OpenCloudOS-Kernel/drivers/spi/spi-aspeed-smc.c

1219 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* ASPEED FMC/SPI Memory Controller Driver
*
* Copyright (c) 2015-2022, IBM Corporation.
* Copyright (c) 2020, ASPEED Corporation.
*/
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#define DEVICE_NAME "spi-aspeed-smc"
/* Type setting Register */
#define CONFIG_REG 0x0
#define CONFIG_TYPE_SPI 0x2
/* CE Control Register */
#define CE_CTRL_REG 0x4
/* CEx Control Register */
#define CE0_CTRL_REG 0x10
#define CTRL_IO_MODE_MASK GENMASK(30, 28)
#define CTRL_IO_SINGLE_DATA 0x0
#define CTRL_IO_DUAL_DATA BIT(29)
#define CTRL_IO_QUAD_DATA BIT(30)
#define CTRL_COMMAND_SHIFT 16
#define CTRL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI only */
#define CTRL_IO_DUMMY_SET(dummy) \
(((((dummy) >> 2) & 0x1) << 14) | (((dummy) & 0x3) << 6))
#define CTRL_FREQ_SEL_SHIFT 8
#define CTRL_FREQ_SEL_MASK GENMASK(11, CTRL_FREQ_SEL_SHIFT)
#define CTRL_CE_STOP_ACTIVE BIT(2)
#define CTRL_IO_MODE_CMD_MASK GENMASK(1, 0)
#define CTRL_IO_MODE_NORMAL 0x0
#define CTRL_IO_MODE_READ 0x1
#define CTRL_IO_MODE_WRITE 0x2
#define CTRL_IO_MODE_USER 0x3
#define CTRL_IO_CMD_MASK 0xf0ff40c3
/* CEx Address Decoding Range Register */
#define CE0_SEGMENT_ADDR_REG 0x30
/* CEx Read timing compensation register */
#define CE0_TIMING_COMPENSATION_REG 0x94
enum aspeed_spi_ctl_reg_value {
ASPEED_SPI_BASE,
ASPEED_SPI_READ,
ASPEED_SPI_WRITE,
ASPEED_SPI_MAX,
};
struct aspeed_spi;
struct aspeed_spi_chip {
struct aspeed_spi *aspi;
u32 cs;
void __iomem *ctl;
void __iomem *ahb_base;
u32 ahb_window_size;
u32 ctl_val[ASPEED_SPI_MAX];
u32 clk_freq;
};
struct aspeed_spi_data {
u32 ctl0;
u32 max_cs;
bool hastype;
u32 mode_bits;
u32 we0;
u32 timing;
u32 hclk_mask;
u32 hdiv_max;
u32 (*segment_start)(struct aspeed_spi *aspi, u32 reg);
u32 (*segment_end)(struct aspeed_spi *aspi, u32 reg);
u32 (*segment_reg)(struct aspeed_spi *aspi, u32 start, u32 end);
int (*calibrate)(struct aspeed_spi_chip *chip, u32 hdiv,
const u8 *golden_buf, u8 *test_buf);
};
#define ASPEED_SPI_MAX_NUM_CS 5
struct aspeed_spi {
const struct aspeed_spi_data *data;
void __iomem *regs;
void __iomem *ahb_base;
u32 ahb_base_phy;
u32 ahb_window_size;
struct device *dev;
struct clk *clk;
u32 clk_freq;
struct aspeed_spi_chip chips[ASPEED_SPI_MAX_NUM_CS];
};
static u32 aspeed_spi_get_io_mode(const struct spi_mem_op *op)
{
switch (op->data.buswidth) {
case 1:
return CTRL_IO_SINGLE_DATA;
case 2:
return CTRL_IO_DUAL_DATA;
case 4:
return CTRL_IO_QUAD_DATA;
default:
return CTRL_IO_SINGLE_DATA;
}
}
static void aspeed_spi_set_io_mode(struct aspeed_spi_chip *chip, u32 io_mode)
{
u32 ctl;
if (io_mode > 0) {
ctl = readl(chip->ctl) & ~CTRL_IO_MODE_MASK;
ctl |= io_mode;
writel(ctl, chip->ctl);
}
}
static void aspeed_spi_start_user(struct aspeed_spi_chip *chip)
{
u32 ctl = chip->ctl_val[ASPEED_SPI_BASE];
ctl |= CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
writel(ctl, chip->ctl);
ctl &= ~CTRL_CE_STOP_ACTIVE;
writel(ctl, chip->ctl);
}
static void aspeed_spi_stop_user(struct aspeed_spi_chip *chip)
{
u32 ctl = chip->ctl_val[ASPEED_SPI_READ] |
CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
writel(ctl, chip->ctl);
/* Restore defaults */
writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
}
static int aspeed_spi_read_from_ahb(void *buf, void __iomem *src, size_t len)
{
size_t offset = 0;
if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
ioread32_rep(src, buf, len >> 2);
offset = len & ~0x3;
len -= offset;
}
ioread8_rep(src, (u8 *)buf + offset, len);
return 0;
}
static int aspeed_spi_write_to_ahb(void __iomem *dst, const void *buf, size_t len)
{
size_t offset = 0;
if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
iowrite32_rep(dst, buf, len >> 2);
offset = len & ~0x3;
len -= offset;
}
iowrite8_rep(dst, (const u8 *)buf + offset, len);
return 0;
}
static int aspeed_spi_send_cmd_addr(struct aspeed_spi_chip *chip, u8 addr_nbytes,
u64 offset, u32 opcode)
{
__be32 temp;
u32 cmdaddr;
switch (addr_nbytes) {
case 3:
cmdaddr = offset & 0xFFFFFF;
cmdaddr |= opcode << 24;
temp = cpu_to_be32(cmdaddr);
aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4);
break;
case 4:
temp = cpu_to_be32(offset);
aspeed_spi_write_to_ahb(chip->ahb_base, &opcode, 1);
aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4);
break;
default:
WARN_ONCE(1, "Unexpected address width %u", addr_nbytes);
return -EOPNOTSUPP;
}
return 0;
}
static int aspeed_spi_read_reg(struct aspeed_spi_chip *chip,
const struct spi_mem_op *op)
{
aspeed_spi_start_user(chip);
aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1);
aspeed_spi_read_from_ahb(op->data.buf.in,
chip->ahb_base, op->data.nbytes);
aspeed_spi_stop_user(chip);
return 0;
}
static int aspeed_spi_write_reg(struct aspeed_spi_chip *chip,
const struct spi_mem_op *op)
{
aspeed_spi_start_user(chip);
aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1);
aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out,
op->data.nbytes);
aspeed_spi_stop_user(chip);
return 0;
}
static ssize_t aspeed_spi_read_user(struct aspeed_spi_chip *chip,
const struct spi_mem_op *op,
u64 offset, size_t len, void *buf)
{
int io_mode = aspeed_spi_get_io_mode(op);
u8 dummy = 0xFF;
int i;
int ret;
aspeed_spi_start_user(chip);
ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, offset, op->cmd.opcode);
if (ret < 0)
return ret;
if (op->dummy.buswidth && op->dummy.nbytes) {
for (i = 0; i < op->dummy.nbytes / op->dummy.buswidth; i++)
aspeed_spi_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));
}
aspeed_spi_set_io_mode(chip, io_mode);
aspeed_spi_read_from_ahb(buf, chip->ahb_base, len);
aspeed_spi_stop_user(chip);
return 0;
}
static ssize_t aspeed_spi_write_user(struct aspeed_spi_chip *chip,
const struct spi_mem_op *op)
{
int ret;
aspeed_spi_start_user(chip);
ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, op->addr.val, op->cmd.opcode);
if (ret < 0)
return ret;
aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out, op->data.nbytes);
aspeed_spi_stop_user(chip);
return 0;
}
/* support for 1-1-1, 1-1-2 or 1-1-4 */
static bool aspeed_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
if (op->cmd.buswidth > 1)
return false;
if (op->addr.nbytes != 0) {
if (op->addr.buswidth > 1)
return false;
if (op->addr.nbytes < 3 || op->addr.nbytes > 4)
return false;
}
if (op->dummy.nbytes != 0) {
if (op->dummy.buswidth > 1 || op->dummy.nbytes > 7)
return false;
}
if (op->data.nbytes != 0 && op->data.buswidth > 4)
return false;
return spi_mem_default_supports_op(mem, op);
}
static const struct aspeed_spi_data ast2400_spi_data;
static int do_aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->master);
struct aspeed_spi_chip *chip = &aspi->chips[mem->spi->chip_select];
u32 addr_mode, addr_mode_backup;
u32 ctl_val;
int ret = 0;
dev_dbg(aspi->dev,
"CE%d %s OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x len:%#x",
chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
op->dummy.buswidth, op->data.buswidth,
op->addr.nbytes, op->dummy.nbytes, op->data.nbytes);
addr_mode = readl(aspi->regs + CE_CTRL_REG);
addr_mode_backup = addr_mode;
ctl_val = chip->ctl_val[ASPEED_SPI_BASE];
ctl_val &= ~CTRL_IO_CMD_MASK;
ctl_val |= op->cmd.opcode << CTRL_COMMAND_SHIFT;
/* 4BYTE address mode */
if (op->addr.nbytes) {
if (op->addr.nbytes == 4)
addr_mode |= (0x11 << chip->cs);
else
addr_mode &= ~(0x11 << chip->cs);
if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
ctl_val |= CTRL_IO_ADDRESS_4B;
}
if (op->dummy.nbytes)
ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
if (op->data.nbytes)
ctl_val |= aspeed_spi_get_io_mode(op);
if (op->data.dir == SPI_MEM_DATA_OUT)
ctl_val |= CTRL_IO_MODE_WRITE;
else
ctl_val |= CTRL_IO_MODE_READ;
if (addr_mode != addr_mode_backup)
writel(addr_mode, aspi->regs + CE_CTRL_REG);
writel(ctl_val, chip->ctl);
if (op->data.dir == SPI_MEM_DATA_IN) {
if (!op->addr.nbytes)
ret = aspeed_spi_read_reg(chip, op);
else
ret = aspeed_spi_read_user(chip, op, op->addr.val,
op->data.nbytes, op->data.buf.in);
} else {
if (!op->addr.nbytes)
ret = aspeed_spi_write_reg(chip, op);
else
ret = aspeed_spi_write_user(chip, op);
}
/* Restore defaults */
if (addr_mode != addr_mode_backup)
writel(addr_mode_backup, aspi->regs + CE_CTRL_REG);
writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
return ret;
}
static int aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
int ret;
ret = do_aspeed_spi_exec_op(mem, op);
if (ret)
dev_err(&mem->spi->dev, "operation failed: %d\n", ret);
return ret;
}
static const char *aspeed_spi_get_name(struct spi_mem *mem)
{
struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->master);
struct device *dev = aspi->dev;
return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
}
struct aspeed_spi_window {
u32 cs;
u32 offset;
u32 size;
};
static void aspeed_spi_get_windows(struct aspeed_spi *aspi,
struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS])
{
const struct aspeed_spi_data *data = aspi->data;
u32 reg_val;
u32 cs;
for (cs = 0; cs < aspi->data->max_cs; cs++) {
reg_val = readl(aspi->regs + CE0_SEGMENT_ADDR_REG + cs * 4);
windows[cs].cs = cs;
windows[cs].size = data->segment_end(aspi, reg_val) -
data->segment_start(aspi, reg_val);
windows[cs].offset = data->segment_start(aspi, reg_val) - aspi->ahb_base_phy;
dev_vdbg(aspi->dev, "CE%d offset=0x%.8x size=0x%x\n", cs,
windows[cs].offset, windows[cs].size);
}
}
/*
* On the AST2600, some CE windows are closed by default at reset but
* U-Boot should open all.
*/
static int aspeed_spi_chip_set_default_window(struct aspeed_spi_chip *chip)
{
struct aspeed_spi *aspi = chip->aspi;
struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
struct aspeed_spi_window *win = &windows[chip->cs];
/* No segment registers for the AST2400 SPI controller */
if (aspi->data == &ast2400_spi_data) {
win->offset = 0;
win->size = aspi->ahb_window_size;
} else {
aspeed_spi_get_windows(aspi, windows);
}
chip->ahb_base = aspi->ahb_base + win->offset;
chip->ahb_window_size = win->size;
dev_dbg(aspi->dev, "CE%d default window [ 0x%.8x - 0x%.8x ] %dMB",
chip->cs, aspi->ahb_base_phy + win->offset,
aspi->ahb_base_phy + win->offset + win->size - 1,
win->size >> 20);
return chip->ahb_window_size ? 0 : -1;
}
static int aspeed_spi_set_window(struct aspeed_spi *aspi,
const struct aspeed_spi_window *win)
{
u32 start = aspi->ahb_base_phy + win->offset;
u32 end = start + win->size;
void __iomem *seg_reg = aspi->regs + CE0_SEGMENT_ADDR_REG + win->cs * 4;
u32 seg_val_backup = readl(seg_reg);
u32 seg_val = aspi->data->segment_reg(aspi, start, end);
if (seg_val == seg_val_backup)
return 0;
writel(seg_val, seg_reg);
/*
* Restore initial value if something goes wrong else we could
* loose access to the chip.
*/
if (seg_val != readl(seg_reg)) {
dev_err(aspi->dev, "CE%d invalid window [ 0x%.8x - 0x%.8x ] %dMB",
win->cs, start, end - 1, win->size >> 20);
writel(seg_val_backup, seg_reg);
return -EIO;
}
if (win->size)
dev_dbg(aspi->dev, "CE%d new window [ 0x%.8x - 0x%.8x ] %dMB",
win->cs, start, end - 1, win->size >> 20);
else
dev_dbg(aspi->dev, "CE%d window closed", win->cs);
return 0;
}
/*
* Yet to be done when possible :
* - Align mappings on flash size (we don't have the info)
* - ioremap each window, not strictly necessary since the overall window
* is correct.
*/
static const struct aspeed_spi_data ast2500_spi_data;
static const struct aspeed_spi_data ast2600_spi_data;
static const struct aspeed_spi_data ast2600_fmc_data;
static int aspeed_spi_chip_adjust_window(struct aspeed_spi_chip *chip,
u32 local_offset, u32 size)
{
struct aspeed_spi *aspi = chip->aspi;
struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
struct aspeed_spi_window *win = &windows[chip->cs];
int ret;
/* No segment registers for the AST2400 SPI controller */
if (aspi->data == &ast2400_spi_data)
return 0;
/*
* Due to an HW issue on the AST2500 SPI controller, the CE0
* window size should be smaller than the maximum 128MB.
*/
if (aspi->data == &ast2500_spi_data && chip->cs == 0 && size == SZ_128M) {
size = 120 << 20;
dev_info(aspi->dev, "CE%d window resized to %dMB (AST2500 HW quirk)",
chip->cs, size >> 20);
}
/*
* The decoding size of AST2600 SPI controller should set at
* least 2MB.
*/
if ((aspi->data == &ast2600_spi_data || aspi->data == &ast2600_fmc_data) &&
size < SZ_2M) {
size = SZ_2M;
dev_info(aspi->dev, "CE%d window resized to %dMB (AST2600 Decoding)",
chip->cs, size >> 20);
}
aspeed_spi_get_windows(aspi, windows);
/* Adjust this chip window */
win->offset += local_offset;
win->size = size;
if (win->offset + win->size > aspi->ahb_window_size) {
win->size = aspi->ahb_window_size - win->offset;
dev_warn(aspi->dev, "CE%d window resized to %dMB", chip->cs, win->size >> 20);
}
ret = aspeed_spi_set_window(aspi, win);
if (ret)
return ret;
/* Update chip mapping info */
chip->ahb_base = aspi->ahb_base + win->offset;
chip->ahb_window_size = win->size;
/*
* Also adjust next chip window to make sure that it does not
* overlap with the current window.
*/
if (chip->cs < aspi->data->max_cs - 1) {
struct aspeed_spi_window *next = &windows[chip->cs + 1];
/* Change offset and size to keep the same end address */
if ((next->offset + next->size) > (win->offset + win->size))
next->size = (next->offset + next->size) - (win->offset + win->size);
else
next->size = 0;
next->offset = win->offset + win->size;
aspeed_spi_set_window(aspi, next);
}
return 0;
}
static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip);
static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
{
struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->master);
struct aspeed_spi_chip *chip = &aspi->chips[desc->mem->spi->chip_select];
struct spi_mem_op *op = &desc->info.op_tmpl;
u32 ctl_val;
int ret = 0;
dev_dbg(aspi->dev,
"CE%d %s dirmap [ 0x%.8llx - 0x%.8llx ] OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x\n",
chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
desc->info.offset, desc->info.offset + desc->info.length,
op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
op->dummy.buswidth, op->data.buswidth,
op->addr.nbytes, op->dummy.nbytes);
chip->clk_freq = desc->mem->spi->max_speed_hz;
/* Only for reads */
if (op->data.dir != SPI_MEM_DATA_IN)
return -EOPNOTSUPP;
aspeed_spi_chip_adjust_window(chip, desc->info.offset, desc->info.length);
if (desc->info.length > chip->ahb_window_size)
dev_warn(aspi->dev, "CE%d window (%dMB) too small for mapping",
chip->cs, chip->ahb_window_size >> 20);
/* Define the default IO read settings */
ctl_val = readl(chip->ctl) & ~CTRL_IO_CMD_MASK;
ctl_val |= aspeed_spi_get_io_mode(op) |
op->cmd.opcode << CTRL_COMMAND_SHIFT |
CTRL_IO_MODE_READ;
if (op->dummy.nbytes)
ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
/* Tune 4BYTE address mode */
if (op->addr.nbytes) {
u32 addr_mode = readl(aspi->regs + CE_CTRL_REG);
if (op->addr.nbytes == 4)
addr_mode |= (0x11 << chip->cs);
else
addr_mode &= ~(0x11 << chip->cs);
writel(addr_mode, aspi->regs + CE_CTRL_REG);
/* AST2400 SPI controller sets 4BYTE address mode in
* CE0 Control Register
*/
if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
ctl_val |= CTRL_IO_ADDRESS_4B;
}
/* READ mode is the controller default setting */
chip->ctl_val[ASPEED_SPI_READ] = ctl_val;
writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
ret = aspeed_spi_do_calibration(chip);
dev_info(aspi->dev, "CE%d read buswidth:%d [0x%08x]\n",
chip->cs, op->data.buswidth, chip->ctl_val[ASPEED_SPI_READ]);
return ret;
}
static ssize_t aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc *desc,
u64 offset, size_t len, void *buf)
{
struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->master);
struct aspeed_spi_chip *chip = &aspi->chips[desc->mem->spi->chip_select];
/* Switch to USER command mode if mapping window is too small */
if (chip->ahb_window_size < offset + len) {
int ret;
ret = aspeed_spi_read_user(chip, &desc->info.op_tmpl, offset, len, buf);
if (ret < 0)
return ret;
} else {
memcpy_fromio(buf, chip->ahb_base + offset, len);
}
return len;
}
static const struct spi_controller_mem_ops aspeed_spi_mem_ops = {
.supports_op = aspeed_spi_supports_op,
.exec_op = aspeed_spi_exec_op,
.get_name = aspeed_spi_get_name,
.dirmap_create = aspeed_spi_dirmap_create,
.dirmap_read = aspeed_spi_dirmap_read,
};
static void aspeed_spi_chip_set_type(struct aspeed_spi *aspi, unsigned int cs, int type)
{
u32 reg;
reg = readl(aspi->regs + CONFIG_REG);
reg &= ~(0x3 << (cs * 2));
reg |= type << (cs * 2);
writel(reg, aspi->regs + CONFIG_REG);
}
static void aspeed_spi_chip_enable(struct aspeed_spi *aspi, unsigned int cs, bool enable)
{
u32 we_bit = BIT(aspi->data->we0 + cs);
u32 reg = readl(aspi->regs + CONFIG_REG);
if (enable)
reg |= we_bit;
else
reg &= ~we_bit;
writel(reg, aspi->regs + CONFIG_REG);
}
static int aspeed_spi_setup(struct spi_device *spi)
{
struct aspeed_spi *aspi = spi_controller_get_devdata(spi->master);
const struct aspeed_spi_data *data = aspi->data;
unsigned int cs = spi->chip_select;
struct aspeed_spi_chip *chip = &aspi->chips[cs];
chip->aspi = aspi;
chip->cs = cs;
chip->ctl = aspi->regs + data->ctl0 + cs * 4;
/* The driver only supports SPI type flash */
if (data->hastype)
aspeed_spi_chip_set_type(aspi, cs, CONFIG_TYPE_SPI);
if (aspeed_spi_chip_set_default_window(chip) < 0) {
dev_warn(aspi->dev, "CE%d window invalid", cs);
return -EINVAL;
}
aspeed_spi_chip_enable(aspi, cs, true);
chip->ctl_val[ASPEED_SPI_BASE] = CTRL_CE_STOP_ACTIVE | CTRL_IO_MODE_USER;
dev_dbg(aspi->dev, "CE%d setup done\n", cs);
return 0;
}
static void aspeed_spi_cleanup(struct spi_device *spi)
{
struct aspeed_spi *aspi = spi_controller_get_devdata(spi->master);
unsigned int cs = spi->chip_select;
aspeed_spi_chip_enable(aspi, cs, false);
dev_dbg(aspi->dev, "CE%d cleanup done\n", cs);
}
static void aspeed_spi_enable(struct aspeed_spi *aspi, bool enable)
{
int cs;
for (cs = 0; cs < aspi->data->max_cs; cs++)
aspeed_spi_chip_enable(aspi, cs, enable);
}
static int aspeed_spi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct aspeed_spi_data *data;
struct spi_controller *ctlr;
struct aspeed_spi *aspi;
struct resource *res;
int ret;
data = of_device_get_match_data(&pdev->dev);
if (!data)
return -ENODEV;
ctlr = devm_spi_alloc_master(dev, sizeof(*aspi));
if (!ctlr)
return -ENOMEM;
aspi = spi_controller_get_devdata(ctlr);
platform_set_drvdata(pdev, aspi);
aspi->data = data;
aspi->dev = dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
aspi->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(aspi->regs))
return PTR_ERR(aspi->regs);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
aspi->ahb_base = devm_ioremap_resource(dev, res);
if (IS_ERR(aspi->ahb_base)) {
dev_err(dev, "missing AHB mapping window\n");
return PTR_ERR(aspi->ahb_base);
}
aspi->ahb_window_size = resource_size(res);
aspi->ahb_base_phy = res->start;
aspi->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(aspi->clk)) {
dev_err(dev, "missing clock\n");
return PTR_ERR(aspi->clk);
}
aspi->clk_freq = clk_get_rate(aspi->clk);
if (!aspi->clk_freq) {
dev_err(dev, "invalid clock\n");
return -EINVAL;
}
ret = clk_prepare_enable(aspi->clk);
if (ret) {
dev_err(dev, "can not enable the clock\n");
return ret;
}
/* IRQ is for DMA, which the driver doesn't support yet */
ctlr->mode_bits = SPI_RX_DUAL | SPI_TX_DUAL | data->mode_bits;
ctlr->bus_num = pdev->id;
ctlr->mem_ops = &aspeed_spi_mem_ops;
ctlr->setup = aspeed_spi_setup;
ctlr->cleanup = aspeed_spi_cleanup;
ctlr->num_chipselect = data->max_cs;
ctlr->dev.of_node = dev->of_node;
ret = devm_spi_register_controller(dev, ctlr);
if (ret) {
dev_err(&pdev->dev, "spi_register_controller failed\n");
goto disable_clk;
}
return 0;
disable_clk:
clk_disable_unprepare(aspi->clk);
return ret;
}
static int aspeed_spi_remove(struct platform_device *pdev)
{
struct aspeed_spi *aspi = platform_get_drvdata(pdev);
aspeed_spi_enable(aspi, false);
clk_disable_unprepare(aspi->clk);
return 0;
}
/*
* AHB mappings
*/
/*
* The Segment Registers of the AST2400 and AST2500 use a 8MB unit.
* The address range is encoded with absolute addresses in the overall
* mapping window.
*/
static u32 aspeed_spi_segment_start(struct aspeed_spi *aspi, u32 reg)
{
return ((reg >> 16) & 0xFF) << 23;
}
static u32 aspeed_spi_segment_end(struct aspeed_spi *aspi, u32 reg)
{
return ((reg >> 24) & 0xFF) << 23;
}
static u32 aspeed_spi_segment_reg(struct aspeed_spi *aspi, u32 start, u32 end)
{
return (((start >> 23) & 0xFF) << 16) | (((end >> 23) & 0xFF) << 24);
}
/*
* The Segment Registers of the AST2600 use a 1MB unit. The address
* range is encoded with offsets in the overall mapping window.
*/
#define AST2600_SEG_ADDR_MASK 0x0ff00000
static u32 aspeed_spi_segment_ast2600_start(struct aspeed_spi *aspi,
u32 reg)
{
u32 start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
return aspi->ahb_base_phy + start_offset;
}
static u32 aspeed_spi_segment_ast2600_end(struct aspeed_spi *aspi,
u32 reg)
{
u32 end_offset = reg & AST2600_SEG_ADDR_MASK;
/* segment is disabled */
if (!end_offset)
return aspi->ahb_base_phy;
return aspi->ahb_base_phy + end_offset + 0x100000;
}
static u32 aspeed_spi_segment_ast2600_reg(struct aspeed_spi *aspi,
u32 start, u32 end)
{
/* disable zero size segments */
if (start == end)
return 0;
return ((start & AST2600_SEG_ADDR_MASK) >> 16) |
((end - 1) & AST2600_SEG_ADDR_MASK);
}
/*
* Read timing compensation sequences
*/
#define CALIBRATE_BUF_SIZE SZ_16K
static bool aspeed_spi_check_reads(struct aspeed_spi_chip *chip,
const u8 *golden_buf, u8 *test_buf)
{
int i;
for (i = 0; i < 10; i++) {
memcpy_fromio(test_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0) {
#if defined(VERBOSE_DEBUG)
print_hex_dump_bytes(DEVICE_NAME " fail: ", DUMP_PREFIX_NONE,
test_buf, 0x100);
#endif
return false;
}
}
return true;
}
#define FREAD_TPASS(i) (((i) / 2) | (((i) & 1) ? 0 : 8))
/*
* The timing register is shared by all devices. Only update for CE0.
*/
static int aspeed_spi_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
const u8 *golden_buf, u8 *test_buf)
{
struct aspeed_spi *aspi = chip->aspi;
const struct aspeed_spi_data *data = aspi->data;
int i;
int good_pass = -1, pass_count = 0;
u32 shift = (hdiv - 1) << 2;
u32 mask = ~(0xfu << shift);
u32 fread_timing_val = 0;
/* Try HCLK delay 0..5, each one with/without delay and look for a
* good pair.
*/
for (i = 0; i < 12; i++) {
bool pass;
if (chip->cs == 0) {
fread_timing_val &= mask;
fread_timing_val |= FREAD_TPASS(i) << shift;
writel(fread_timing_val, aspi->regs + data->timing);
}
pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
dev_dbg(aspi->dev,
" * [%08x] %d HCLK delay, %dns DI delay : %s",
fread_timing_val, i / 2, (i & 1) ? 0 : 4,
pass ? "PASS" : "FAIL");
if (pass) {
pass_count++;
if (pass_count == 3) {
good_pass = i - 1;
break;
}
} else {
pass_count = 0;
}
}
/* No good setting for this frequency */
if (good_pass < 0)
return -1;
/* We have at least one pass of margin, let's use first pass */
if (chip->cs == 0) {
fread_timing_val &= mask;
fread_timing_val |= FREAD_TPASS(good_pass) << shift;
writel(fread_timing_val, aspi->regs + data->timing);
}
dev_dbg(aspi->dev, " * -> good is pass %d [0x%08x]",
good_pass, fread_timing_val);
return 0;
}
static bool aspeed_spi_check_calib_data(const u8 *test_buf, u32 size)
{
const u32 *tb32 = (const u32 *)test_buf;
u32 i, cnt = 0;
/* We check if we have enough words that are neither all 0
* nor all 1's so the calibration can be considered valid.
*
* I use an arbitrary threshold for now of 64
*/
size >>= 2;
for (i = 0; i < size; i++) {
if (tb32[i] != 0 && tb32[i] != 0xffffffff)
cnt++;
}
return cnt >= 64;
}
static const u32 aspeed_spi_hclk_divs[] = {
0xf, /* HCLK */
0x7, /* HCLK/2 */
0xe, /* HCLK/3 */
0x6, /* HCLK/4 */
0xd, /* HCLK/5 */
};
#define ASPEED_SPI_HCLK_DIV(i) \
(aspeed_spi_hclk_divs[(i) - 1] << CTRL_FREQ_SEL_SHIFT)
static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip)
{
struct aspeed_spi *aspi = chip->aspi;
const struct aspeed_spi_data *data = aspi->data;
u32 ahb_freq = aspi->clk_freq;
u32 max_freq = chip->clk_freq;
u32 ctl_val;
u8 *golden_buf = NULL;
u8 *test_buf = NULL;
int i, rc, best_div = -1;
dev_dbg(aspi->dev, "calculate timing compensation - AHB freq: %d MHz",
ahb_freq / 1000000);
/*
* use the related low frequency to get check calibration data
* and get golden data.
*/
ctl_val = chip->ctl_val[ASPEED_SPI_READ] & data->hclk_mask;
writel(ctl_val, chip->ctl);
test_buf = kzalloc(CALIBRATE_BUF_SIZE * 2, GFP_KERNEL);
if (!test_buf)
return -ENOMEM;
golden_buf = test_buf + CALIBRATE_BUF_SIZE;
memcpy_fromio(golden_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
if (!aspeed_spi_check_calib_data(golden_buf, CALIBRATE_BUF_SIZE)) {
dev_info(aspi->dev, "Calibration area too uniform, using low speed");
goto no_calib;
}
#if defined(VERBOSE_DEBUG)
print_hex_dump_bytes(DEVICE_NAME " good: ", DUMP_PREFIX_NONE,
golden_buf, 0x100);
#endif
/* Now we iterate the HCLK dividers until we find our breaking point */
for (i = ARRAY_SIZE(aspeed_spi_hclk_divs); i > data->hdiv_max - 1; i--) {
u32 tv, freq;
freq = ahb_freq / i;
if (freq > max_freq)
continue;
/* Set the timing */
tv = chip->ctl_val[ASPEED_SPI_READ] | ASPEED_SPI_HCLK_DIV(i);
writel(tv, chip->ctl);
dev_dbg(aspi->dev, "Trying HCLK/%d [%08x] ...", i, tv);
rc = data->calibrate(chip, i, golden_buf, test_buf);
if (rc == 0)
best_div = i;
}
/* Nothing found ? */
if (best_div < 0) {
dev_warn(aspi->dev, "No good frequency, using dumb slow");
} else {
dev_dbg(aspi->dev, "Found good read timings at HCLK/%d", best_div);
/* Record the freq */
for (i = 0; i < ASPEED_SPI_MAX; i++)
chip->ctl_val[i] = (chip->ctl_val[i] & data->hclk_mask) |
ASPEED_SPI_HCLK_DIV(best_div);
}
no_calib:
writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
kfree(test_buf);
return 0;
}
#define TIMING_DELAY_DI BIT(3)
#define TIMING_DELAY_HCYCLE_MAX 5
#define TIMING_REG_AST2600(chip) \
((chip)->aspi->regs + (chip)->aspi->data->timing + \
(chip)->cs * 4)
static int aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
const u8 *golden_buf, u8 *test_buf)
{
struct aspeed_spi *aspi = chip->aspi;
int hcycle;
u32 shift = (hdiv - 2) << 3;
u32 mask = ~(0xfu << shift);
u32 fread_timing_val = 0;
for (hcycle = 0; hcycle <= TIMING_DELAY_HCYCLE_MAX; hcycle++) {
int delay_ns;
bool pass = false;
fread_timing_val &= mask;
fread_timing_val |= hcycle << shift;
/* no DI input delay first */
writel(fread_timing_val, TIMING_REG_AST2600(chip));
pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
dev_dbg(aspi->dev,
" * [%08x] %d HCLK delay, DI delay none : %s",
fread_timing_val, hcycle, pass ? "PASS" : "FAIL");
if (pass)
return 0;
/* Add DI input delays */
fread_timing_val &= mask;
fread_timing_val |= (TIMING_DELAY_DI | hcycle) << shift;
for (delay_ns = 0; delay_ns < 0x10; delay_ns++) {
fread_timing_val &= ~(0xf << (4 + shift));
fread_timing_val |= delay_ns << (4 + shift);
writel(fread_timing_val, TIMING_REG_AST2600(chip));
pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
dev_dbg(aspi->dev,
" * [%08x] %d HCLK delay, DI delay %d.%dns : %s",
fread_timing_val, hcycle, (delay_ns + 1) / 2,
(delay_ns + 1) & 1 ? 5 : 5, pass ? "PASS" : "FAIL");
/*
* TODO: This is optimistic. We should look
* for a working interval and save the middle
* value in the read timing register.
*/
if (pass)
return 0;
}
}
/* No good setting for this frequency */
return -1;
}
/*
* Platform definitions
*/
static const struct aspeed_spi_data ast2400_fmc_data = {
.max_cs = 5,
.hastype = true,
.we0 = 16,
.ctl0 = CE0_CTRL_REG,
.timing = CE0_TIMING_COMPENSATION_REG,
.hclk_mask = 0xfffff0ff,
.hdiv_max = 1,
.calibrate = aspeed_spi_calibrate,
.segment_start = aspeed_spi_segment_start,
.segment_end = aspeed_spi_segment_end,
.segment_reg = aspeed_spi_segment_reg,
};
static const struct aspeed_spi_data ast2400_spi_data = {
.max_cs = 1,
.hastype = false,
.we0 = 0,
.ctl0 = 0x04,
.timing = 0x14,
.hclk_mask = 0xfffff0ff,
.hdiv_max = 1,
.calibrate = aspeed_spi_calibrate,
/* No segment registers */
};
static const struct aspeed_spi_data ast2500_fmc_data = {
.max_cs = 3,
.hastype = true,
.we0 = 16,
.ctl0 = CE0_CTRL_REG,
.timing = CE0_TIMING_COMPENSATION_REG,
.hclk_mask = 0xffffd0ff,
.hdiv_max = 1,
.calibrate = aspeed_spi_calibrate,
.segment_start = aspeed_spi_segment_start,
.segment_end = aspeed_spi_segment_end,
.segment_reg = aspeed_spi_segment_reg,
};
static const struct aspeed_spi_data ast2500_spi_data = {
.max_cs = 2,
.hastype = false,
.we0 = 16,
.ctl0 = CE0_CTRL_REG,
.timing = CE0_TIMING_COMPENSATION_REG,
.hclk_mask = 0xffffd0ff,
.hdiv_max = 1,
.calibrate = aspeed_spi_calibrate,
.segment_start = aspeed_spi_segment_start,
.segment_end = aspeed_spi_segment_end,
.segment_reg = aspeed_spi_segment_reg,
};
static const struct aspeed_spi_data ast2600_fmc_data = {
.max_cs = 3,
.hastype = false,
.mode_bits = SPI_RX_QUAD | SPI_TX_QUAD,
.we0 = 16,
.ctl0 = CE0_CTRL_REG,
.timing = CE0_TIMING_COMPENSATION_REG,
.hclk_mask = 0xf0fff0ff,
.hdiv_max = 2,
.calibrate = aspeed_spi_ast2600_calibrate,
.segment_start = aspeed_spi_segment_ast2600_start,
.segment_end = aspeed_spi_segment_ast2600_end,
.segment_reg = aspeed_spi_segment_ast2600_reg,
};
static const struct aspeed_spi_data ast2600_spi_data = {
.max_cs = 2,
.hastype = false,
.mode_bits = SPI_RX_QUAD | SPI_TX_QUAD,
.we0 = 16,
.ctl0 = CE0_CTRL_REG,
.timing = CE0_TIMING_COMPENSATION_REG,
.hclk_mask = 0xf0fff0ff,
.hdiv_max = 2,
.calibrate = aspeed_spi_ast2600_calibrate,
.segment_start = aspeed_spi_segment_ast2600_start,
.segment_end = aspeed_spi_segment_ast2600_end,
.segment_reg = aspeed_spi_segment_ast2600_reg,
};
static const struct of_device_id aspeed_spi_matches[] = {
{ .compatible = "aspeed,ast2400-fmc", .data = &ast2400_fmc_data },
{ .compatible = "aspeed,ast2400-spi", .data = &ast2400_spi_data },
{ .compatible = "aspeed,ast2500-fmc", .data = &ast2500_fmc_data },
{ .compatible = "aspeed,ast2500-spi", .data = &ast2500_spi_data },
{ .compatible = "aspeed,ast2600-fmc", .data = &ast2600_fmc_data },
{ .compatible = "aspeed,ast2600-spi", .data = &ast2600_spi_data },
{ }
};
MODULE_DEVICE_TABLE(of, aspeed_spi_matches);
static struct platform_driver aspeed_spi_driver = {
.probe = aspeed_spi_probe,
.remove = aspeed_spi_remove,
.driver = {
.name = DEVICE_NAME,
.of_match_table = aspeed_spi_matches,
}
};
module_platform_driver(aspeed_spi_driver);
MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
MODULE_AUTHOR("Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>");
MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
MODULE_LICENSE("GPL v2");