OpenCloudOS-Kernel/drivers/hwmon/asus-ec-sensors.c

903 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* HWMON driver for ASUS motherboards that publish some sensor values
* via the embedded controller registers.
*
* Copyright (C) 2021 Eugene Shalygin <eugene.shalygin@gmail.com>
* EC provides:
* - Chipset temperature
* - CPU temperature
* - Motherboard temperature
* - T_Sensor temperature
* - VRM temperature
* - Water In temperature
* - Water Out temperature
* - CPU Optional fan RPM
* - Chipset fan RPM
* - VRM Heat Sink fan RPM
* - Water Flow fan RPM
* - CPU current
* - CPU core voltage
*/
#include <linux/acpi.h>
#include <linux/bitops.h>
#include <linux/dev_printk.h>
#include <linux/dmi.h>
#include <linux/hwmon.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/sort.h>
#include <linux/units.h>
#include <asm/unaligned.h>
static char *mutex_path_override;
/* Writing to this EC register switches EC bank */
#define ASUS_EC_BANK_REGISTER 0xff
#define SENSOR_LABEL_LEN 16
/*
* Arbitrary set max. allowed bank number. Required for sorting banks and
* currently is overkill with just 2 banks used at max, but for the sake
* of alignment let's set it to a higher value.
*/
#define ASUS_EC_MAX_BANK 3
#define ACPI_LOCK_DELAY_MS 500
/* ACPI mutex for locking access to the EC for the firmware */
#define ASUS_HW_ACCESS_MUTEX_ASMX "\\AMW0.ASMX"
#define MAX_IDENTICAL_BOARD_VARIATIONS 3
/* Moniker for the ACPI global lock (':' is not allowed in ASL identifiers) */
#define ACPI_GLOBAL_LOCK_PSEUDO_PATH ":GLOBAL_LOCK"
typedef union {
u32 value;
struct {
u8 index;
u8 bank;
u8 size;
u8 dummy;
} components;
} sensor_address;
#define MAKE_SENSOR_ADDRESS(size, bank, index) { \
.value = (size << 16) + (bank << 8) + index \
}
static u32 hwmon_attributes[hwmon_max] = {
[hwmon_chip] = HWMON_C_REGISTER_TZ,
[hwmon_temp] = HWMON_T_INPUT | HWMON_T_LABEL,
[hwmon_in] = HWMON_I_INPUT | HWMON_I_LABEL,
[hwmon_curr] = HWMON_C_INPUT | HWMON_C_LABEL,
[hwmon_fan] = HWMON_F_INPUT | HWMON_F_LABEL,
};
struct ec_sensor_info {
char label[SENSOR_LABEL_LEN];
enum hwmon_sensor_types type;
sensor_address addr;
};
#define EC_SENSOR(sensor_label, sensor_type, size, bank, index) { \
.label = sensor_label, .type = sensor_type, \
.addr = MAKE_SENSOR_ADDRESS(size, bank, index), \
}
enum ec_sensors {
/* chipset temperature [℃] */
ec_sensor_temp_chipset,
/* CPU temperature [℃] */
ec_sensor_temp_cpu,
/* motherboard temperature [℃] */
ec_sensor_temp_mb,
/* "T_Sensor" temperature sensor reading [℃] */
ec_sensor_temp_t_sensor,
/* VRM temperature [℃] */
ec_sensor_temp_vrm,
/* CPU Core voltage [mV] */
ec_sensor_in_cpu_core,
/* CPU_Opt fan [RPM] */
ec_sensor_fan_cpu_opt,
/* VRM heat sink fan [RPM] */
ec_sensor_fan_vrm_hs,
/* Chipset fan [RPM] */
ec_sensor_fan_chipset,
/* Water flow sensor reading [RPM] */
ec_sensor_fan_water_flow,
/* CPU current [A] */
ec_sensor_curr_cpu,
/* "Water_In" temperature sensor reading [℃] */
ec_sensor_temp_water_in,
/* "Water_Out" temperature sensor reading [℃] */
ec_sensor_temp_water_out,
};
#define SENSOR_TEMP_CHIPSET BIT(ec_sensor_temp_chipset)
#define SENSOR_TEMP_CPU BIT(ec_sensor_temp_cpu)
#define SENSOR_TEMP_MB BIT(ec_sensor_temp_mb)
#define SENSOR_TEMP_T_SENSOR BIT(ec_sensor_temp_t_sensor)
#define SENSOR_TEMP_VRM BIT(ec_sensor_temp_vrm)
#define SENSOR_IN_CPU_CORE BIT(ec_sensor_in_cpu_core)
#define SENSOR_FAN_CPU_OPT BIT(ec_sensor_fan_cpu_opt)
#define SENSOR_FAN_VRM_HS BIT(ec_sensor_fan_vrm_hs)
#define SENSOR_FAN_CHIPSET BIT(ec_sensor_fan_chipset)
#define SENSOR_FAN_WATER_FLOW BIT(ec_sensor_fan_water_flow)
#define SENSOR_CURR_CPU BIT(ec_sensor_curr_cpu)
#define SENSOR_TEMP_WATER_IN BIT(ec_sensor_temp_water_in)
#define SENSOR_TEMP_WATER_OUT BIT(ec_sensor_temp_water_out)
enum board_family {
family_unknown,
family_amd_400_series,
family_amd_500_series,
};
/* All the known sensors for ASUS EC controllers */
static const struct ec_sensor_info sensors_family_amd_400[] = {
[ec_sensor_temp_chipset] =
EC_SENSOR("Chipset", hwmon_temp, 1, 0x00, 0x3a),
[ec_sensor_temp_cpu] =
EC_SENSOR("CPU", hwmon_temp, 1, 0x00, 0x3b),
[ec_sensor_temp_mb] =
EC_SENSOR("Motherboard", hwmon_temp, 1, 0x00, 0x3c),
[ec_sensor_temp_t_sensor] =
EC_SENSOR("T_Sensor", hwmon_temp, 1, 0x00, 0x3d),
[ec_sensor_temp_vrm] =
EC_SENSOR("VRM", hwmon_temp, 1, 0x00, 0x3e),
[ec_sensor_in_cpu_core] =
EC_SENSOR("CPU Core", hwmon_in, 2, 0x00, 0xa2),
[ec_sensor_fan_cpu_opt] =
EC_SENSOR("CPU_Opt", hwmon_fan, 2, 0x00, 0xbc),
[ec_sensor_fan_vrm_hs] =
EC_SENSOR("VRM HS", hwmon_fan, 2, 0x00, 0xb2),
[ec_sensor_fan_chipset] =
/* no chipset fans in this generation */
EC_SENSOR("Chipset", hwmon_fan, 0, 0x00, 0x00),
[ec_sensor_fan_water_flow] =
EC_SENSOR("Water_Flow", hwmon_fan, 2, 0x00, 0xb4),
[ec_sensor_curr_cpu] =
EC_SENSOR("CPU", hwmon_curr, 1, 0x00, 0xf4),
[ec_sensor_temp_water_in] =
EC_SENSOR("Water_In", hwmon_temp, 1, 0x01, 0x0d),
[ec_sensor_temp_water_out] =
EC_SENSOR("Water_Out", hwmon_temp, 1, 0x01, 0x0b),
};
static const struct ec_sensor_info sensors_family_amd_500[] = {
[ec_sensor_temp_chipset] =
EC_SENSOR("Chipset", hwmon_temp, 1, 0x00, 0x3a),
[ec_sensor_temp_cpu] = EC_SENSOR("CPU", hwmon_temp, 1, 0x00, 0x3b),
[ec_sensor_temp_mb] =
EC_SENSOR("Motherboard", hwmon_temp, 1, 0x00, 0x3c),
[ec_sensor_temp_t_sensor] =
EC_SENSOR("T_Sensor", hwmon_temp, 1, 0x00, 0x3d),
[ec_sensor_temp_vrm] = EC_SENSOR("VRM", hwmon_temp, 1, 0x00, 0x3e),
[ec_sensor_in_cpu_core] =
EC_SENSOR("CPU Core", hwmon_in, 2, 0x00, 0xa2),
[ec_sensor_fan_cpu_opt] =
EC_SENSOR("CPU_Opt", hwmon_fan, 2, 0x00, 0xb0),
[ec_sensor_fan_vrm_hs] = EC_SENSOR("VRM HS", hwmon_fan, 2, 0x00, 0xb2),
[ec_sensor_fan_chipset] =
EC_SENSOR("Chipset", hwmon_fan, 2, 0x00, 0xb4),
[ec_sensor_fan_water_flow] =
EC_SENSOR("Water_Flow", hwmon_fan, 2, 0x00, 0xbc),
[ec_sensor_curr_cpu] = EC_SENSOR("CPU", hwmon_curr, 1, 0x00, 0xf4),
[ec_sensor_temp_water_in] =
EC_SENSOR("Water_In", hwmon_temp, 1, 0x01, 0x00),
[ec_sensor_temp_water_out] =
EC_SENSOR("Water_Out", hwmon_temp, 1, 0x01, 0x01),
};
/* Shortcuts for common combinations */
#define SENSOR_SET_TEMP_CHIPSET_CPU_MB \
(SENSOR_TEMP_CHIPSET | SENSOR_TEMP_CPU | SENSOR_TEMP_MB)
#define SENSOR_SET_TEMP_WATER (SENSOR_TEMP_WATER_IN | SENSOR_TEMP_WATER_OUT)
struct ec_board_info {
const char *board_names[MAX_IDENTICAL_BOARD_VARIATIONS];
unsigned long sensors;
/*
* Defines which mutex to use for guarding access to the state and the
* hardware. Can be either a full path to an AML mutex or the
* pseudo-path ACPI_GLOBAL_LOCK_PSEUDO_PATH to use the global ACPI lock,
* or left empty to use a regular mutex object, in which case access to
* the hardware is not guarded.
*/
const char *mutex_path;
enum board_family family;
};
static const struct ec_board_info board_info[] = {
{
.board_names = {"PRIME X470-PRO"},
.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM |
SENSOR_FAN_CPU_OPT |
SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE,
.mutex_path = ACPI_GLOBAL_LOCK_PSEUDO_PATH,
.family = family_amd_400_series,
},
{
.board_names = {"PRIME X570-PRO"},
.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_VRM |
SENSOR_TEMP_T_SENSOR | SENSOR_FAN_CHIPSET,
.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
.family = family_amd_500_series,
},
{
.board_names = {"ProArt X570-CREATOR WIFI"},
.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_VRM |
SENSOR_TEMP_T_SENSOR | SENSOR_FAN_CPU_OPT |
SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE,
},
{
.board_names = {"Pro WS X570-ACE"},
.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_VRM |
SENSOR_TEMP_T_SENSOR | SENSOR_FAN_CHIPSET |
SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE,
.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
.family = family_amd_500_series,
},
{
.board_names = {"ROG CROSSHAIR VIII DARK HERO"},
.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
SENSOR_TEMP_T_SENSOR |
SENSOR_TEMP_VRM | SENSOR_SET_TEMP_WATER |
SENSOR_FAN_CPU_OPT | SENSOR_FAN_WATER_FLOW |
SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE,
.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
.family = family_amd_500_series,
},
{
.board_names = {
"ROG CROSSHAIR VIII FORMULA",
"ROG CROSSHAIR VIII HERO",
"ROG CROSSHAIR VIII HERO (WI-FI)",
},
.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
SENSOR_TEMP_T_SENSOR |
SENSOR_TEMP_VRM | SENSOR_SET_TEMP_WATER |
SENSOR_FAN_CPU_OPT | SENSOR_FAN_CHIPSET |
SENSOR_FAN_WATER_FLOW | SENSOR_CURR_CPU |
SENSOR_IN_CPU_CORE,
.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
.family = family_amd_500_series,
},
{
.board_names = {"ROG CROSSHAIR VIII IMPACT"},
.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM |
SENSOR_FAN_CHIPSET | SENSOR_CURR_CPU |
SENSOR_IN_CPU_CORE,
.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
.family = family_amd_500_series,
},
{
.board_names = {"ROG STRIX B550-E GAMING"},
.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM |
SENSOR_FAN_CPU_OPT,
.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
.family = family_amd_500_series,
},
{
.board_names = {"ROG STRIX B550-I GAMING"},
.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM |
SENSOR_FAN_VRM_HS | SENSOR_CURR_CPU |
SENSOR_IN_CPU_CORE,
.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
.family = family_amd_500_series,
},
{
.board_names = {"ROG STRIX X570-E GAMING"},
.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM |
SENSOR_FAN_CHIPSET | SENSOR_CURR_CPU |
SENSOR_IN_CPU_CORE,
.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
.family = family_amd_500_series,
},
{
.board_names = {"ROG STRIX X570-E GAMING WIFI II"},
.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
SENSOR_TEMP_T_SENSOR | SENSOR_CURR_CPU |
SENSOR_IN_CPU_CORE,
.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
.family = family_amd_500_series,
},
{
.board_names = {"ROG STRIX X570-F GAMING"},
.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
SENSOR_TEMP_T_SENSOR | SENSOR_FAN_CHIPSET,
.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
.family = family_amd_500_series,
},
{
.board_names = {"ROG STRIX X570-I GAMING"},
.sensors = SENSOR_TEMP_T_SENSOR | SENSOR_FAN_VRM_HS |
SENSOR_FAN_CHIPSET | SENSOR_CURR_CPU |
SENSOR_IN_CPU_CORE,
.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
.family = family_amd_500_series,
},
{}
};
struct ec_sensor {
unsigned int info_index;
s32 cached_value;
};
struct lock_data {
union {
acpi_handle aml;
/* global lock handle */
u32 glk;
} mutex;
bool (*lock)(struct lock_data *data);
bool (*unlock)(struct lock_data *data);
};
/*
* The next function pairs implement options for locking access to the
* state and the EC
*/
static bool lock_via_acpi_mutex(struct lock_data *data)
{
/*
* ASUS DSDT does not specify that access to the EC has to be guarded,
* but firmware does access it via ACPI
*/
return ACPI_SUCCESS(acpi_acquire_mutex(data->mutex.aml,
NULL, ACPI_LOCK_DELAY_MS));
}
static bool unlock_acpi_mutex(struct lock_data *data)
{
return ACPI_SUCCESS(acpi_release_mutex(data->mutex.aml, NULL));
}
static bool lock_via_global_acpi_lock(struct lock_data *data)
{
return ACPI_SUCCESS(acpi_acquire_global_lock(ACPI_LOCK_DELAY_MS,
&data->mutex.glk));
}
static bool unlock_global_acpi_lock(struct lock_data *data)
{
return ACPI_SUCCESS(acpi_release_global_lock(data->mutex.glk));
}
struct ec_sensors_data {
const struct ec_board_info *board_info;
const struct ec_sensor_info *sensors_info;
struct ec_sensor *sensors;
/* EC registers to read from */
u16 *registers;
u8 *read_buffer;
/* sorted list of unique register banks */
u8 banks[ASUS_EC_MAX_BANK + 1];
/* in jiffies */
unsigned long last_updated;
struct lock_data lock_data;
/* number of board EC sensors */
u8 nr_sensors;
/*
* number of EC registers to read
* (sensor might span more than 1 register)
*/
u8 nr_registers;
/* number of unique register banks */
u8 nr_banks;
};
static u8 register_bank(u16 reg)
{
return reg >> 8;
}
static u8 register_index(u16 reg)
{
return reg & 0x00ff;
}
static bool is_sensor_data_signed(const struct ec_sensor_info *si)
{
/*
* guessed from WMI functions in DSDT code for boards
* of the X470 generation
*/
return si->type == hwmon_temp;
}
static const struct ec_sensor_info *
get_sensor_info(const struct ec_sensors_data *state, int index)
{
return state->sensors_info + state->sensors[index].info_index;
}
static int find_ec_sensor_index(const struct ec_sensors_data *ec,
enum hwmon_sensor_types type, int channel)
{
unsigned int i;
for (i = 0; i < ec->nr_sensors; i++) {
if (get_sensor_info(ec, i)->type == type) {
if (channel == 0)
return i;
channel--;
}
}
return -ENOENT;
}
static int __init bank_compare(const void *a, const void *b)
{
return *((const s8 *)a) - *((const s8 *)b);
}
static void __init setup_sensor_data(struct ec_sensors_data *ec)
{
struct ec_sensor *s = ec->sensors;
bool bank_found;
int i, j;
u8 bank;
ec->nr_banks = 0;
ec->nr_registers = 0;
for_each_set_bit(i, &ec->board_info->sensors,
BITS_PER_TYPE(ec->board_info->sensors)) {
s->info_index = i;
s->cached_value = 0;
ec->nr_registers +=
ec->sensors_info[s->info_index].addr.components.size;
bank_found = false;
bank = ec->sensors_info[s->info_index].addr.components.bank;
for (j = 0; j < ec->nr_banks; j++) {
if (ec->banks[j] == bank) {
bank_found = true;
break;
}
}
if (!bank_found) {
ec->banks[ec->nr_banks++] = bank;
}
s++;
}
sort(ec->banks, ec->nr_banks, 1, bank_compare, NULL);
}
static void __init fill_ec_registers(struct ec_sensors_data *ec)
{
const struct ec_sensor_info *si;
unsigned int i, j, register_idx = 0;
for (i = 0; i < ec->nr_sensors; ++i) {
si = get_sensor_info(ec, i);
for (j = 0; j < si->addr.components.size; ++j, ++register_idx) {
ec->registers[register_idx] =
(si->addr.components.bank << 8) +
si->addr.components.index + j;
}
}
}
static int __init setup_lock_data(struct device *dev)
{
const char *mutex_path;
int status;
struct ec_sensors_data *state = dev_get_drvdata(dev);
mutex_path = mutex_path_override ?
mutex_path_override : state->board_info->mutex_path;
if (!mutex_path || !strlen(mutex_path)) {
dev_err(dev, "Hardware access guard mutex name is empty");
return -EINVAL;
}
if (!strcmp(mutex_path, ACPI_GLOBAL_LOCK_PSEUDO_PATH)) {
state->lock_data.mutex.glk = 0;
state->lock_data.lock = lock_via_global_acpi_lock;
state->lock_data.unlock = unlock_global_acpi_lock;
} else {
status = acpi_get_handle(NULL, (acpi_string)mutex_path,
&state->lock_data.mutex.aml);
if (ACPI_FAILURE(status)) {
dev_err(dev,
"Failed to get hardware access guard AML mutex '%s': error %d",
mutex_path, status);
return -ENOENT;
}
state->lock_data.lock = lock_via_acpi_mutex;
state->lock_data.unlock = unlock_acpi_mutex;
}
return 0;
}
static int asus_ec_bank_switch(u8 bank, u8 *old)
{
int status = 0;
if (old) {
status = ec_read(ASUS_EC_BANK_REGISTER, old);
}
if (status || (old && (*old == bank)))
return status;
return ec_write(ASUS_EC_BANK_REGISTER, bank);
}
static int asus_ec_block_read(const struct device *dev,
struct ec_sensors_data *ec)
{
int ireg, ibank, status;
u8 bank, reg_bank, prev_bank;
bank = 0;
status = asus_ec_bank_switch(bank, &prev_bank);
if (status) {
dev_warn(dev, "EC bank switch failed");
return status;
}
if (prev_bank) {
/* oops... somebody else is working with the EC too */
dev_warn(dev,
"Concurrent access to the ACPI EC detected.\nRace condition possible.");
}
/* read registers minimizing bank switches. */
for (ibank = 0; ibank < ec->nr_banks; ibank++) {
if (bank != ec->banks[ibank]) {
bank = ec->banks[ibank];
if (asus_ec_bank_switch(bank, NULL)) {
dev_warn(dev, "EC bank switch to %d failed",
bank);
break;
}
}
for (ireg = 0; ireg < ec->nr_registers; ireg++) {
reg_bank = register_bank(ec->registers[ireg]);
if (reg_bank < bank) {
continue;
}
ec_read(register_index(ec->registers[ireg]),
ec->read_buffer + ireg);
}
}
status = asus_ec_bank_switch(prev_bank, NULL);
return status;
}
static inline s32 get_sensor_value(const struct ec_sensor_info *si, u8 *data)
{
if (is_sensor_data_signed(si)) {
switch (si->addr.components.size) {
case 1:
return (s8)*data;
case 2:
return (s16)get_unaligned_be16(data);
case 4:
return (s32)get_unaligned_be32(data);
default:
return 0;
}
} else {
switch (si->addr.components.size) {
case 1:
return *data;
case 2:
return get_unaligned_be16(data);
case 4:
return get_unaligned_be32(data);
default:
return 0;
}
}
}
static void update_sensor_values(struct ec_sensors_data *ec, u8 *data)
{
const struct ec_sensor_info *si;
struct ec_sensor *s, *sensor_end;
sensor_end = ec->sensors + ec->nr_sensors;
for (s = ec->sensors; s != sensor_end; s++) {
si = ec->sensors_info + s->info_index;
s->cached_value = get_sensor_value(si, data);
data += si->addr.components.size;
}
}
static int update_ec_sensors(const struct device *dev,
struct ec_sensors_data *ec)
{
int status;
if (!ec->lock_data.lock(&ec->lock_data)) {
dev_warn(dev, "Failed to acquire mutex");
return -EBUSY;
}
status = asus_ec_block_read(dev, ec);
if (!status) {
update_sensor_values(ec, ec->read_buffer);
}
if (!ec->lock_data.unlock(&ec->lock_data))
dev_err(dev, "Failed to release mutex");
return status;
}
static long scale_sensor_value(s32 value, int data_type)
{
switch (data_type) {
case hwmon_curr:
case hwmon_temp:
return value * MILLI;
default:
return value;
}
}
static int get_cached_value_or_update(const struct device *dev,
int sensor_index,
struct ec_sensors_data *state, s32 *value)
{
if (time_after(jiffies, state->last_updated + HZ)) {
if (update_ec_sensors(dev, state)) {
dev_err(dev, "update_ec_sensors() failure\n");
return -EIO;
}
state->last_updated = jiffies;
}
*value = state->sensors[sensor_index].cached_value;
return 0;
}
/*
* Now follow the functions that implement the hwmon interface
*/
static int asus_ec_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
int ret;
s32 value = 0;
struct ec_sensors_data *state = dev_get_drvdata(dev);
int sidx = find_ec_sensor_index(state, type, channel);
if (sidx < 0) {
return sidx;
}
ret = get_cached_value_or_update(dev, sidx, state, &value);
if (!ret) {
*val = scale_sensor_value(value,
get_sensor_info(state, sidx)->type);
}
return ret;
}
static int asus_ec_hwmon_read_string(struct device *dev,
enum hwmon_sensor_types type, u32 attr,
int channel, const char **str)
{
struct ec_sensors_data *state = dev_get_drvdata(dev);
int sensor_index = find_ec_sensor_index(state, type, channel);
*str = get_sensor_info(state, sensor_index)->label;
return 0;
}
static umode_t asus_ec_hwmon_is_visible(const void *drvdata,
enum hwmon_sensor_types type, u32 attr,
int channel)
{
const struct ec_sensors_data *state = drvdata;
return find_ec_sensor_index(state, type, channel) >= 0 ? S_IRUGO : 0;
}
static int __init
asus_ec_hwmon_add_chan_info(struct hwmon_channel_info *asus_ec_hwmon_chan,
struct device *dev, int num,
enum hwmon_sensor_types type, u32 config)
{
int i;
u32 *cfg = devm_kcalloc(dev, num + 1, sizeof(*cfg), GFP_KERNEL);
if (!cfg)
return -ENOMEM;
asus_ec_hwmon_chan->type = type;
asus_ec_hwmon_chan->config = cfg;
for (i = 0; i < num; i++, cfg++)
*cfg = config;
return 0;
}
static const struct hwmon_ops asus_ec_hwmon_ops = {
.is_visible = asus_ec_hwmon_is_visible,
.read = asus_ec_hwmon_read,
.read_string = asus_ec_hwmon_read_string,
};
static struct hwmon_chip_info asus_ec_chip_info = {
.ops = &asus_ec_hwmon_ops,
};
static const struct ec_board_info * __init get_board_info(void)
{
const char *dmi_board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
const char *dmi_board_name = dmi_get_system_info(DMI_BOARD_NAME);
const struct ec_board_info *board;
if (!dmi_board_vendor || !dmi_board_name ||
strcasecmp(dmi_board_vendor, "ASUSTeK COMPUTER INC."))
return NULL;
for (board = board_info; board->sensors; board++) {
if (match_string(board->board_names,
MAX_IDENTICAL_BOARD_VARIATIONS,
dmi_board_name) >= 0)
return board;
}
return NULL;
}
static int __init asus_ec_probe(struct platform_device *pdev)
{
const struct hwmon_channel_info **ptr_asus_ec_ci;
int nr_count[hwmon_max] = { 0 }, nr_types = 0;
struct hwmon_channel_info *asus_ec_hwmon_chan;
const struct ec_board_info *pboard_info;
const struct hwmon_chip_info *chip_info;
struct device *dev = &pdev->dev;
struct ec_sensors_data *ec_data;
const struct ec_sensor_info *si;
enum hwmon_sensor_types type;
struct device *hwdev;
unsigned int i;
int status;
pboard_info = get_board_info();
if (!pboard_info)
return -ENODEV;
ec_data = devm_kzalloc(dev, sizeof(struct ec_sensors_data),
GFP_KERNEL);
if (!ec_data)
return -ENOMEM;
dev_set_drvdata(dev, ec_data);
ec_data->board_info = pboard_info;
switch (ec_data->board_info->family) {
case family_amd_400_series:
ec_data->sensors_info = sensors_family_amd_400;
break;
case family_amd_500_series:
ec_data->sensors_info = sensors_family_amd_500;
break;
default:
dev_err(dev, "Unknown board family: %d",
ec_data->board_info->family);
return -EINVAL;
}
ec_data->nr_sensors = hweight_long(ec_data->board_info->sensors);
ec_data->sensors = devm_kcalloc(dev, ec_data->nr_sensors,
sizeof(struct ec_sensor), GFP_KERNEL);
status = setup_lock_data(dev);
if (status) {
dev_err(dev, "Failed to setup state/EC locking: %d", status);
return status;
}
setup_sensor_data(ec_data);
ec_data->registers = devm_kcalloc(dev, ec_data->nr_registers,
sizeof(u16), GFP_KERNEL);
ec_data->read_buffer = devm_kcalloc(dev, ec_data->nr_registers,
sizeof(u8), GFP_KERNEL);
if (!ec_data->registers || !ec_data->read_buffer)
return -ENOMEM;
fill_ec_registers(ec_data);
for (i = 0; i < ec_data->nr_sensors; ++i) {
si = get_sensor_info(ec_data, i);
if (!nr_count[si->type])
++nr_types;
++nr_count[si->type];
}
if (nr_count[hwmon_temp])
nr_count[hwmon_chip]++, nr_types++;
asus_ec_hwmon_chan = devm_kcalloc(
dev, nr_types, sizeof(*asus_ec_hwmon_chan), GFP_KERNEL);
if (!asus_ec_hwmon_chan)
return -ENOMEM;
ptr_asus_ec_ci = devm_kcalloc(dev, nr_types + 1,
sizeof(*ptr_asus_ec_ci), GFP_KERNEL);
if (!ptr_asus_ec_ci)
return -ENOMEM;
asus_ec_chip_info.info = ptr_asus_ec_ci;
chip_info = &asus_ec_chip_info;
for (type = 0; type < hwmon_max; ++type) {
if (!nr_count[type])
continue;
asus_ec_hwmon_add_chan_info(asus_ec_hwmon_chan, dev,
nr_count[type], type,
hwmon_attributes[type]);
*ptr_asus_ec_ci++ = asus_ec_hwmon_chan++;
}
dev_info(dev, "board has %d EC sensors that span %d registers",
ec_data->nr_sensors, ec_data->nr_registers);
hwdev = devm_hwmon_device_register_with_info(dev, "asusec",
ec_data, chip_info, NULL);
return PTR_ERR_OR_ZERO(hwdev);
}
static const struct acpi_device_id acpi_ec_ids[] = {
/* Embedded Controller Device */
{ "PNP0C09", 0 },
{}
};
static struct platform_driver asus_ec_sensors_platform_driver = {
.driver = {
.name = "asus-ec-sensors",
.acpi_match_table = acpi_ec_ids,
},
};
MODULE_DEVICE_TABLE(acpi, acpi_ec_ids);
/*
* we use module_platform_driver_probe() rather than module_platform_driver()
* because the probe function (and its dependants) are marked with __init, which
* means we can't put it into the .probe member of the platform_driver struct
* above, and we can't mark the asus_ec_sensors_platform_driver object as __init
* because the object is referenced from the module exit code.
*/
module_platform_driver_probe(asus_ec_sensors_platform_driver, asus_ec_probe);
module_param_named(mutex_path, mutex_path_override, charp, 0);
MODULE_PARM_DESC(mutex_path,
"Override ACPI mutex path used to guard access to hardware");
MODULE_AUTHOR("Eugene Shalygin <eugene.shalygin@gmail.com>");
MODULE_DESCRIPTION(
"HWMON driver for sensors accessible via ACPI EC in ASUS motherboards");
MODULE_LICENSE("GPL");