OpenCloudOS-Kernel/drivers/s390/cio/qdio_main.c

1522 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Linux for s390 qdio support, buffer handling, qdio API and module support.
*
* Copyright IBM Corp. 2000, 2008
* Author(s): Utz Bacher <utz.bacher@de.ibm.com>
* Jan Glauber <jang@linux.vnet.ibm.com>
* 2.6 cio integration by Cornelia Huck <cornelia.huck@de.ibm.com>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/gfp.h>
#include <linux/io.h>
#include <linux/atomic.h>
#include <asm/debug.h>
#include <asm/qdio.h>
#include <asm/ipl.h>
#include "cio.h"
#include "css.h"
#include "device.h"
#include "qdio.h"
#include "qdio_debug.h"
MODULE_AUTHOR("Utz Bacher <utz.bacher@de.ibm.com>,"\
"Jan Glauber <jang@linux.vnet.ibm.com>");
MODULE_DESCRIPTION("QDIO base support");
MODULE_LICENSE("GPL");
static inline int do_siga_sync(unsigned long schid,
unsigned long out_mask, unsigned long in_mask,
unsigned int fc)
{
int cc;
asm volatile(
" lgr 0,%[fc]\n"
" lgr 1,%[schid]\n"
" lgr 2,%[out]\n"
" lgr 3,%[in]\n"
" siga 0\n"
" ipm %[cc]\n"
" srl %[cc],28\n"
: [cc] "=&d" (cc)
: [fc] "d" (fc), [schid] "d" (schid),
[out] "d" (out_mask), [in] "d" (in_mask)
: "cc", "0", "1", "2", "3");
return cc;
}
static inline int do_siga_input(unsigned long schid, unsigned long mask,
unsigned long fc)
{
int cc;
asm volatile(
" lgr 0,%[fc]\n"
" lgr 1,%[schid]\n"
" lgr 2,%[mask]\n"
" siga 0\n"
" ipm %[cc]\n"
" srl %[cc],28\n"
: [cc] "=&d" (cc)
: [fc] "d" (fc), [schid] "d" (schid), [mask] "d" (mask)
: "cc", "0", "1", "2");
return cc;
}
/**
* do_siga_output - perform SIGA-w/wt function
* @schid: subchannel id or in case of QEBSM the subchannel token
* @mask: which output queues to process
* @bb: busy bit indicator, set only if SIGA-w/wt could not access a buffer
* @fc: function code to perform
* @aob: asynchronous operation block
*
* Returns condition code.
* Note: For IQDC unicast queues only the highest priority queue is processed.
*/
static inline int do_siga_output(unsigned long schid, unsigned long mask,
unsigned int *bb, unsigned long fc,
unsigned long aob)
{
int cc;
asm volatile(
" lgr 0,%[fc]\n"
" lgr 1,%[schid]\n"
" lgr 2,%[mask]\n"
" lgr 3,%[aob]\n"
" siga 0\n"
" lgr %[fc],0\n"
" ipm %[cc]\n"
" srl %[cc],28\n"
: [cc] "=&d" (cc), [fc] "+&d" (fc)
: [schid] "d" (schid), [mask] "d" (mask), [aob] "d" (aob)
: "cc", "0", "1", "2", "3");
*bb = fc >> 31;
return cc;
}
/**
* qdio_do_eqbs - extract buffer states for QEBSM
* @q: queue to manipulate
* @state: state of the extracted buffers
* @start: buffer number to start at
* @count: count of buffers to examine
* @auto_ack: automatically acknowledge buffers
*
* Returns the number of successfully extracted equal buffer states.
* Stops processing if a state is different from the last buffers state.
*/
static int qdio_do_eqbs(struct qdio_q *q, unsigned char *state,
int start, int count, int auto_ack)
{
int tmp_count = count, tmp_start = start, nr = q->nr;
unsigned int ccq = 0;
qperf_inc(q, eqbs);
if (!q->is_input_q)
nr += q->irq_ptr->nr_input_qs;
again:
ccq = do_eqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count,
auto_ack);
switch (ccq) {
case 0:
case 32:
/* all done, or next buffer state different */
return count - tmp_count;
case 96:
/* not all buffers processed */
qperf_inc(q, eqbs_partial);
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "EQBS part:%02x",
tmp_count);
return count - tmp_count;
case 97:
/* no buffer processed */
DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "EQBS again:%2d", ccq);
goto again;
default:
DBF_ERROR("%4x ccq:%3d", SCH_NO(q), ccq);
DBF_ERROR("%4x EQBS ERROR", SCH_NO(q));
DBF_ERROR("%3d%3d%2d", count, tmp_count, nr);
q->handler(q->irq_ptr->cdev, QDIO_ERROR_GET_BUF_STATE, q->nr,
q->first_to_check, count, q->irq_ptr->int_parm);
return 0;
}
}
/**
* qdio_do_sqbs - set buffer states for QEBSM
* @q: queue to manipulate
* @state: new state of the buffers
* @start: first buffer number to change
* @count: how many buffers to change
*
* Returns the number of successfully changed buffers.
* Does retrying until the specified count of buffer states is set or an
* error occurs.
*/
static int qdio_do_sqbs(struct qdio_q *q, unsigned char state, int start,
int count)
{
unsigned int ccq = 0;
int tmp_count = count, tmp_start = start;
int nr = q->nr;
if (!count)
return 0;
qperf_inc(q, sqbs);
if (!q->is_input_q)
nr += q->irq_ptr->nr_input_qs;
again:
ccq = do_sqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count);
switch (ccq) {
case 0:
case 32:
/* all done, or active buffer adapter-owned */
WARN_ON_ONCE(tmp_count);
return count - tmp_count;
case 96:
/* not all buffers processed */
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "SQBS again:%2d", ccq);
qperf_inc(q, sqbs_partial);
goto again;
default:
DBF_ERROR("%4x ccq:%3d", SCH_NO(q), ccq);
DBF_ERROR("%4x SQBS ERROR", SCH_NO(q));
DBF_ERROR("%3d%3d%2d", count, tmp_count, nr);
q->handler(q->irq_ptr->cdev, QDIO_ERROR_SET_BUF_STATE, q->nr,
q->first_to_check, count, q->irq_ptr->int_parm);
return 0;
}
}
/*
* Returns number of examined buffers and their common state in *state.
* Requested number of buffers-to-examine must be > 0.
*/
static inline int get_buf_states(struct qdio_q *q, unsigned int bufnr,
unsigned char *state, unsigned int count,
int auto_ack)
{
unsigned char __state = 0;
int i = 1;
if (is_qebsm(q))
return qdio_do_eqbs(q, state, bufnr, count, auto_ack);
/* get initial state: */
__state = q->slsb.val[bufnr];
/* Bail out early if there is no work on the queue: */
if (__state & SLSB_OWNER_CU)
goto out;
for (; i < count; i++) {
bufnr = next_buf(bufnr);
/* stop if next state differs from initial state: */
if (q->slsb.val[bufnr] != __state)
break;
}
out:
*state = __state;
return i;
}
static inline int get_buf_state(struct qdio_q *q, unsigned int bufnr,
unsigned char *state, int auto_ack)
{
return get_buf_states(q, bufnr, state, 1, auto_ack);
}
/* wrap-around safe setting of slsb states, returns number of changed buffers */
static inline int set_buf_states(struct qdio_q *q, int bufnr,
unsigned char state, int count)
{
int i;
if (is_qebsm(q))
return qdio_do_sqbs(q, state, bufnr, count);
/* Ensure that all preceding changes to the SBALs are visible: */
mb();
for (i = 0; i < count; i++) {
WRITE_ONCE(q->slsb.val[bufnr], state);
bufnr = next_buf(bufnr);
}
/* Make our SLSB changes visible: */
mb();
return count;
}
static inline int set_buf_state(struct qdio_q *q, int bufnr,
unsigned char state)
{
return set_buf_states(q, bufnr, state, 1);
}
/* set slsb states to initial state */
static void qdio_init_buf_states(struct qdio_irq *irq_ptr)
{
struct qdio_q *q;
int i;
for_each_input_queue(irq_ptr, q, i)
set_buf_states(q, 0, SLSB_P_INPUT_NOT_INIT,
QDIO_MAX_BUFFERS_PER_Q);
for_each_output_queue(irq_ptr, q, i)
set_buf_states(q, 0, SLSB_P_OUTPUT_NOT_INIT,
QDIO_MAX_BUFFERS_PER_Q);
}
static inline int qdio_siga_sync(struct qdio_q *q, unsigned int output,
unsigned int input)
{
unsigned long schid = *((u32 *) &q->irq_ptr->schid);
unsigned int fc = QDIO_SIGA_SYNC;
int cc;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-s:%1d", q->nr);
qperf_inc(q, siga_sync);
if (is_qebsm(q)) {
schid = q->irq_ptr->sch_token;
fc |= QDIO_SIGA_QEBSM_FLAG;
}
cc = do_siga_sync(schid, output, input, fc);
if (unlikely(cc))
DBF_ERROR("%4x SIGA-S:%2d", SCH_NO(q), cc);
return (cc) ? -EIO : 0;
}
static inline int qdio_siga_sync_q(struct qdio_q *q)
{
if (q->is_input_q)
return qdio_siga_sync(q, 0, q->mask);
else
return qdio_siga_sync(q, q->mask, 0);
}
static int qdio_siga_output(struct qdio_q *q, unsigned int count,
unsigned int *busy_bit, unsigned long aob)
{
unsigned long schid = *((u32 *) &q->irq_ptr->schid);
unsigned int fc = QDIO_SIGA_WRITE;
u64 start_time = 0;
int retries = 0, cc;
if (queue_type(q) == QDIO_IQDIO_QFMT && !multicast_outbound(q)) {
if (count > 1)
fc = QDIO_SIGA_WRITEM;
else if (aob)
fc = QDIO_SIGA_WRITEQ;
}
if (is_qebsm(q)) {
schid = q->irq_ptr->sch_token;
fc |= QDIO_SIGA_QEBSM_FLAG;
}
again:
cc = do_siga_output(schid, q->mask, busy_bit, fc, aob);
/* hipersocket busy condition */
if (unlikely(*busy_bit)) {
retries++;
if (!start_time) {
start_time = get_tod_clock_fast();
goto again;
}
if (get_tod_clock_fast() - start_time < QDIO_BUSY_BIT_PATIENCE)
goto again;
}
if (retries) {
DBF_DEV_EVENT(DBF_WARN, q->irq_ptr,
"%4x cc2 BB1:%1d", SCH_NO(q), q->nr);
DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "count:%u", retries);
}
return cc;
}
static inline int qdio_siga_input(struct qdio_q *q)
{
unsigned long schid = *((u32 *) &q->irq_ptr->schid);
unsigned int fc = QDIO_SIGA_READ;
int cc;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-r:%1d", q->nr);
qperf_inc(q, siga_read);
if (is_qebsm(q)) {
schid = q->irq_ptr->sch_token;
fc |= QDIO_SIGA_QEBSM_FLAG;
}
cc = do_siga_input(schid, q->mask, fc);
if (unlikely(cc))
DBF_ERROR("%4x SIGA-R:%2d", SCH_NO(q), cc);
return (cc) ? -EIO : 0;
}
#define qdio_siga_sync_out(q) qdio_siga_sync(q, ~0U, 0)
#define qdio_siga_sync_all(q) qdio_siga_sync(q, ~0U, ~0U)
static inline void qdio_sync_queues(struct qdio_q *q)
{
/* PCI capable outbound queues will also be scanned so sync them too */
if (pci_out_supported(q->irq_ptr))
qdio_siga_sync_all(q);
else
qdio_siga_sync_q(q);
}
int debug_get_buf_state(struct qdio_q *q, unsigned int bufnr,
unsigned char *state)
{
if (need_siga_sync(q))
qdio_siga_sync_q(q);
return get_buf_state(q, bufnr, state, 0);
}
static inline void qdio_stop_polling(struct qdio_q *q)
{
if (!q->u.in.batch_count)
return;
qperf_inc(q, stop_polling);
/* show the card that we are not polling anymore */
set_buf_states(q, q->u.in.batch_start, SLSB_P_INPUT_NOT_INIT,
q->u.in.batch_count);
q->u.in.batch_count = 0;
}
static inline void account_sbals(struct qdio_q *q, unsigned int count)
{
q->q_stats.nr_sbal_total += count;
q->q_stats.nr_sbals[ilog2(count)]++;
}
static void process_buffer_error(struct qdio_q *q, unsigned int start,
int count)
{
/* special handling for no target buffer empty */
if (queue_type(q) == QDIO_IQDIO_QFMT && !q->is_input_q &&
q->sbal[start]->element[15].sflags == 0x10) {
qperf_inc(q, target_full);
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "OUTFULL FTC:%02x", start);
return;
}
DBF_ERROR("%4x BUF ERROR", SCH_NO(q));
DBF_ERROR((q->is_input_q) ? "IN:%2d" : "OUT:%2d", q->nr);
DBF_ERROR("FTC:%3d C:%3d", start, count);
DBF_ERROR("F14:%2x F15:%2x",
q->sbal[start]->element[14].sflags,
q->sbal[start]->element[15].sflags);
}
static inline void inbound_handle_work(struct qdio_q *q, unsigned int start,
int count, bool auto_ack)
{
/* ACK the newest SBAL: */
if (!auto_ack)
set_buf_state(q, add_buf(start, count - 1), SLSB_P_INPUT_ACK);
if (!q->u.in.batch_count)
q->u.in.batch_start = start;
q->u.in.batch_count += count;
}
static int get_inbound_buffer_frontier(struct qdio_q *q, unsigned int start,
unsigned int *error)
{
unsigned char state = 0;
int count;
q->timestamp = get_tod_clock_fast();
count = atomic_read(&q->nr_buf_used);
if (!count)
return 0;
/*
* No siga sync here, as a PCI or we after a thin interrupt
* already sync'ed the queues.
*/
count = get_buf_states(q, start, &state, count, 1);
if (!count)
return 0;
switch (state) {
case SLSB_P_INPUT_PRIMED:
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in prim:%1d %02x", q->nr,
count);
inbound_handle_work(q, start, count, is_qebsm(q));
if (atomic_sub_return(count, &q->nr_buf_used) == 0)
qperf_inc(q, inbound_queue_full);
if (q->irq_ptr->perf_stat_enabled)
account_sbals(q, count);
return count;
case SLSB_P_INPUT_ERROR:
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in err:%1d %02x", q->nr,
count);
*error = QDIO_ERROR_SLSB_STATE;
process_buffer_error(q, start, count);
inbound_handle_work(q, start, count, false);
if (atomic_sub_return(count, &q->nr_buf_used) == 0)
qperf_inc(q, inbound_queue_full);
if (q->irq_ptr->perf_stat_enabled)
account_sbals_error(q, count);
return count;
case SLSB_CU_INPUT_EMPTY:
if (q->irq_ptr->perf_stat_enabled)
q->q_stats.nr_sbal_nop++;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in nop:%1d %#02x",
q->nr, start);
return 0;
case SLSB_P_INPUT_NOT_INIT:
case SLSB_P_INPUT_ACK:
/* We should never see this state, throw a WARN: */
default:
dev_WARN_ONCE(&q->irq_ptr->cdev->dev, 1,
"found state %#x at index %u on queue %u\n",
state, start, q->nr);
return 0;
}
}
static inline int qdio_inbound_q_done(struct qdio_q *q, unsigned int start)
{
unsigned char state = 0;
if (!atomic_read(&q->nr_buf_used))
return 1;
if (need_siga_sync(q))
qdio_siga_sync_q(q);
get_buf_state(q, start, &state, 0);
if (state == SLSB_P_INPUT_PRIMED || state == SLSB_P_INPUT_ERROR)
/* more work coming */
return 0;
return 1;
}
static inline int qdio_tasklet_schedule(struct qdio_q *q)
{
if (likely(q->irq_ptr->state == QDIO_IRQ_STATE_ACTIVE)) {
tasklet_schedule(&q->u.out.tasklet);
return 0;
}
return -EPERM;
}
static int get_outbound_buffer_frontier(struct qdio_q *q, unsigned int start,
unsigned int *error)
{
unsigned char state = 0;
int count;
q->timestamp = get_tod_clock_fast();
if (need_siga_sync(q))
if (((queue_type(q) != QDIO_IQDIO_QFMT) &&
!pci_out_supported(q->irq_ptr)) ||
(queue_type(q) == QDIO_IQDIO_QFMT &&
multicast_outbound(q)))
qdio_siga_sync_q(q);
count = atomic_read(&q->nr_buf_used);
if (!count)
return 0;
count = get_buf_states(q, start, &state, count, 0);
if (!count)
return 0;
switch (state) {
case SLSB_P_OUTPUT_PENDING:
*error = QDIO_ERROR_SLSB_PENDING;
fallthrough;
case SLSB_P_OUTPUT_EMPTY:
/* the adapter got it */
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr,
"out empty:%1d %02x", q->nr, count);
atomic_sub(count, &q->nr_buf_used);
if (q->irq_ptr->perf_stat_enabled)
account_sbals(q, count);
return count;
case SLSB_P_OUTPUT_ERROR:
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out error:%1d %02x",
q->nr, count);
*error = QDIO_ERROR_SLSB_STATE;
process_buffer_error(q, start, count);
atomic_sub(count, &q->nr_buf_used);
if (q->irq_ptr->perf_stat_enabled)
account_sbals_error(q, count);
return count;
case SLSB_CU_OUTPUT_PRIMED:
/* the adapter has not fetched the output yet */
if (q->irq_ptr->perf_stat_enabled)
q->q_stats.nr_sbal_nop++;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out primed:%1d",
q->nr);
return 0;
case SLSB_P_OUTPUT_HALTED:
return 0;
case SLSB_P_OUTPUT_NOT_INIT:
/* We should never see this state, throw a WARN: */
default:
dev_WARN_ONCE(&q->irq_ptr->cdev->dev, 1,
"found state %#x at index %u on queue %u\n",
state, start, q->nr);
return 0;
}
}
/* all buffers processed? */
static inline int qdio_outbound_q_done(struct qdio_q *q)
{
return atomic_read(&q->nr_buf_used) == 0;
}
static int qdio_kick_outbound_q(struct qdio_q *q, unsigned int count,
unsigned long aob)
{
int retries = 0, cc;
unsigned int busy_bit;
if (!need_siga_out(q))
return 0;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-w:%1d", q->nr);
retry:
qperf_inc(q, siga_write);
cc = qdio_siga_output(q, count, &busy_bit, aob);
switch (cc) {
case 0:
break;
case 2:
if (busy_bit) {
while (++retries < QDIO_BUSY_BIT_RETRIES) {
mdelay(QDIO_BUSY_BIT_RETRY_DELAY);
goto retry;
}
DBF_ERROR("%4x cc2 BBC:%1d", SCH_NO(q), q->nr);
cc = -EBUSY;
} else {
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-w cc2:%1d", q->nr);
cc = -ENOBUFS;
}
break;
case 1:
case 3:
DBF_ERROR("%4x SIGA-W:%1d", SCH_NO(q), cc);
cc = -EIO;
break;
}
if (retries) {
DBF_ERROR("%4x cc2 BB2:%1d", SCH_NO(q), q->nr);
DBF_ERROR("count:%u", retries);
}
return cc;
}
void qdio_outbound_tasklet(struct tasklet_struct *t)
{
struct qdio_output_q *out_q = from_tasklet(out_q, t, tasklet);
struct qdio_q *q = container_of(out_q, struct qdio_q, u.out);
unsigned int start = q->first_to_check;
unsigned int error = 0;
int count;
qperf_inc(q, tasklet_outbound);
WARN_ON_ONCE(atomic_read(&q->nr_buf_used) < 0);
count = get_outbound_buffer_frontier(q, start, &error);
if (count) {
q->first_to_check = add_buf(start, count);
if (q->irq_ptr->state == QDIO_IRQ_STATE_ACTIVE) {
qperf_inc(q, outbound_handler);
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "koh: s:%02x c:%02x",
start, count);
q->handler(q->irq_ptr->cdev, error, q->nr, start,
count, q->irq_ptr->int_parm);
}
}
if (queue_type(q) == QDIO_ZFCP_QFMT && !pci_out_supported(q->irq_ptr) &&
!qdio_outbound_q_done(q))
goto sched;
if (q->u.out.pci_out_enabled)
return;
/*
* Now we know that queue type is either qeth without pci enabled
* or HiperSockets. Make sure buffer switch from PRIMED to EMPTY
* is noticed and outbound_handler is called after some time.
*/
if (qdio_outbound_q_done(q))
del_timer_sync(&q->u.out.timer);
else
if (!timer_pending(&q->u.out.timer) &&
likely(q->irq_ptr->state == QDIO_IRQ_STATE_ACTIVE))
mod_timer(&q->u.out.timer, jiffies + 10 * HZ);
return;
sched:
qdio_tasklet_schedule(q);
}
void qdio_outbound_timer(struct timer_list *t)
{
struct qdio_q *q = from_timer(q, t, u.out.timer);
qdio_tasklet_schedule(q);
}
static inline void qdio_check_outbound_pci_queues(struct qdio_irq *irq)
{
struct qdio_q *out;
int i;
if (!pci_out_supported(irq) || !irq->scan_threshold)
return;
for_each_output_queue(irq, out, i)
if (!qdio_outbound_q_done(out))
qdio_tasklet_schedule(out);
}
static inline void qdio_set_state(struct qdio_irq *irq_ptr,
enum qdio_irq_states state)
{
DBF_DEV_EVENT(DBF_INFO, irq_ptr, "newstate: %1d", state);
irq_ptr->state = state;
mb();
}
static void qdio_irq_check_sense(struct qdio_irq *irq_ptr, struct irb *irb)
{
if (irb->esw.esw0.erw.cons) {
DBF_ERROR("%4x sense:", irq_ptr->schid.sch_no);
DBF_ERROR_HEX(irb, 64);
DBF_ERROR_HEX(irb->ecw, 64);
}
}
/* PCI interrupt handler */
static void qdio_int_handler_pci(struct qdio_irq *irq_ptr)
{
int i;
struct qdio_q *q;
if (unlikely(irq_ptr->state != QDIO_IRQ_STATE_ACTIVE))
return;
qdio_deliver_irq(irq_ptr);
irq_ptr->last_data_irq_time = S390_lowcore.int_clock;
if (!pci_out_supported(irq_ptr) || !irq_ptr->scan_threshold)
return;
for_each_output_queue(irq_ptr, q, i) {
if (qdio_outbound_q_done(q))
continue;
if (need_siga_sync(q) && need_siga_sync_out_after_pci(q))
qdio_siga_sync_q(q);
qdio_tasklet_schedule(q);
}
}
static void qdio_handle_activate_check(struct qdio_irq *irq_ptr,
unsigned long intparm, int cstat,
int dstat)
{
struct qdio_q *q;
DBF_ERROR("%4x ACT CHECK", irq_ptr->schid.sch_no);
DBF_ERROR("intp :%lx", intparm);
DBF_ERROR("ds: %2x cs:%2x", dstat, cstat);
if (irq_ptr->nr_input_qs) {
q = irq_ptr->input_qs[0];
} else if (irq_ptr->nr_output_qs) {
q = irq_ptr->output_qs[0];
} else {
dump_stack();
goto no_handler;
}
q->handler(q->irq_ptr->cdev, QDIO_ERROR_ACTIVATE,
q->nr, q->first_to_check, 0, irq_ptr->int_parm);
no_handler:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED);
/*
* In case of z/VM LGR (Live Guest Migration) QDIO recovery will happen.
* Therefore we call the LGR detection function here.
*/
lgr_info_log();
}
static void qdio_establish_handle_irq(struct qdio_irq *irq_ptr, int cstat,
int dstat)
{
DBF_DEV_EVENT(DBF_INFO, irq_ptr, "qest irq");
if (cstat)
goto error;
if (dstat & ~(DEV_STAT_DEV_END | DEV_STAT_CHN_END))
goto error;
if (!(dstat & DEV_STAT_DEV_END))
goto error;
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ESTABLISHED);
return;
error:
DBF_ERROR("%4x EQ:error", irq_ptr->schid.sch_no);
DBF_ERROR("ds: %2x cs:%2x", dstat, cstat);
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR);
}
/* qdio interrupt handler */
void qdio_int_handler(struct ccw_device *cdev, unsigned long intparm,
struct irb *irb)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct subchannel_id schid;
int cstat, dstat;
if (!intparm || !irq_ptr) {
ccw_device_get_schid(cdev, &schid);
DBF_ERROR("qint:%4x", schid.sch_no);
return;
}
if (irq_ptr->perf_stat_enabled)
irq_ptr->perf_stat.qdio_int++;
if (IS_ERR(irb)) {
DBF_ERROR("%4x IO error", irq_ptr->schid.sch_no);
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR);
wake_up(&cdev->private->wait_q);
return;
}
qdio_irq_check_sense(irq_ptr, irb);
cstat = irb->scsw.cmd.cstat;
dstat = irb->scsw.cmd.dstat;
switch (irq_ptr->state) {
case QDIO_IRQ_STATE_INACTIVE:
qdio_establish_handle_irq(irq_ptr, cstat, dstat);
break;
case QDIO_IRQ_STATE_CLEANUP:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE);
break;
case QDIO_IRQ_STATE_ESTABLISHED:
case QDIO_IRQ_STATE_ACTIVE:
if (cstat & SCHN_STAT_PCI) {
qdio_int_handler_pci(irq_ptr);
return;
}
if (cstat || dstat)
qdio_handle_activate_check(irq_ptr, intparm, cstat,
dstat);
break;
case QDIO_IRQ_STATE_STOPPED:
break;
default:
WARN_ON_ONCE(1);
}
wake_up(&cdev->private->wait_q);
}
/**
* qdio_get_ssqd_desc - get qdio subchannel description
* @cdev: ccw device to get description for
* @data: where to store the ssqd
*
* Returns 0 or an error code. The results of the chsc are stored in the
* specified structure.
*/
int qdio_get_ssqd_desc(struct ccw_device *cdev,
struct qdio_ssqd_desc *data)
{
struct subchannel_id schid;
if (!cdev || !cdev->private)
return -EINVAL;
ccw_device_get_schid(cdev, &schid);
DBF_EVENT("get ssqd:%4x", schid.sch_no);
return qdio_setup_get_ssqd(NULL, &schid, data);
}
EXPORT_SYMBOL_GPL(qdio_get_ssqd_desc);
static void qdio_shutdown_queues(struct qdio_irq *irq_ptr)
{
struct qdio_q *q;
int i;
for_each_output_queue(irq_ptr, q, i) {
del_timer_sync(&q->u.out.timer);
tasklet_kill(&q->u.out.tasklet);
}
}
/**
* qdio_shutdown - shut down a qdio subchannel
* @cdev: associated ccw device
* @how: use halt or clear to shutdown
*/
int qdio_shutdown(struct ccw_device *cdev, int how)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct subchannel_id schid;
int rc;
if (!irq_ptr)
return -ENODEV;
WARN_ON_ONCE(irqs_disabled());
ccw_device_get_schid(cdev, &schid);
DBF_EVENT("qshutdown:%4x", schid.sch_no);
mutex_lock(&irq_ptr->setup_mutex);
/*
* Subchannel was already shot down. We cannot prevent being called
* twice since cio may trigger a shutdown asynchronously.
*/
if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) {
mutex_unlock(&irq_ptr->setup_mutex);
return 0;
}
/*
* Indicate that the device is going down. Scheduling the queue
* tasklets is forbidden from here on.
*/
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED);
qdio_shutdown_queues(irq_ptr);
qdio_shutdown_debug_entries(irq_ptr);
/* cleanup subchannel */
spin_lock_irq(get_ccwdev_lock(cdev));
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_CLEANUP);
if (how & QDIO_FLAG_CLEANUP_USING_CLEAR)
rc = ccw_device_clear(cdev, QDIO_DOING_CLEANUP);
else
/* default behaviour is halt */
rc = ccw_device_halt(cdev, QDIO_DOING_CLEANUP);
spin_unlock_irq(get_ccwdev_lock(cdev));
if (rc) {
DBF_ERROR("%4x SHUTD ERR", irq_ptr->schid.sch_no);
DBF_ERROR("rc:%4d", rc);
goto no_cleanup;
}
wait_event_interruptible_timeout(cdev->private->wait_q,
irq_ptr->state == QDIO_IRQ_STATE_INACTIVE ||
irq_ptr->state == QDIO_IRQ_STATE_ERR,
10 * HZ);
no_cleanup:
qdio_shutdown_thinint(irq_ptr);
qdio_shutdown_irq(irq_ptr);
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE);
mutex_unlock(&irq_ptr->setup_mutex);
if (rc)
return rc;
return 0;
}
EXPORT_SYMBOL_GPL(qdio_shutdown);
/**
* qdio_free - free data structures for a qdio subchannel
* @cdev: associated ccw device
*/
int qdio_free(struct ccw_device *cdev)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct subchannel_id schid;
if (!irq_ptr)
return -ENODEV;
ccw_device_get_schid(cdev, &schid);
DBF_EVENT("qfree:%4x", schid.sch_no);
DBF_DEV_EVENT(DBF_ERR, irq_ptr, "dbf abandoned");
mutex_lock(&irq_ptr->setup_mutex);
irq_ptr->debug_area = NULL;
cdev->private->qdio_data = NULL;
mutex_unlock(&irq_ptr->setup_mutex);
qdio_free_queues(irq_ptr);
free_page((unsigned long) irq_ptr->qdr);
free_page(irq_ptr->chsc_page);
free_page((unsigned long) irq_ptr);
return 0;
}
EXPORT_SYMBOL_GPL(qdio_free);
/**
* qdio_allocate - allocate qdio queues and associated data
* @cdev: associated ccw device
* @no_input_qs: allocate this number of Input Queues
* @no_output_qs: allocate this number of Output Queues
*/
int qdio_allocate(struct ccw_device *cdev, unsigned int no_input_qs,
unsigned int no_output_qs)
{
struct subchannel_id schid;
struct qdio_irq *irq_ptr;
int rc = -ENOMEM;
ccw_device_get_schid(cdev, &schid);
DBF_EVENT("qallocate:%4x", schid.sch_no);
if (no_input_qs > QDIO_MAX_QUEUES_PER_IRQ ||
no_output_qs > QDIO_MAX_QUEUES_PER_IRQ)
return -EINVAL;
/* irq_ptr must be in GFP_DMA since it contains ccw1.cda */
irq_ptr = (void *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
if (!irq_ptr)
return -ENOMEM;
irq_ptr->cdev = cdev;
mutex_init(&irq_ptr->setup_mutex);
if (qdio_allocate_dbf(irq_ptr))
goto err_dbf;
DBF_DEV_EVENT(DBF_ERR, irq_ptr, "alloc niq:%1u noq:%1u", no_input_qs,
no_output_qs);
/*
* Allocate a page for the chsc calls in qdio_establish.
* Must be pre-allocated since a zfcp recovery will call
* qdio_establish. In case of low memory and swap on a zfcp disk
* we may not be able to allocate memory otherwise.
*/
irq_ptr->chsc_page = get_zeroed_page(GFP_KERNEL);
if (!irq_ptr->chsc_page)
goto err_chsc;
/* qdr is used in ccw1.cda which is u32 */
irq_ptr->qdr = (struct qdr *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
if (!irq_ptr->qdr)
goto err_qdr;
rc = qdio_allocate_qs(irq_ptr, no_input_qs, no_output_qs);
if (rc)
goto err_queues;
cdev->private->qdio_data = irq_ptr;
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE);
return 0;
err_queues:
free_page((unsigned long) irq_ptr->qdr);
err_qdr:
free_page(irq_ptr->chsc_page);
err_chsc:
err_dbf:
free_page((unsigned long) irq_ptr);
return rc;
}
EXPORT_SYMBOL_GPL(qdio_allocate);
static void qdio_trace_init_data(struct qdio_irq *irq,
struct qdio_initialize *data)
{
DBF_DEV_EVENT(DBF_ERR, irq, "qfmt:%1u", data->q_format);
DBF_DEV_EVENT(DBF_ERR, irq, "qpff%4x", data->qib_param_field_format);
DBF_DEV_HEX(irq, &data->qib_param_field, sizeof(void *), DBF_ERR);
DBF_DEV_HEX(irq, &data->input_slib_elements, sizeof(void *), DBF_ERR);
DBF_DEV_HEX(irq, &data->output_slib_elements, sizeof(void *), DBF_ERR);
DBF_DEV_EVENT(DBF_ERR, irq, "niq:%1u noq:%1u", data->no_input_qs,
data->no_output_qs);
DBF_DEV_HEX(irq, &data->input_handler, sizeof(void *), DBF_ERR);
DBF_DEV_HEX(irq, &data->output_handler, sizeof(void *), DBF_ERR);
DBF_DEV_HEX(irq, &data->int_parm, sizeof(long), DBF_ERR);
DBF_DEV_HEX(irq, &data->input_sbal_addr_array, sizeof(void *), DBF_ERR);
DBF_DEV_HEX(irq, &data->output_sbal_addr_array, sizeof(void *),
DBF_ERR);
}
/**
* qdio_establish - establish queues on a qdio subchannel
* @cdev: associated ccw device
* @init_data: initialization data
*/
int qdio_establish(struct ccw_device *cdev,
struct qdio_initialize *init_data)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct subchannel_id schid;
int rc;
ccw_device_get_schid(cdev, &schid);
DBF_EVENT("qestablish:%4x", schid.sch_no);
if (!irq_ptr)
return -ENODEV;
if (init_data->no_input_qs > irq_ptr->max_input_qs ||
init_data->no_output_qs > irq_ptr->max_output_qs)
return -EINVAL;
if ((init_data->no_input_qs && !init_data->input_handler) ||
(init_data->no_output_qs && !init_data->output_handler))
return -EINVAL;
if (!init_data->input_sbal_addr_array ||
!init_data->output_sbal_addr_array)
return -EINVAL;
if (!init_data->irq_poll)
return -EINVAL;
mutex_lock(&irq_ptr->setup_mutex);
qdio_trace_init_data(irq_ptr, init_data);
qdio_setup_irq(irq_ptr, init_data);
rc = qdio_establish_thinint(irq_ptr);
if (rc) {
qdio_shutdown_irq(irq_ptr);
mutex_unlock(&irq_ptr->setup_mutex);
return rc;
}
/* establish q */
irq_ptr->ccw.cmd_code = irq_ptr->equeue.cmd;
irq_ptr->ccw.flags = CCW_FLAG_SLI;
irq_ptr->ccw.count = irq_ptr->equeue.count;
irq_ptr->ccw.cda = (u32)((addr_t)irq_ptr->qdr);
spin_lock_irq(get_ccwdev_lock(cdev));
ccw_device_set_options_mask(cdev, 0);
rc = ccw_device_start(cdev, &irq_ptr->ccw, QDIO_DOING_ESTABLISH, 0, 0);
spin_unlock_irq(get_ccwdev_lock(cdev));
if (rc) {
DBF_ERROR("%4x est IO ERR", irq_ptr->schid.sch_no);
DBF_ERROR("rc:%4x", rc);
qdio_shutdown_thinint(irq_ptr);
qdio_shutdown_irq(irq_ptr);
mutex_unlock(&irq_ptr->setup_mutex);
return rc;
}
wait_event_interruptible_timeout(cdev->private->wait_q,
irq_ptr->state == QDIO_IRQ_STATE_ESTABLISHED ||
irq_ptr->state == QDIO_IRQ_STATE_ERR, HZ);
if (irq_ptr->state != QDIO_IRQ_STATE_ESTABLISHED) {
mutex_unlock(&irq_ptr->setup_mutex);
qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
return -EIO;
}
qdio_setup_ssqd_info(irq_ptr);
/* qebsm is now setup if available, initialize buffer states */
qdio_init_buf_states(irq_ptr);
mutex_unlock(&irq_ptr->setup_mutex);
qdio_print_subchannel_info(irq_ptr);
qdio_setup_debug_entries(irq_ptr);
return 0;
}
EXPORT_SYMBOL_GPL(qdio_establish);
/**
* qdio_activate - activate queues on a qdio subchannel
* @cdev: associated cdev
*/
int qdio_activate(struct ccw_device *cdev)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct subchannel_id schid;
int rc;
ccw_device_get_schid(cdev, &schid);
DBF_EVENT("qactivate:%4x", schid.sch_no);
if (!irq_ptr)
return -ENODEV;
mutex_lock(&irq_ptr->setup_mutex);
if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) {
rc = -EBUSY;
goto out;
}
irq_ptr->ccw.cmd_code = irq_ptr->aqueue.cmd;
irq_ptr->ccw.flags = CCW_FLAG_SLI;
irq_ptr->ccw.count = irq_ptr->aqueue.count;
irq_ptr->ccw.cda = 0;
spin_lock_irq(get_ccwdev_lock(cdev));
ccw_device_set_options(cdev, CCWDEV_REPORT_ALL);
rc = ccw_device_start(cdev, &irq_ptr->ccw, QDIO_DOING_ACTIVATE,
0, DOIO_DENY_PREFETCH);
spin_unlock_irq(get_ccwdev_lock(cdev));
if (rc) {
DBF_ERROR("%4x act IO ERR", irq_ptr->schid.sch_no);
DBF_ERROR("rc:%4x", rc);
goto out;
}
/* wait for subchannel to become active */
msleep(5);
switch (irq_ptr->state) {
case QDIO_IRQ_STATE_STOPPED:
case QDIO_IRQ_STATE_ERR:
rc = -EIO;
break;
default:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ACTIVE);
rc = 0;
}
out:
mutex_unlock(&irq_ptr->setup_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(qdio_activate);
/**
* handle_inbound - reset processed input buffers
* @q: queue containing the buffers
* @callflags: flags
* @bufnr: first buffer to process
* @count: how many buffers are emptied
*/
static int handle_inbound(struct qdio_q *q, unsigned int callflags,
int bufnr, int count)
{
int overlap;
qperf_inc(q, inbound_call);
/* If any processed SBALs are returned to HW, adjust our tracking: */
overlap = min_t(int, count - sub_buf(q->u.in.batch_start, bufnr),
q->u.in.batch_count);
if (overlap > 0) {
q->u.in.batch_start = add_buf(q->u.in.batch_start, overlap);
q->u.in.batch_count -= overlap;
}
count = set_buf_states(q, bufnr, SLSB_CU_INPUT_EMPTY, count);
atomic_add(count, &q->nr_buf_used);
if (need_siga_in(q))
return qdio_siga_input(q);
return 0;
}
/**
* handle_outbound - process filled outbound buffers
* @q: queue containing the buffers
* @callflags: flags
* @bufnr: first buffer to process
* @count: how many buffers are filled
* @aob: asynchronous operation block
*/
static int handle_outbound(struct qdio_q *q, unsigned int callflags,
unsigned int bufnr, unsigned int count,
struct qaob *aob)
{
const unsigned int scan_threshold = q->irq_ptr->scan_threshold;
unsigned char state = 0;
int used, rc = 0;
qperf_inc(q, outbound_call);
count = set_buf_states(q, bufnr, SLSB_CU_OUTPUT_PRIMED, count);
used = atomic_add_return(count, &q->nr_buf_used);
if (used == QDIO_MAX_BUFFERS_PER_Q)
qperf_inc(q, outbound_queue_full);
if (callflags & QDIO_FLAG_PCI_OUT) {
q->u.out.pci_out_enabled = 1;
qperf_inc(q, pci_request_int);
} else
q->u.out.pci_out_enabled = 0;
if (queue_type(q) == QDIO_IQDIO_QFMT) {
unsigned long phys_aob = aob ? virt_to_phys(aob) : 0;
WARN_ON_ONCE(!IS_ALIGNED(phys_aob, 256));
rc = qdio_kick_outbound_q(q, count, phys_aob);
} else if (need_siga_sync(q)) {
rc = qdio_siga_sync_q(q);
} else if (count < QDIO_MAX_BUFFERS_PER_Q &&
get_buf_state(q, prev_buf(bufnr), &state, 0) > 0 &&
state == SLSB_CU_OUTPUT_PRIMED) {
/* The previous buffer is not processed yet, tack on. */
qperf_inc(q, fast_requeue);
} else {
rc = qdio_kick_outbound_q(q, count, 0);
}
/* Let drivers implement their own completion scanning: */
if (!scan_threshold)
return rc;
/* in case of SIGA errors we must process the error immediately */
if (used >= scan_threshold || rc)
qdio_tasklet_schedule(q);
else
/* free the SBALs in case of no further traffic */
if (!timer_pending(&q->u.out.timer) &&
likely(q->irq_ptr->state == QDIO_IRQ_STATE_ACTIVE))
mod_timer(&q->u.out.timer, jiffies + HZ);
return rc;
}
/**
* do_QDIO - process input or output buffers
* @cdev: associated ccw_device for the qdio subchannel
* @callflags: input or output and special flags from the program
* @q_nr: queue number
* @bufnr: buffer number
* @count: how many buffers to process
* @aob: asynchronous operation block (outbound only)
*/
int do_QDIO(struct ccw_device *cdev, unsigned int callflags,
int q_nr, unsigned int bufnr, unsigned int count, struct qaob *aob)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
if (bufnr >= QDIO_MAX_BUFFERS_PER_Q || count > QDIO_MAX_BUFFERS_PER_Q)
return -EINVAL;
if (!irq_ptr)
return -ENODEV;
DBF_DEV_EVENT(DBF_INFO, irq_ptr,
"do%02x b:%02x c:%02x", callflags, bufnr, count);
if (irq_ptr->state != QDIO_IRQ_STATE_ACTIVE)
return -EIO;
if (!count)
return 0;
if (callflags & QDIO_FLAG_SYNC_INPUT)
return handle_inbound(irq_ptr->input_qs[q_nr],
callflags, bufnr, count);
else if (callflags & QDIO_FLAG_SYNC_OUTPUT)
return handle_outbound(irq_ptr->output_qs[q_nr],
callflags, bufnr, count, aob);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(do_QDIO);
/**
* qdio_start_irq - enable interrupt processing for the device
* @cdev: associated ccw_device for the qdio subchannel
*
* Return codes
* 0 - success
* 1 - irqs not started since new data is available
*/
int qdio_start_irq(struct ccw_device *cdev)
{
struct qdio_q *q;
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
unsigned int i;
if (!irq_ptr)
return -ENODEV;
for_each_input_queue(irq_ptr, q, i)
qdio_stop_polling(q);
clear_bit(QDIO_IRQ_DISABLED, &irq_ptr->poll_state);
/*
* We need to check again to not lose initiative after
* resetting the ACK state.
*/
if (test_nonshared_ind(irq_ptr))
goto rescan;
for_each_input_queue(irq_ptr, q, i) {
if (!qdio_inbound_q_done(q, q->first_to_check))
goto rescan;
}
return 0;
rescan:
if (test_and_set_bit(QDIO_IRQ_DISABLED, &irq_ptr->poll_state))
return 0;
else
return 1;
}
EXPORT_SYMBOL(qdio_start_irq);
static int __qdio_inspect_queue(struct qdio_q *q, unsigned int *bufnr,
unsigned int *error)
{
unsigned int start = q->first_to_check;
int count;
*error = 0;
count = q->is_input_q ? get_inbound_buffer_frontier(q, start, error) :
get_outbound_buffer_frontier(q, start, error);
if (count == 0)
return 0;
*bufnr = start;
/* for the next time */
q->first_to_check = add_buf(start, count);
return count;
}
int qdio_inspect_queue(struct ccw_device *cdev, unsigned int nr, bool is_input,
unsigned int *bufnr, unsigned int *error)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct qdio_q *q;
if (!irq_ptr)
return -ENODEV;
q = is_input ? irq_ptr->input_qs[nr] : irq_ptr->output_qs[nr];
if (need_siga_sync(q))
qdio_siga_sync_q(q);
return __qdio_inspect_queue(q, bufnr, error);
}
EXPORT_SYMBOL_GPL(qdio_inspect_queue);
/**
* qdio_get_next_buffers - process input buffers
* @cdev: associated ccw_device for the qdio subchannel
* @nr: input queue number
* @bufnr: first filled buffer number
* @error: buffers are in error state
*
* Return codes
* < 0 - error
* = 0 - no new buffers found
* > 0 - number of processed buffers
*/
int qdio_get_next_buffers(struct ccw_device *cdev, int nr, int *bufnr,
int *error)
{
struct qdio_q *q;
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
q = irq_ptr->input_qs[nr];
/*
* Cannot rely on automatic sync after interrupt since queues may
* also be examined without interrupt.
*/
if (need_siga_sync(q))
qdio_sync_queues(q);
qdio_check_outbound_pci_queues(irq_ptr);
/* Note: upper-layer MUST stop processing immediately here ... */
if (unlikely(q->irq_ptr->state != QDIO_IRQ_STATE_ACTIVE))
return -EIO;
return __qdio_inspect_queue(q, bufnr, error);
}
EXPORT_SYMBOL(qdio_get_next_buffers);
/**
* qdio_stop_irq - disable interrupt processing for the device
* @cdev: associated ccw_device for the qdio subchannel
*
* Return codes
* 0 - interrupts were already disabled
* 1 - interrupts successfully disabled
*/
int qdio_stop_irq(struct ccw_device *cdev)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
if (test_and_set_bit(QDIO_IRQ_DISABLED, &irq_ptr->poll_state))
return 0;
else
return 1;
}
EXPORT_SYMBOL(qdio_stop_irq);
static int __init init_QDIO(void)
{
int rc;
rc = qdio_debug_init();
if (rc)
return rc;
rc = qdio_setup_init();
if (rc)
goto out_debug;
rc = qdio_thinint_init();
if (rc)
goto out_cache;
return 0;
out_cache:
qdio_setup_exit();
out_debug:
qdio_debug_exit();
return rc;
}
static void __exit exit_QDIO(void)
{
qdio_thinint_exit();
qdio_setup_exit();
qdio_debug_exit();
}
module_init(init_QDIO);
module_exit(exit_QDIO);