OpenCloudOS-Kernel/drivers/gpu/drm/i915/i915_gem_object.h

338 lines
9.4 KiB
C

/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#ifndef __I915_GEM_OBJECT_H__
#define __I915_GEM_OBJECT_H__
#include <linux/reservation.h>
#include <drm/drm_vma_manager.h>
#include <drm/drm_gem.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
struct drm_i915_gem_object_ops {
unsigned int flags;
#define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
#define I915_GEM_OBJECT_IS_SHRINKABLE 0x2
/* Interface between the GEM object and its backing storage.
* get_pages() is called once prior to the use of the associated set
* of pages before to binding them into the GTT, and put_pages() is
* called after we no longer need them. As we expect there to be
* associated cost with migrating pages between the backing storage
* and making them available for the GPU (e.g. clflush), we may hold
* onto the pages after they are no longer referenced by the GPU
* in case they may be used again shortly (for example migrating the
* pages to a different memory domain within the GTT). put_pages()
* will therefore most likely be called when the object itself is
* being released or under memory pressure (where we attempt to
* reap pages for the shrinker).
*/
struct sg_table *(*get_pages)(struct drm_i915_gem_object *);
void (*put_pages)(struct drm_i915_gem_object *, struct sg_table *);
int (*dmabuf_export)(struct drm_i915_gem_object *);
void (*release)(struct drm_i915_gem_object *);
};
struct drm_i915_gem_object {
struct drm_gem_object base;
const struct drm_i915_gem_object_ops *ops;
/** List of VMAs backed by this object */
struct list_head vma_list;
struct rb_root vma_tree;
/** Stolen memory for this object, instead of being backed by shmem. */
struct drm_mm_node *stolen;
struct list_head global_link;
union {
struct rcu_head rcu;
struct llist_node freed;
};
/**
* Whether the object is currently in the GGTT mmap.
*/
struct list_head userfault_link;
/** Used in execbuf to temporarily hold a ref */
struct list_head obj_exec_link;
struct list_head batch_pool_link;
unsigned long flags;
/**
* Have we taken a reference for the object for incomplete GPU
* activity?
*/
#define I915_BO_ACTIVE_REF 0
/*
* Is the object to be mapped as read-only to the GPU
* Only honoured if hardware has relevant pte bit
*/
unsigned long gt_ro:1;
unsigned int cache_level:3;
unsigned int cache_dirty:1;
atomic_t frontbuffer_bits;
unsigned int frontbuffer_ggtt_origin; /* write once */
/** Current tiling stride for the object, if it's tiled. */
unsigned int tiling_and_stride;
#define FENCE_MINIMUM_STRIDE 128 /* See i915_tiling_ok() */
#define TILING_MASK (FENCE_MINIMUM_STRIDE-1)
#define STRIDE_MASK (~TILING_MASK)
/** Count of VMA actually bound by this object */
unsigned int bind_count;
unsigned int active_count;
unsigned int pin_display;
struct {
struct mutex lock; /* protects the pages and their use */
atomic_t pages_pin_count;
struct sg_table *pages;
void *mapping;
struct i915_gem_object_page_iter {
struct scatterlist *sg_pos;
unsigned int sg_idx; /* in pages, but 32bit eek! */
struct radix_tree_root radix;
struct mutex lock; /* protects this cache */
} get_page;
/**
* Advice: are the backing pages purgeable?
*/
unsigned int madv:2;
/**
* This is set if the object has been written to since the
* pages were last acquired.
*/
bool dirty:1;
/**
* This is set if the object has been pinned due to unknown
* swizzling.
*/
bool quirked:1;
} mm;
/** Breadcrumb of last rendering to the buffer.
* There can only be one writer, but we allow for multiple readers.
* If there is a writer that necessarily implies that all other
* read requests are complete - but we may only be lazily clearing
* the read requests. A read request is naturally the most recent
* request on a ring, so we may have two different write and read
* requests on one ring where the write request is older than the
* read request. This allows for the CPU to read from an active
* buffer by only waiting for the write to complete.
*/
struct reservation_object *resv;
/** References from framebuffers, locks out tiling changes. */
unsigned long framebuffer_references;
/** Record of address bit 17 of each page at last unbind. */
unsigned long *bit_17;
struct i915_gem_userptr {
uintptr_t ptr;
unsigned read_only :1;
struct i915_mm_struct *mm;
struct i915_mmu_object *mmu_object;
struct work_struct *work;
} userptr;
/** for phys allocated objects */
struct drm_dma_handle *phys_handle;
struct reservation_object __builtin_resv;
};
static inline struct drm_i915_gem_object *
to_intel_bo(struct drm_gem_object *gem)
{
/* Assert that to_intel_bo(NULL) == NULL */
BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base));
return container_of(gem, struct drm_i915_gem_object, base);
}
/**
* i915_gem_object_lookup_rcu - look up a temporary GEM object from its handle
* @filp: DRM file private date
* @handle: userspace handle
*
* Returns:
*
* A pointer to the object named by the handle if such exists on @filp, NULL
* otherwise. This object is only valid whilst under the RCU read lock, and
* note carefully the object may be in the process of being destroyed.
*/
static inline struct drm_i915_gem_object *
i915_gem_object_lookup_rcu(struct drm_file *file, u32 handle)
{
#ifdef CONFIG_LOCKDEP
WARN_ON(debug_locks && !lock_is_held(&rcu_lock_map));
#endif
return idr_find(&file->object_idr, handle);
}
static inline struct drm_i915_gem_object *
i915_gem_object_lookup(struct drm_file *file, u32 handle)
{
struct drm_i915_gem_object *obj;
rcu_read_lock();
obj = i915_gem_object_lookup_rcu(file, handle);
if (obj && !kref_get_unless_zero(&obj->base.refcount))
obj = NULL;
rcu_read_unlock();
return obj;
}
__deprecated
extern struct drm_gem_object *
drm_gem_object_lookup(struct drm_file *file, u32 handle);
__attribute__((nonnull))
static inline struct drm_i915_gem_object *
i915_gem_object_get(struct drm_i915_gem_object *obj)
{
drm_gem_object_reference(&obj->base);
return obj;
}
__deprecated
extern void drm_gem_object_reference(struct drm_gem_object *);
__attribute__((nonnull))
static inline void
i915_gem_object_put(struct drm_i915_gem_object *obj)
{
__drm_gem_object_unreference(&obj->base);
}
__deprecated
extern void drm_gem_object_unreference(struct drm_gem_object *);
__deprecated
extern void drm_gem_object_unreference_unlocked(struct drm_gem_object *);
static inline bool
i915_gem_object_is_dead(const struct drm_i915_gem_object *obj)
{
return atomic_read(&obj->base.refcount.refcount) == 0;
}
static inline bool
i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
{
return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
}
static inline bool
i915_gem_object_is_shrinkable(const struct drm_i915_gem_object *obj)
{
return obj->ops->flags & I915_GEM_OBJECT_IS_SHRINKABLE;
}
static inline bool
i915_gem_object_is_active(const struct drm_i915_gem_object *obj)
{
return obj->active_count;
}
static inline bool
i915_gem_object_has_active_reference(const struct drm_i915_gem_object *obj)
{
return test_bit(I915_BO_ACTIVE_REF, &obj->flags);
}
static inline void
i915_gem_object_set_active_reference(struct drm_i915_gem_object *obj)
{
lockdep_assert_held(&obj->base.dev->struct_mutex);
__set_bit(I915_BO_ACTIVE_REF, &obj->flags);
}
static inline void
i915_gem_object_clear_active_reference(struct drm_i915_gem_object *obj)
{
lockdep_assert_held(&obj->base.dev->struct_mutex);
__clear_bit(I915_BO_ACTIVE_REF, &obj->flags);
}
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj);
static inline unsigned int
i915_gem_object_get_tiling(struct drm_i915_gem_object *obj)
{
return obj->tiling_and_stride & TILING_MASK;
}
static inline bool
i915_gem_object_is_tiled(struct drm_i915_gem_object *obj)
{
return i915_gem_object_get_tiling(obj) != I915_TILING_NONE;
}
static inline unsigned int
i915_gem_object_get_stride(struct drm_i915_gem_object *obj)
{
return obj->tiling_and_stride & STRIDE_MASK;
}
static inline struct intel_engine_cs *
i915_gem_object_last_write_engine(struct drm_i915_gem_object *obj)
{
struct intel_engine_cs *engine = NULL;
struct dma_fence *fence;
rcu_read_lock();
fence = reservation_object_get_excl_rcu(obj->resv);
rcu_read_unlock();
if (fence && dma_fence_is_i915(fence) && !dma_fence_is_signaled(fence))
engine = to_request(fence)->engine;
dma_fence_put(fence);
return engine;
}
#endif