OpenCloudOS-Kernel/drivers/hwmon/asus_wmi_ec_sensors.c

623 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* HWMON driver for ASUS B550/X570 motherboards that publish sensor
* values via the embedded controller registers.
*
* Copyright (C) 2021 Eugene Shalygin <eugene.shalygin@gmail.com>
* Copyright (C) 2018-2019 Ed Brindley <kernel@maidavale.org>
*
* EC provides:
* - Chipset temperature
* - CPU temperature
* - Motherboard temperature
* - T_Sensor temperature
* - VRM temperature
* - Water In temperature
* - Water Out temperature
* - CPU Optional Fan RPM
* - Chipset Fan RPM
* - Water Flow Fan RPM
* - CPU current
*/
#include <linux/acpi.h>
#include <linux/dmi.h>
#include <linux/hwmon.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/nls.h>
#include <linux/units.h>
#include <linux/wmi.h>
#include <asm/unaligned.h>
#define ASUSWMI_MONITORING_GUID "466747A0-70EC-11DE-8A39-0800200C9A66"
#define ASUSWMI_METHODID_BLOCK_READ_EC 0x42524543 /* BREC */
/* From the ASUS DSDT source */
#define ASUSWMI_BREC_REGISTERS_MAX 16
#define ASUSWMI_MAX_BUF_LEN 128
#define SENSOR_LABEL_LEN 16
static u32 hwmon_attributes[hwmon_max] = {
[hwmon_chip] = HWMON_C_REGISTER_TZ,
[hwmon_temp] = HWMON_T_INPUT | HWMON_T_LABEL,
[hwmon_in] = HWMON_I_INPUT | HWMON_I_LABEL,
[hwmon_curr] = HWMON_C_INPUT | HWMON_C_LABEL,
[hwmon_fan] = HWMON_F_INPUT | HWMON_F_LABEL,
};
struct asus_wmi_ec_sensor_address {
u8 index;
u8 bank;
u8 size;
};
#define MAKE_SENSOR_ADDRESS(size_i, bank_i, index_i) { \
.size = size_i, \
.bank = bank_i, \
.index = index_i, \
}
struct ec_sensor_info {
struct asus_wmi_ec_sensor_address addr;
char label[SENSOR_LABEL_LEN];
enum hwmon_sensor_types type;
};
#define EC_SENSOR(sensor_label, sensor_type, size, bank, index) { \
.addr = MAKE_SENSOR_ADDRESS(size, bank, index), \
.label = sensor_label, \
.type = sensor_type, \
}
enum known_ec_sensor {
SENSOR_TEMP_CHIPSET,
SENSOR_TEMP_CPU,
SENSOR_TEMP_MB,
SENSOR_TEMP_T_SENSOR,
SENSOR_TEMP_VRM,
SENSOR_FAN_CPU_OPT,
SENSOR_FAN_CHIPSET,
SENSOR_FAN_VRM_HS,
SENSOR_FAN_WATER_FLOW,
SENSOR_CURR_CPU,
SENSOR_TEMP_WATER_IN,
SENSOR_TEMP_WATER_OUT,
SENSOR_MAX
};
/* All known sensors for ASUS EC controllers */
static const struct ec_sensor_info known_ec_sensors[] = {
[SENSOR_TEMP_CHIPSET] = EC_SENSOR("Chipset", hwmon_temp, 1, 0x00, 0x3a),
[SENSOR_TEMP_CPU] = EC_SENSOR("CPU", hwmon_temp, 1, 0x00, 0x3b),
[SENSOR_TEMP_MB] = EC_SENSOR("Motherboard", hwmon_temp, 1, 0x00, 0x3c),
[SENSOR_TEMP_T_SENSOR] = EC_SENSOR("T_Sensor", hwmon_temp, 1, 0x00, 0x3d),
[SENSOR_TEMP_VRM] = EC_SENSOR("VRM", hwmon_temp, 1, 0x00, 0x3e),
[SENSOR_FAN_CPU_OPT] = EC_SENSOR("CPU_Opt", hwmon_fan, 2, 0x00, 0xb0),
[SENSOR_FAN_VRM_HS] = EC_SENSOR("VRM HS", hwmon_fan, 2, 0x00, 0xb2),
[SENSOR_FAN_CHIPSET] = EC_SENSOR("Chipset", hwmon_fan, 2, 0x00, 0xb4),
[SENSOR_FAN_WATER_FLOW] = EC_SENSOR("Water_Flow", hwmon_fan, 2, 0x00, 0xbc),
[SENSOR_CURR_CPU] = EC_SENSOR("CPU", hwmon_curr, 1, 0x00, 0xf4),
[SENSOR_TEMP_WATER_IN] = EC_SENSOR("Water_In", hwmon_temp, 1, 0x01, 0x00),
[SENSOR_TEMP_WATER_OUT] = EC_SENSOR("Water_Out", hwmon_temp, 1, 0x01, 0x01),
};
struct asus_wmi_data {
const enum known_ec_sensor known_board_sensors[SENSOR_MAX + 1];
};
/* boards with EC support */
static struct asus_wmi_data sensors_board_PW_X570_P = {
.known_board_sensors = {
SENSOR_TEMP_CHIPSET, SENSOR_TEMP_CPU, SENSOR_TEMP_MB,
SENSOR_TEMP_T_SENSOR, SENSOR_TEMP_VRM,
SENSOR_FAN_CHIPSET,
SENSOR_MAX
},
};
static struct asus_wmi_data sensors_board_PW_X570_A = {
.known_board_sensors = {
SENSOR_TEMP_CHIPSET, SENSOR_TEMP_CPU, SENSOR_TEMP_MB, SENSOR_TEMP_VRM,
SENSOR_FAN_CHIPSET,
SENSOR_CURR_CPU,
SENSOR_MAX
},
};
static struct asus_wmi_data sensors_board_R_C8H = {
.known_board_sensors = {
SENSOR_TEMP_CHIPSET, SENSOR_TEMP_CPU, SENSOR_TEMP_MB,
SENSOR_TEMP_T_SENSOR, SENSOR_TEMP_VRM,
SENSOR_TEMP_WATER_IN, SENSOR_TEMP_WATER_OUT,
SENSOR_FAN_CPU_OPT, SENSOR_FAN_CHIPSET, SENSOR_FAN_WATER_FLOW,
SENSOR_CURR_CPU,
SENSOR_MAX
},
};
/* Same as Hero but without chipset fan */
static struct asus_wmi_data sensors_board_R_C8DH = {
.known_board_sensors = {
SENSOR_TEMP_CHIPSET, SENSOR_TEMP_CPU, SENSOR_TEMP_MB,
SENSOR_TEMP_T_SENSOR, SENSOR_TEMP_VRM,
SENSOR_TEMP_WATER_IN, SENSOR_TEMP_WATER_OUT,
SENSOR_FAN_CPU_OPT, SENSOR_FAN_WATER_FLOW,
SENSOR_CURR_CPU,
SENSOR_MAX
},
};
/* Same as Hero but without water */
static struct asus_wmi_data sensors_board_R_C8F = {
.known_board_sensors = {
SENSOR_TEMP_CHIPSET, SENSOR_TEMP_CPU, SENSOR_TEMP_MB,
SENSOR_TEMP_T_SENSOR, SENSOR_TEMP_VRM,
SENSOR_FAN_CPU_OPT, SENSOR_FAN_CHIPSET,
SENSOR_CURR_CPU,
SENSOR_MAX
},
};
static struct asus_wmi_data sensors_board_RS_B550_E_G = {
.known_board_sensors = {
SENSOR_TEMP_CHIPSET, SENSOR_TEMP_CPU, SENSOR_TEMP_MB,
SENSOR_TEMP_T_SENSOR, SENSOR_TEMP_VRM,
SENSOR_FAN_CPU_OPT,
SENSOR_MAX
},
};
static struct asus_wmi_data sensors_board_RS_B550_I_G = {
.known_board_sensors = {
SENSOR_TEMP_CHIPSET, SENSOR_TEMP_CPU, SENSOR_TEMP_MB,
SENSOR_TEMP_T_SENSOR, SENSOR_TEMP_VRM,
SENSOR_FAN_VRM_HS,
SENSOR_CURR_CPU,
SENSOR_MAX
},
};
static struct asus_wmi_data sensors_board_RS_X570_E_G = {
.known_board_sensors = {
SENSOR_TEMP_CHIPSET, SENSOR_TEMP_CPU, SENSOR_TEMP_MB,
SENSOR_TEMP_T_SENSOR, SENSOR_TEMP_VRM,
SENSOR_FAN_CHIPSET,
SENSOR_CURR_CPU,
SENSOR_MAX
},
};
#define DMI_EXACT_MATCH_ASUS_BOARD_NAME(name, sensors) { \
.matches = { \
DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC."), \
DMI_EXACT_MATCH(DMI_BOARD_NAME, name), \
}, \
.driver_data = sensors, \
}
static const struct dmi_system_id asus_wmi_ec_dmi_table[] = {
DMI_EXACT_MATCH_ASUS_BOARD_NAME("PRIME X570-PRO", &sensors_board_PW_X570_P),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("Pro WS X570-ACE", &sensors_board_PW_X570_A),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG CROSSHAIR VIII DARK HERO", &sensors_board_R_C8DH),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG CROSSHAIR VIII FORMULA", &sensors_board_R_C8F),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG CROSSHAIR VIII HERO", &sensors_board_R_C8H),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG STRIX B550-E GAMING", &sensors_board_RS_B550_E_G),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG STRIX B550-I GAMING", &sensors_board_RS_B550_I_G),
DMI_EXACT_MATCH_ASUS_BOARD_NAME("ROG STRIX X570-E GAMING", &sensors_board_RS_X570_E_G),
{}
};
MODULE_DEVICE_TABLE(dmi, asus_wmi_ec_dmi_table);
struct ec_sensor {
enum known_ec_sensor info_index;
long cached_value;
};
/**
* struct asus_wmi_ec_info - sensor info.
* @sensors: list of sensors.
* @read_arg: UTF-16LE string to pass to BRxx() WMI function.
* @read_buffer: decoded output from WMI result.
* @nr_sensors: number of board EC sensors.
* @nr_registers: number of EC registers to read (sensor might span more than 1 register).
* @last_updated: in jiffies.
*/
struct asus_wmi_ec_info {
struct ec_sensor sensors[SENSOR_MAX];
char read_arg[(ASUSWMI_BREC_REGISTERS_MAX * 4 + 1) * 2];
u8 read_buffer[ASUSWMI_BREC_REGISTERS_MAX];
unsigned int nr_sensors;
unsigned int nr_registers;
unsigned long last_updated;
};
struct asus_wmi_sensors {
struct asus_wmi_ec_info ec;
/* lock access to internal cache */
struct mutex lock;
};
static int asus_wmi_ec_fill_board_sensors(struct asus_wmi_ec_info *ec,
const enum known_ec_sensor *bsi)
{
struct ec_sensor *s = ec->sensors;
int i;
ec->nr_sensors = 0;
ec->nr_registers = 0;
for (i = 0; bsi[i] != SENSOR_MAX; i++) {
s[i].info_index = bsi[i];
ec->nr_sensors++;
ec->nr_registers += known_ec_sensors[bsi[i]].addr.size;
}
return 0;
}
/*
* The next four functions convert to or from BRxx string argument format.
* The format of the string is as follows:
* - The string consists of two-byte UTF-16LE characters.
* - The value of the very first byte in the string is equal to the total
* length of the next string in bytes, thus excluding the first two-byte
* character.
* - The rest of the string encodes the pairs of (bank, index) pairs, where
* both values are byte-long (0x00 to 0xFF).
* - Numbers are encoded as UTF-16LE hex values.
*/
static int asus_wmi_ec_decode_reply_buffer(const u8 *in, u32 length, u8 *out)
{
char buffer[ASUSWMI_MAX_BUF_LEN * 2];
u32 len = min_t(u32, get_unaligned_le16(in), length - 2);
utf16s_to_utf8s((wchar_t *)(in + 2), len / 2, UTF16_LITTLE_ENDIAN, buffer, sizeof(buffer));
return hex2bin(out, buffer, len / 4);
}
static void asus_wmi_ec_encode_registers(const u8 *in, u32 len, char *out)
{
char buffer[ASUSWMI_MAX_BUF_LEN * 2];
bin2hex(buffer, in, len);
utf8s_to_utf16s(buffer, len * 2, UTF16_LITTLE_ENDIAN, (wchar_t *)(out + 2), len * 2);
put_unaligned_le16(len * 4, out);
}
static void asus_wmi_ec_make_block_read_query(struct asus_wmi_ec_info *ec)
{
u8 registers[ASUSWMI_BREC_REGISTERS_MAX * 2];
const struct ec_sensor_info *si;
int i, j, offset;
offset = 0;
for (i = 0; i < ec->nr_sensors; i++) {
si = &known_ec_sensors[ec->sensors[i].info_index];
for (j = 0; j < si->addr.size; j++) {
registers[offset++] = si->addr.bank;
registers[offset++] = si->addr.index + j;
}
}
asus_wmi_ec_encode_registers(registers, offset, ec->read_arg);
}
static int asus_wmi_ec_block_read(u32 method_id, char *query, u8 *out)
{
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
struct acpi_buffer input;
union acpi_object *obj;
acpi_status status;
int ret;
/* The first byte of the BRxx() argument string has to be the string size. */
input.length = query[0] + 2;
input.pointer = query;
status = wmi_evaluate_method(ASUSWMI_MONITORING_GUID, 0, method_id, &input, &output);
if (ACPI_FAILURE(status))
return -EIO;
obj = output.pointer;
if (!obj)
return -EIO;
if (obj->type != ACPI_TYPE_BUFFER || obj->buffer.length < 2) {
ret = -EIO;
goto out_free_obj;
}
ret = asus_wmi_ec_decode_reply_buffer(obj->buffer.pointer, obj->buffer.length, out);
out_free_obj:
ACPI_FREE(obj);
return ret;
}
static inline long get_sensor_value(const struct ec_sensor_info *si, u8 *data)
{
switch (si->addr.size) {
case 1:
return *data;
case 2:
return get_unaligned_be16(data);
case 4:
return get_unaligned_be32(data);
default:
return 0;
}
}
static void asus_wmi_ec_update_ec_sensors(struct asus_wmi_ec_info *ec)
{
const struct ec_sensor_info *si;
struct ec_sensor *s;
u8 i_sensor;
u8 *data;
data = ec->read_buffer;
for (i_sensor = 0; i_sensor < ec->nr_sensors; i_sensor++) {
s = &ec->sensors[i_sensor];
si = &known_ec_sensors[s->info_index];
s->cached_value = get_sensor_value(si, data);
data += si->addr.size;
}
}
static long asus_wmi_ec_scale_sensor_value(long value, int data_type)
{
switch (data_type) {
case hwmon_curr:
case hwmon_temp:
case hwmon_in:
return value * MILLI;
default:
return value;
}
}
static int asus_wmi_ec_find_sensor_index(const struct asus_wmi_ec_info *ec,
enum hwmon_sensor_types type, int channel)
{
int i;
for (i = 0; i < ec->nr_sensors; i++) {
if (known_ec_sensors[ec->sensors[i].info_index].type == type) {
if (channel == 0)
return i;
channel--;
}
}
return -EINVAL;
}
static int asus_wmi_ec_get_cached_value_or_update(struct asus_wmi_sensors *sensor_data,
int sensor_index,
long *value)
{
struct asus_wmi_ec_info *ec = &sensor_data->ec;
int ret = 0;
mutex_lock(&sensor_data->lock);
if (time_after(jiffies, ec->last_updated + HZ)) {
ret = asus_wmi_ec_block_read(ASUSWMI_METHODID_BLOCK_READ_EC,
ec->read_arg, ec->read_buffer);
if (ret)
goto unlock;
asus_wmi_ec_update_ec_sensors(ec);
ec->last_updated = jiffies;
}
*value = ec->sensors[sensor_index].cached_value;
unlock:
mutex_unlock(&sensor_data->lock);
return ret;
}
/* Now follow the functions that implement the hwmon interface */
static int asus_wmi_ec_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct asus_wmi_sensors *sensor_data = dev_get_drvdata(dev);
struct asus_wmi_ec_info *ec = &sensor_data->ec;
int ret, sidx, info_index;
long value = 0;
sidx = asus_wmi_ec_find_sensor_index(ec, type, channel);
if (sidx < 0)
return sidx;
ret = asus_wmi_ec_get_cached_value_or_update(sensor_data, sidx, &value);
if (ret)
return ret;
info_index = ec->sensors[sidx].info_index;
*val = asus_wmi_ec_scale_sensor_value(value, known_ec_sensors[info_index].type);
return ret;
}
static int asus_wmi_ec_hwmon_read_string(struct device *dev,
enum hwmon_sensor_types type, u32 attr,
int channel, const char **str)
{
struct asus_wmi_sensors *sensor_data = dev_get_drvdata(dev);
struct asus_wmi_ec_info *ec = &sensor_data->ec;
int sensor_index;
sensor_index = asus_wmi_ec_find_sensor_index(ec, type, channel);
*str = known_ec_sensors[ec->sensors[sensor_index].info_index].label;
return 0;
}
static umode_t asus_wmi_ec_hwmon_is_visible(const void *drvdata,
enum hwmon_sensor_types type, u32 attr,
int channel)
{
const struct asus_wmi_sensors *sensor_data = drvdata;
const struct asus_wmi_ec_info *ec = &sensor_data->ec;
int index;
index = asus_wmi_ec_find_sensor_index(ec, type, channel);
return index < 0 ? 0 : 0444;
}
static int asus_wmi_hwmon_add_chan_info(struct hwmon_channel_info *asus_wmi_hwmon_chan,
struct device *dev, int num,
enum hwmon_sensor_types type, u32 config)
{
u32 *cfg;
cfg = devm_kcalloc(dev, num + 1, sizeof(*cfg), GFP_KERNEL);
if (!cfg)
return -ENOMEM;
asus_wmi_hwmon_chan->type = type;
asus_wmi_hwmon_chan->config = cfg;
memset32(cfg, config, num);
return 0;
}
static const struct hwmon_ops asus_wmi_ec_hwmon_ops = {
.is_visible = asus_wmi_ec_hwmon_is_visible,
.read = asus_wmi_ec_hwmon_read,
.read_string = asus_wmi_ec_hwmon_read_string,
};
static struct hwmon_chip_info asus_wmi_ec_chip_info = {
.ops = &asus_wmi_ec_hwmon_ops,
};
static int asus_wmi_ec_configure_sensor_setup(struct device *dev,
const enum known_ec_sensor *bsi)
{
struct asus_wmi_sensors *sensor_data = dev_get_drvdata(dev);
struct asus_wmi_ec_info *ec = &sensor_data->ec;
struct hwmon_channel_info *asus_wmi_hwmon_chan;
const struct hwmon_channel_info **asus_wmi_ci;
int nr_count[hwmon_max] = {}, nr_types = 0;
const struct hwmon_chip_info *chip_info;
const struct ec_sensor_info *si;
enum hwmon_sensor_types type;
struct device *hwdev;
int i, ret;
ret = asus_wmi_ec_fill_board_sensors(ec, bsi);
if (ret)
return ret;
if (!sensor_data->ec.nr_sensors)
return -ENODEV;
for (i = 0; i < ec->nr_sensors; i++) {
si = &known_ec_sensors[ec->sensors[i].info_index];
if (!nr_count[si->type])
nr_types++;
nr_count[si->type]++;
}
if (nr_count[hwmon_temp]) {
nr_count[hwmon_chip]++;
nr_types++;
}
/*
* If we can get values for all the registers in a single query,
* the query will not change from call to call.
*/
asus_wmi_ec_make_block_read_query(ec);
asus_wmi_hwmon_chan = devm_kcalloc(dev, nr_types, sizeof(*asus_wmi_hwmon_chan),
GFP_KERNEL);
if (!asus_wmi_hwmon_chan)
return -ENOMEM;
asus_wmi_ci = devm_kcalloc(dev, nr_types + 1, sizeof(*asus_wmi_ci), GFP_KERNEL);
if (!asus_wmi_ci)
return -ENOMEM;
asus_wmi_ec_chip_info.info = asus_wmi_ci;
chip_info = &asus_wmi_ec_chip_info;
for (type = 0; type < hwmon_max; type++) {
if (!nr_count[type])
continue;
ret = asus_wmi_hwmon_add_chan_info(asus_wmi_hwmon_chan, dev,
nr_count[type], type,
hwmon_attributes[type]);
if (ret)
return ret;
*asus_wmi_ci++ = asus_wmi_hwmon_chan++;
}
dev_dbg(dev, "board has %d EC sensors that span %d registers",
ec->nr_sensors, ec->nr_registers);
hwdev = devm_hwmon_device_register_with_info(dev, "asus_wmi_ec_sensors",
sensor_data, chip_info, NULL);
return PTR_ERR_OR_ZERO(hwdev);
}
static int asus_wmi_probe(struct wmi_device *wdev, const void *context)
{
struct asus_wmi_sensors *sensor_data;
struct asus_wmi_data *board_sensors;
const struct dmi_system_id *dmi_id;
const enum known_ec_sensor *bsi;
struct device *dev = &wdev->dev;
dmi_id = dmi_first_match(asus_wmi_ec_dmi_table);
if (!dmi_id)
return -ENODEV;
board_sensors = dmi_id->driver_data;
bsi = board_sensors->known_board_sensors;
sensor_data = devm_kzalloc(dev, sizeof(*sensor_data), GFP_KERNEL);
if (!sensor_data)
return -ENOMEM;
mutex_init(&sensor_data->lock);
dev_set_drvdata(dev, sensor_data);
return asus_wmi_ec_configure_sensor_setup(dev, bsi);
}
static const struct wmi_device_id asus_ec_wmi_id_table[] = {
{ ASUSWMI_MONITORING_GUID, NULL },
{ }
};
static struct wmi_driver asus_sensors_wmi_driver = {
.driver = {
.name = "asus_wmi_ec_sensors",
},
.id_table = asus_ec_wmi_id_table,
.probe = asus_wmi_probe,
};
module_wmi_driver(asus_sensors_wmi_driver);
MODULE_AUTHOR("Ed Brindley <kernel@maidavale.org>");
MODULE_AUTHOR("Eugene Shalygin <eugene.shalygin@gmail.com>");
MODULE_DESCRIPTION("Asus WMI Sensors Driver");
MODULE_LICENSE("GPL");