u32 len_gen;
u32 addr_lo;
u32 addr_hi;
u32 gen2;
};
struct respQ_e {
u32 BufferLength;
u32 GenerationBit : 1;
u32 Sop : 1;
u32 Eop : 1;
u32 Offload : 1;
u32 DataValid : 1;
u32 CreditValid : 1;
u32 FreelistQid : 2;
u32 Cmdq0DmaComplete : 5;
u32 Cmdq0CreditReturn : 5;
u32 Cmdq1DmaComplete : 5;
u32 Cmdq1CreditReturn : 5;
u32 Qsleeping : 4;
} ;
#endif
/*
* SW Context Command and Freelist Queue Descriptors
*/
struct cmdQ_ce {
struct sk_buff *skb;
DECLARE_PCI_UNMAP_ADDR(dma_addr);
DECLARE_PCI_UNMAP_LEN(dma_len);
};
struct freelQ_ce {
struct sk_buff *skb;
DECLARE_PCI_UNMAP_ADDR(dma_addr);
DECLARE_PCI_UNMAP_LEN(dma_len);
};
/*
* SW command, freelist and response rings
*/
struct cmdQ {
unsigned long status; /* HW DMA fetch status */
unsigned int in_use; /* # of in-use command descriptors */
unsigned int size; /* # of descriptors */
unsigned int processed; /* total # of descs HW has processed */
unsigned int cleaned; /* total # of descs SW has reclaimed */
unsigned int stop_thres; /* SW TX queue suspend threshold */
u16 pidx; /* producer index (SW) */
u16 cidx; /* consumer index (HW) */
u8 genbit; /* current generation (=valid) bit */
u8 sop; /* is next entry start of packet? */
struct cmdQ_e *entries; /* HW command descriptor Q */
struct cmdQ_ce *centries; /* SW command context descriptor Q */
dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
spinlock_t lock; /* Lock to protect cmdQ enqueuing */
};
struct freelQ {
unsigned int credits; /* # of available RX buffers */
unsigned int size; /* free list capacity */
u16 pidx; /* producer index (SW) */
u16 cidx; /* consumer index (HW) */
u16 rx_buffer_size; /* Buffer size on this free list */
u16 dma_offset; /* DMA offset to align IP headers */
u16 recycleq_idx; /* skb recycle q to use */
u8 genbit; /* current generation (=valid) bit */
struct freelQ_e *entries; /* HW freelist descriptor Q */
struct freelQ_ce *centries; /* SW freelist context descriptor Q */
dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
};
struct respQ {
unsigned int credits; /* credits to be returned to SGE */
unsigned int size; /* # of response Q descriptors */
u16 cidx; /* consumer index (SW) */
u8 genbit; /* current generation(=valid) bit */
struct respQ_e *entries; /* HW response descriptor Q */
dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
};
/* Bit flags for cmdQ.status */
enum {
CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
};
/* T204 TX SW scheduler */
/* Per T204 TX port */
struct sched_port {
unsigned int avail; /* available bits - quota */
unsigned int drain_bits_per_1024ns; /* drain rate */
unsigned int speed; /* drain rate, mbps */
unsigned int mtu; /* mtu size */
struct sk_buff_head skbq; /* pending skbs */
};
/* Per T204 device */
struct sched {
ktime_t last_updated; /* last time quotas were computed */
unsigned int max_avail; /* max bits to be sent to any port */
unsigned int port; /* port index (round robin ports) */
unsigned int num; /* num skbs in per port queues */
struct sched_port p[MAX_NPORTS];
struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
};
static void restart_sched(unsigned long);
/*
* Main SGE data structure
*
* Interrupts are handled by a single CPU and it is likely that on a MP system
* the application is migrated to another CPU. In that scenario, we try to
* seperate the RX(in irq context) and TX state in order to decrease memory
* contention.
*/
struct sge {
struct adapter *adapter; /* adapter backpointer */
struct net_device *netdev; /* netdevice backpointer */
struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
struct respQ respQ; /* response Q */
unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
unsigned int rx_pkt_pad; /* RX padding for L2 packets */
unsigned int jumbo_fl; /* jumbo freelist Q index */
unsigned int intrtimer_nres; /* no-resource interrupt timer */
unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
struct timer_list espibug_timer;
unsigned long espibug_timeout;
struct sk_buff *espibug_skb[MAX_NPORTS];
u32 sge_control; /* shadow value of sge control reg */
struct sge_intr_counts stats;
struct sge_port_stats *port_stats[MAX_NPORTS];
struct sched *tx_sched;
struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
};
/*
* stop tasklet and free all pending skb's
*/
static void tx_sched_stop(struct sge *sge)
{
struct sched *s = sge->tx_sched;
int i;
tasklet_kill(&s->sched_tsk);
for (i = 0; i < MAX_NPORTS; i++)
__skb_queue_purge(&s->p[s->port].skbq);
}
/*
* t1_sched_update_parms() is called when the MTU or link speed changes. It
* re-computes scheduler parameters to scope with the change.
*/
unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
unsigned int mtu, unsigned int speed)
{
struct sched *s = sge->tx_sched;
struct sched_port *p = &s->p[port];
unsigned int max_avail_segs;
pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
if (speed)
p->speed = speed;
if (mtu)
p->mtu = mtu;
if (speed || mtu) {
unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
do_div(drain, (p->mtu + 50) * 1000);
p->drain_bits_per_1024ns = (unsigned int) drain;
if (p->speed < 1000)
p->drain_bits_per_1024ns =
90 * p->drain_bits_per_1024ns / 100;
}
if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
p->drain_bits_per_1024ns -= 16;
s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
max_avail_segs = max(1U, 4096 / (p->mtu - 40));
} else {
s->max_avail = 16384;
max_avail_segs = max(1U, 9000 / (p->mtu - 40));
}
pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
"max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
p->speed, s->max_avail, max_avail_segs,
p->drain_bits_per_1024ns);
return max_avail_segs * (p->mtu - 40);
}
#if 0
/*
* t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
* data that can be pushed per port.
*/
void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
{
struct sched *s = sge->tx_sched;
unsigned int i;
s->max_avail = val;
for (i = 0; i < MAX_NPORTS; i++)
t1_sched_update_parms(sge, i, 0, 0);
}
/*
* t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
* is draining.
*/
void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
unsigned int val)
{
struct sched *s = sge->tx_sched;
struct sched_port *p = &s->p[port];
p->drain_bits_per_1024ns = val * 1024 / 1000;
t1_sched_update_parms(sge, port, 0, 0);
}
#endif /* 0 */
/*
* get_clock() implements a ns clock (see ktime_get)
*/
static inline ktime_t get_clock(void)
{
struct timespec ts;
ktime_get_ts(&ts);
return timespec_to_ktime(ts);
}
/*
* tx_sched_init() allocates resources and does basic initialization.
*/
static int tx_sched_init(struct sge *sge)
{
struct sched *s;
int i;
s = kzalloc(sizeof (struct sched), GFP_KERNEL);
if (!s)
return -ENOMEM;
pr_debug("tx_sched_init\n");
tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
sge->tx_sched = s;
for (i = 0; i < MAX_NPORTS; i++) {
skb_queue_head_init(&s->p[i].skbq);
t1_sched_update_parms(sge, i, 1500, 1000);
}
return 0;
}
/*
* sched_update_avail() computes the delta since the last time it was called
* and updates the per port quota (number of bits that can be sent to the any
* port).
*/
static inline int sched_update_avail(struct sge *sge)
{
struct sched *s = sge->tx_sched;
ktime_t now = get_clock();
unsigned int i;
long long delta_time_ns;
delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
if (delta_time_ns < 15000)
return 0;
for (i = 0; i < MAX_NPORTS; i++) {
struct sched_port *p = &s->p[i];
unsigned int delta_avail;
delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
p->avail = min(p->avail + delta_avail, s->max_avail);
}
s->last_updated = now;
return 1;
}
/*
* sched_skb() is called from two different places. In the tx path, any
* packet generating load on an output port will call sched_skb()
* (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
* context (skb == NULL).
* The scheduler only returns a skb (which will then be sent) if the
* length of the skb is <= the current quota of the output port.
*/
static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
unsigned int credits)
{
struct sched *s = sge->tx_sched;
struct sk_buff_head *skbq;
unsigned int i, len, update = 1;
pr_debug("sched_skb %p\n", skb);
if (!skb) {
if (!s->num)
return NULL;
} else {
skbq = &s->p[skb->dev->if_port].skbq;
__skb_queue_tail(skbq, skb);
s->num++;
skb = NULL;
}
if (credits < MAX_SKB_FRAGS + 1)
goto out;
again:
for (i = 0; i < MAX_NPORTS; i++) {
s->port = ++s->port & (MAX_NPORTS - 1);
skbq = &s->p[s->port].skbq;
skb = skb_peek(skbq);
if (!skb)
continue;
len = skb->len;
if (len <= s->p[s->port].avail) {
s->p[s->port].avail -= len;
s->num--;
__skb_unlink(skb, skbq);
goto out;
}
skb = NULL;
}
if (update-- && sched_update_avail(sge))
goto again;
out:
/* If there are more pending skbs, we use the hardware to schedule us
* again.
*/
if (s->num && !skb) {
struct cmdQ *q = &sge->cmdQ[0];
clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
}
}
pr_debug("sched_skb ret %p\n", skb);
return skb;
}
/*
* PIO to indicate that memory mapped Q contains valid descriptor(s).
*/
static inline void doorbell_pio(struct adapter *adapter, u32 val)
{
wmb();
writel(val, adapter->regs + A_SG_DOORBELL);
}
/*
* Frees all RX buffers on the freelist Q. The caller must make sure that
* the SGE is turned off before calling this function.
*/
static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
{
unsigned int cidx = q->cidx;
while (q->credits--) {
struct freelQ_ce *ce = &q->centries[cidx];
pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
dev_kfree_skb(ce->skb);
ce->skb = NULL;
if (++cidx == q->size)
cidx = 0;
}
}
/*
* Free RX free list and response queue resources.
*/
static void free_rx_resources(struct sge *sge)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
if (sge->respQ.entries) {
size = sizeof(struct respQ_e) * sge->respQ.size;
pci_free_consistent(pdev, size, sge->respQ.entries,
sge->respQ.dma_addr);
}
for (i = 0; i < SGE_FREELQ_N; i++) {
struct freelQ *q = &sge->freelQ[i];
if (q->centries) {
free_freelQ_buffers(pdev, q);
kfree(q->centries);
}
if (q->entries) {
size = sizeof(struct freelQ_e) * q->size;
pci_free_consistent(pdev, size, q->entries,
q->dma_addr);
}
}
}
/*
* Allocates basic RX resources, consisting of memory mapped freelist Qs and a
* response queue.
*/
static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_FREELQ_N; i++) {
struct freelQ *q = &sge->freelQ[i];
q->genbit = 1;
q->size = p->freelQ_size[i];
q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
size = sizeof(struct freelQ_e) * q->size;
q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
if (!q->entries)
goto err_no_mem;
size = sizeof(struct freelQ_ce) * q->size;
q->centries = kzalloc(size, GFP_KERNEL);
if (!q->centries)
goto err_no_mem;
}
/*
* Calculate the buffer sizes for the two free lists. FL0 accommodates
* regular sized Ethernet frames, FL1 is sized not to exceed 16K,
* including all the sk_buff overhead.
*
* Note: For T2 FL0 and FL1 are reversed.
*/
sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
sizeof(struct cpl_rx_data) +
sge->freelQ[!sge->jumbo_fl].dma_offset;
size = (16 * 1024) -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
/*
* Setup which skb recycle Q should be used when recycling buffers from
* each free list.
*/
sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
sge->respQ.genbit = 1;
sge->respQ.size = SGE_RESPQ_E_N;
sge->respQ.credits = 0;
size = sizeof(struct respQ_e) * sge->respQ.size;
sge->respQ.entries =
pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
if (!sge->respQ.entries)
goto err_no_mem;
return 0;
err_no_mem:
free_rx_resources(sge);
return -ENOMEM;
}
/*
* Reclaims n TX descriptors and frees the buffers associated with them.
*/
static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
{
struct cmdQ_ce *ce;
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int cidx = q->cidx;
q->in_use -= n;
ce = &q->centries[cidx];
while (n--) {
if (likely(pci_unmap_len(ce, dma_len))) {
pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_TODEVICE);
if (q->sop)
q->sop = 0;
}
if (ce->skb) {
dev_kfree_skb_any(ce->skb);
q->sop = 1;
}
ce++;
if (++cidx == q->size) {
cidx = 0;
ce = q->centries;
}
}
q->cidx = cidx;
}
/*
* Free TX resources.
*
* Assumes that SGE is stopped and all interrupts are disabled.
*/
static void free_tx_resources(struct sge *sge)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_CMDQ_N; i++) {
struct cmdQ *q = &sge->cmdQ[i];
if (q->centries) {
if (q->in_use)
free_cmdQ_buffers(sge, q, q->in_use);
kfree(q->centries);
}
if (q->entries) {
size = sizeof(struct cmdQ_e) * q->size;
pci_free_consistent(pdev, size, q->entries,
q->dma_addr);
}
}
}
/*
* Allocates basic TX resources, consisting of memory mapped command Qs.
*/
static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_CMDQ_N; i++) {
struct cmdQ *q = &sge->cmdQ[i];
q->genbit = 1;
q->sop = 1;
q->size = p->cmdQ_size[i];
q->in_use = 0;
q->status = 0;
q->processed = q->cleaned = 0;
q->stop_thres = 0;
spin_lock_init(&q->lock);
size = sizeof(struct cmdQ_e) * q->size;
q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
if (!q->entries)
goto err_no_mem;
size = sizeof(struct cmdQ_ce) * q->size;
q->centries = kzalloc(size, GFP_KERNEL);
if (!q->centries)
goto err_no_mem;
}
/*
* CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
* only. For queue 0 set the stop threshold so we can handle one more
* packet from each port, plus reserve an additional 24 entries for
* Ethernet packets only. Queue 1 never suspends nor do we reserve
* space for Ethernet packets.
*/
sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
(MAX_SKB_FRAGS + 1);
return 0;
err_no_mem:
free_tx_resources(sge);
return -ENOMEM;
}
static inline void setup_ring_params(struct adapter *adapter, u64 addr,
u32 size, int base_reg_lo,
int base_reg_hi, int size_reg)
{
writel((u32)addr, adapter->regs + base_reg_lo);
writel(addr >> 32, adapter->regs + base_reg_hi);
writel(size, adapter->regs + size_reg);
}
/*
* Enable/disable VLAN acceleration.
*/
void t1_set_vlan_accel(struct adapter *adapter, int on_off)
{
struct sge *sge = adapter->sge;
sge->sge_control &= ~F_VLAN_XTRACT;
if (on_off)
sge->sge_control |= F_VLAN_XTRACT;
if (adapter->open_device_map) {
writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
readl(adapter->regs + A_SG_CONTROL); /* flush */
}
}
/*
* Programs the various SGE registers. However, the engine is not yet enabled,
* but sge->sge_control is setup and ready to go.
*/
static void configure_sge(struct sge *sge, struct sge_params *p)
{
struct adapter *ap = sge->adapter;
writel(0, ap->regs + A_SG_CONTROL);
setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
setup_ring_params(ap, sge->freelQ[0].dma_addr,
sge->freelQ[0].size, A_SG_FL0BASELWR,
A_SG_FL0BASEUPR, A_SG_FL0SIZE);
setup_ring_params(ap, sge->freelQ[1].dma_addr,
sge->freelQ[1].size, A_SG_FL1BASELWR,
A_SG_FL1BASEUPR, A_SG_FL1SIZE);
/* The threshold comparison uses <. */
writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
V_RX_PKT_OFFSET(sge->rx_pkt_pad);
#if defined(__BIG_ENDIAN_BITFIELD)
sge->sge_control |= F_ENABLE_BIG_ENDIAN;
#endif
/* Initialize no-resource timer */
sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
t1_sge_set_coalesce_params(sge, p);
}
/*
* Return the payload capacity of the jumbo free-list buffers.
*/
static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
{
return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
sge->freelQ[sge->jumbo_fl].dma_offset -
sizeof(struct cpl_rx_data);
}
/*
* Frees all SGE related resources and the sge structure itself
*/
void t1_sge_destroy(struct sge *sge)
{
int i;
for_each_port(sge->adapter, i)
free_percpu(sge->port_stats[i]);
kfree(sge->tx_sched);
free_tx_resources(sge);
free_rx_resources(sge);
kfree(sge);
}
/*
* Allocates new RX buffers on the freelist Q (and tracks them on the freelist
* context Q) until the Q is full or alloc_skb fails.
*
* It is possible that the generation bits already match, indicating that the
* buffer is already valid and nothing needs to be done. This happens when we
* copied a received buffer into a new sk_buff during the interrupt processing.
*
* If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
* we specify a RX_OFFSET in order to make sure that the IP header is 4B
* aligned.
*/
static void refill_free_list(struct sge *sge, struct freelQ *q)
{
struct pci_dev *pdev = sge->adapter->pdev;
struct freelQ_ce *ce = &q->centries[q->pidx];
struct freelQ_e *e = &q->entries[q->pidx];
unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
while (q->credits < q->size) {
struct sk_buff *skb;
dma_addr_t mapping;
skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
if (!skb)
break;
skb_reserve(skb, q->dma_offset);
mapping = pci_map_single(pdev, skb->data, dma_len,
PCI_DMA_FROMDEVICE);
skb_reserve(skb, sge->rx_pkt_pad);
ce->skb = skb;
pci_unmap_addr_set(ce, dma_addr, mapping);
pci_unmap_len_set(ce, dma_len, dma_len);
e->addr_lo = (u32)mapping;
e->addr_hi = (u64)mapping >> 32;
e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
wmb();
e->gen2 = V_CMD_GEN2(q->genbit);
e++;
ce++;
if (++q->pidx == q->size) {
q->pidx = 0;
q->genbit ^= 1;
ce = q->centries;
e = q->entries;
}
q->credits++;
}
}
/*
* Calls refill_free_list for both free lists. If we cannot fill at least 1/4
* of both rings, we go into 'few interrupt mode' in order to give the system
* time to free up resources.
*/
static void freelQs_empty(struct sge *sge)
{
struct adapter *adapter = sge->adapter;
u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
u32 irqholdoff_reg;
refill_free_list(sge, &sge->freelQ[0]);
refill_free_list(sge, &sge->freelQ[1]);
if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
irq_reg |= F_FL_EXHAUSTED;
irqholdoff_reg = sge->fixed_intrtimer;
} else {
/* Clear the F_FL_EXHAUSTED interrupts for now */
irq_reg &= ~F_FL_EXHAUSTED;
irqholdoff_reg = sge->intrtimer_nres;
}
writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
/* We reenable the Qs to force a freelist GTS interrupt later */
doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
}
#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
/*
* Disable SGE Interrupts
*/
void t1_sge_intr_disable(struct sge *sge)
{
u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
}
/*
* Enable SGE interrupts.
*/
void t1_sge_intr_enable(struct sge *sge)
{
u32 en = SGE_INT_ENABLE;
u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
if (sge->adapter->flags & TSO_CAPABLE)
en &= ~F_PACKET_TOO_BIG;
writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
}
/*
* Clear SGE interrupts.
*/
void t1_sge_intr_clear(struct sge *sge)
{
writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
}
/*
* SGE 'Error' interrupt handler
*/
int t1_sge_intr_error_handler(struct sge *sge)
{
struct adapter *adapter = sge->adapter;
u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
if (adapter->flags & TSO_CAPABLE)
cause &= ~F_PACKET_TOO_BIG;
if (cause & F_RESPQ_EXHAUSTED)
sge->stats.respQ_empty++;
if (cause & F_RESPQ_OVERFLOW) {
sge->stats.respQ_overflow++;
CH_ALERT("%s: SGE response queue overflow\n",
adapter->name);
}
if (cause & F_FL_EXHAUSTED) {
sge->stats.freelistQ_empty++;
freelQs_empty(sge);
}
if (cause & F_PACKET_TOO_BIG) {
sge->stats.pkt_too_big++;
CH_ALERT("%s: SGE max packet size exceeded\n",
adapter->name);
}
if (cause & F_PACKET_MISMATCH) {
sge->stats.pkt_mismatch++;
CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
}
if (cause & SGE_INT_FATAL)
t1_fatal_err(adapter);
writel(cause, adapter->regs + A_SG_INT_CAUSE);
return 0;
}
const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
{
return &sge->stats;
}
void t1_sge_get_port_stats(const struct sge *sge, int port,
struct sge_port_stats *ss)
{
int cpu;
memset(ss, 0, sizeof(*ss));
for_each_possible_cpu(cpu) {
struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
ss->rx_cso_good += st->rx_cso_good;
ss->tx_cso += st->tx_cso;
ss->tx_tso += st->tx_tso;
ss->tx_need_hdrroom += st->tx_need_hdrroom;
ss->vlan_xtract += st->vlan_xtract;
ss->vlan_insert += st->vlan_insert;
}
}
/**
* recycle_fl_buf - recycle a free list buffer
* @fl: the free list
* @idx: index of buffer to recycle
*
* Recycles the specified buffer on the given free list by adding it at
* the next available slot on the list.
*/
static void recycle_fl_buf(struct freelQ *fl, int idx)
{
struct freelQ_e *from = &fl->entries[idx];
struct freelQ_e *to = &fl->entries[fl->pidx];
fl->centries[fl->pidx] = fl->centries[idx];
to->addr_lo = from->addr_lo;
to->addr_hi = from->addr_hi;
to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
wmb();
to->gen2 = V_CMD_GEN2(fl->genbit);
fl->credits++;
if (++fl->pidx == fl->size) {
fl->pidx = 0;
fl->genbit ^= 1;
}
}
static int copybreak __read_mostly = 256;
module_param(copybreak, int, 0);
MODULE_PARM_DESC(copybreak, "Receive copy threshold");
/**
* get_packet - return the next ingress packet buffer
* @pdev: the PCI device that received the packet
* @fl: the SGE free list holding the packet
* @len: the actual packet length, excluding any SGE padding
*
* Get the next packet from a free list and complete setup of the
* sk_buff. If the packet is small we make a copy and recycle the
* original buffer, otherwise we use the original buffer itself. If a
* positive drop threshold is supplied packets are dropped and their
* buffers recycled if (a) the number of remaining buffers is under the
* threshold and the packet is too big to copy, or (b) the packet should
* be copied but there is no memory for the copy.
*/
static inline struct sk_buff *get_packet(struct pci_dev *pdev,
struct freelQ *fl, unsigned int len)
{
struct sk_buff *skb;
const struct freelQ_ce *ce = &fl->centries[fl->cidx];
if (len < copybreak) {
skb = alloc_skb(len + 2, GFP_ATOMIC);
if (!skb)
goto use_orig_buf;
skb_reserve(skb, 2); /* align IP header */
skb_put(skb, len);
pci_dma_sync_single_for_cpu(pdev,
pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
skb_copy_from_linear_data(ce->skb, skb->data, len);
pci_dma_sync_single_for_device(pdev,
pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
recycle_fl_buf(fl, fl->cidx);
return skb;
}
use_orig_buf:
if (fl->credits < 2) {
recycle_fl_buf(fl, fl->cidx);
return NULL;
}
pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
skb = ce->skb;
prefetch(skb->data);
skb_put(skb, len);
return skb;
}
/**
* unexpected_offload - handle an unexpected offload packet
* @adapter: the adapter
* @fl: the free list that received the packet
*
* Called when we receive an unexpected offload packet (e.g., the TOE
* function is disabled or the card is a NIC). Prints a message and
* recycles the buffer.
*/
static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
{
struct freelQ_ce *ce = &fl->centries[fl->cidx];
struct sk_buff *skb = ce->skb;
pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
CH_ERR("%s: unexpected offload packet, cmd %u\n",
adapter->name, *skb->data);
recycle_fl_buf(fl, fl->cidx);
}
/*
* T1/T2 SGE limits the maximum DMA size per TX descriptor to
* SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
* stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
* Note that the *_large_page_tx_descs stuff will be optimized out when
* PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
*
* compute_large_page_descs() computes how many additional descriptors are
* required to break down the stack's request.
*/
static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
{
unsigned int count = 0;
if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
unsigned int nfrags = skb_shinfo(skb)->nr_frags;
unsigned int i, len = skb->len - skb->data_len;
while (len > SGE_TX_DESC_MAX_PLEN) {
count++;
len -= SGE_TX_DESC_MAX_PLEN;
}
for (i = 0; nfrags--; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
len = frag->size;
while (len > SGE_TX_DESC_MAX_PLEN) {
count++;
len -= SGE_TX_DESC_MAX_PLEN;
}
}
}
return count;
}
/*
* Write a cmdQ entry.
*
* Since this function writes the 'flags' field, it must not be used to
* write the first cmdQ entry.
*/
static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
unsigned int len, unsigned int gen,
unsigned int eop)
{
if (unlikely(len > SGE_TX_DESC_MAX_PLEN))
BUG();
e->addr_lo = (u32)mapping;
e->addr_hi = (u64)mapping >> 32;
e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
}
/*
* See comment for previous function.
*
* write_tx_descs_large_page() writes additional SGE tx descriptors if
* *desc_len exceeds HW's capability.
*/
static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
struct cmdQ_e **e,
struct cmdQ_ce **ce,
unsigned int *gen,
dma_addr_t *desc_mapping,
unsigned int *desc_len,
unsigned int nfrags,
struct cmdQ *q)
{
if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
struct cmdQ_e *e1 = *e;
struct cmdQ_ce *ce1 = *ce;
while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
*desc_len -= SGE_TX_DESC_MAX_PLEN;
write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
*gen, nfrags == 0 && *desc_len == 0);
ce1->skb = NULL;
pci_unmap_len_set(ce1, dma_len, 0);
*desc_mapping += SGE_TX_DESC_MAX_PLEN;
if (*desc_len) {
ce1++;
e1++;
if (++pidx == q->size) {
pidx = 0;
*gen ^= 1;
ce1 = q->centries;
e1 = q->entries;
}
}
}
*e = e1;
*ce = ce1;
}
return pidx;
}
/*
* Write the command descriptors to transmit the given skb starting at
* descriptor pidx with the given generation.
*/
static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
unsigned int pidx, unsigned int gen,
struct cmdQ *q)
{
dma_addr_t mapping, desc_mapping;
struct cmdQ_e *e, *e1;
struct cmdQ_ce *ce;
unsigned int i, flags, first_desc_len, desc_len,
nfrags = skb_shinfo(skb)->nr_frags;
e = e1 = &q->entries[pidx];
ce = &q->centries[pidx];
mapping = pci_map_single(adapter->pdev, skb->data,
skb->len - skb->data_len, PCI_DMA_TODEVICE);
desc_mapping = mapping;
desc_len = skb->len - skb->data_len;
flags = F_CMD_DATAVALID | F_CMD_SOP |
V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
V_CMD_GEN2(gen);
first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
desc_len : SGE_TX_DESC_MAX_PLEN;
e->addr_lo = (u32)desc_mapping;
e->addr_hi = (u64)desc_mapping >> 32;
e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
ce->skb = NULL;
pci_unmap_len_set(ce, dma_len, 0);
if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
desc_len > SGE_TX_DESC_MAX_PLEN) {
desc_mapping += first_desc_len;
desc_len -= first_desc_len;
e1++;
ce++;
if (++pidx == q->size) {
pidx = 0;
gen ^= 1;
e1 = q->entries;
ce = q->centries;
}
pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
&desc_mapping, &desc_len,
nfrags, q);
if (likely(desc_len))
write_tx_desc(e1, desc_mapping, desc_len, gen,
nfrags == 0);
}
ce->skb = NULL;
pci_unmap_addr_set(ce, dma_addr, mapping);
pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
for (i = 0; nfrags--; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
e1++;
ce++;
if (++pidx == q->size) {
pidx = 0;
gen ^= 1;
e1 = q->entries;
ce = q->centries;
}
mapping = pci_map_page(adapter->pdev, frag->page,
frag->page_offset, frag->size,
PCI_DMA_TODEVICE);
desc_mapping = mapping;
desc_len = frag->size;
pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
&desc_mapping, &desc_len,
nfrags, q);
if (likely(desc_len))
write_tx_desc(e1, desc_mapping, desc_len, gen,
nfrags == 0);
ce->skb = NULL;
pci_unmap_addr_set(ce, dma_addr, mapping);
pci_unmap_len_set(ce, dma_len, frag->size);
}
ce->skb = skb;
wmb();
e->flags = flags;
}
/*
* Clean up completed Tx buffers.
*/
static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
{
unsigned int reclaim = q->processed - q->cleaned;
if (reclaim) {
pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
q->processed, q->cleaned);
free_cmdQ_buffers(sge, q, reclaim);
q->cleaned += reclaim;
}
}
/*
* Called from tasklet. Checks the scheduler for any
* pending skbs that can be sent.
*/
static void restart_sched(unsigned long arg)
{
struct sge *sge = (struct sge *) arg;
struct adapter *adapter = sge->adapter;
struct cmdQ *q = &sge->cmdQ[0];
struct sk_buff *skb;
unsigned int credits, queued_skb = 0;
spin_lock(&q->lock);
reclaim_completed_tx(sge, q);
credits = q->size - q->in_use;
pr_debug("restart_sched credits=%d\n", credits);
while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
unsigned int genbit, pidx, count;
count = 1 + skb_shinfo(skb)->nr_frags;
count += compute_large_page_tx_descs(skb);
q->in_use += count;
genbit = q->genbit;
pidx = q->pidx;
q->pidx += count;
if (q->pidx >= q->size) {
q->pidx -= q->size;
q->genbit ^= 1;
}
write_tx_descs(adapter, skb, pidx, genbit, q);
credits = q->size - q->in_use;
queued_skb = 1;
}
if (queued_skb) {
clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
}
}
spin_unlock(&q->lock);
}
/**
* sge_rx - process an ingress ethernet packet
* @sge: the sge structure
* @fl: the free list that contains the packet buffer
* @len: the packet length
*
* Process an ingress ethernet pakcet and deliver it to the stack.
*/
static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
{
struct sk_buff *skb;
const struct cpl_rx_pkt *p;
struct adapter *adapter = sge->adapter;
struct sge_port_stats *st;
skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
if (unlikely(!skb)) {
sge->stats.rx_drops++;
return;
}
p = (const struct cpl_rx_pkt *) skb->data;
if (p->iff >= adapter->params.nports) {
kfree_skb(skb);
return;
}
__skb_pull(skb, sizeof(*p));
st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id());
skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev);
if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
skb->protocol == htons(ETH_P_IP) &&
(skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
++st->rx_cso_good;
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else
skb->ip_summed = CHECKSUM_NONE;
if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
st->vlan_xtract++;
vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
ntohs(p->vlan));
} else
netif_receive_skb(skb);
}
/*
* Returns true if a command queue has enough available descriptors that
* we can resume Tx operation after temporarily disabling its packet queue.
*/
static inline int enough_free_Tx_descs(const struct cmdQ *q)
{
unsigned int r = q->processed - q->cleaned;
return q->in_use - r < (q->size >> 1);
}
/*
* Called when sufficient space has become available in the SGE command queues
* after the Tx packet schedulers have been suspended to restart the Tx path.
*/
static void restart_tx_queues(struct sge *sge)
{
struct adapter *adap = sge->adapter;
int i;
if (!enough_free_Tx_descs(&sge->cmdQ[0]))
return;
for_each_port(adap, i) {
struct net_device *nd = adap->port[i].dev;
if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
netif_running(nd)) {
sge->stats.cmdQ_restarted[2]++;
netif_wake_queue(nd);
}
}
}
/*
* update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
* information.
*/
static unsigned int update_tx_info(struct adapter *adapter,
unsigned int flags,
unsigned int pr0)
{
struct sge *sge = adapter->sge;
struct cmdQ *cmdq = &sge->cmdQ[0];
cmdq->processed += pr0;
if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
freelQs_empty(sge);
flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
}
if (flags & F_CMDQ0_ENABLE) {
clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
!test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
}
if (sge->tx_sched)
tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
flags &= ~F_CMDQ0_ENABLE;
}
if (unlikely(sge->stopped_tx_queues != 0))
restart_tx_queues(sge);
return flags;
}
/*
* Process SGE responses, up to the supplied budget. Returns the number of
* responses processed. A negative budget is effectively unlimited.
*/
static int process_responses(struct adapter *adapter, int budget)
{
struct sge *sge = adapter->sge;
struct respQ *q = &sge->respQ;
struct respQ_e *e = &q->entries[q->cidx];
int done = 0;
unsigned int flags = 0;
unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
while (done < budget && e->GenerationBit == q->genbit) {
flags |= e->Qsleeping;
cmdq_processed[0] += e->Cmdq0CreditReturn;
cmdq_processed[1] += e->Cmdq1CreditReturn;
/* We batch updates to the TX side to avoid cacheline
* ping-pong of TX state information on MP where the sender
* might run on a different CPU than this function...
*/
if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
flags = update_tx_info(adapter, flags, cmdq_processed[0]);
cmdq_processed[0] = 0;
}
if (unlikely(cmdq_processed[1] > 16)) {
sge->cmdQ[1].processed += cmdq_processed[1];
cmdq_processed[1] = 0;
}
if (likely(e->DataValid)) {
struct freelQ *fl = &sge->freelQ[e->FreelistQid];
BUG_ON(!e->Sop || !e->Eop);
if (unlikely(e->Offload))
unexpected_offload(adapter, fl);
else
sge_rx(sge, fl, e->BufferLength);
++done;
/*
* Note: this depends on each packet consuming a
* single free-list buffer; cf. the BUG above.
*/
if (++fl->cidx == fl->size)
fl->cidx = 0;
prefetch(fl->centries[fl->cidx].skb);
if (unlikely(--fl->credits <
fl->size - SGE_FREEL_REFILL_THRESH))
refill_free_list(sge, fl);
} else
sge->stats.pure_rsps++;
e++;
if (unlikely(++q->cidx == q->size)) {
q->cidx = 0;
q->genbit ^= 1;
e = q->entries;
}
prefetch(e);
if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
q->credits = 0;
}
}
flags = update_tx_info(adapter, flags, cmdq_processed[0]);
sge->cmdQ[1].processed += cmdq_processed[1];
return done;
}
static inline int responses_pending(const struct adapter *adapter)
{
const struct respQ *Q = &adapter->sge->respQ;
const struct respQ_e *e = &Q->entries[Q->cidx];
return (e->GenerationBit == Q->genbit);
}
/*
* A simpler version of process_responses() that handles only pure (i.e.,
* non data-carrying) responses. Such respones are too light-weight to justify
* calling a softirq when using NAPI, so we handle them specially in hard
* interrupt context. The function is called with a pointer to a response,
* which the caller must ensure is a valid pure response. Returns 1 if it
* encounters a valid data-carrying response, 0 otherwise.
*/
static int process_pure_responses(struct adapter *adapter)
{
struct sge *sge = adapter->sge;
struct respQ *q = &sge->respQ;
struct respQ_e *e = &q->entries[q->cidx];
const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
unsigned int flags = 0;
unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
prefetch(fl->centries[fl->cidx].skb);
if (e->DataValid)
return 1;
do {
flags |= e->Qsleeping;
cmdq_processed[0] += e->Cmdq0CreditReturn;
cmdq_processed[1] += e->Cmdq1CreditReturn;
e++;
if (unlikely(++q->cidx == q->size)) {
q->cidx = 0;
q->genbit ^= 1;
e = q->entries;
}
prefetch(e);
if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
q->credits = 0;
}
sge->stats.pure_rsps++;
} while (e->GenerationBit == q->genbit && !e->DataValid);
flags = update_tx_info(adapter, flags, cmdq_processed[0]);
sge->cmdQ[1].processed += cmdq_processed[1];
return e->GenerationBit == q->genbit;
}
/*
* Handler for new data events when using NAPI. This does not need any locking
* or protection from interrupts as data interrupts are off at this point and
* other adapter interrupts do not interfere.
*/
int t1_poll(struct napi_struct *napi, int budget)
{
struct adapter *adapter = container_of(napi, struct adapter, napi);
int work_done = process_responses(adapter, budget);
if (likely(work_done < budget)) {
netif_rx_complete(napi);
writel(adapter->sge->respQ.cidx,
adapter->regs + A_SG_SLEEPING);
}
return work_done;
}
irqreturn_t t1_interrupt(int irq, void *data)
{
struct adapter *adapter = data;
struct sge *sge = adapter->sge;
int handled;
if (likely(responses_pending(adapter))) {
writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
if (napi_schedule_prep(&adapter->napi)) {
if (process_pure_responses(adapter))
__netif_rx_schedule(&adapter->napi);
else {
/* no data, no NAPI needed */
writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
/* undo schedule_prep */
napi_enable(&adapter->napi);
}
}
return IRQ_HANDLED;
}
spin_lock(&adapter->async_lock);
handled = t1_slow_intr_handler(adapter);
spin_unlock(&adapter->async_lock);
if (!handled)
sge->stats.unhandled_irqs++;
return IRQ_RETVAL(handled != 0);
}
/*
* Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
*
* The code figures out how many entries the sk_buff will require in the
* cmdQ and updates the cmdQ data structure with the state once the enqueue
* has complete. Then, it doesn't access the global structure anymore, but
* uses the corresponding fields on the stack. In conjuction with a spinlock
* around that code, we can make the function reentrant without holding the
* lock when we actually enqueue (which might be expensive, especially on
* architectures with IO MMUs).
*
* This runs with softirqs disabled.
*/
static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
unsigned int qid, struct net_device *dev)
{
struct sge *sge = adapter->sge;
struct cmdQ *q = &sge->cmdQ[qid];
unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
if (!spin_trylock(&q->lock))
return NETDEV_TX_LOCKED;
reclaim_completed_tx(sge, q);
pidx = q->pidx;
credits = q->size - q->in_use;
count = 1 + skb_shinfo(skb)->nr_frags;
count += compute_large_page_tx_descs(skb);
/* Ethernet packet */
if (unlikely(credits < count)) {
if (!netif_queue_stopped(dev)) {
netif_stop_queue(dev);
set_bit(dev->if_port, &sge->stopped_tx_queues);
sge->stats.cmdQ_full[2]++;
CH_ERR("%s: Tx ring full while queue awake!\n",
adapter->name);
}
spin_unlock(&q->lock);
return NETDEV_TX_BUSY;
}
if (unlikely(credits - count < q->stop_thres)) {
netif_stop_queue(dev);
set_bit(dev->if_port, &sge->stopped_tx_queues);
sge->stats.cmdQ_full[2]++;
}
/* T204 cmdQ0 skbs that are destined for a certain port have to go
* through the scheduler.
*/
if (sge->tx_sched && !qid && skb->dev) {
use_sched:
use_sched_skb = 1;
/* Note that the scheduler might return a different skb than
* the one passed in.
*/
skb = sched_skb(sge, skb, credits);
if (!skb) {
spin_unlock(&q->lock);
return NETDEV_TX_OK;
}
pidx = q->pidx;
count = 1 + skb_shinfo(skb)->nr_frags;
count += compute_large_page_tx_descs(skb);
}
q->in_use += count;
genbit = q->genbit;
pidx = q->pidx;
q->pidx += count;
if (q->pidx >= q->size) {
q->pidx -= q->size;
q->genbit ^= 1;
}
spin_unlock(&q->lock);
write_tx_descs(adapter, skb, pidx, genbit, q);
/*
* We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
* the doorbell if the Q is asleep. There is a natural race, where
* the hardware is going to sleep just after we checked, however,
* then the interrupt handler will detect the outstanding TX packet
* and ring the doorbell for us.
*/
if (qid)
doorbell_pio(adapter, F_CMDQ1_ENABLE);
else {
clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
}
}
if (use_sched_skb) {
if (spin_trylock(&q->lock)) {
credits = q->size - q->in_use;
skb = NULL;
goto use_sched;
}
}
return NETDEV_TX_OK;
}
#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
/*
* eth_hdr_len - return the length of an Ethernet header
* @data: pointer to the start of the Ethernet header
*
* Returns the length of an Ethernet header, including optional VLAN tag.
*/
static inline int eth_hdr_len(const void *data)
{
const struct ethhdr *e = data;
return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
}
/*
* Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
*/
int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct adapter *adapter = dev->ml_priv;
struct sge *sge = adapter->sge;
struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port],
smp_processor_id());
struct cpl_tx_pkt *cpl;
struct sk_buff *orig_skb = skb;
int ret;
if (skb->protocol == htons(ETH_P_CPL5))
goto send;
/*
* We are using a non-standard hard_header_len.
* Allocate more header room in the rare cases it is not big enough.
*/
if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
++st->tx_need_hdrroom;
dev_kfree_skb_any(orig_skb);
if (!skb)
return NETDEV_TX_OK;
}
if (skb_shinfo(skb)->gso_size) {
int eth_type;
struct cpl_tx_pkt_lso *hdr;
++st->tx_tso;
eth_type = skb_network_offset(skb) == ETH_HLEN ?
CPL_ETH_II : CPL_ETH_II_VLAN;
hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
hdr->opcode = CPL_TX_PKT_LSO;
hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
hdr->ip_hdr_words = ip_hdr(skb)->ihl;
hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
skb_shinfo(skb)->gso_size));
hdr->len = htonl(skb->len - sizeof(*hdr));
cpl = (struct cpl_tx_pkt *)hdr;
} else {
/*
* Packets shorter than ETH_HLEN can break the MAC, drop them
* early. Also, we may get oversized packets because some
* parts of the kernel don't handle our unusual hard_header_len
* right, drop those too.
*/
if (unlikely(skb->len < ETH_HLEN ||
skb->len > dev->mtu + eth_hdr_len(skb->data))) {
pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
skb->len, eth_hdr_len(skb->data), dev->mtu);
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
skb->ip_summed == CHECKSUM_PARTIAL &&
ip_hdr(skb)->protocol == IPPROTO_UDP) {
if (unlikely(skb_checksum_help(skb))) {
pr_debug("%s: unable to do udp checksum\n", dev->name);
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
}
/* Hmmm, assuming to catch the gratious arp... and we'll use
* it to flush out stuck espi packets...
*/
if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
if (skb->protocol == htons(ETH_P_ARP) &&
arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
adapter->sge->espibug_skb[dev->if_port] = skb;
/* We want to re-use this skb later. We
* simply bump the reference count and it
* will not be freed...
*/
skb = skb_get(skb);
}
}
cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
cpl->opcode = CPL_TX_PKT;
cpl->ip_csum_dis = 1; /* SW calculates IP csum */
cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
/* the length field isn't used so don't bother setting it */
st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
}
cpl->iff = dev->if_port;
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
cpl->vlan_valid = 1;
cpl->vlan = htons(vlan_tx_tag_get(skb));
st->vlan_insert++;
} else
#endif
cpl->vlan_valid = 0;
send:
dev->trans_start = jiffies;
ret = t1_sge_tx(skb, adapter, 0, dev);
/* If transmit busy, and we reallocated skb's due to headroom limit,
* then silently discard to avoid leak.
*/
if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
dev_kfree_skb_any(skb);
ret = NETDEV_TX_OK;
}
return ret;
}
/*
* Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
*/
static void sge_tx_reclaim_cb(unsigned long data)
{
int i;
struct sge *sge = (struct sge *)data;
for (i = 0; i < SGE_CMDQ_N; ++i) {
struct cmdQ *q = &sge->cmdQ[i];
if (!spin_trylock(&q->lock))
continue;
reclaim_completed_tx(sge, q);
if (i == 0 && q->in_use) { /* flush pending credits */
writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
}
spin_unlock(&q->lock);
}
mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
}
/*
* Propagate changes of the SGE coalescing parameters to the HW.
*/
int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
{
sge->fixed_intrtimer = p->rx_coalesce_usecs *
core_ticks_per_usec(sge->adapter);
writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
return 0;
}
/*
* Allocates both RX and TX resources and configures the SGE. However,
* the hardware is not enabled yet.
*/
int t1_sge_configure(struct sge *sge, struct sge_params *p)
{
if (alloc_rx_resources(sge, p))
return -ENOMEM;
if (alloc_tx_resources(sge, p)) {
free_rx_resources(sge);
return -ENOMEM;
}
configure_sge(sge, p);
/*
* Now that we have sized the free lists calculate the payload
* capacity of the large buffers. Other parts of the driver use
* this to set the max offload coalescing size so that RX packets
* do not overflow our large buffers.
*/
p->large_buf_capacity = jumbo_payload_capacity(sge);
return 0;
}
/*
* Disables the DMA engine.
*/
void t1_sge_stop(struct sge *sge)
{
int i;
writel(0, sge->adapter->regs + A_SG_CONTROL);
readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
if (is_T2(sge->adapter))
del_timer_sync(&sge->espibug_timer);
del_timer_sync(&sge->tx_reclaim_timer);
if (sge->tx_sched)
tx_sched_stop(sge);
for (i = 0; i < MAX_NPORTS; i++)
if (sge->espibug_skb[i])
kfree_skb(sge->espibug_skb[i]);
}
/*
* Enables the DMA engine.
*/
void t1_sge_start(struct sge *sge)
{
refill_free_list(sge, &sge->freelQ[0]);
refill_free_list(sge, &sge->freelQ[1]);
writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
if (is_T2(sge->adapter))
mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
}
/*
* Callback for the T2 ESPI 'stuck packet feature' workaorund
*/
static void espibug_workaround_t204(unsigned long data)
{
struct adapter *adapter = (struct adapter *)data;
struct sge *sge = adapter->sge;
unsigned int nports = adapter->params.nports;
u32 seop[MAX_NPORTS];
if (adapter->open_device_map & PORT_MASK) {
int i;
if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
return;
for (i = 0; i < nports; i++) {
struct sk_buff *skb = sge->espibug_skb[i];
if (!netif_running(adapter->port[i].dev) ||
netif_queue_stopped(adapter->port[i].dev) ||
!seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
continue;
if (!skb->cb[0]) {
u8 ch_mac_addr[ETH_ALEN] = {
0x0, 0x7, 0x43, 0x0, 0x0, 0x0
};
skb_copy_to_linear_data_offset(skb,
sizeof(struct cpl_tx_pkt),
ch_mac_addr,
ETH_ALEN);
skb_copy_to_linear_data_offset(skb,
skb->len - 10,
ch_mac_addr,
ETH_ALEN);
skb->cb[0] = 0xff;
}
/* bump the reference count to avoid freeing of
* the skb once the DMA has completed.
*/
skb = skb_get(skb);
t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
}
}
mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
}
static void espibug_workaround(unsigned long data)
{
struct adapter *adapter = (struct adapter *)data;
struct sge *sge = adapter->sge;
if (netif_running(adapter->port[0].dev)) {
struct sk_buff *skb = sge->espibug_skb[0];
u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
if ((seop & 0xfff0fff) == 0xfff && skb) {
if (!skb->cb[0]) {
u8 ch_mac_addr[ETH_ALEN] =
{0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
skb_copy_to_linear_data_offset(skb,
sizeof(struct cpl_tx_pkt),
ch_mac_addr,
ETH_ALEN);
skb_copy_to_linear_data_offset(skb,
skb->len - 10,
ch_mac_addr,
ETH_ALEN);
skb->cb[0] = 0xff;
}
/* bump the reference count to avoid freeing of the
* skb once the DMA has completed.
*/
skb = skb_get(skb);
t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
}
}
mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
}
/*
* Creates a t1_sge structure and returns suggested resource parameters.
*/
struct sge * __devinit t1_sge_create(struct adapter *adapter,
struct sge_params *p)
{
struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
int i;
if (!sge)
return NULL;
sge->adapter = adapter;
sge->netdev = adapter->port[0].dev;
sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
for_each_port(adapter, i) {
sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
if (!sge->port_stats[i])
goto nomem_port;
}
init_timer(&sge->tx_reclaim_timer);
sge->tx_reclaim_timer.data = (unsigned long)sge;
sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
if (is_T2(sge->adapter)) {
init_timer(&sge->espibug_timer);
if (adapter->params.nports > 1) {
tx_sched_init(sge);
sge->espibug_timer.function = espibug_workaround_t204;
} else
sge->espibug_timer.function = espibug_workaround;
sge->espibug_timer.data = (unsigned long)sge->adapter;
sge->espibug_timeout = 1;
/* for T204, every 10ms */
if (adapter->params.nports > 1)
sge->espibug_timeout = HZ/100;
}
p->cmdQ_size[0] = SGE_CMDQ0_E_N;
p->cmdQ_size[1] = SGE_CMDQ1_E_N;
p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
if (sge->tx_sched) {
if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
p->rx_coalesce_usecs = 15;
else
p->rx_coalesce_usecs = 50;
} else
p->rx_coalesce_usecs = 50;
p->coalesce_enable = 0;
p->sample_interval_usecs = 0;
return sge;
nomem_port:
while (i >= 0) {
free_percpu(sge->port_stats[i]);
--i;
}
kfree(sge);
return NULL;
}