OpenCloudOS-Kernel/drivers/hwmon/drivetemp.c

575 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Hwmon client for disk and solid state drives with temperature sensors
* Copyright (C) 2019 Zodiac Inflight Innovations
*
* With input from:
* Hwmon client for S.M.A.R.T. hard disk drives with temperature sensors.
* (C) 2018 Linus Walleij
*
* hwmon: Driver for SCSI/ATA temperature sensors
* by Constantin Baranov <const@mimas.ru>, submitted September 2009
*
* This drive supports reporting the temperatire of SATA drives. It can be
* easily extended to report the temperature of SCSI drives.
*
* The primary means to read drive temperatures and temperature limits
* for ATA drives is the SCT Command Transport feature set as specified in
* ATA8-ACS.
* It can be used to read the current drive temperature, temperature limits,
* and historic minimum and maximum temperatures. The SCT Command Transport
* feature set is documented in "AT Attachment 8 - ATA/ATAPI Command Set
* (ATA8-ACS)".
*
* If the SCT Command Transport feature set is not available, drive temperatures
* may be readable through SMART attributes. Since SMART attributes are not well
* defined, this method is only used as fallback mechanism.
*
* There are three SMART attributes which may report drive temperatures.
* Those are defined as follows (from
* http://www.cropel.com/library/smart-attribute-list.aspx).
*
* 190 Temperature Temperature, monitored by a sensor somewhere inside
* the drive. Raw value typicaly holds the actual
* temperature (hexadecimal) in its rightmost two digits.
*
* 194 Temperature Temperature, monitored by a sensor somewhere inside
* the drive. Raw value typicaly holds the actual
* temperature (hexadecimal) in its rightmost two digits.
*
* 231 Temperature Temperature, monitored by a sensor somewhere inside
* the drive. Raw value typicaly holds the actual
* temperature (hexadecimal) in its rightmost two digits.
*
* Wikipedia defines attributes a bit differently.
*
* 190 Temperature Value is equal to (100-temp. °C), allowing manufacturer
* Difference or to set a minimum threshold which corresponds to a
* Airflow maximum temperature. This also follows the convention of
* Temperature 100 being a best-case value and lower values being
* undesirable. However, some older drives may instead
* report raw Temperature (identical to 0xC2) or
* Temperature minus 50 here.
* 194 Temperature or Indicates the device temperature, if the appropriate
* Temperature sensor is fitted. Lowest byte of the raw value contains
* Celsius the exact temperature value (Celsius degrees).
* 231 Life Left Indicates the approximate SSD life left, in terms of
* (SSDs) or program/erase cycles or available reserved blocks.
* Temperature A normalized value of 100 represents a new drive, with
* a threshold value at 10 indicating a need for
* replacement. A value of 0 may mean that the drive is
* operating in read-only mode to allow data recovery.
* Previously (pre-2010) occasionally used for Drive
* Temperature (more typically reported at 0xC2).
*
* Common denominator is that the first raw byte reports the temperature
* in degrees C on almost all drives. Some drives may report a fractional
* temperature in the second raw byte.
*
* Known exceptions (from libatasmart):
* - SAMSUNG SV0412H and SAMSUNG SV1204H) report the temperature in 10th
* degrees C in the first two raw bytes.
* - A few Maxtor drives report an unknown or bad value in attribute 194.
* - Certain Apple SSD drives report an unknown value in attribute 190.
* Only certain firmware versions are affected.
*
* Those exceptions affect older ATA drives and are currently ignored.
* Also, the second raw byte (possibly reporting the fractional temperature)
* is currently ignored.
*
* Many drives also report temperature limits in additional SMART data raw
* bytes. The format of those is not well defined and varies widely.
* The driver does not currently attempt to report those limits.
*
* According to data in smartmontools, attribute 231 is rarely used to report
* drive temperatures. At the same time, several drives report SSD life left
* in attribute 231, but do not support temperature sensors. For this reason,
* attribute 231 is currently ignored.
*
* Following above definitions, temperatures are reported as follows.
* If SCT Command Transport is supported, it is used to read the
* temperature and, if available, temperature limits.
* - Otherwise, if SMART attribute 194 is supported, it is used to read
* the temperature.
* - Otherwise, if SMART attribute 190 is supported, it is used to read
* the temperature.
*/
#include <linux/ata.h>
#include <linux/bits.h>
#include <linux/device.h>
#include <linux/hwmon.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_driver.h>
#include <scsi/scsi_proto.h>
struct drivetemp_data {
struct list_head list; /* list of instantiated devices */
struct mutex lock; /* protect data buffer accesses */
struct scsi_device *sdev; /* SCSI device */
struct device *dev; /* instantiating device */
struct device *hwdev; /* hardware monitoring device */
u8 smartdata[ATA_SECT_SIZE]; /* local buffer */
int (*get_temp)(struct drivetemp_data *st, u32 attr, long *val);
bool have_temp_lowest; /* lowest temp in SCT status */
bool have_temp_highest; /* highest temp in SCT status */
bool have_temp_min; /* have min temp */
bool have_temp_max; /* have max temp */
bool have_temp_lcrit; /* have lower critical limit */
bool have_temp_crit; /* have critical limit */
int temp_min; /* min temp */
int temp_max; /* max temp */
int temp_lcrit; /* lower critical limit */
int temp_crit; /* critical limit */
};
static LIST_HEAD(drivetemp_devlist);
#define ATA_MAX_SMART_ATTRS 30
#define SMART_TEMP_PROP_190 190
#define SMART_TEMP_PROP_194 194
#define SCT_STATUS_REQ_ADDR 0xe0
#define SCT_STATUS_VERSION_LOW 0 /* log byte offsets */
#define SCT_STATUS_VERSION_HIGH 1
#define SCT_STATUS_TEMP 200
#define SCT_STATUS_TEMP_LOWEST 201
#define SCT_STATUS_TEMP_HIGHEST 202
#define SCT_READ_LOG_ADDR 0xe1
#define SMART_READ_LOG 0xd5
#define SMART_WRITE_LOG 0xd6
#define INVALID_TEMP 0x80
#define temp_is_valid(temp) ((temp) != INVALID_TEMP)
#define temp_from_sct(temp) (((s8)(temp)) * 1000)
static inline bool ata_id_smart_supported(u16 *id)
{
return id[ATA_ID_COMMAND_SET_1] & BIT(0);
}
static inline bool ata_id_smart_enabled(u16 *id)
{
return id[ATA_ID_CFS_ENABLE_1] & BIT(0);
}
static int drivetemp_scsi_command(struct drivetemp_data *st,
u8 ata_command, u8 feature,
u8 lba_low, u8 lba_mid, u8 lba_high)
{
u8 scsi_cmd[MAX_COMMAND_SIZE];
int data_dir;
memset(scsi_cmd, 0, sizeof(scsi_cmd));
scsi_cmd[0] = ATA_16;
if (ata_command == ATA_CMD_SMART && feature == SMART_WRITE_LOG) {
scsi_cmd[1] = (5 << 1); /* PIO Data-out */
/*
* No off.line or cc, write to dev, block count in sector count
* field.
*/
scsi_cmd[2] = 0x06;
data_dir = DMA_TO_DEVICE;
} else {
scsi_cmd[1] = (4 << 1); /* PIO Data-in */
/*
* No off.line or cc, read from dev, block count in sector count
* field.
*/
scsi_cmd[2] = 0x0e;
data_dir = DMA_FROM_DEVICE;
}
scsi_cmd[4] = feature;
scsi_cmd[6] = 1; /* 1 sector */
scsi_cmd[8] = lba_low;
scsi_cmd[10] = lba_mid;
scsi_cmd[12] = lba_high;
scsi_cmd[14] = ata_command;
return scsi_execute_req(st->sdev, scsi_cmd, data_dir,
st->smartdata, ATA_SECT_SIZE, NULL, HZ, 5,
NULL);
}
static int drivetemp_ata_command(struct drivetemp_data *st, u8 feature,
u8 select)
{
return drivetemp_scsi_command(st, ATA_CMD_SMART, feature, select,
ATA_SMART_LBAM_PASS, ATA_SMART_LBAH_PASS);
}
static int drivetemp_get_smarttemp(struct drivetemp_data *st, u32 attr,
long *temp)
{
u8 *buf = st->smartdata;
bool have_temp = false;
u8 temp_raw;
u8 csum;
int err;
int i;
err = drivetemp_ata_command(st, ATA_SMART_READ_VALUES, 0);
if (err)
return err;
/* Checksum the read value table */
csum = 0;
for (i = 0; i < ATA_SECT_SIZE; i++)
csum += buf[i];
if (csum) {
dev_dbg(&st->sdev->sdev_gendev,
"checksum error reading SMART values\n");
return -EIO;
}
for (i = 0; i < ATA_MAX_SMART_ATTRS; i++) {
u8 *attr = buf + i * 12;
int id = attr[2];
if (!id)
continue;
if (id == SMART_TEMP_PROP_190) {
temp_raw = attr[7];
have_temp = true;
}
if (id == SMART_TEMP_PROP_194) {
temp_raw = attr[7];
have_temp = true;
break;
}
}
if (have_temp) {
*temp = temp_raw * 1000;
return 0;
}
return -ENXIO;
}
static int drivetemp_get_scttemp(struct drivetemp_data *st, u32 attr, long *val)
{
u8 *buf = st->smartdata;
int err;
err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_STATUS_REQ_ADDR);
if (err)
return err;
switch (attr) {
case hwmon_temp_input:
*val = temp_from_sct(buf[SCT_STATUS_TEMP]);
break;
case hwmon_temp_lowest:
*val = temp_from_sct(buf[SCT_STATUS_TEMP_LOWEST]);
break;
case hwmon_temp_highest:
*val = temp_from_sct(buf[SCT_STATUS_TEMP_HIGHEST]);
break;
default:
err = -EINVAL;
break;
}
return err;
}
static int drivetemp_identify_sata(struct drivetemp_data *st)
{
struct scsi_device *sdev = st->sdev;
u8 *buf = st->smartdata;
struct scsi_vpd *vpd;
bool is_ata, is_sata;
bool have_sct_data_table;
bool have_sct_temp;
bool have_smart;
bool have_sct;
u16 *ata_id;
u16 version;
long temp;
int err;
/* SCSI-ATA Translation present? */
rcu_read_lock();
vpd = rcu_dereference(sdev->vpd_pg89);
/*
* Verify that ATA IDENTIFY DEVICE data is included in ATA Information
* VPD and that the drive implements the SATA protocol.
*/
if (!vpd || vpd->len < 572 || vpd->data[56] != ATA_CMD_ID_ATA ||
vpd->data[36] != 0x34) {
rcu_read_unlock();
return -ENODEV;
}
ata_id = (u16 *)&vpd->data[60];
is_ata = ata_id_is_ata(ata_id);
is_sata = ata_id_is_sata(ata_id);
have_sct = ata_id_sct_supported(ata_id);
have_sct_data_table = ata_id_sct_data_tables(ata_id);
have_smart = ata_id_smart_supported(ata_id) &&
ata_id_smart_enabled(ata_id);
rcu_read_unlock();
/* bail out if this is not a SATA device */
if (!is_ata || !is_sata)
return -ENODEV;
if (!have_sct)
goto skip_sct;
err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_STATUS_REQ_ADDR);
if (err)
goto skip_sct;
version = (buf[SCT_STATUS_VERSION_HIGH] << 8) |
buf[SCT_STATUS_VERSION_LOW];
if (version != 2 && version != 3)
goto skip_sct;
have_sct_temp = temp_is_valid(buf[SCT_STATUS_TEMP]);
if (!have_sct_temp)
goto skip_sct;
st->have_temp_lowest = temp_is_valid(buf[SCT_STATUS_TEMP_LOWEST]);
st->have_temp_highest = temp_is_valid(buf[SCT_STATUS_TEMP_HIGHEST]);
if (!have_sct_data_table)
goto skip_sct;
/* Request and read temperature history table */
memset(buf, '\0', sizeof(st->smartdata));
buf[0] = 5; /* data table command */
buf[2] = 1; /* read table */
buf[4] = 2; /* temperature history table */
err = drivetemp_ata_command(st, SMART_WRITE_LOG, SCT_STATUS_REQ_ADDR);
if (err)
goto skip_sct_data;
err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_READ_LOG_ADDR);
if (err)
goto skip_sct_data;
/*
* Temperature limits per AT Attachment 8 -
* ATA/ATAPI Command Set (ATA8-ACS)
*/
st->have_temp_max = temp_is_valid(buf[6]);
st->have_temp_crit = temp_is_valid(buf[7]);
st->have_temp_min = temp_is_valid(buf[8]);
st->have_temp_lcrit = temp_is_valid(buf[9]);
st->temp_max = temp_from_sct(buf[6]);
st->temp_crit = temp_from_sct(buf[7]);
st->temp_min = temp_from_sct(buf[8]);
st->temp_lcrit = temp_from_sct(buf[9]);
skip_sct_data:
if (have_sct_temp) {
st->get_temp = drivetemp_get_scttemp;
return 0;
}
skip_sct:
if (!have_smart)
return -ENODEV;
st->get_temp = drivetemp_get_smarttemp;
return drivetemp_get_smarttemp(st, hwmon_temp_input, &temp);
}
static int drivetemp_identify(struct drivetemp_data *st)
{
struct scsi_device *sdev = st->sdev;
/* Bail out immediately if there is no inquiry data */
if (!sdev->inquiry || sdev->inquiry_len < 16)
return -ENODEV;
/* Disk device? */
if (sdev->type != TYPE_DISK && sdev->type != TYPE_ZBC)
return -ENODEV;
return drivetemp_identify_sata(st);
}
static int drivetemp_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct drivetemp_data *st = dev_get_drvdata(dev);
int err = 0;
if (type != hwmon_temp)
return -EINVAL;
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_lowest:
case hwmon_temp_highest:
mutex_lock(&st->lock);
err = st->get_temp(st, attr, val);
mutex_unlock(&st->lock);
break;
case hwmon_temp_lcrit:
*val = st->temp_lcrit;
break;
case hwmon_temp_min:
*val = st->temp_min;
break;
case hwmon_temp_max:
*val = st->temp_max;
break;
case hwmon_temp_crit:
*val = st->temp_crit;
break;
default:
err = -EINVAL;
break;
}
return err;
}
static umode_t drivetemp_is_visible(const void *data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct drivetemp_data *st = data;
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
return 0444;
case hwmon_temp_lowest:
if (st->have_temp_lowest)
return 0444;
break;
case hwmon_temp_highest:
if (st->have_temp_highest)
return 0444;
break;
case hwmon_temp_min:
if (st->have_temp_min)
return 0444;
break;
case hwmon_temp_max:
if (st->have_temp_max)
return 0444;
break;
case hwmon_temp_lcrit:
if (st->have_temp_lcrit)
return 0444;
break;
case hwmon_temp_crit:
if (st->have_temp_crit)
return 0444;
break;
default:
break;
}
break;
default:
break;
}
return 0;
}
static const struct hwmon_channel_info *drivetemp_info[] = {
HWMON_CHANNEL_INFO(chip,
HWMON_C_REGISTER_TZ),
HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT |
HWMON_T_LOWEST | HWMON_T_HIGHEST |
HWMON_T_MIN | HWMON_T_MAX |
HWMON_T_LCRIT | HWMON_T_CRIT),
NULL
};
static const struct hwmon_ops drivetemp_ops = {
.is_visible = drivetemp_is_visible,
.read = drivetemp_read,
};
static const struct hwmon_chip_info drivetemp_chip_info = {
.ops = &drivetemp_ops,
.info = drivetemp_info,
};
/*
* The device argument points to sdev->sdev_dev. Its parent is
* sdev->sdev_gendev, which we can use to get the scsi_device pointer.
*/
static int drivetemp_add(struct device *dev, struct class_interface *intf)
{
struct scsi_device *sdev = to_scsi_device(dev->parent);
struct drivetemp_data *st;
int err;
st = kzalloc(sizeof(*st), GFP_KERNEL);
if (!st)
return -ENOMEM;
st->sdev = sdev;
st->dev = dev;
mutex_init(&st->lock);
if (drivetemp_identify(st)) {
err = -ENODEV;
goto abort;
}
st->hwdev = hwmon_device_register_with_info(dev->parent, "drivetemp",
st, &drivetemp_chip_info,
NULL);
if (IS_ERR(st->hwdev)) {
err = PTR_ERR(st->hwdev);
goto abort;
}
list_add(&st->list, &drivetemp_devlist);
return 0;
abort:
kfree(st);
return err;
}
static void drivetemp_remove(struct device *dev, struct class_interface *intf)
{
struct drivetemp_data *st, *tmp;
list_for_each_entry_safe(st, tmp, &drivetemp_devlist, list) {
if (st->dev == dev) {
list_del(&st->list);
hwmon_device_unregister(st->hwdev);
kfree(st);
break;
}
}
}
static struct class_interface drivetemp_interface = {
.add_dev = drivetemp_add,
.remove_dev = drivetemp_remove,
};
static int __init drivetemp_init(void)
{
return scsi_register_interface(&drivetemp_interface);
}
static void __exit drivetemp_exit(void)
{
scsi_unregister_interface(&drivetemp_interface);
}
module_init(drivetemp_init);
module_exit(drivetemp_exit);
MODULE_AUTHOR("Guenter Roeck <linus@roeck-us.net>");
MODULE_DESCRIPTION("Hard drive temperature monitor");
MODULE_LICENSE("GPL");