OpenCloudOS-Kernel/arch/powerpc/platforms/pseries/dlpar.c

588 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Support for dynamic reconfiguration for PCI, Memory, and CPU
* Hotplug and Dynamic Logical Partitioning on RPA platforms.
*
* Copyright (C) 2009 Nathan Fontenot
* Copyright (C) 2009 IBM Corporation
*/
#define pr_fmt(fmt) "dlpar: " fmt
#include <linux/kernel.h>
#include <linux/notifier.h>
#include <linux/spinlock.h>
#include <linux/cpu.h>
#include <linux/slab.h>
#include <linux/of.h>
#include "of_helpers.h"
#include "pseries.h"
#include <asm/prom.h>
#include <asm/machdep.h>
#include <linux/uaccess.h>
#include <asm/rtas.h>
static struct workqueue_struct *pseries_hp_wq;
struct pseries_hp_work {
struct work_struct work;
struct pseries_hp_errorlog *errlog;
};
struct cc_workarea {
__be32 drc_index;
__be32 zero;
__be32 name_offset;
__be32 prop_length;
__be32 prop_offset;
};
void dlpar_free_cc_property(struct property *prop)
{
kfree(prop->name);
kfree(prop->value);
kfree(prop);
}
static struct property *dlpar_parse_cc_property(struct cc_workarea *ccwa)
{
struct property *prop;
char *name;
char *value;
prop = kzalloc(sizeof(*prop), GFP_KERNEL);
if (!prop)
return NULL;
name = (char *)ccwa + be32_to_cpu(ccwa->name_offset);
prop->name = kstrdup(name, GFP_KERNEL);
if (!prop->name) {
dlpar_free_cc_property(prop);
return NULL;
}
prop->length = be32_to_cpu(ccwa->prop_length);
value = (char *)ccwa + be32_to_cpu(ccwa->prop_offset);
prop->value = kmemdup(value, prop->length, GFP_KERNEL);
if (!prop->value) {
dlpar_free_cc_property(prop);
return NULL;
}
return prop;
}
static struct device_node *dlpar_parse_cc_node(struct cc_workarea *ccwa)
{
struct device_node *dn;
const char *name;
dn = kzalloc(sizeof(*dn), GFP_KERNEL);
if (!dn)
return NULL;
name = (const char *)ccwa + be32_to_cpu(ccwa->name_offset);
dn->full_name = kstrdup(name, GFP_KERNEL);
if (!dn->full_name) {
kfree(dn);
return NULL;
}
of_node_set_flag(dn, OF_DYNAMIC);
of_node_init(dn);
return dn;
}
static void dlpar_free_one_cc_node(struct device_node *dn)
{
struct property *prop;
while (dn->properties) {
prop = dn->properties;
dn->properties = prop->next;
dlpar_free_cc_property(prop);
}
kfree(dn->full_name);
kfree(dn);
}
void dlpar_free_cc_nodes(struct device_node *dn)
{
if (dn->child)
dlpar_free_cc_nodes(dn->child);
if (dn->sibling)
dlpar_free_cc_nodes(dn->sibling);
dlpar_free_one_cc_node(dn);
}
#define COMPLETE 0
#define NEXT_SIBLING 1
#define NEXT_CHILD 2
#define NEXT_PROPERTY 3
#define PREV_PARENT 4
#define MORE_MEMORY 5
#define CALL_AGAIN -2
#define ERR_CFG_USE -9003
struct device_node *dlpar_configure_connector(__be32 drc_index,
struct device_node *parent)
{
struct device_node *dn;
struct device_node *first_dn = NULL;
struct device_node *last_dn = NULL;
struct property *property;
struct property *last_property = NULL;
struct cc_workarea *ccwa;
char *data_buf;
int cc_token;
int rc = -1;
cc_token = rtas_token("ibm,configure-connector");
if (cc_token == RTAS_UNKNOWN_SERVICE)
return NULL;
data_buf = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL);
if (!data_buf)
return NULL;
ccwa = (struct cc_workarea *)&data_buf[0];
ccwa->drc_index = drc_index;
ccwa->zero = 0;
do {
/* Since we release the rtas_data_buf lock between configure
* connector calls we want to re-populate the rtas_data_buffer
* with the contents of the previous call.
*/
spin_lock(&rtas_data_buf_lock);
memcpy(rtas_data_buf, data_buf, RTAS_DATA_BUF_SIZE);
rc = rtas_call(cc_token, 2, 1, NULL, rtas_data_buf, NULL);
memcpy(data_buf, rtas_data_buf, RTAS_DATA_BUF_SIZE);
spin_unlock(&rtas_data_buf_lock);
switch (rc) {
case COMPLETE:
break;
case NEXT_SIBLING:
dn = dlpar_parse_cc_node(ccwa);
if (!dn)
goto cc_error;
dn->parent = last_dn->parent;
last_dn->sibling = dn;
last_dn = dn;
break;
case NEXT_CHILD:
dn = dlpar_parse_cc_node(ccwa);
if (!dn)
goto cc_error;
if (!first_dn) {
dn->parent = parent;
first_dn = dn;
} else {
dn->parent = last_dn;
if (last_dn)
last_dn->child = dn;
}
last_dn = dn;
break;
case NEXT_PROPERTY:
property = dlpar_parse_cc_property(ccwa);
if (!property)
goto cc_error;
if (!last_dn->properties)
last_dn->properties = property;
else
last_property->next = property;
last_property = property;
break;
case PREV_PARENT:
last_dn = last_dn->parent;
break;
case CALL_AGAIN:
break;
case MORE_MEMORY:
case ERR_CFG_USE:
default:
printk(KERN_ERR "Unexpected Error (%d) "
"returned from configure-connector\n", rc);
goto cc_error;
}
} while (rc);
cc_error:
kfree(data_buf);
if (rc) {
if (first_dn)
dlpar_free_cc_nodes(first_dn);
return NULL;
}
return first_dn;
}
int dlpar_attach_node(struct device_node *dn, struct device_node *parent)
{
int rc;
dn->parent = parent;
rc = of_attach_node(dn);
if (rc) {
printk(KERN_ERR "Failed to add device node %pOF\n", dn);
return rc;
}
return 0;
}
int dlpar_detach_node(struct device_node *dn)
{
struct device_node *child;
int rc;
child = of_get_next_child(dn, NULL);
while (child) {
dlpar_detach_node(child);
child = of_get_next_child(dn, child);
}
rc = of_detach_node(dn);
if (rc)
return rc;
of_node_put(dn);
return 0;
}
#define DR_ENTITY_SENSE 9003
#define DR_ENTITY_PRESENT 1
#define DR_ENTITY_UNUSABLE 2
#define ALLOCATION_STATE 9003
#define ALLOC_UNUSABLE 0
#define ALLOC_USABLE 1
#define ISOLATION_STATE 9001
#define ISOLATE 0
#define UNISOLATE 1
int dlpar_acquire_drc(u32 drc_index)
{
int dr_status, rc;
rc = rtas_call(rtas_token("get-sensor-state"), 2, 2, &dr_status,
DR_ENTITY_SENSE, drc_index);
if (rc || dr_status != DR_ENTITY_UNUSABLE)
return -1;
rc = rtas_set_indicator(ALLOCATION_STATE, drc_index, ALLOC_USABLE);
if (rc)
return rc;
rc = rtas_set_indicator(ISOLATION_STATE, drc_index, UNISOLATE);
if (rc) {
rtas_set_indicator(ALLOCATION_STATE, drc_index, ALLOC_UNUSABLE);
return rc;
}
return 0;
}
int dlpar_release_drc(u32 drc_index)
{
int dr_status, rc;
rc = rtas_call(rtas_token("get-sensor-state"), 2, 2, &dr_status,
DR_ENTITY_SENSE, drc_index);
if (rc || dr_status != DR_ENTITY_PRESENT)
return -1;
rc = rtas_set_indicator(ISOLATION_STATE, drc_index, ISOLATE);
if (rc)
return rc;
rc = rtas_set_indicator(ALLOCATION_STATE, drc_index, ALLOC_UNUSABLE);
if (rc) {
rtas_set_indicator(ISOLATION_STATE, drc_index, UNISOLATE);
return rc;
}
return 0;
}
int handle_dlpar_errorlog(struct pseries_hp_errorlog *hp_elog)
{
int rc;
/* pseries error logs are in BE format, convert to cpu type */
switch (hp_elog->id_type) {
case PSERIES_HP_ELOG_ID_DRC_COUNT:
hp_elog->_drc_u.drc_count =
be32_to_cpu(hp_elog->_drc_u.drc_count);
break;
case PSERIES_HP_ELOG_ID_DRC_INDEX:
hp_elog->_drc_u.drc_index =
be32_to_cpu(hp_elog->_drc_u.drc_index);
break;
case PSERIES_HP_ELOG_ID_DRC_IC:
hp_elog->_drc_u.ic.count =
be32_to_cpu(hp_elog->_drc_u.ic.count);
hp_elog->_drc_u.ic.index =
be32_to_cpu(hp_elog->_drc_u.ic.index);
}
switch (hp_elog->resource) {
case PSERIES_HP_ELOG_RESOURCE_MEM:
rc = dlpar_memory(hp_elog);
break;
case PSERIES_HP_ELOG_RESOURCE_CPU:
rc = dlpar_cpu(hp_elog);
break;
case PSERIES_HP_ELOG_RESOURCE_PMEM:
rc = dlpar_hp_pmem(hp_elog);
break;
default:
pr_warn_ratelimited("Invalid resource (%d) specified\n",
hp_elog->resource);
rc = -EINVAL;
}
return rc;
}
static void pseries_hp_work_fn(struct work_struct *work)
{
struct pseries_hp_work *hp_work =
container_of(work, struct pseries_hp_work, work);
handle_dlpar_errorlog(hp_work->errlog);
kfree(hp_work->errlog);
kfree((void *)work);
}
void queue_hotplug_event(struct pseries_hp_errorlog *hp_errlog)
{
struct pseries_hp_work *work;
struct pseries_hp_errorlog *hp_errlog_copy;
hp_errlog_copy = kmemdup(hp_errlog, sizeof(*hp_errlog), GFP_ATOMIC);
if (!hp_errlog_copy)
return;
work = kmalloc(sizeof(struct pseries_hp_work), GFP_ATOMIC);
if (work) {
INIT_WORK((struct work_struct *)work, pseries_hp_work_fn);
work->errlog = hp_errlog_copy;
queue_work(pseries_hp_wq, (struct work_struct *)work);
} else {
kfree(hp_errlog_copy);
}
}
static int dlpar_parse_resource(char **cmd, struct pseries_hp_errorlog *hp_elog)
{
char *arg;
arg = strsep(cmd, " ");
if (!arg)
return -EINVAL;
if (sysfs_streq(arg, "memory")) {
hp_elog->resource = PSERIES_HP_ELOG_RESOURCE_MEM;
} else if (sysfs_streq(arg, "cpu")) {
hp_elog->resource = PSERIES_HP_ELOG_RESOURCE_CPU;
} else {
pr_err("Invalid resource specified.\n");
return -EINVAL;
}
return 0;
}
static int dlpar_parse_action(char **cmd, struct pseries_hp_errorlog *hp_elog)
{
char *arg;
arg = strsep(cmd, " ");
if (!arg)
return -EINVAL;
if (sysfs_streq(arg, "add")) {
hp_elog->action = PSERIES_HP_ELOG_ACTION_ADD;
} else if (sysfs_streq(arg, "remove")) {
hp_elog->action = PSERIES_HP_ELOG_ACTION_REMOVE;
} else {
pr_err("Invalid action specified.\n");
return -EINVAL;
}
return 0;
}
static int dlpar_parse_id_type(char **cmd, struct pseries_hp_errorlog *hp_elog)
{
char *arg;
u32 count, index;
arg = strsep(cmd, " ");
if (!arg)
return -EINVAL;
if (sysfs_streq(arg, "indexed-count")) {
hp_elog->id_type = PSERIES_HP_ELOG_ID_DRC_IC;
arg = strsep(cmd, " ");
if (!arg) {
pr_err("No DRC count specified.\n");
return -EINVAL;
}
if (kstrtou32(arg, 0, &count)) {
pr_err("Invalid DRC count specified.\n");
return -EINVAL;
}
arg = strsep(cmd, " ");
if (!arg) {
pr_err("No DRC Index specified.\n");
return -EINVAL;
}
if (kstrtou32(arg, 0, &index)) {
pr_err("Invalid DRC Index specified.\n");
return -EINVAL;
}
hp_elog->_drc_u.ic.count = cpu_to_be32(count);
hp_elog->_drc_u.ic.index = cpu_to_be32(index);
} else if (sysfs_streq(arg, "index")) {
hp_elog->id_type = PSERIES_HP_ELOG_ID_DRC_INDEX;
arg = strsep(cmd, " ");
if (!arg) {
pr_err("No DRC Index specified.\n");
return -EINVAL;
}
if (kstrtou32(arg, 0, &index)) {
pr_err("Invalid DRC Index specified.\n");
return -EINVAL;
}
hp_elog->_drc_u.drc_index = cpu_to_be32(index);
} else if (sysfs_streq(arg, "count")) {
hp_elog->id_type = PSERIES_HP_ELOG_ID_DRC_COUNT;
arg = strsep(cmd, " ");
if (!arg) {
pr_err("No DRC count specified.\n");
return -EINVAL;
}
if (kstrtou32(arg, 0, &count)) {
pr_err("Invalid DRC count specified.\n");
return -EINVAL;
}
hp_elog->_drc_u.drc_count = cpu_to_be32(count);
} else {
pr_err("Invalid id_type specified.\n");
return -EINVAL;
}
return 0;
}
static ssize_t dlpar_store(struct class *class, struct class_attribute *attr,
const char *buf, size_t count)
{
struct pseries_hp_errorlog hp_elog;
char *argbuf;
char *args;
int rc;
args = argbuf = kstrdup(buf, GFP_KERNEL);
if (!argbuf) {
pr_info("Could not allocate resources for DLPAR operation\n");
kfree(argbuf);
return -ENOMEM;
}
/*
* Parse out the request from the user, this will be in the form:
* <resource> <action> <id_type> <id>
*/
rc = dlpar_parse_resource(&args, &hp_elog);
if (rc)
goto dlpar_store_out;
rc = dlpar_parse_action(&args, &hp_elog);
if (rc)
goto dlpar_store_out;
rc = dlpar_parse_id_type(&args, &hp_elog);
if (rc)
goto dlpar_store_out;
rc = handle_dlpar_errorlog(&hp_elog);
dlpar_store_out:
kfree(argbuf);
if (rc)
pr_err("Could not handle DLPAR request \"%s\"\n", buf);
return rc ? rc : count;
}
static ssize_t dlpar_show(struct class *class, struct class_attribute *attr,
char *buf)
{
return sprintf(buf, "%s\n", "memory,cpu");
}
static CLASS_ATTR_RW(dlpar);
int __init dlpar_workqueue_init(void)
{
if (pseries_hp_wq)
return 0;
pseries_hp_wq = alloc_workqueue("pseries hotplug workqueue",
WQ_UNBOUND, 1);
return pseries_hp_wq ? 0 : -ENOMEM;
}
static int __init dlpar_sysfs_init(void)
{
int rc;
rc = dlpar_workqueue_init();
if (rc)
return rc;
return sysfs_create_file(kernel_kobj, &class_attr_dlpar.attr);
}
machine_device_initcall(pseries, dlpar_sysfs_init);