OpenCloudOS-Kernel/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c

2286 lines
57 KiB
C

/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include <linux/dma-fence-array.h>
#include <linux/interval_tree_generic.h>
#include <drm/drmP.h>
#include <drm/amdgpu_drm.h>
#include "amdgpu.h"
#include "amdgpu_trace.h"
/*
* GPUVM
* GPUVM is similar to the legacy gart on older asics, however
* rather than there being a single global gart table
* for the entire GPU, there are multiple VM page tables active
* at any given time. The VM page tables can contain a mix
* vram pages and system memory pages and system memory pages
* can be mapped as snooped (cached system pages) or unsnooped
* (uncached system pages).
* Each VM has an ID associated with it and there is a page table
* associated with each VMID. When execting a command buffer,
* the kernel tells the the ring what VMID to use for that command
* buffer. VMIDs are allocated dynamically as commands are submitted.
* The userspace drivers maintain their own address space and the kernel
* sets up their pages tables accordingly when they submit their
* command buffers and a VMID is assigned.
* Cayman/Trinity support up to 8 active VMs at any given time;
* SI supports 16.
*/
#define START(node) ((node)->start)
#define LAST(node) ((node)->last)
INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
START, LAST, static, amdgpu_vm_it)
#undef START
#undef LAST
/* Local structure. Encapsulate some VM table update parameters to reduce
* the number of function parameters
*/
struct amdgpu_pte_update_params {
/* amdgpu device we do this update for */
struct amdgpu_device *adev;
/* optional amdgpu_vm we do this update for */
struct amdgpu_vm *vm;
/* address where to copy page table entries from */
uint64_t src;
/* indirect buffer to fill with commands */
struct amdgpu_ib *ib;
/* Function which actually does the update */
void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
uint64_t addr, unsigned count, uint32_t incr,
uint64_t flags);
/* indicate update pt or its shadow */
bool shadow;
};
/* Helper to disable partial resident texture feature from a fence callback */
struct amdgpu_prt_cb {
struct amdgpu_device *adev;
struct dma_fence_cb cb;
};
/**
* amdgpu_vm_num_entries - return the number of entries in a PD/PT
*
* @adev: amdgpu_device pointer
*
* Calculate the number of entries in a page directory or page table.
*/
static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
unsigned level)
{
if (level == 0)
/* For the root directory */
return adev->vm_manager.max_pfn >>
(adev->vm_manager.block_size *
adev->vm_manager.num_level);
else if (level == adev->vm_manager.num_level)
/* For the page tables on the leaves */
return AMDGPU_VM_PTE_COUNT(adev);
else
/* Everything in between */
return 1 << adev->vm_manager.block_size;
}
/**
* amdgpu_vm_bo_size - returns the size of the BOs in bytes
*
* @adev: amdgpu_device pointer
*
* Calculate the size of the BO for a page directory or page table in bytes.
*/
static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
{
return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
}
/**
* amdgpu_vm_get_pd_bo - add the VM PD to a validation list
*
* @vm: vm providing the BOs
* @validated: head of validation list
* @entry: entry to add
*
* Add the page directory to the list of BOs to
* validate for command submission.
*/
void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
struct list_head *validated,
struct amdgpu_bo_list_entry *entry)
{
entry->robj = vm->root.bo;
entry->priority = 0;
entry->tv.bo = &entry->robj->tbo;
entry->tv.shared = true;
entry->user_pages = NULL;
list_add(&entry->tv.head, validated);
}
/**
* amdgpu_vm_validate_layer - validate a single page table level
*
* @parent: parent page table level
* @validate: callback to do the validation
* @param: parameter for the validation callback
*
* Validate the page table BOs on command submission if neccessary.
*/
static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent,
int (*validate)(void *, struct amdgpu_bo *),
void *param)
{
unsigned i;
int r;
if (!parent->entries)
return 0;
for (i = 0; i <= parent->last_entry_used; ++i) {
struct amdgpu_vm_pt *entry = &parent->entries[i];
if (!entry->bo)
continue;
r = validate(param, entry->bo);
if (r)
return r;
/*
* Recurse into the sub directory. This is harmless because we
* have only a maximum of 5 layers.
*/
r = amdgpu_vm_validate_level(entry, validate, param);
if (r)
return r;
}
return r;
}
/**
* amdgpu_vm_validate_pt_bos - validate the page table BOs
*
* @adev: amdgpu device pointer
* @vm: vm providing the BOs
* @validate: callback to do the validation
* @param: parameter for the validation callback
*
* Validate the page table BOs on command submission if neccessary.
*/
int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
int (*validate)(void *p, struct amdgpu_bo *bo),
void *param)
{
uint64_t num_evictions;
/* We only need to validate the page tables
* if they aren't already valid.
*/
num_evictions = atomic64_read(&adev->num_evictions);
if (num_evictions == vm->last_eviction_counter)
return 0;
return amdgpu_vm_validate_level(&vm->root, validate, param);
}
/**
* amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail
*
* @adev: amdgpu device instance
* @vm: vm providing the BOs
*
* Move the PT BOs to the tail of the LRU.
*/
static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent)
{
unsigned i;
if (!parent->entries)
return;
for (i = 0; i <= parent->last_entry_used; ++i) {
struct amdgpu_vm_pt *entry = &parent->entries[i];
if (!entry->bo)
continue;
ttm_bo_move_to_lru_tail(&entry->bo->tbo);
amdgpu_vm_move_level_in_lru(entry);
}
}
/**
* amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
*
* @adev: amdgpu device instance
* @vm: vm providing the BOs
*
* Move the PT BOs to the tail of the LRU.
*/
void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
struct ttm_bo_global *glob = adev->mman.bdev.glob;
spin_lock(&glob->lru_lock);
amdgpu_vm_move_level_in_lru(&vm->root);
spin_unlock(&glob->lru_lock);
}
/**
* amdgpu_vm_alloc_levels - allocate the PD/PT levels
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @saddr: start of the address range
* @eaddr: end of the address range
*
* Make sure the page directories and page tables are allocated
*/
static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_vm_pt *parent,
uint64_t saddr, uint64_t eaddr,
unsigned level)
{
unsigned shift = (adev->vm_manager.num_level - level) *
adev->vm_manager.block_size;
unsigned pt_idx, from, to;
int r;
if (!parent->entries) {
unsigned num_entries = amdgpu_vm_num_entries(adev, level);
parent->entries = drm_calloc_large(num_entries,
sizeof(struct amdgpu_vm_pt));
if (!parent->entries)
return -ENOMEM;
memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
}
from = saddr >> shift;
to = eaddr >> shift;
if (from >= amdgpu_vm_num_entries(adev, level) ||
to >= amdgpu_vm_num_entries(adev, level))
return -EINVAL;
if (to > parent->last_entry_used)
parent->last_entry_used = to;
++level;
saddr = saddr & ((1 << shift) - 1);
eaddr = eaddr & ((1 << shift) - 1);
/* walk over the address space and allocate the page tables */
for (pt_idx = from; pt_idx <= to; ++pt_idx) {
struct reservation_object *resv = vm->root.bo->tbo.resv;
struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
struct amdgpu_bo *pt;
if (!entry->bo) {
r = amdgpu_bo_create(adev,
amdgpu_vm_bo_size(adev, level),
AMDGPU_GPU_PAGE_SIZE, true,
AMDGPU_GEM_DOMAIN_VRAM,
AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
AMDGPU_GEM_CREATE_SHADOW |
AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
AMDGPU_GEM_CREATE_VRAM_CLEARED,
NULL, resv, &pt);
if (r)
return r;
/* Keep a reference to the root directory to avoid
* freeing them up in the wrong order.
*/
pt->parent = amdgpu_bo_ref(vm->root.bo);
entry->bo = pt;
entry->addr = 0;
}
if (level < adev->vm_manager.num_level) {
uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
((1 << shift) - 1);
r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
sub_eaddr, level);
if (r)
return r;
}
}
return 0;
}
/**
* amdgpu_vm_alloc_pts - Allocate page tables.
*
* @adev: amdgpu_device pointer
* @vm: VM to allocate page tables for
* @saddr: Start address which needs to be allocated
* @size: Size from start address we need.
*
* Make sure the page tables are allocated.
*/
int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
uint64_t saddr, uint64_t size)
{
uint64_t last_pfn;
uint64_t eaddr;
/* validate the parameters */
if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
return -EINVAL;
eaddr = saddr + size - 1;
last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
if (last_pfn >= adev->vm_manager.max_pfn) {
dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
last_pfn, adev->vm_manager.max_pfn);
return -EINVAL;
}
saddr /= AMDGPU_GPU_PAGE_SIZE;
eaddr /= AMDGPU_GPU_PAGE_SIZE;
return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
}
/**
* amdgpu_vm_had_gpu_reset - check if reset occured since last use
*
* @adev: amdgpu_device pointer
* @id: VMID structure
*
* Check if GPU reset occured since last use of the VMID.
*/
static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
struct amdgpu_vm_id *id)
{
return id->current_gpu_reset_count !=
atomic_read(&adev->gpu_reset_counter);
}
/**
* amdgpu_vm_grab_id - allocate the next free VMID
*
* @vm: vm to allocate id for
* @ring: ring we want to submit job to
* @sync: sync object where we add dependencies
* @fence: fence protecting ID from reuse
*
* Allocate an id for the vm, adding fences to the sync obj as necessary.
*/
int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
struct amdgpu_sync *sync, struct dma_fence *fence,
struct amdgpu_job *job)
{
struct amdgpu_device *adev = ring->adev;
uint64_t fence_context = adev->fence_context + ring->idx;
struct dma_fence *updates = sync->last_vm_update;
struct amdgpu_vm_id *id, *idle;
struct dma_fence **fences;
unsigned i;
int r = 0;
fences = kmalloc_array(sizeof(void *), adev->vm_manager.num_ids,
GFP_KERNEL);
if (!fences)
return -ENOMEM;
mutex_lock(&adev->vm_manager.lock);
/* Check if we have an idle VMID */
i = 0;
list_for_each_entry(idle, &adev->vm_manager.ids_lru, list) {
fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
if (!fences[i])
break;
++i;
}
/* If we can't find a idle VMID to use, wait till one becomes available */
if (&idle->list == &adev->vm_manager.ids_lru) {
u64 fence_context = adev->vm_manager.fence_context + ring->idx;
unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
struct dma_fence_array *array;
unsigned j;
for (j = 0; j < i; ++j)
dma_fence_get(fences[j]);
array = dma_fence_array_create(i, fences, fence_context,
seqno, true);
if (!array) {
for (j = 0; j < i; ++j)
dma_fence_put(fences[j]);
kfree(fences);
r = -ENOMEM;
goto error;
}
r = amdgpu_sync_fence(ring->adev, sync, &array->base);
dma_fence_put(&array->base);
if (r)
goto error;
mutex_unlock(&adev->vm_manager.lock);
return 0;
}
kfree(fences);
job->vm_needs_flush = true;
/* Check if we can use a VMID already assigned to this VM */
i = ring->idx;
do {
struct dma_fence *flushed;
id = vm->ids[i++];
if (i == AMDGPU_MAX_RINGS)
i = 0;
/* Check all the prerequisites to using this VMID */
if (!id)
continue;
if (amdgpu_vm_had_gpu_reset(adev, id))
continue;
if (atomic64_read(&id->owner) != vm->client_id)
continue;
if (job->vm_pd_addr != id->pd_gpu_addr)
continue;
if (!id->last_flush)
continue;
if (id->last_flush->context != fence_context &&
!dma_fence_is_signaled(id->last_flush))
continue;
flushed = id->flushed_updates;
if (updates &&
(!flushed || dma_fence_is_later(updates, flushed)))
continue;
/* Good we can use this VMID. Remember this submission as
* user of the VMID.
*/
r = amdgpu_sync_fence(ring->adev, &id->active, fence);
if (r)
goto error;
list_move_tail(&id->list, &adev->vm_manager.ids_lru);
vm->ids[ring->idx] = id;
job->vm_id = id - adev->vm_manager.ids;
job->vm_needs_flush = false;
trace_amdgpu_vm_grab_id(vm, ring->idx, job);
mutex_unlock(&adev->vm_manager.lock);
return 0;
} while (i != ring->idx);
/* Still no ID to use? Then use the idle one found earlier */
id = idle;
/* Remember this submission as user of the VMID */
r = amdgpu_sync_fence(ring->adev, &id->active, fence);
if (r)
goto error;
dma_fence_put(id->last_flush);
id->last_flush = NULL;
dma_fence_put(id->flushed_updates);
id->flushed_updates = dma_fence_get(updates);
id->pd_gpu_addr = job->vm_pd_addr;
id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
list_move_tail(&id->list, &adev->vm_manager.ids_lru);
atomic64_set(&id->owner, vm->client_id);
vm->ids[ring->idx] = id;
job->vm_id = id - adev->vm_manager.ids;
trace_amdgpu_vm_grab_id(vm, ring->idx, job);
error:
mutex_unlock(&adev->vm_manager.lock);
return r;
}
static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
const struct amdgpu_ip_block *ip_block;
if (ring->funcs->type != AMDGPU_RING_TYPE_COMPUTE)
/* only compute rings */
return false;
ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
if (!ip_block)
return false;
if (ip_block->version->major <= 7) {
/* gfx7 has no workaround */
return true;
} else if (ip_block->version->major == 8) {
if (adev->gfx.mec_fw_version >= 673)
/* gfx8 is fixed in MEC firmware 673 */
return false;
else
return true;
}
return false;
}
static u64 amdgpu_vm_adjust_mc_addr(struct amdgpu_device *adev, u64 mc_addr)
{
u64 addr = mc_addr;
if (adev->gart.gart_funcs->adjust_mc_addr)
addr = adev->gart.gart_funcs->adjust_mc_addr(adev, addr);
return addr;
}
/**
* amdgpu_vm_flush - hardware flush the vm
*
* @ring: ring to use for flush
* @vm_id: vmid number to use
* @pd_addr: address of the page directory
*
* Emit a VM flush when it is necessary.
*/
int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_vm_id *id = &adev->vm_manager.ids[job->vm_id];
bool gds_switch_needed = ring->funcs->emit_gds_switch && (
id->gds_base != job->gds_base ||
id->gds_size != job->gds_size ||
id->gws_base != job->gws_base ||
id->gws_size != job->gws_size ||
id->oa_base != job->oa_base ||
id->oa_size != job->oa_size);
bool vm_flush_needed = job->vm_needs_flush ||
amdgpu_vm_ring_has_compute_vm_bug(ring);
unsigned patch_offset = 0;
int r;
if (amdgpu_vm_had_gpu_reset(adev, id)) {
gds_switch_needed = true;
vm_flush_needed = true;
}
if (!vm_flush_needed && !gds_switch_needed)
return 0;
if (ring->funcs->init_cond_exec)
patch_offset = amdgpu_ring_init_cond_exec(ring);
if (ring->funcs->emit_pipeline_sync)
amdgpu_ring_emit_pipeline_sync(ring);
if (ring->funcs->emit_vm_flush && vm_flush_needed) {
u64 pd_addr = amdgpu_vm_adjust_mc_addr(adev, job->vm_pd_addr);
struct dma_fence *fence;
trace_amdgpu_vm_flush(pd_addr, ring->idx, job->vm_id);
amdgpu_ring_emit_vm_flush(ring, job->vm_id, pd_addr);
r = amdgpu_fence_emit(ring, &fence);
if (r)
return r;
mutex_lock(&adev->vm_manager.lock);
dma_fence_put(id->last_flush);
id->last_flush = fence;
mutex_unlock(&adev->vm_manager.lock);
}
if (gds_switch_needed) {
id->gds_base = job->gds_base;
id->gds_size = job->gds_size;
id->gws_base = job->gws_base;
id->gws_size = job->gws_size;
id->oa_base = job->oa_base;
id->oa_size = job->oa_size;
amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
job->gds_size, job->gws_base,
job->gws_size, job->oa_base,
job->oa_size);
}
if (ring->funcs->patch_cond_exec)
amdgpu_ring_patch_cond_exec(ring, patch_offset);
/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
if (ring->funcs->emit_switch_buffer) {
amdgpu_ring_emit_switch_buffer(ring);
amdgpu_ring_emit_switch_buffer(ring);
}
return 0;
}
/**
* amdgpu_vm_reset_id - reset VMID to zero
*
* @adev: amdgpu device structure
* @vm_id: vmid number to use
*
* Reset saved GDW, GWS and OA to force switch on next flush.
*/
void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id)
{
struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id];
id->gds_base = 0;
id->gds_size = 0;
id->gws_base = 0;
id->gws_size = 0;
id->oa_base = 0;
id->oa_size = 0;
}
/**
* amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
*
* @vm: requested vm
* @bo: requested buffer object
*
* Find @bo inside the requested vm.
* Search inside the @bos vm list for the requested vm
* Returns the found bo_va or NULL if none is found
*
* Object has to be reserved!
*/
struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
struct amdgpu_bo *bo)
{
struct amdgpu_bo_va *bo_va;
list_for_each_entry(bo_va, &bo->va, bo_list) {
if (bo_va->vm == vm) {
return bo_va;
}
}
return NULL;
}
/**
* amdgpu_vm_do_set_ptes - helper to call the right asic function
*
* @params: see amdgpu_pte_update_params definition
* @pe: addr of the page entry
* @addr: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
* @flags: hw access flags
*
* Traces the parameters and calls the right asic functions
* to setup the page table using the DMA.
*/
static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
uint64_t pe, uint64_t addr,
unsigned count, uint32_t incr,
uint64_t flags)
{
trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
if (count < 3) {
amdgpu_vm_write_pte(params->adev, params->ib, pe,
addr | flags, count, incr);
} else {
amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
count, incr, flags);
}
}
/**
* amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
*
* @params: see amdgpu_pte_update_params definition
* @pe: addr of the page entry
* @addr: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
* @flags: hw access flags
*
* Traces the parameters and calls the DMA function to copy the PTEs.
*/
static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
uint64_t pe, uint64_t addr,
unsigned count, uint32_t incr,
uint64_t flags)
{
uint64_t src = (params->src + (addr >> 12) * 8);
trace_amdgpu_vm_copy_ptes(pe, src, count);
amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
}
/**
* amdgpu_vm_map_gart - Resolve gart mapping of addr
*
* @pages_addr: optional DMA address to use for lookup
* @addr: the unmapped addr
*
* Look up the physical address of the page that the pte resolves
* to and return the pointer for the page table entry.
*/
static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
{
uint64_t result;
/* page table offset */
result = pages_addr[addr >> PAGE_SHIFT];
/* in case cpu page size != gpu page size*/
result |= addr & (~PAGE_MASK);
result &= 0xFFFFFFFFFFFFF000ULL;
return result;
}
/*
* amdgpu_vm_update_level - update a single level in the hierarchy
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @parent: parent directory
*
* Makes sure all entries in @parent are up to date.
* Returns 0 for success, error for failure.
*/
static int amdgpu_vm_update_level(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_vm_pt *parent,
unsigned level)
{
struct amdgpu_bo *shadow;
struct amdgpu_ring *ring;
uint64_t pd_addr, shadow_addr;
uint32_t incr = amdgpu_vm_bo_size(adev, level + 1);
uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
unsigned count = 0, pt_idx, ndw;
struct amdgpu_job *job;
struct amdgpu_pte_update_params params;
struct dma_fence *fence = NULL;
int r;
if (!parent->entries)
return 0;
ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
/* padding, etc. */
ndw = 64;
/* assume the worst case */
ndw += parent->last_entry_used * 6;
pd_addr = amdgpu_bo_gpu_offset(parent->bo);
shadow = parent->bo->shadow;
if (shadow) {
r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem);
if (r)
return r;
shadow_addr = amdgpu_bo_gpu_offset(shadow);
ndw *= 2;
} else {
shadow_addr = 0;
}
r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
if (r)
return r;
memset(&params, 0, sizeof(params));
params.adev = adev;
params.ib = &job->ibs[0];
/* walk over the address space and update the directory */
for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
struct amdgpu_bo *bo = parent->entries[pt_idx].bo;
uint64_t pde, pt;
if (bo == NULL)
continue;
if (bo->shadow) {
struct amdgpu_bo *pt_shadow = bo->shadow;
r = amdgpu_ttm_bind(&pt_shadow->tbo,
&pt_shadow->tbo.mem);
if (r)
return r;
}
pt = amdgpu_bo_gpu_offset(bo);
if (parent->entries[pt_idx].addr == pt)
continue;
parent->entries[pt_idx].addr = pt;
pde = pd_addr + pt_idx * 8;
if (((last_pde + 8 * count) != pde) ||
((last_pt + incr * count) != pt) ||
(count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
if (count) {
uint64_t pt_addr =
amdgpu_vm_adjust_mc_addr(adev, last_pt);
if (shadow)
amdgpu_vm_do_set_ptes(&params,
last_shadow,
pt_addr, count,
incr,
AMDGPU_PTE_VALID);
amdgpu_vm_do_set_ptes(&params, last_pde,
pt_addr, count, incr,
AMDGPU_PTE_VALID);
}
count = 1;
last_pde = pde;
last_shadow = shadow_addr + pt_idx * 8;
last_pt = pt;
} else {
++count;
}
}
if (count) {
uint64_t pt_addr = amdgpu_vm_adjust_mc_addr(adev, last_pt);
if (vm->root.bo->shadow)
amdgpu_vm_do_set_ptes(&params, last_shadow, pt_addr,
count, incr, AMDGPU_PTE_VALID);
amdgpu_vm_do_set_ptes(&params, last_pde, pt_addr,
count, incr, AMDGPU_PTE_VALID);
}
if (params.ib->length_dw == 0) {
amdgpu_job_free(job);
} else {
amdgpu_ring_pad_ib(ring, params.ib);
amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv,
AMDGPU_FENCE_OWNER_VM);
if (shadow)
amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv,
AMDGPU_FENCE_OWNER_VM);
WARN_ON(params.ib->length_dw > ndw);
r = amdgpu_job_submit(job, ring, &vm->entity,
AMDGPU_FENCE_OWNER_VM, &fence);
if (r)
goto error_free;
amdgpu_bo_fence(parent->bo, fence, true);
dma_fence_put(vm->last_dir_update);
vm->last_dir_update = dma_fence_get(fence);
dma_fence_put(fence);
}
/*
* Recurse into the subdirectories. This recursion is harmless because
* we only have a maximum of 5 layers.
*/
for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
if (!entry->bo)
continue;
r = amdgpu_vm_update_level(adev, vm, entry, level + 1);
if (r)
return r;
}
return 0;
error_free:
amdgpu_job_free(job);
return r;
}
/*
* amdgpu_vm_update_directories - make sure that all directories are valid
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Makes sure all directories are up to date.
* Returns 0 for success, error for failure.
*/
int amdgpu_vm_update_directories(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
return amdgpu_vm_update_level(adev, vm, &vm->root, 0);
}
/**
* amdgpu_vm_find_pt - find the page table for an address
*
* @p: see amdgpu_pte_update_params definition
* @addr: virtual address in question
*
* Find the page table BO for a virtual address, return NULL when none found.
*/
static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p,
uint64_t addr)
{
struct amdgpu_vm_pt *entry = &p->vm->root;
unsigned idx, level = p->adev->vm_manager.num_level;
while (entry->entries) {
idx = addr >> (p->adev->vm_manager.block_size * level--);
idx %= amdgpu_bo_size(entry->bo) / 8;
entry = &entry->entries[idx];
}
if (level)
return NULL;
return entry->bo;
}
/**
* amdgpu_vm_update_ptes - make sure that page tables are valid
*
* @params: see amdgpu_pte_update_params definition
* @vm: requested vm
* @start: start of GPU address range
* @end: end of GPU address range
* @dst: destination address to map to, the next dst inside the function
* @flags: mapping flags
*
* Update the page tables in the range @start - @end.
*/
static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
uint64_t start, uint64_t end,
uint64_t dst, uint64_t flags)
{
struct amdgpu_device *adev = params->adev;
const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
uint64_t cur_pe_start, cur_nptes, cur_dst;
uint64_t addr; /* next GPU address to be updated */
struct amdgpu_bo *pt;
unsigned nptes; /* next number of ptes to be updated */
uint64_t next_pe_start;
/* initialize the variables */
addr = start;
pt = amdgpu_vm_get_pt(params, addr);
if (!pt) {
pr_err("PT not found, aborting update_ptes\n");
return;
}
if (params->shadow) {
if (!pt->shadow)
return;
pt = pt->shadow;
}
if ((addr & ~mask) == (end & ~mask))
nptes = end - addr;
else
nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
cur_pe_start = amdgpu_bo_gpu_offset(pt);
cur_pe_start += (addr & mask) * 8;
cur_nptes = nptes;
cur_dst = dst;
/* for next ptb*/
addr += nptes;
dst += nptes * AMDGPU_GPU_PAGE_SIZE;
/* walk over the address space and update the page tables */
while (addr < end) {
pt = amdgpu_vm_get_pt(params, addr);
if (!pt) {
pr_err("PT not found, aborting update_ptes\n");
return;
}
if (params->shadow) {
if (!pt->shadow)
return;
pt = pt->shadow;
}
if ((addr & ~mask) == (end & ~mask))
nptes = end - addr;
else
nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
next_pe_start = amdgpu_bo_gpu_offset(pt);
next_pe_start += (addr & mask) * 8;
if ((cur_pe_start + 8 * cur_nptes) == next_pe_start &&
((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) {
/* The next ptb is consecutive to current ptb.
* Don't call the update function now.
* Will update two ptbs together in future.
*/
cur_nptes += nptes;
} else {
params->func(params, cur_pe_start, cur_dst, cur_nptes,
AMDGPU_GPU_PAGE_SIZE, flags);
cur_pe_start = next_pe_start;
cur_nptes = nptes;
cur_dst = dst;
}
/* for next ptb*/
addr += nptes;
dst += nptes * AMDGPU_GPU_PAGE_SIZE;
}
params->func(params, cur_pe_start, cur_dst, cur_nptes,
AMDGPU_GPU_PAGE_SIZE, flags);
}
/*
* amdgpu_vm_frag_ptes - add fragment information to PTEs
*
* @params: see amdgpu_pte_update_params definition
* @vm: requested vm
* @start: first PTE to handle
* @end: last PTE to handle
* @dst: addr those PTEs should point to
* @flags: hw mapping flags
*/
static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params,
uint64_t start, uint64_t end,
uint64_t dst, uint64_t flags)
{
/**
* The MC L1 TLB supports variable sized pages, based on a fragment
* field in the PTE. When this field is set to a non-zero value, page
* granularity is increased from 4KB to (1 << (12 + frag)). The PTE
* flags are considered valid for all PTEs within the fragment range
* and corresponding mappings are assumed to be physically contiguous.
*
* The L1 TLB can store a single PTE for the whole fragment,
* significantly increasing the space available for translation
* caching. This leads to large improvements in throughput when the
* TLB is under pressure.
*
* The L2 TLB distributes small and large fragments into two
* asymmetric partitions. The large fragment cache is significantly
* larger. Thus, we try to use large fragments wherever possible.
* Userspace can support this by aligning virtual base address and
* allocation size to the fragment size.
*/
/* SI and newer are optimized for 64KB */
uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG);
uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG;
uint64_t frag_start = ALIGN(start, frag_align);
uint64_t frag_end = end & ~(frag_align - 1);
/* system pages are non continuously */
if (params->src || !(flags & AMDGPU_PTE_VALID) ||
(frag_start >= frag_end)) {
amdgpu_vm_update_ptes(params, start, end, dst, flags);
return;
}
/* handle the 4K area at the beginning */
if (start != frag_start) {
amdgpu_vm_update_ptes(params, start, frag_start,
dst, flags);
dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
}
/* handle the area in the middle */
amdgpu_vm_update_ptes(params, frag_start, frag_end, dst,
flags | frag_flags);
/* handle the 4K area at the end */
if (frag_end != end) {
dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
amdgpu_vm_update_ptes(params, frag_end, end, dst, flags);
}
}
/**
* amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
*
* @adev: amdgpu_device pointer
* @exclusive: fence we need to sync to
* @src: address where to copy page table entries from
* @pages_addr: DMA addresses to use for mapping
* @vm: requested vm
* @start: start of mapped range
* @last: last mapped entry
* @flags: flags for the entries
* @addr: addr to set the area to
* @fence: optional resulting fence
*
* Fill in the page table entries between @start and @last.
* Returns 0 for success, -EINVAL for failure.
*/
static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
struct dma_fence *exclusive,
uint64_t src,
dma_addr_t *pages_addr,
struct amdgpu_vm *vm,
uint64_t start, uint64_t last,
uint64_t flags, uint64_t addr,
struct dma_fence **fence)
{
struct amdgpu_ring *ring;
void *owner = AMDGPU_FENCE_OWNER_VM;
unsigned nptes, ncmds, ndw;
struct amdgpu_job *job;
struct amdgpu_pte_update_params params;
struct dma_fence *f = NULL;
int r;
memset(&params, 0, sizeof(params));
params.adev = adev;
params.vm = vm;
params.src = src;
ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
/* sync to everything on unmapping */
if (!(flags & AMDGPU_PTE_VALID))
owner = AMDGPU_FENCE_OWNER_UNDEFINED;
nptes = last - start + 1;
/*
* reserve space for one command every (1 << BLOCK_SIZE)
* entries or 2k dwords (whatever is smaller)
*/
ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1;
/* padding, etc. */
ndw = 64;
if (src) {
/* only copy commands needed */
ndw += ncmds * 7;
params.func = amdgpu_vm_do_copy_ptes;
} else if (pages_addr) {
/* copy commands needed */
ndw += ncmds * 7;
/* and also PTEs */
ndw += nptes * 2;
params.func = amdgpu_vm_do_copy_ptes;
} else {
/* set page commands needed */
ndw += ncmds * 10;
/* two extra commands for begin/end of fragment */
ndw += 2 * 10;
params.func = amdgpu_vm_do_set_ptes;
}
r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
if (r)
return r;
params.ib = &job->ibs[0];
if (!src && pages_addr) {
uint64_t *pte;
unsigned i;
/* Put the PTEs at the end of the IB. */
i = ndw - nptes * 2;
pte= (uint64_t *)&(job->ibs->ptr[i]);
params.src = job->ibs->gpu_addr + i * 4;
for (i = 0; i < nptes; ++i) {
pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
AMDGPU_GPU_PAGE_SIZE);
pte[i] |= flags;
}
addr = 0;
}
r = amdgpu_sync_fence(adev, &job->sync, exclusive);
if (r)
goto error_free;
r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv,
owner);
if (r)
goto error_free;
r = reservation_object_reserve_shared(vm->root.bo->tbo.resv);
if (r)
goto error_free;
params.shadow = true;
amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
params.shadow = false;
amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
amdgpu_ring_pad_ib(ring, params.ib);
WARN_ON(params.ib->length_dw > ndw);
r = amdgpu_job_submit(job, ring, &vm->entity,
AMDGPU_FENCE_OWNER_VM, &f);
if (r)
goto error_free;
amdgpu_bo_fence(vm->root.bo, f, true);
dma_fence_put(*fence);
*fence = f;
return 0;
error_free:
amdgpu_job_free(job);
return r;
}
/**
* amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
*
* @adev: amdgpu_device pointer
* @exclusive: fence we need to sync to
* @gtt_flags: flags as they are used for GTT
* @pages_addr: DMA addresses to use for mapping
* @vm: requested vm
* @mapping: mapped range and flags to use for the update
* @flags: HW flags for the mapping
* @nodes: array of drm_mm_nodes with the MC addresses
* @fence: optional resulting fence
*
* Split the mapping into smaller chunks so that each update fits
* into a SDMA IB.
* Returns 0 for success, -EINVAL for failure.
*/
static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
struct dma_fence *exclusive,
uint64_t gtt_flags,
dma_addr_t *pages_addr,
struct amdgpu_vm *vm,
struct amdgpu_bo_va_mapping *mapping,
uint64_t flags,
struct drm_mm_node *nodes,
struct dma_fence **fence)
{
uint64_t pfn, src = 0, start = mapping->start;
int r;
/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
* but in case of something, we filter the flags in first place
*/
if (!(mapping->flags & AMDGPU_PTE_READABLE))
flags &= ~AMDGPU_PTE_READABLE;
if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
flags &= ~AMDGPU_PTE_WRITEABLE;
flags &= ~AMDGPU_PTE_EXECUTABLE;
flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
flags &= ~AMDGPU_PTE_MTYPE_MASK;
flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
trace_amdgpu_vm_bo_update(mapping);
pfn = mapping->offset >> PAGE_SHIFT;
if (nodes) {
while (pfn >= nodes->size) {
pfn -= nodes->size;
++nodes;
}
}
do {
uint64_t max_entries;
uint64_t addr, last;
if (nodes) {
addr = nodes->start << PAGE_SHIFT;
max_entries = (nodes->size - pfn) *
(PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
} else {
addr = 0;
max_entries = S64_MAX;
}
if (pages_addr) {
if (flags == gtt_flags)
src = adev->gart.table_addr +
(addr >> AMDGPU_GPU_PAGE_SHIFT) * 8;
else
max_entries = min(max_entries, 16ull * 1024ull);
addr = 0;
} else if (flags & AMDGPU_PTE_VALID) {
addr += adev->vm_manager.vram_base_offset;
}
addr += pfn << PAGE_SHIFT;
last = min((uint64_t)mapping->last, start + max_entries - 1);
r = amdgpu_vm_bo_update_mapping(adev, exclusive,
src, pages_addr, vm,
start, last, flags, addr,
fence);
if (r)
return r;
pfn += last - start + 1;
if (nodes && nodes->size == pfn) {
pfn = 0;
++nodes;
}
start = last + 1;
} while (unlikely(start != mapping->last + 1));
return 0;
}
/**
* amdgpu_vm_bo_update - update all BO mappings in the vm page table
*
* @adev: amdgpu_device pointer
* @bo_va: requested BO and VM object
* @clear: if true clear the entries
*
* Fill in the page table entries for @bo_va.
* Returns 0 for success, -EINVAL for failure.
*/
int amdgpu_vm_bo_update(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
bool clear)
{
struct amdgpu_vm *vm = bo_va->vm;
struct amdgpu_bo_va_mapping *mapping;
dma_addr_t *pages_addr = NULL;
uint64_t gtt_flags, flags;
struct ttm_mem_reg *mem;
struct drm_mm_node *nodes;
struct dma_fence *exclusive;
int r;
if (clear || !bo_va->bo) {
mem = NULL;
nodes = NULL;
exclusive = NULL;
} else {
struct ttm_dma_tt *ttm;
mem = &bo_va->bo->tbo.mem;
nodes = mem->mm_node;
if (mem->mem_type == TTM_PL_TT) {
ttm = container_of(bo_va->bo->tbo.ttm, struct
ttm_dma_tt, ttm);
pages_addr = ttm->dma_address;
}
exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
}
if (bo_va->bo) {
flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) &&
adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ?
flags : 0;
} else {
flags = 0x0;
gtt_flags = ~0x0;
}
spin_lock(&vm->status_lock);
if (!list_empty(&bo_va->vm_status))
list_splice_init(&bo_va->valids, &bo_va->invalids);
spin_unlock(&vm->status_lock);
list_for_each_entry(mapping, &bo_va->invalids, list) {
r = amdgpu_vm_bo_split_mapping(adev, exclusive,
gtt_flags, pages_addr, vm,
mapping, flags, nodes,
&bo_va->last_pt_update);
if (r)
return r;
}
if (trace_amdgpu_vm_bo_mapping_enabled()) {
list_for_each_entry(mapping, &bo_va->valids, list)
trace_amdgpu_vm_bo_mapping(mapping);
list_for_each_entry(mapping, &bo_va->invalids, list)
trace_amdgpu_vm_bo_mapping(mapping);
}
spin_lock(&vm->status_lock);
list_splice_init(&bo_va->invalids, &bo_va->valids);
list_del_init(&bo_va->vm_status);
if (clear)
list_add(&bo_va->vm_status, &vm->cleared);
spin_unlock(&vm->status_lock);
return 0;
}
/**
* amdgpu_vm_update_prt_state - update the global PRT state
*/
static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
{
unsigned long flags;
bool enable;
spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
enable = !!atomic_read(&adev->vm_manager.num_prt_users);
adev->gart.gart_funcs->set_prt(adev, enable);
spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
}
/**
* amdgpu_vm_prt_get - add a PRT user
*/
static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
{
if (!adev->gart.gart_funcs->set_prt)
return;
if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
amdgpu_vm_update_prt_state(adev);
}
/**
* amdgpu_vm_prt_put - drop a PRT user
*/
static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
{
if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
amdgpu_vm_update_prt_state(adev);
}
/**
* amdgpu_vm_prt_cb - callback for updating the PRT status
*/
static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
{
struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
amdgpu_vm_prt_put(cb->adev);
kfree(cb);
}
/**
* amdgpu_vm_add_prt_cb - add callback for updating the PRT status
*/
static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
struct dma_fence *fence)
{
struct amdgpu_prt_cb *cb;
if (!adev->gart.gart_funcs->set_prt)
return;
cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
if (!cb) {
/* Last resort when we are OOM */
if (fence)
dma_fence_wait(fence, false);
amdgpu_vm_prt_put(adev);
} else {
cb->adev = adev;
if (!fence || dma_fence_add_callback(fence, &cb->cb,
amdgpu_vm_prt_cb))
amdgpu_vm_prt_cb(fence, &cb->cb);
}
}
/**
* amdgpu_vm_free_mapping - free a mapping
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @mapping: mapping to be freed
* @fence: fence of the unmap operation
*
* Free a mapping and make sure we decrease the PRT usage count if applicable.
*/
static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_bo_va_mapping *mapping,
struct dma_fence *fence)
{
if (mapping->flags & AMDGPU_PTE_PRT)
amdgpu_vm_add_prt_cb(adev, fence);
kfree(mapping);
}
/**
* amdgpu_vm_prt_fini - finish all prt mappings
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Register a cleanup callback to disable PRT support after VM dies.
*/
static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
struct reservation_object *resv = vm->root.bo->tbo.resv;
struct dma_fence *excl, **shared;
unsigned i, shared_count;
int r;
r = reservation_object_get_fences_rcu(resv, &excl,
&shared_count, &shared);
if (r) {
/* Not enough memory to grab the fence list, as last resort
* block for all the fences to complete.
*/
reservation_object_wait_timeout_rcu(resv, true, false,
MAX_SCHEDULE_TIMEOUT);
return;
}
/* Add a callback for each fence in the reservation object */
amdgpu_vm_prt_get(adev);
amdgpu_vm_add_prt_cb(adev, excl);
for (i = 0; i < shared_count; ++i) {
amdgpu_vm_prt_get(adev);
amdgpu_vm_add_prt_cb(adev, shared[i]);
}
kfree(shared);
}
/**
* amdgpu_vm_clear_freed - clear freed BOs in the PT
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @fence: optional resulting fence (unchanged if no work needed to be done
* or if an error occurred)
*
* Make sure all freed BOs are cleared in the PT.
* Returns 0 for success.
*
* PTs have to be reserved and mutex must be locked!
*/
int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct dma_fence **fence)
{
struct amdgpu_bo_va_mapping *mapping;
struct dma_fence *f = NULL;
int r;
while (!list_empty(&vm->freed)) {
mapping = list_first_entry(&vm->freed,
struct amdgpu_bo_va_mapping, list);
list_del(&mapping->list);
r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, NULL, vm, mapping,
0, 0, &f);
amdgpu_vm_free_mapping(adev, vm, mapping, f);
if (r) {
dma_fence_put(f);
return r;
}
}
if (fence && f) {
dma_fence_put(*fence);
*fence = f;
} else {
dma_fence_put(f);
}
return 0;
}
/**
* amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Make sure all invalidated BOs are cleared in the PT.
* Returns 0 for success.
*
* PTs have to be reserved and mutex must be locked!
*/
int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
struct amdgpu_vm *vm, struct amdgpu_sync *sync)
{
struct amdgpu_bo_va *bo_va = NULL;
int r = 0;
spin_lock(&vm->status_lock);
while (!list_empty(&vm->invalidated)) {
bo_va = list_first_entry(&vm->invalidated,
struct amdgpu_bo_va, vm_status);
spin_unlock(&vm->status_lock);
r = amdgpu_vm_bo_update(adev, bo_va, true);
if (r)
return r;
spin_lock(&vm->status_lock);
}
spin_unlock(&vm->status_lock);
if (bo_va)
r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
return r;
}
/**
* amdgpu_vm_bo_add - add a bo to a specific vm
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @bo: amdgpu buffer object
*
* Add @bo into the requested vm.
* Add @bo to the list of bos associated with the vm
* Returns newly added bo_va or NULL for failure
*
* Object has to be reserved!
*/
struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_bo *bo)
{
struct amdgpu_bo_va *bo_va;
bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
if (bo_va == NULL) {
return NULL;
}
bo_va->vm = vm;
bo_va->bo = bo;
bo_va->ref_count = 1;
INIT_LIST_HEAD(&bo_va->bo_list);
INIT_LIST_HEAD(&bo_va->valids);
INIT_LIST_HEAD(&bo_va->invalids);
INIT_LIST_HEAD(&bo_va->vm_status);
if (bo)
list_add_tail(&bo_va->bo_list, &bo->va);
return bo_va;
}
/**
* amdgpu_vm_bo_map - map bo inside a vm
*
* @adev: amdgpu_device pointer
* @bo_va: bo_va to store the address
* @saddr: where to map the BO
* @offset: requested offset in the BO
* @flags: attributes of pages (read/write/valid/etc.)
*
* Add a mapping of the BO at the specefied addr into the VM.
* Returns 0 for success, error for failure.
*
* Object has to be reserved and unreserved outside!
*/
int amdgpu_vm_bo_map(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
uint64_t saddr, uint64_t offset,
uint64_t size, uint64_t flags)
{
struct amdgpu_bo_va_mapping *mapping, *tmp;
struct amdgpu_vm *vm = bo_va->vm;
uint64_t eaddr;
/* validate the parameters */
if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
size == 0 || size & AMDGPU_GPU_PAGE_MASK)
return -EINVAL;
/* make sure object fit at this offset */
eaddr = saddr + size - 1;
if (saddr >= eaddr ||
(bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
return -EINVAL;
saddr /= AMDGPU_GPU_PAGE_SIZE;
eaddr /= AMDGPU_GPU_PAGE_SIZE;
tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
if (tmp) {
/* bo and tmp overlap, invalid addr */
dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
"0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr,
tmp->start, tmp->last + 1);
return -EINVAL;
}
mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping)
return -ENOMEM;
INIT_LIST_HEAD(&mapping->list);
mapping->start = saddr;
mapping->last = eaddr;
mapping->offset = offset;
mapping->flags = flags;
list_add(&mapping->list, &bo_va->invalids);
amdgpu_vm_it_insert(mapping, &vm->va);
if (flags & AMDGPU_PTE_PRT)
amdgpu_vm_prt_get(adev);
return 0;
}
/**
* amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
*
* @adev: amdgpu_device pointer
* @bo_va: bo_va to store the address
* @saddr: where to map the BO
* @offset: requested offset in the BO
* @flags: attributes of pages (read/write/valid/etc.)
*
* Add a mapping of the BO at the specefied addr into the VM. Replace existing
* mappings as we do so.
* Returns 0 for success, error for failure.
*
* Object has to be reserved and unreserved outside!
*/
int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
uint64_t saddr, uint64_t offset,
uint64_t size, uint64_t flags)
{
struct amdgpu_bo_va_mapping *mapping;
struct amdgpu_vm *vm = bo_va->vm;
uint64_t eaddr;
int r;
/* validate the parameters */
if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
size == 0 || size & AMDGPU_GPU_PAGE_MASK)
return -EINVAL;
/* make sure object fit at this offset */
eaddr = saddr + size - 1;
if (saddr >= eaddr ||
(bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
return -EINVAL;
/* Allocate all the needed memory */
mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping)
return -ENOMEM;
r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size);
if (r) {
kfree(mapping);
return r;
}
saddr /= AMDGPU_GPU_PAGE_SIZE;
eaddr /= AMDGPU_GPU_PAGE_SIZE;
mapping->start = saddr;
mapping->last = eaddr;
mapping->offset = offset;
mapping->flags = flags;
list_add(&mapping->list, &bo_va->invalids);
amdgpu_vm_it_insert(mapping, &vm->va);
if (flags & AMDGPU_PTE_PRT)
amdgpu_vm_prt_get(adev);
return 0;
}
/**
* amdgpu_vm_bo_unmap - remove bo mapping from vm
*
* @adev: amdgpu_device pointer
* @bo_va: bo_va to remove the address from
* @saddr: where to the BO is mapped
*
* Remove a mapping of the BO at the specefied addr from the VM.
* Returns 0 for success, error for failure.
*
* Object has to be reserved and unreserved outside!
*/
int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
uint64_t saddr)
{
struct amdgpu_bo_va_mapping *mapping;
struct amdgpu_vm *vm = bo_va->vm;
bool valid = true;
saddr /= AMDGPU_GPU_PAGE_SIZE;
list_for_each_entry(mapping, &bo_va->valids, list) {
if (mapping->start == saddr)
break;
}
if (&mapping->list == &bo_va->valids) {
valid = false;
list_for_each_entry(mapping, &bo_va->invalids, list) {
if (mapping->start == saddr)
break;
}
if (&mapping->list == &bo_va->invalids)
return -ENOENT;
}
list_del(&mapping->list);
amdgpu_vm_it_remove(mapping, &vm->va);
trace_amdgpu_vm_bo_unmap(bo_va, mapping);
if (valid)
list_add(&mapping->list, &vm->freed);
else
amdgpu_vm_free_mapping(adev, vm, mapping,
bo_va->last_pt_update);
return 0;
}
/**
* amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
*
* @adev: amdgpu_device pointer
* @vm: VM structure to use
* @saddr: start of the range
* @size: size of the range
*
* Remove all mappings in a range, split them as appropriate.
* Returns 0 for success, error for failure.
*/
int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
uint64_t saddr, uint64_t size)
{
struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
LIST_HEAD(removed);
uint64_t eaddr;
eaddr = saddr + size - 1;
saddr /= AMDGPU_GPU_PAGE_SIZE;
eaddr /= AMDGPU_GPU_PAGE_SIZE;
/* Allocate all the needed memory */
before = kzalloc(sizeof(*before), GFP_KERNEL);
if (!before)
return -ENOMEM;
INIT_LIST_HEAD(&before->list);
after = kzalloc(sizeof(*after), GFP_KERNEL);
if (!after) {
kfree(before);
return -ENOMEM;
}
INIT_LIST_HEAD(&after->list);
/* Now gather all removed mappings */
tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
while (tmp) {
/* Remember mapping split at the start */
if (tmp->start < saddr) {
before->start = tmp->start;
before->last = saddr - 1;
before->offset = tmp->offset;
before->flags = tmp->flags;
list_add(&before->list, &tmp->list);
}
/* Remember mapping split at the end */
if (tmp->last > eaddr) {
after->start = eaddr + 1;
after->last = tmp->last;
after->offset = tmp->offset;
after->offset += after->start - tmp->start;
after->flags = tmp->flags;
list_add(&after->list, &tmp->list);
}
list_del(&tmp->list);
list_add(&tmp->list, &removed);
tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
}
/* And free them up */
list_for_each_entry_safe(tmp, next, &removed, list) {
amdgpu_vm_it_remove(tmp, &vm->va);
list_del(&tmp->list);
if (tmp->start < saddr)
tmp->start = saddr;
if (tmp->last > eaddr)
tmp->last = eaddr;
list_add(&tmp->list, &vm->freed);
trace_amdgpu_vm_bo_unmap(NULL, tmp);
}
/* Insert partial mapping before the range */
if (!list_empty(&before->list)) {
amdgpu_vm_it_insert(before, &vm->va);
if (before->flags & AMDGPU_PTE_PRT)
amdgpu_vm_prt_get(adev);
} else {
kfree(before);
}
/* Insert partial mapping after the range */
if (!list_empty(&after->list)) {
amdgpu_vm_it_insert(after, &vm->va);
if (after->flags & AMDGPU_PTE_PRT)
amdgpu_vm_prt_get(adev);
} else {
kfree(after);
}
return 0;
}
/**
* amdgpu_vm_bo_rmv - remove a bo to a specific vm
*
* @adev: amdgpu_device pointer
* @bo_va: requested bo_va
*
* Remove @bo_va->bo from the requested vm.
*
* Object have to be reserved!
*/
void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va)
{
struct amdgpu_bo_va_mapping *mapping, *next;
struct amdgpu_vm *vm = bo_va->vm;
list_del(&bo_va->bo_list);
spin_lock(&vm->status_lock);
list_del(&bo_va->vm_status);
spin_unlock(&vm->status_lock);
list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
list_del(&mapping->list);
amdgpu_vm_it_remove(mapping, &vm->va);
trace_amdgpu_vm_bo_unmap(bo_va, mapping);
list_add(&mapping->list, &vm->freed);
}
list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
list_del(&mapping->list);
amdgpu_vm_it_remove(mapping, &vm->va);
amdgpu_vm_free_mapping(adev, vm, mapping,
bo_va->last_pt_update);
}
dma_fence_put(bo_va->last_pt_update);
kfree(bo_va);
}
/**
* amdgpu_vm_bo_invalidate - mark the bo as invalid
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @bo: amdgpu buffer object
*
* Mark @bo as invalid.
*/
void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
struct amdgpu_bo *bo)
{
struct amdgpu_bo_va *bo_va;
list_for_each_entry(bo_va, &bo->va, bo_list) {
spin_lock(&bo_va->vm->status_lock);
if (list_empty(&bo_va->vm_status))
list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
spin_unlock(&bo_va->vm->status_lock);
}
}
static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
{
/* Total bits covered by PD + PTs */
unsigned bits = ilog2(vm_size) + 18;
/* Make sure the PD is 4K in size up to 8GB address space.
Above that split equal between PD and PTs */
if (vm_size <= 8)
return (bits - 9);
else
return ((bits + 3) / 2);
}
/**
* amdgpu_vm_adjust_size - adjust vm size and block size
*
* @adev: amdgpu_device pointer
* @vm_size: the default vm size if it's set auto
*/
void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size)
{
/* adjust vm size firstly */
if (amdgpu_vm_size == -1)
adev->vm_manager.vm_size = vm_size;
else
adev->vm_manager.vm_size = amdgpu_vm_size;
/* block size depends on vm size */
if (amdgpu_vm_block_size == -1)
adev->vm_manager.block_size =
amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
else
adev->vm_manager.block_size = amdgpu_vm_block_size;
DRM_INFO("vm size is %llu GB, block size is %u-bit\n",
adev->vm_manager.vm_size, adev->vm_manager.block_size);
}
/**
* amdgpu_vm_init - initialize a vm instance
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Init @vm fields.
*/
int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
AMDGPU_VM_PTE_COUNT(adev) * 8);
unsigned ring_instance;
struct amdgpu_ring *ring;
struct amd_sched_rq *rq;
int i, r;
for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
vm->ids[i] = NULL;
vm->va = RB_ROOT;
vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
spin_lock_init(&vm->status_lock);
INIT_LIST_HEAD(&vm->invalidated);
INIT_LIST_HEAD(&vm->cleared);
INIT_LIST_HEAD(&vm->freed);
/* create scheduler entity for page table updates */
ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
ring_instance %= adev->vm_manager.vm_pte_num_rings;
ring = adev->vm_manager.vm_pte_rings[ring_instance];
rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
r = amd_sched_entity_init(&ring->sched, &vm->entity,
rq, amdgpu_sched_jobs);
if (r)
return r;
vm->last_dir_update = NULL;
r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
AMDGPU_GEM_DOMAIN_VRAM,
AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
AMDGPU_GEM_CREATE_SHADOW |
AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
AMDGPU_GEM_CREATE_VRAM_CLEARED,
NULL, NULL, &vm->root.bo);
if (r)
goto error_free_sched_entity;
r = amdgpu_bo_reserve(vm->root.bo, false);
if (r)
goto error_free_root;
vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
amdgpu_bo_unreserve(vm->root.bo);
return 0;
error_free_root:
amdgpu_bo_unref(&vm->root.bo->shadow);
amdgpu_bo_unref(&vm->root.bo);
vm->root.bo = NULL;
error_free_sched_entity:
amd_sched_entity_fini(&ring->sched, &vm->entity);
return r;
}
/**
* amdgpu_vm_free_levels - free PD/PT levels
*
* @level: PD/PT starting level to free
*
* Free the page directory or page table level and all sub levels.
*/
static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
{
unsigned i;
if (level->bo) {
amdgpu_bo_unref(&level->bo->shadow);
amdgpu_bo_unref(&level->bo);
}
if (level->entries)
for (i = 0; i <= level->last_entry_used; i++)
amdgpu_vm_free_levels(&level->entries[i]);
drm_free_large(level->entries);
}
/**
* amdgpu_vm_fini - tear down a vm instance
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Tear down @vm.
* Unbind the VM and remove all bos from the vm bo list
*/
void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
struct amdgpu_bo_va_mapping *mapping, *tmp;
bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
amd_sched_entity_fini(vm->entity.sched, &vm->entity);
if (!RB_EMPTY_ROOT(&vm->va)) {
dev_err(adev->dev, "still active bo inside vm\n");
}
rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
list_del(&mapping->list);
amdgpu_vm_it_remove(mapping, &vm->va);
kfree(mapping);
}
list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
amdgpu_vm_prt_fini(adev, vm);
prt_fini_needed = false;
}
list_del(&mapping->list);
amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
}
amdgpu_vm_free_levels(&vm->root);
dma_fence_put(vm->last_dir_update);
}
/**
* amdgpu_vm_manager_init - init the VM manager
*
* @adev: amdgpu_device pointer
*
* Initialize the VM manager structures
*/
void amdgpu_vm_manager_init(struct amdgpu_device *adev)
{
unsigned i;
INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
/* skip over VMID 0, since it is the system VM */
for (i = 1; i < adev->vm_manager.num_ids; ++i) {
amdgpu_vm_reset_id(adev, i);
amdgpu_sync_create(&adev->vm_manager.ids[i].active);
list_add_tail(&adev->vm_manager.ids[i].list,
&adev->vm_manager.ids_lru);
}
adev->vm_manager.fence_context =
dma_fence_context_alloc(AMDGPU_MAX_RINGS);
for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
adev->vm_manager.seqno[i] = 0;
atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
atomic64_set(&adev->vm_manager.client_counter, 0);
spin_lock_init(&adev->vm_manager.prt_lock);
atomic_set(&adev->vm_manager.num_prt_users, 0);
}
/**
* amdgpu_vm_manager_fini - cleanup VM manager
*
* @adev: amdgpu_device pointer
*
* Cleanup the VM manager and free resources.
*/
void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
{
unsigned i;
for (i = 0; i < AMDGPU_NUM_VM; ++i) {
struct amdgpu_vm_id *id = &adev->vm_manager.ids[i];
amdgpu_sync_free(&adev->vm_manager.ids[i].active);
dma_fence_put(id->flushed_updates);
dma_fence_put(id->last_flush);
}
}