OpenCloudOS-Kernel/drivers/hwmon/lm85.c

1714 lines
49 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* lm85.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
* Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
* Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
* Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
* Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
* Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de>
*
* Chip details at <http://www.national.com/ds/LM/LM85.pdf>
*/
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/util_macros.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
enum chips {
lm85, lm96000,
adm1027, adt7463, adt7468,
emc6d100, emc6d102, emc6d103, emc6d103s
};
/* The LM85 registers */
#define LM85_REG_IN(nr) (0x20 + (nr))
#define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
#define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
#define LM85_REG_TEMP(nr) (0x25 + (nr))
#define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
#define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
/* Fan speeds are LSB, MSB (2 bytes) */
#define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
#define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
#define LM85_REG_PWM(nr) (0x30 + (nr))
#define LM85_REG_COMPANY 0x3e
#define LM85_REG_VERSTEP 0x3f
#define ADT7468_REG_CFG5 0x7c
#define ADT7468_OFF64 (1 << 0)
#define ADT7468_HFPWM (1 << 1)
#define IS_ADT7468_OFF64(data) \
((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
#define IS_ADT7468_HFPWM(data) \
((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
/* These are the recognized values for the above regs */
#define LM85_COMPANY_NATIONAL 0x01
#define LM85_COMPANY_ANALOG_DEV 0x41
#define LM85_COMPANY_SMSC 0x5c
#define LM85_VERSTEP_LM85C 0x60
#define LM85_VERSTEP_LM85B 0x62
#define LM85_VERSTEP_LM96000_1 0x68
#define LM85_VERSTEP_LM96000_2 0x69
#define LM85_VERSTEP_ADM1027 0x60
#define LM85_VERSTEP_ADT7463 0x62
#define LM85_VERSTEP_ADT7463C 0x6A
#define LM85_VERSTEP_ADT7468_1 0x71
#define LM85_VERSTEP_ADT7468_2 0x72
#define LM85_VERSTEP_EMC6D100_A0 0x60
#define LM85_VERSTEP_EMC6D100_A1 0x61
#define LM85_VERSTEP_EMC6D102 0x65
#define LM85_VERSTEP_EMC6D103_A0 0x68
#define LM85_VERSTEP_EMC6D103_A1 0x69
#define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
#define LM85_REG_CONFIG 0x40
#define LM85_REG_ALARM1 0x41
#define LM85_REG_ALARM2 0x42
#define LM85_REG_VID 0x43
/* Automated FAN control */
#define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
#define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
#define LM85_REG_AFAN_SPIKE1 0x62
#define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
#define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
#define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
#define LM85_REG_AFAN_HYST1 0x6d
#define LM85_REG_AFAN_HYST2 0x6e
#define ADM1027_REG_EXTEND_ADC1 0x76
#define ADM1027_REG_EXTEND_ADC2 0x77
#define EMC6D100_REG_ALARM3 0x7d
/* IN5, IN6 and IN7 */
#define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
#define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
#define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
#define EMC6D102_REG_EXTEND_ADC1 0x85
#define EMC6D102_REG_EXTEND_ADC2 0x86
#define EMC6D102_REG_EXTEND_ADC3 0x87
#define EMC6D102_REG_EXTEND_ADC4 0x88
/*
* Conversions. Rounding and limit checking is only done on the TO_REG
* variants. Note that you should be a bit careful with which arguments
* these macros are called: arguments may be evaluated more than once.
*/
/* IN are scaled according to built-in resistors */
static const int lm85_scaling[] = { /* .001 Volts */
2500, 2250, 3300, 5000, 12000,
3300, 1500, 1800 /*EMC6D100*/
};
#define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
#define INS_TO_REG(n, val) \
SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
lm85_scaling[n], 192)
#define INSEXT_FROM_REG(n, val, ext) \
SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
#define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
/* FAN speed is measured using 90kHz clock */
static inline u16 FAN_TO_REG(unsigned long val)
{
if (!val)
return 0xffff;
return clamp_val(5400000 / val, 1, 0xfffe);
}
#define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
5400000 / (val))
/* Temperature is reported in .001 degC increments */
#define TEMP_TO_REG(val) \
DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
#define TEMPEXT_FROM_REG(val, ext) \
SCALE(((val) << 4) + (ext), 16, 1000)
#define TEMP_FROM_REG(val) ((val) * 1000)
#define PWM_TO_REG(val) clamp_val(val, 0, 255)
#define PWM_FROM_REG(val) (val)
/*
* ZONEs have the following parameters:
* Limit (low) temp, 1. degC
* Hysteresis (below limit), 1. degC (0-15)
* Range of speed control, .1 degC (2-80)
* Critical (high) temp, 1. degC
*
* FAN PWMs have the following parameters:
* Reference Zone, 1, 2, 3, etc.
* Spinup time, .05 sec
* PWM value at limit/low temp, 1 count
* PWM Frequency, 1. Hz
* PWM is Min or OFF below limit, flag
* Invert PWM output, flag
*
* Some chips filter the temp, others the fan.
* Filter constant (or disabled) .1 seconds
*/
/* These are the zone temperature range encodings in .001 degree C */
static const int lm85_range_map[] = {
2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
};
static int RANGE_TO_REG(long range)
{
return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
}
#define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
/* These are the PWM frequency encodings */
static const int lm85_freq_map[] = { /* 1 Hz */
10, 15, 23, 30, 38, 47, 61, 94
};
static const int lm96000_freq_map[] = { /* 1 Hz */
10, 15, 23, 30, 38, 47, 61, 94,
22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
};
static const int adm1027_freq_map[] = { /* 1 Hz */
11, 15, 22, 29, 35, 44, 59, 88
};
static int FREQ_TO_REG(const int *map,
unsigned int map_size, unsigned long freq)
{
return find_closest(freq, map, map_size);
}
static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
{
return map[reg % map_size];
}
/*
* Since we can't use strings, I'm abusing these numbers
* to stand in for the following meanings:
* 1 -- PWM responds to Zone 1
* 2 -- PWM responds to Zone 2
* 3 -- PWM responds to Zone 3
* 23 -- PWM responds to the higher temp of Zone 2 or 3
* 123 -- PWM responds to highest of Zone 1, 2, or 3
* 0 -- PWM is always at 0% (ie, off)
* -1 -- PWM is always at 100%
* -2 -- PWM responds to manual control
*/
static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
#define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
static int ZONE_TO_REG(int zone)
{
int i;
for (i = 0; i <= 7; ++i)
if (zone == lm85_zone_map[i])
break;
if (i > 7) /* Not found. */
i = 3; /* Always 100% */
return i << 5;
}
#define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
#define HYST_FROM_REG(val) ((val) * 1000)
/*
* Chip sampling rates
*
* Some sensors are not updated more frequently than once per second
* so it doesn't make sense to read them more often than that.
* We cache the results and return the saved data if the driver
* is called again before a second has elapsed.
*
* Also, there is significant configuration data for this chip
* given the automatic PWM fan control that is possible. There
* are about 47 bytes of config data to only 22 bytes of actual
* readings. So, we keep the config data up to date in the cache
* when it is written and only sample it once every 1 *minute*
*/
#define LM85_DATA_INTERVAL (HZ + HZ / 2)
#define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
/*
* LM85 can automatically adjust fan speeds based on temperature
* This structure encapsulates an entire Zone config. There are
* three zones (one for each temperature input) on the lm85
*/
struct lm85_zone {
s8 limit; /* Low temp limit */
u8 hyst; /* Low limit hysteresis. (0-15) */
u8 range; /* Temp range, encoded */
s8 critical; /* "All fans ON" temp limit */
u8 max_desired; /*
* Actual "max" temperature specified. Preserved
* to prevent "drift" as other autofan control
* values change.
*/
};
struct lm85_autofan {
u8 config; /* Register value */
u8 min_pwm; /* Minimum PWM value, encoded */
u8 min_off; /* Min PWM or OFF below "limit", flag */
};
/*
* For each registered chip, we need to keep some data in memory.
* The structure is dynamically allocated.
*/
struct lm85_data {
struct i2c_client *client;
const struct attribute_group *groups[6];
const int *freq_map;
unsigned int freq_map_size;
enum chips type;
bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
struct mutex update_lock;
bool valid; /* true if following fields are valid */
unsigned long last_reading; /* In jiffies */
unsigned long last_config; /* In jiffies */
u8 in[8]; /* Register value */
u8 in_max[8]; /* Register value */
u8 in_min[8]; /* Register value */
s8 temp[3]; /* Register value */
s8 temp_min[3]; /* Register value */
s8 temp_max[3]; /* Register value */
u16 fan[4]; /* Register value */
u16 fan_min[4]; /* Register value */
u8 pwm[3]; /* Register value */
u8 pwm_freq[3]; /* Register encoding */
u8 temp_ext[3]; /* Decoded values */
u8 in_ext[8]; /* Decoded values */
u8 vid; /* Register value */
u8 vrm; /* VRM version */
u32 alarms; /* Register encoding, combined */
u8 cfg5; /* Config Register 5 on ADT7468 */
struct lm85_autofan autofan[3];
struct lm85_zone zone[3];
};
static int lm85_read_value(struct i2c_client *client, u8 reg)
{
int res;
/* What size location is it? */
switch (reg) {
case LM85_REG_FAN(0): /* Read WORD data */
case LM85_REG_FAN(1):
case LM85_REG_FAN(2):
case LM85_REG_FAN(3):
case LM85_REG_FAN_MIN(0):
case LM85_REG_FAN_MIN(1):
case LM85_REG_FAN_MIN(2):
case LM85_REG_FAN_MIN(3):
case LM85_REG_ALARM1: /* Read both bytes at once */
res = i2c_smbus_read_byte_data(client, reg) & 0xff;
res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
break;
default: /* Read BYTE data */
res = i2c_smbus_read_byte_data(client, reg);
break;
}
return res;
}
static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
{
switch (reg) {
case LM85_REG_FAN(0): /* Write WORD data */
case LM85_REG_FAN(1):
case LM85_REG_FAN(2):
case LM85_REG_FAN(3):
case LM85_REG_FAN_MIN(0):
case LM85_REG_FAN_MIN(1):
case LM85_REG_FAN_MIN(2):
case LM85_REG_FAN_MIN(3):
/* NOTE: ALARM is read only, so not included here */
i2c_smbus_write_byte_data(client, reg, value & 0xff);
i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
break;
default: /* Write BYTE data */
i2c_smbus_write_byte_data(client, reg, value);
break;
}
}
static struct lm85_data *lm85_update_device(struct device *dev)
{
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int i;
mutex_lock(&data->update_lock);
if (!data->valid ||
time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
/* Things that change quickly */
dev_dbg(&client->dev, "Reading sensor values\n");
/*
* Have to read extended bits first to "freeze" the
* more significant bits that are read later.
* There are 2 additional resolution bits per channel and we
* have room for 4, so we shift them to the left.
*/
if (data->type == adm1027 || data->type == adt7463 ||
data->type == adt7468) {
int ext1 = lm85_read_value(client,
ADM1027_REG_EXTEND_ADC1);
int ext2 = lm85_read_value(client,
ADM1027_REG_EXTEND_ADC2);
int val = (ext1 << 8) + ext2;
for (i = 0; i <= 4; i++)
data->in_ext[i] =
((val >> (i * 2)) & 0x03) << 2;
for (i = 0; i <= 2; i++)
data->temp_ext[i] =
(val >> ((i + 4) * 2)) & 0x0c;
}
data->vid = lm85_read_value(client, LM85_REG_VID);
for (i = 0; i <= 3; ++i) {
data->in[i] =
lm85_read_value(client, LM85_REG_IN(i));
data->fan[i] =
lm85_read_value(client, LM85_REG_FAN(i));
}
if (!data->has_vid5)
data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
if (data->type == adt7468)
data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
for (i = 0; i <= 2; ++i) {
data->temp[i] =
lm85_read_value(client, LM85_REG_TEMP(i));
data->pwm[i] =
lm85_read_value(client, LM85_REG_PWM(i));
if (IS_ADT7468_OFF64(data))
data->temp[i] -= 64;
}
data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
if (data->type == emc6d100) {
/* Three more voltage sensors */
for (i = 5; i <= 7; ++i) {
data->in[i] = lm85_read_value(client,
EMC6D100_REG_IN(i));
}
/* More alarm bits */
data->alarms |= lm85_read_value(client,
EMC6D100_REG_ALARM3) << 16;
} else if (data->type == emc6d102 || data->type == emc6d103 ||
data->type == emc6d103s) {
/*
* Have to read LSB bits after the MSB ones because
* the reading of the MSB bits has frozen the
* LSBs (backward from the ADM1027).
*/
int ext1 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC1);
int ext2 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC2);
int ext3 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC3);
int ext4 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC4);
data->in_ext[0] = ext3 & 0x0f;
data->in_ext[1] = ext4 & 0x0f;
data->in_ext[2] = ext4 >> 4;
data->in_ext[3] = ext3 >> 4;
data->in_ext[4] = ext2 >> 4;
data->temp_ext[0] = ext1 & 0x0f;
data->temp_ext[1] = ext2 & 0x0f;
data->temp_ext[2] = ext1 >> 4;
}
data->last_reading = jiffies;
} /* last_reading */
if (!data->valid ||
time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
/* Things that don't change often */
dev_dbg(&client->dev, "Reading config values\n");
for (i = 0; i <= 3; ++i) {
data->in_min[i] =
lm85_read_value(client, LM85_REG_IN_MIN(i));
data->in_max[i] =
lm85_read_value(client, LM85_REG_IN_MAX(i));
data->fan_min[i] =
lm85_read_value(client, LM85_REG_FAN_MIN(i));
}
if (!data->has_vid5) {
data->in_min[4] = lm85_read_value(client,
LM85_REG_IN_MIN(4));
data->in_max[4] = lm85_read_value(client,
LM85_REG_IN_MAX(4));
}
if (data->type == emc6d100) {
for (i = 5; i <= 7; ++i) {
data->in_min[i] = lm85_read_value(client,
EMC6D100_REG_IN_MIN(i));
data->in_max[i] = lm85_read_value(client,
EMC6D100_REG_IN_MAX(i));
}
}
for (i = 0; i <= 2; ++i) {
int val;
data->temp_min[i] =
lm85_read_value(client, LM85_REG_TEMP_MIN(i));
data->temp_max[i] =
lm85_read_value(client, LM85_REG_TEMP_MAX(i));
data->autofan[i].config =
lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
data->pwm_freq[i] = val % data->freq_map_size;
data->zone[i].range = val >> 4;
data->autofan[i].min_pwm =
lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
data->zone[i].limit =
lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
data->zone[i].critical =
lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
if (IS_ADT7468_OFF64(data)) {
data->temp_min[i] -= 64;
data->temp_max[i] -= 64;
data->zone[i].limit -= 64;
data->zone[i].critical -= 64;
}
}
if (data->type != emc6d103s) {
i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
data->autofan[0].min_off = (i & 0x20) != 0;
data->autofan[1].min_off = (i & 0x40) != 0;
data->autofan[2].min_off = (i & 0x80) != 0;
i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
data->zone[0].hyst = i >> 4;
data->zone[1].hyst = i & 0x0f;
i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
data->zone[2].hyst = i >> 4;
}
data->last_config = jiffies;
} /* last_config */
data->valid = true;
mutex_unlock(&data->update_lock);
return data;
}
/* 4 Fans */
static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
}
static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
}
static ssize_t fan_min_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val);
lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
/* vid, vrm, alarms */
static ssize_t cpu0_vid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lm85_data *data = lm85_update_device(dev);
int vid;
if (data->has_vid5) {
/* 6-pin VID (VRM 10) */
vid = vid_from_reg(data->vid & 0x3f, data->vrm);
} else {
/* 5-pin VID (VRM 9) */
vid = vid_from_reg(data->vid & 0x1f, data->vrm);
}
return sprintf(buf, "%d\n", vid);
}
static DEVICE_ATTR_RO(cpu0_vid);
static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct lm85_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%ld\n", (long) data->vrm);
}
static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct lm85_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
if (val > 255)
return -EINVAL;
data->vrm = val;
return count;
}
static DEVICE_ATTR_RW(vrm);
static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR_RO(alarms);
static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
}
static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
/* pwm */
static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
}
static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->pwm[nr] = PWM_TO_REG(val);
lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t pwm_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
int pwm_zone, enable;
pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
switch (pwm_zone) {
case -1: /* PWM is always at 100% */
enable = 0;
break;
case 0: /* PWM is always at 0% */
case -2: /* PWM responds to manual control */
enable = 1;
break;
default: /* PWM in automatic mode */
enable = 2;
}
return sprintf(buf, "%d\n", enable);
}
static ssize_t pwm_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u8 config;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
switch (val) {
case 0:
config = 3;
break;
case 1:
config = 7;
break;
case 2:
/*
* Here we have to choose arbitrarily one of the 5 possible
* configurations; I go for the safest
*/
config = 6;
break;
default:
return -EINVAL;
}
mutex_lock(&data->update_lock);
data->autofan[nr].config = lm85_read_value(client,
LM85_REG_AFAN_CONFIG(nr));
data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
| (config << 5);
lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
data->autofan[nr].config);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t pwm_freq_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
int freq;
if (IS_ADT7468_HFPWM(data))
freq = 22500;
else
freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
data->pwm_freq[nr]);
return sprintf(buf, "%d\n", freq);
}
static ssize_t pwm_freq_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
/*
* The ADT7468 has a special high-frequency PWM output mode,
* where all PWM outputs are driven by a 22.5 kHz clock.
* This might confuse the user, but there's not much we can do.
*/
if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
data->cfg5 &= ~ADT7468_HFPWM;
lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
} else { /* Low freq. mode */
data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
data->freq_map_size, val);
lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
(data->zone[nr].range << 4)
| data->pwm_freq[nr]);
if (data->type == adt7468) {
data->cfg5 |= ADT7468_HFPWM;
lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
}
}
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
/* Voltages */
static ssize_t in_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
data->in_ext[nr]));
}
static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
}
static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->in_min[nr] = INS_TO_REG(nr, val);
lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
}
static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->in_max[nr] = INS_TO_REG(nr, val);
lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
/* Temps */
static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
data->temp_ext[nr]));
}
static ssize_t temp_min_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
}
static ssize_t temp_min_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
if (IS_ADT7468_OFF64(data))
val += 64;
mutex_lock(&data->update_lock);
data->temp_min[nr] = TEMP_TO_REG(val);
lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t temp_max_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
}
static ssize_t temp_max_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
if (IS_ADT7468_OFF64(data))
val += 64;
mutex_lock(&data->update_lock);
data->temp_max[nr] = TEMP_TO_REG(val);
lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
/* Automatic PWM control */
static ssize_t pwm_auto_channels_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
}
static ssize_t pwm_auto_channels_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
| ZONE_TO_REG(val);
lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
data->autofan[nr].config);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t pwm_auto_pwm_min_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
}
static ssize_t pwm_auto_pwm_min_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->autofan[nr].min_pwm = PWM_TO_REG(val);
lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
data->autofan[nr].min_pwm);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t pwm_auto_pwm_minctl_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", data->autofan[nr].min_off);
}
static ssize_t pwm_auto_pwm_minctl_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u8 tmp;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->autofan[nr].min_off = val;
tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
tmp &= ~(0x20 << nr);
if (data->autofan[nr].min_off)
tmp |= 0x20 << nr;
lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0);
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2);
/* Temperature settings for automatic PWM control */
static ssize_t temp_auto_temp_off_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
HYST_FROM_REG(data->zone[nr].hyst));
}
static ssize_t temp_auto_temp_off_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int min;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
min = TEMP_FROM_REG(data->zone[nr].limit);
data->zone[nr].hyst = HYST_TO_REG(min - val);
if (nr == 0 || nr == 1) {
lm85_write_value(client, LM85_REG_AFAN_HYST1,
(data->zone[0].hyst << 4)
| data->zone[1].hyst);
} else {
lm85_write_value(client, LM85_REG_AFAN_HYST2,
(data->zone[2].hyst << 4));
}
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t temp_auto_temp_min_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
}
static ssize_t temp_auto_temp_min_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->zone[nr].limit = TEMP_TO_REG(val);
lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
data->zone[nr].limit);
/* Update temp_auto_max and temp_auto_range */
data->zone[nr].range = RANGE_TO_REG(
TEMP_FROM_REG(data->zone[nr].max_desired) -
TEMP_FROM_REG(data->zone[nr].limit));
lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
((data->zone[nr].range & 0x0f) << 4)
| data->pwm_freq[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t temp_auto_temp_max_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
RANGE_FROM_REG(data->zone[nr].range));
}
static ssize_t temp_auto_temp_max_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int min;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
min = TEMP_FROM_REG(data->zone[nr].limit);
data->zone[nr].max_desired = TEMP_TO_REG(val);
data->zone[nr].range = RANGE_TO_REG(
val - min);
lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
((data->zone[nr].range & 0x0f) << 4)
| data->pwm_freq[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t temp_auto_temp_crit_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
}
static ssize_t temp_auto_temp_crit_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->zone[nr].critical = TEMP_TO_REG(val);
lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
data->zone[nr].critical);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2);
static struct attribute *lm85_attributes[] = {
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan4_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan4_min.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan3_alarm.dev_attr.attr,
&sensor_dev_attr_fan4_alarm.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_pwm3.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm2_enable.dev_attr.attr,
&sensor_dev_attr_pwm3_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_freq.dev_attr.attr,
&sensor_dev_attr_pwm2_freq.dev_attr.attr,
&sensor_dev_attr_pwm3_freq.dev_attr.attr,
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_fault.dev_attr.attr,
&sensor_dev_attr_temp3_fault.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
&dev_attr_vrm.attr,
&dev_attr_cpu0_vid.attr,
&dev_attr_alarms.attr,
NULL
};
static const struct attribute_group lm85_group = {
.attrs = lm85_attributes,
};
static struct attribute *lm85_attributes_minctl[] = {
&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
NULL
};
static const struct attribute_group lm85_group_minctl = {
.attrs = lm85_attributes_minctl,
};
static struct attribute *lm85_attributes_temp_off[] = {
&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
NULL
};
static const struct attribute_group lm85_group_temp_off = {
.attrs = lm85_attributes_temp_off,
};
static struct attribute *lm85_attributes_in4[] = {
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group lm85_group_in4 = {
.attrs = lm85_attributes_in4,
};
static struct attribute *lm85_attributes_in567[] = {
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in6_input.dev_attr.attr,
&sensor_dev_attr_in7_input.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in6_min.dev_attr.attr,
&sensor_dev_attr_in7_min.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in6_max.dev_attr.attr,
&sensor_dev_attr_in7_max.dev_attr.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
&sensor_dev_attr_in6_alarm.dev_attr.attr,
&sensor_dev_attr_in7_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group lm85_group_in567 = {
.attrs = lm85_attributes_in567,
};
static void lm85_init_client(struct i2c_client *client)
{
int value;
/* Start monitoring if needed */
value = lm85_read_value(client, LM85_REG_CONFIG);
if (!(value & 0x01)) {
dev_info(&client->dev, "Starting monitoring\n");
lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
}
/* Warn about unusual configuration bits */
if (value & 0x02)
dev_warn(&client->dev, "Device configuration is locked\n");
if (!(value & 0x04))
dev_warn(&client->dev, "Device is not ready\n");
}
static int lm85_is_fake(struct i2c_client *client)
{
/*
* Differenciate between real LM96000 and Winbond WPCD377I. The latter
* emulate the former except that it has no hardware monitoring function
* so the readings are always 0.
*/
int i;
u8 in_temp, fan;
for (i = 0; i < 8; i++) {
in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
fan = i2c_smbus_read_byte_data(client, 0x28 + i);
if (in_temp != 0x00 || fan != 0xff)
return 0;
}
return 1;
}
/* Return 0 if detection is successful, -ENODEV otherwise */
static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int address = client->addr;
const char *type_name = NULL;
int company, verstep;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
/* We need to be able to do byte I/O */
return -ENODEV;
}
/* Determine the chip type */
company = lm85_read_value(client, LM85_REG_COMPANY);
verstep = lm85_read_value(client, LM85_REG_VERSTEP);
dev_dbg(&adapter->dev,
"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
address, company, verstep);
if (company == LM85_COMPANY_NATIONAL) {
switch (verstep) {
case LM85_VERSTEP_LM85C:
type_name = "lm85c";
break;
case LM85_VERSTEP_LM85B:
type_name = "lm85b";
break;
case LM85_VERSTEP_LM96000_1:
case LM85_VERSTEP_LM96000_2:
/* Check for Winbond WPCD377I */
if (lm85_is_fake(client)) {
dev_dbg(&adapter->dev,
"Found Winbond WPCD377I, ignoring\n");
return -ENODEV;
}
type_name = "lm96000";
break;
}
} else if (company == LM85_COMPANY_ANALOG_DEV) {
switch (verstep) {
case LM85_VERSTEP_ADM1027:
type_name = "adm1027";
break;
case LM85_VERSTEP_ADT7463:
case LM85_VERSTEP_ADT7463C:
type_name = "adt7463";
break;
case LM85_VERSTEP_ADT7468_1:
case LM85_VERSTEP_ADT7468_2:
type_name = "adt7468";
break;
}
} else if (company == LM85_COMPANY_SMSC) {
switch (verstep) {
case LM85_VERSTEP_EMC6D100_A0:
case LM85_VERSTEP_EMC6D100_A1:
/* Note: we can't tell a '100 from a '101 */
type_name = "emc6d100";
break;
case LM85_VERSTEP_EMC6D102:
type_name = "emc6d102";
break;
case LM85_VERSTEP_EMC6D103_A0:
case LM85_VERSTEP_EMC6D103_A1:
type_name = "emc6d103";
break;
case LM85_VERSTEP_EMC6D103S:
type_name = "emc6d103s";
break;
}
}
if (!type_name)
return -ENODEV;
strlcpy(info->type, type_name, I2C_NAME_SIZE);
return 0;
}
static const struct i2c_device_id lm85_id[];
static int lm85_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct device *hwmon_dev;
struct lm85_data *data;
int idx = 0;
data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->client = client;
if (client->dev.of_node)
data->type = (enum chips)of_device_get_match_data(&client->dev);
else
data->type = i2c_match_id(lm85_id, client)->driver_data;
mutex_init(&data->update_lock);
/* Fill in the chip specific driver values */
switch (data->type) {
case adm1027:
case adt7463:
case adt7468:
case emc6d100:
case emc6d102:
case emc6d103:
case emc6d103s:
data->freq_map = adm1027_freq_map;
data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
break;
case lm96000:
data->freq_map = lm96000_freq_map;
data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
break;
default:
data->freq_map = lm85_freq_map;
data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
}
/* Set the VRM version */
data->vrm = vid_which_vrm();
/* Initialize the LM85 chip */
lm85_init_client(client);
/* sysfs hooks */
data->groups[idx++] = &lm85_group;
/* minctl and temp_off exist on all chips except emc6d103s */
if (data->type != emc6d103s) {
data->groups[idx++] = &lm85_group_minctl;
data->groups[idx++] = &lm85_group_temp_off;
}
/*
* The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
* as a sixth digital VID input rather than an analog input.
*/
if (data->type == adt7463 || data->type == adt7468) {
u8 vid = lm85_read_value(client, LM85_REG_VID);
if (vid & 0x80)
data->has_vid5 = true;
}
if (!data->has_vid5)
data->groups[idx++] = &lm85_group_in4;
/* The EMC6D100 has 3 additional voltage inputs */
if (data->type == emc6d100)
data->groups[idx++] = &lm85_group_in567;
hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
data, data->groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct i2c_device_id lm85_id[] = {
{ "adm1027", adm1027 },
{ "adt7463", adt7463 },
{ "adt7468", adt7468 },
{ "lm85", lm85 },
{ "lm85b", lm85 },
{ "lm85c", lm85 },
{ "lm96000", lm96000 },
{ "emc6d100", emc6d100 },
{ "emc6d101", emc6d100 },
{ "emc6d102", emc6d102 },
{ "emc6d103", emc6d103 },
{ "emc6d103s", emc6d103s },
{ }
};
MODULE_DEVICE_TABLE(i2c, lm85_id);
static const struct of_device_id __maybe_unused lm85_of_match[] = {
{
.compatible = "adi,adm1027",
.data = (void *)adm1027
},
{
.compatible = "adi,adt7463",
.data = (void *)adt7463
},
{
.compatible = "adi,adt7468",
.data = (void *)adt7468
},
{
.compatible = "national,lm85",
.data = (void *)lm85
},
{
.compatible = "national,lm85b",
.data = (void *)lm85
},
{
.compatible = "national,lm85c",
.data = (void *)lm85
},
{
.compatible = "ti,lm96000",
.data = (void *)lm96000
},
{
.compatible = "smsc,emc6d100",
.data = (void *)emc6d100
},
{
.compatible = "smsc,emc6d101",
.data = (void *)emc6d100
},
{
.compatible = "smsc,emc6d102",
.data = (void *)emc6d102
},
{
.compatible = "smsc,emc6d103",
.data = (void *)emc6d103
},
{
.compatible = "smsc,emc6d103s",
.data = (void *)emc6d103s
},
{ },
};
MODULE_DEVICE_TABLE(of, lm85_of_match);
static struct i2c_driver lm85_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "lm85",
.of_match_table = of_match_ptr(lm85_of_match),
},
.probe_new = lm85_probe,
.id_table = lm85_id,
.detect = lm85_detect,
.address_list = normal_i2c,
};
module_i2c_driver(lm85_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
"Margit Schubert-While <margitsw@t-online.de>, "
"Justin Thiessen <jthiessen@penguincomputing.com>");
MODULE_DESCRIPTION("LM85-B, LM85-C driver");