OpenCloudOS-Kernel/fs/gfs2/file.c

1421 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
* Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
*/
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/completion.h>
#include <linux/buffer_head.h>
#include <linux/pagemap.h>
#include <linux/uio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/mount.h>
#include <linux/fs.h>
#include <linux/gfs2_ondisk.h>
#include <linux/falloc.h>
#include <linux/swap.h>
#include <linux/crc32.h>
#include <linux/writeback.h>
#include <linux/uaccess.h>
#include <linux/dlm.h>
#include <linux/dlm_plock.h>
#include <linux/delay.h>
#include <linux/backing-dev.h>
#include "gfs2.h"
#include "incore.h"
#include "bmap.h"
#include "aops.h"
#include "dir.h"
#include "glock.h"
#include "glops.h"
#include "inode.h"
#include "log.h"
#include "meta_io.h"
#include "quota.h"
#include "rgrp.h"
#include "trans.h"
#include "util.h"
/**
* gfs2_llseek - seek to a location in a file
* @file: the file
* @offset: the offset
* @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
*
* SEEK_END requires the glock for the file because it references the
* file's size.
*
* Returns: The new offset, or errno
*/
static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
{
struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
struct gfs2_holder i_gh;
loff_t error;
switch (whence) {
case SEEK_END:
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
&i_gh);
if (!error) {
error = generic_file_llseek(file, offset, whence);
gfs2_glock_dq_uninit(&i_gh);
}
break;
case SEEK_DATA:
error = gfs2_seek_data(file, offset);
break;
case SEEK_HOLE:
error = gfs2_seek_hole(file, offset);
break;
case SEEK_CUR:
case SEEK_SET:
/*
* These don't reference inode->i_size and don't depend on the
* block mapping, so we don't need the glock.
*/
error = generic_file_llseek(file, offset, whence);
break;
default:
error = -EINVAL;
}
return error;
}
/**
* gfs2_readdir - Iterator for a directory
* @file: The directory to read from
* @ctx: What to feed directory entries to
*
* Returns: errno
*/
static int gfs2_readdir(struct file *file, struct dir_context *ctx)
{
struct inode *dir = file->f_mapping->host;
struct gfs2_inode *dip = GFS2_I(dir);
struct gfs2_holder d_gh;
int error;
error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
if (error)
return error;
error = gfs2_dir_read(dir, ctx, &file->f_ra);
gfs2_glock_dq_uninit(&d_gh);
return error;
}
/**
* fsflag_gfs2flag
*
* The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
* and to GFS2_DIF_JDATA for non-directories.
*/
static struct {
u32 fsflag;
u32 gfsflag;
} fsflag_gfs2flag[] = {
{FS_SYNC_FL, GFS2_DIF_SYNC},
{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
{FS_NOATIME_FL, GFS2_DIF_NOATIME},
{FS_INDEX_FL, GFS2_DIF_EXHASH},
{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
};
static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
{
int i;
u32 fsflags = 0;
if (S_ISDIR(inode->i_mode))
gfsflags &= ~GFS2_DIF_JDATA;
else
gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
if (gfsflags & fsflag_gfs2flag[i].gfsflag)
fsflags |= fsflag_gfs2flag[i].fsflag;
return fsflags;
}
static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
{
struct inode *inode = file_inode(filp);
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_holder gh;
int error;
u32 fsflags;
gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
error = gfs2_glock_nq(&gh);
if (error)
goto out_uninit;
fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
if (put_user(fsflags, ptr))
error = -EFAULT;
gfs2_glock_dq(&gh);
out_uninit:
gfs2_holder_uninit(&gh);
return error;
}
void gfs2_set_inode_flags(struct inode *inode)
{
struct gfs2_inode *ip = GFS2_I(inode);
unsigned int flags = inode->i_flags;
flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
flags |= S_NOSEC;
if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
flags |= S_IMMUTABLE;
if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
flags |= S_APPEND;
if (ip->i_diskflags & GFS2_DIF_NOATIME)
flags |= S_NOATIME;
if (ip->i_diskflags & GFS2_DIF_SYNC)
flags |= S_SYNC;
inode->i_flags = flags;
}
/* Flags that can be set by user space */
#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
GFS2_DIF_IMMUTABLE| \
GFS2_DIF_APPENDONLY| \
GFS2_DIF_NOATIME| \
GFS2_DIF_SYNC| \
GFS2_DIF_TOPDIR| \
GFS2_DIF_INHERIT_JDATA)
/**
* do_gfs2_set_flags - set flags on an inode
* @filp: file pointer
* @reqflags: The flags to set
* @mask: Indicates which flags are valid
* @fsflags: The FS_* inode flags passed in
*
*/
static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask,
const u32 fsflags)
{
struct inode *inode = file_inode(filp);
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_sbd *sdp = GFS2_SB(inode);
struct buffer_head *bh;
struct gfs2_holder gh;
int error;
u32 new_flags, flags, oldflags;
error = mnt_want_write_file(filp);
if (error)
return error;
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
if (error)
goto out_drop_write;
oldflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
error = vfs_ioc_setflags_prepare(inode, oldflags, fsflags);
if (error)
goto out;
error = -EACCES;
if (!inode_owner_or_capable(inode))
goto out;
error = 0;
flags = ip->i_diskflags;
new_flags = (flags & ~mask) | (reqflags & mask);
if ((new_flags ^ flags) == 0)
goto out;
error = -EPERM;
if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
goto out;
if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
goto out;
if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
!capable(CAP_LINUX_IMMUTABLE))
goto out;
if (!IS_IMMUTABLE(inode)) {
error = gfs2_permission(inode, MAY_WRITE);
if (error)
goto out;
}
if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
if (new_flags & GFS2_DIF_JDATA)
gfs2_log_flush(sdp, ip->i_gl,
GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_SET_FLAGS);
error = filemap_fdatawrite(inode->i_mapping);
if (error)
goto out;
error = filemap_fdatawait(inode->i_mapping);
if (error)
goto out;
if (new_flags & GFS2_DIF_JDATA)
gfs2_ordered_del_inode(ip);
}
error = gfs2_trans_begin(sdp, RES_DINODE, 0);
if (error)
goto out;
error = gfs2_meta_inode_buffer(ip, &bh);
if (error)
goto out_trans_end;
inode->i_ctime = current_time(inode);
gfs2_trans_add_meta(ip->i_gl, bh);
ip->i_diskflags = new_flags;
gfs2_dinode_out(ip, bh->b_data);
brelse(bh);
gfs2_set_inode_flags(inode);
gfs2_set_aops(inode);
out_trans_end:
gfs2_trans_end(sdp);
out:
gfs2_glock_dq_uninit(&gh);
out_drop_write:
mnt_drop_write_file(filp);
return error;
}
static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
{
struct inode *inode = file_inode(filp);
u32 fsflags, gfsflags = 0;
u32 mask;
int i;
if (get_user(fsflags, ptr))
return -EFAULT;
for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
if (fsflags & fsflag_gfs2flag[i].fsflag) {
fsflags &= ~fsflag_gfs2flag[i].fsflag;
gfsflags |= fsflag_gfs2flag[i].gfsflag;
}
}
if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
return -EINVAL;
mask = GFS2_FLAGS_USER_SET;
if (S_ISDIR(inode->i_mode)) {
mask &= ~GFS2_DIF_JDATA;
} else {
/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
if (gfsflags & GFS2_DIF_TOPDIR)
return -EINVAL;
mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
}
return do_gfs2_set_flags(filp, gfsflags, mask, fsflags);
}
static int gfs2_getlabel(struct file *filp, char __user *label)
{
struct inode *inode = file_inode(filp);
struct gfs2_sbd *sdp = GFS2_SB(inode);
if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
return -EFAULT;
return 0;
}
static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
switch(cmd) {
case FS_IOC_GETFLAGS:
return gfs2_get_flags(filp, (u32 __user *)arg);
case FS_IOC_SETFLAGS:
return gfs2_set_flags(filp, (u32 __user *)arg);
case FITRIM:
return gfs2_fitrim(filp, (void __user *)arg);
case FS_IOC_GETFSLABEL:
return gfs2_getlabel(filp, (char __user *)arg);
}
return -ENOTTY;
}
#ifdef CONFIG_COMPAT
static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
switch(cmd) {
/* These are just misnamed, they actually get/put from/to user an int */
case FS_IOC32_GETFLAGS:
cmd = FS_IOC_GETFLAGS;
break;
case FS_IOC32_SETFLAGS:
cmd = FS_IOC_SETFLAGS;
break;
/* Keep this list in sync with gfs2_ioctl */
case FITRIM:
case FS_IOC_GETFSLABEL:
break;
default:
return -ENOIOCTLCMD;
}
return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
}
#else
#define gfs2_compat_ioctl NULL
#endif
/**
* gfs2_size_hint - Give a hint to the size of a write request
* @filep: The struct file
* @offset: The file offset of the write
* @size: The length of the write
*
* When we are about to do a write, this function records the total
* write size in order to provide a suitable hint to the lower layers
* about how many blocks will be required.
*
*/
static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
{
struct inode *inode = file_inode(filep);
struct gfs2_sbd *sdp = GFS2_SB(inode);
struct gfs2_inode *ip = GFS2_I(inode);
size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
int hint = min_t(size_t, INT_MAX, blks);
if (hint > atomic_read(&ip->i_sizehint))
atomic_set(&ip->i_sizehint, hint);
}
/**
* gfs2_allocate_page_backing - Allocate blocks for a write fault
* @page: The (locked) page to allocate backing for
* @length: Size of the allocation
*
* We try to allocate all the blocks required for the page in one go. This
* might fail for various reasons, so we keep trying until all the blocks to
* back this page are allocated. If some of the blocks are already allocated,
* that is ok too.
*/
static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
{
u64 pos = page_offset(page);
do {
struct iomap iomap = { };
if (gfs2_iomap_get_alloc(page->mapping->host, pos, length, &iomap))
return -EIO;
if (length < iomap.length)
iomap.length = length;
length -= iomap.length;
pos += iomap.length;
} while (length > 0);
return 0;
}
/**
* gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
* @vma: The virtual memory area
* @vmf: The virtual memory fault containing the page to become writable
*
* When the page becomes writable, we need to ensure that we have
* blocks allocated on disk to back that page.
*/
static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
{
struct page *page = vmf->page;
struct inode *inode = file_inode(vmf->vma->vm_file);
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_sbd *sdp = GFS2_SB(inode);
struct gfs2_alloc_parms ap = { .aflags = 0, };
u64 offset = page_offset(page);
unsigned int data_blocks, ind_blocks, rblocks;
struct gfs2_holder gh;
unsigned int length;
loff_t size;
int ret;
sb_start_pagefault(inode->i_sb);
gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
ret = gfs2_glock_nq(&gh);
if (ret)
goto out_uninit;
/* Check page index against inode size */
size = i_size_read(inode);
if (offset >= size) {
ret = -EINVAL;
goto out_unlock;
}
/* Update file times before taking page lock */
file_update_time(vmf->vma->vm_file);
/* page is wholly or partially inside EOF */
if (offset > size - PAGE_SIZE)
length = offset_in_page(size);
else
length = PAGE_SIZE;
gfs2_size_hint(vmf->vma->vm_file, offset, length);
set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
set_bit(GIF_SW_PAGED, &ip->i_flags);
/*
* iomap_writepage / iomap_writepages currently don't support inline
* files, so always unstuff here.
*/
if (!gfs2_is_stuffed(ip) &&
!gfs2_write_alloc_required(ip, offset, length)) {
lock_page(page);
if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
ret = -EAGAIN;
unlock_page(page);
}
goto out_unlock;
}
ret = gfs2_rindex_update(sdp);
if (ret)
goto out_unlock;
gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
ap.target = data_blocks + ind_blocks;
ret = gfs2_quota_lock_check(ip, &ap);
if (ret)
goto out_unlock;
ret = gfs2_inplace_reserve(ip, &ap);
if (ret)
goto out_quota_unlock;
rblocks = RES_DINODE + ind_blocks;
if (gfs2_is_jdata(ip))
rblocks += data_blocks ? data_blocks : 1;
if (ind_blocks || data_blocks) {
rblocks += RES_STATFS + RES_QUOTA;
rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
}
ret = gfs2_trans_begin(sdp, rblocks, 0);
if (ret)
goto out_trans_fail;
lock_page(page);
ret = -EAGAIN;
/* If truncated, we must retry the operation, we may have raced
* with the glock demotion code.
*/
if (!PageUptodate(page) || page->mapping != inode->i_mapping)
goto out_trans_end;
/* Unstuff, if required, and allocate backing blocks for page */
ret = 0;
if (gfs2_is_stuffed(ip))
ret = gfs2_unstuff_dinode(ip, page);
if (ret == 0)
ret = gfs2_allocate_page_backing(page, length);
out_trans_end:
if (ret)
unlock_page(page);
gfs2_trans_end(sdp);
out_trans_fail:
gfs2_inplace_release(ip);
out_quota_unlock:
gfs2_quota_unlock(ip);
out_unlock:
gfs2_glock_dq(&gh);
out_uninit:
gfs2_holder_uninit(&gh);
if (ret == 0) {
set_page_dirty(page);
wait_for_stable_page(page);
}
sb_end_pagefault(inode->i_sb);
return block_page_mkwrite_return(ret);
}
static vm_fault_t gfs2_fault(struct vm_fault *vmf)
{
struct inode *inode = file_inode(vmf->vma->vm_file);
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_holder gh;
vm_fault_t ret;
int err;
gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
err = gfs2_glock_nq(&gh);
if (err) {
ret = block_page_mkwrite_return(err);
goto out_uninit;
}
ret = filemap_fault(vmf);
gfs2_glock_dq(&gh);
out_uninit:
gfs2_holder_uninit(&gh);
return ret;
}
static const struct vm_operations_struct gfs2_vm_ops = {
.fault = gfs2_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = gfs2_page_mkwrite,
};
/**
* gfs2_mmap -
* @file: The file to map
* @vma: The VMA which described the mapping
*
* There is no need to get a lock here unless we should be updating
* atime. We ignore any locking errors since the only consequence is
* a missed atime update (which will just be deferred until later).
*
* Returns: 0
*/
static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
{
struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
if (!(file->f_flags & O_NOATIME) &&
!IS_NOATIME(&ip->i_inode)) {
struct gfs2_holder i_gh;
int error;
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
&i_gh);
if (error)
return error;
/* grab lock to update inode */
gfs2_glock_dq_uninit(&i_gh);
file_accessed(file);
}
vma->vm_ops = &gfs2_vm_ops;
return 0;
}
/**
* gfs2_open_common - This is common to open and atomic_open
* @inode: The inode being opened
* @file: The file being opened
*
* This maybe called under a glock or not depending upon how it has
* been called. We must always be called under a glock for regular
* files, however. For other file types, it does not matter whether
* we hold the glock or not.
*
* Returns: Error code or 0 for success
*/
int gfs2_open_common(struct inode *inode, struct file *file)
{
struct gfs2_file *fp;
int ret;
if (S_ISREG(inode->i_mode)) {
ret = generic_file_open(inode, file);
if (ret)
return ret;
}
fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
if (!fp)
return -ENOMEM;
mutex_init(&fp->f_fl_mutex);
gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
file->private_data = fp;
if (file->f_mode & FMODE_WRITE) {
ret = gfs2_qa_get(GFS2_I(inode));
if (ret)
goto fail;
}
return 0;
fail:
kfree(file->private_data);
file->private_data = NULL;
return ret;
}
/**
* gfs2_open - open a file
* @inode: the inode to open
* @file: the struct file for this opening
*
* After atomic_open, this function is only used for opening files
* which are already cached. We must still get the glock for regular
* files to ensure that we have the file size uptodate for the large
* file check which is in the common code. That is only an issue for
* regular files though.
*
* Returns: errno
*/
static int gfs2_open(struct inode *inode, struct file *file)
{
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_holder i_gh;
int error;
bool need_unlock = false;
if (S_ISREG(ip->i_inode.i_mode)) {
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
&i_gh);
if (error)
return error;
need_unlock = true;
}
error = gfs2_open_common(inode, file);
if (need_unlock)
gfs2_glock_dq_uninit(&i_gh);
return error;
}
/**
* gfs2_release - called to close a struct file
* @inode: the inode the struct file belongs to
* @file: the struct file being closed
*
* Returns: errno
*/
static int gfs2_release(struct inode *inode, struct file *file)
{
struct gfs2_inode *ip = GFS2_I(inode);
kfree(file->private_data);
file->private_data = NULL;
if (file->f_mode & FMODE_WRITE) {
gfs2_rs_delete(ip, &inode->i_writecount);
gfs2_qa_put(ip);
}
return 0;
}
/**
* gfs2_fsync - sync the dirty data for a file (across the cluster)
* @file: the file that points to the dentry
* @start: the start position in the file to sync
* @end: the end position in the file to sync
* @datasync: set if we can ignore timestamp changes
*
* We split the data flushing here so that we don't wait for the data
* until after we've also sent the metadata to disk. Note that for
* data=ordered, we will write & wait for the data at the log flush
* stage anyway, so this is unlikely to make much of a difference
* except in the data=writeback case.
*
* If the fdatawrite fails due to any reason except -EIO, we will
* continue the remainder of the fsync, although we'll still report
* the error at the end. This is to match filemap_write_and_wait_range()
* behaviour.
*
* Returns: errno
*/
static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
int datasync)
{
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
int sync_state = inode->i_state & I_DIRTY_ALL;
struct gfs2_inode *ip = GFS2_I(inode);
int ret = 0, ret1 = 0;
if (mapping->nrpages) {
ret1 = filemap_fdatawrite_range(mapping, start, end);
if (ret1 == -EIO)
return ret1;
}
if (!gfs2_is_jdata(ip))
sync_state &= ~I_DIRTY_PAGES;
if (datasync)
sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
if (sync_state) {
ret = sync_inode_metadata(inode, 1);
if (ret)
return ret;
if (gfs2_is_jdata(ip))
ret = file_write_and_wait(file);
if (ret)
return ret;
gfs2_ail_flush(ip->i_gl, 1);
}
if (mapping->nrpages)
ret = file_fdatawait_range(file, start, end);
return ret ? ret : ret1;
}
static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
struct gfs2_holder *gh)
{
struct file *file = iocb->ki_filp;
struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
size_t count = iov_iter_count(to);
ssize_t ret;
if (!count)
return 0; /* skip atime */
gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
ret = gfs2_glock_nq(gh);
if (ret)
goto out_uninit;
ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
is_sync_kiocb(iocb));
gfs2_glock_dq(gh);
out_uninit:
gfs2_holder_uninit(gh);
return ret;
}
static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
struct gfs2_holder *gh)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
struct gfs2_inode *ip = GFS2_I(inode);
size_t len = iov_iter_count(from);
loff_t offset = iocb->ki_pos;
ssize_t ret;
/*
* Deferred lock, even if its a write, since we do no allocation on
* this path. All we need to change is the atime, and this lock mode
* ensures that other nodes have flushed their buffered read caches
* (i.e. their page cache entries for this inode). We do not,
* unfortunately, have the option of only flushing a range like the
* VFS does.
*/
gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
ret = gfs2_glock_nq(gh);
if (ret)
goto out_uninit;
/* Silently fall back to buffered I/O when writing beyond EOF */
if (offset + len > i_size_read(&ip->i_inode))
goto out;
ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
is_sync_kiocb(iocb));
if (ret == -ENOTBLK)
ret = 0;
out:
gfs2_glock_dq(gh);
out_uninit:
gfs2_holder_uninit(gh);
return ret;
}
static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
struct gfs2_inode *ip;
struct gfs2_holder gh;
size_t written = 0;
ssize_t ret;
if (iocb->ki_flags & IOCB_DIRECT) {
ret = gfs2_file_direct_read(iocb, to, &gh);
if (likely(ret != -ENOTBLK))
return ret;
iocb->ki_flags &= ~IOCB_DIRECT;
}
iocb->ki_flags |= IOCB_NOIO;
ret = generic_file_read_iter(iocb, to);
iocb->ki_flags &= ~IOCB_NOIO;
if (ret >= 0) {
if (!iov_iter_count(to))
return ret;
written = ret;
} else {
if (ret != -EAGAIN)
return ret;
if (iocb->ki_flags & IOCB_NOWAIT)
return ret;
}
ip = GFS2_I(iocb->ki_filp->f_mapping->host);
gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
ret = gfs2_glock_nq(&gh);
if (ret)
goto out_uninit;
ret = generic_file_read_iter(iocb, to);
if (ret > 0)
written += ret;
gfs2_glock_dq(&gh);
out_uninit:
gfs2_holder_uninit(&gh);
return written ? written : ret;
}
/**
* gfs2_file_write_iter - Perform a write to a file
* @iocb: The io context
* @from: The data to write
*
* We have to do a lock/unlock here to refresh the inode size for
* O_APPEND writes, otherwise we can land up writing at the wrong
* offset. There is still a race, but provided the app is using its
* own file locking, this will make O_APPEND work as expected.
*
*/
static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_holder gh;
ssize_t ret;
gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
if (iocb->ki_flags & IOCB_APPEND) {
ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
if (ret)
return ret;
gfs2_glock_dq_uninit(&gh);
}
inode_lock(inode);
ret = generic_write_checks(iocb, from);
if (ret <= 0)
goto out_unlock;
ret = file_remove_privs(file);
if (ret)
goto out_unlock;
ret = file_update_time(file);
if (ret)
goto out_unlock;
if (iocb->ki_flags & IOCB_DIRECT) {
struct address_space *mapping = file->f_mapping;
ssize_t buffered, ret2;
ret = gfs2_file_direct_write(iocb, from, &gh);
if (ret < 0 || !iov_iter_count(from))
goto out_unlock;
iocb->ki_flags |= IOCB_DSYNC;
current->backing_dev_info = inode_to_bdi(inode);
buffered = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
current->backing_dev_info = NULL;
if (unlikely(buffered <= 0))
goto out_unlock;
/*
* We need to ensure that the page cache pages are written to
* disk and invalidated to preserve the expected O_DIRECT
* semantics. If the writeback or invalidate fails, only report
* the direct I/O range as we don't know if the buffered pages
* made it to disk.
*/
iocb->ki_pos += buffered;
ret2 = generic_write_sync(iocb, buffered);
invalidate_mapping_pages(mapping,
(iocb->ki_pos - buffered) >> PAGE_SHIFT,
(iocb->ki_pos - 1) >> PAGE_SHIFT);
if (!ret || ret2 > 0)
ret += ret2;
} else {
current->backing_dev_info = inode_to_bdi(inode);
ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
current->backing_dev_info = NULL;
if (likely(ret > 0)) {
iocb->ki_pos += ret;
ret = generic_write_sync(iocb, ret);
}
}
out_unlock:
inode_unlock(inode);
return ret;
}
static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
int mode)
{
struct super_block *sb = inode->i_sb;
struct gfs2_inode *ip = GFS2_I(inode);
loff_t end = offset + len;
struct buffer_head *dibh;
int error;
error = gfs2_meta_inode_buffer(ip, &dibh);
if (unlikely(error))
return error;
gfs2_trans_add_meta(ip->i_gl, dibh);
if (gfs2_is_stuffed(ip)) {
error = gfs2_unstuff_dinode(ip, NULL);
if (unlikely(error))
goto out;
}
while (offset < end) {
struct iomap iomap = { };
error = gfs2_iomap_get_alloc(inode, offset, end - offset,
&iomap);
if (error)
goto out;
offset = iomap.offset + iomap.length;
if (!(iomap.flags & IOMAP_F_NEW))
continue;
error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
iomap.length >> inode->i_blkbits,
GFP_NOFS);
if (error) {
fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
goto out;
}
}
out:
brelse(dibh);
return error;
}
/**
* calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
* blocks, determine how many bytes can be written.
* @ip: The inode in question.
* @len: Max cap of bytes. What we return in *len must be <= this.
* @data_blocks: Compute and return the number of data blocks needed
* @ind_blocks: Compute and return the number of indirect blocks needed
* @max_blocks: The total blocks available to work with.
*
* Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
*/
static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
unsigned int *data_blocks, unsigned int *ind_blocks,
unsigned int max_blocks)
{
loff_t max = *len;
const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
for (tmp = max_data; tmp > sdp->sd_diptrs;) {
tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
max_data -= tmp;
}
*data_blocks = max_data;
*ind_blocks = max_blocks - max_data;
*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
if (*len > max) {
*len = max;
gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
}
}
static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
{
struct inode *inode = file_inode(file);
struct gfs2_sbd *sdp = GFS2_SB(inode);
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_alloc_parms ap = { .aflags = 0, };
unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
loff_t bytes, max_bytes, max_blks;
int error;
const loff_t pos = offset;
const loff_t count = len;
loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
loff_t max_chunk_size = UINT_MAX & bsize_mask;
next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
offset &= bsize_mask;
len = next - offset;
bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
if (!bytes)
bytes = UINT_MAX;
bytes &= bsize_mask;
if (bytes == 0)
bytes = sdp->sd_sb.sb_bsize;
gfs2_size_hint(file, offset, len);
gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
ap.min_target = data_blocks + ind_blocks;
while (len > 0) {
if (len < bytes)
bytes = len;
if (!gfs2_write_alloc_required(ip, offset, bytes)) {
len -= bytes;
offset += bytes;
continue;
}
/* We need to determine how many bytes we can actually
* fallocate without exceeding quota or going over the
* end of the fs. We start off optimistically by assuming
* we can write max_bytes */
max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
/* Since max_bytes is most likely a theoretical max, we
* calculate a more realistic 'bytes' to serve as a good
* starting point for the number of bytes we may be able
* to write */
gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
ap.target = data_blocks + ind_blocks;
error = gfs2_quota_lock_check(ip, &ap);
if (error)
return error;
/* ap.allowed tells us how many blocks quota will allow
* us to write. Check if this reduces max_blks */
max_blks = UINT_MAX;
if (ap.allowed)
max_blks = ap.allowed;
error = gfs2_inplace_reserve(ip, &ap);
if (error)
goto out_qunlock;
/* check if the selected rgrp limits our max_blks further */
if (ap.allowed && ap.allowed < max_blks)
max_blks = ap.allowed;
/* Almost done. Calculate bytes that can be written using
* max_blks. We also recompute max_bytes, data_blocks and
* ind_blocks */
calc_max_reserv(ip, &max_bytes, &data_blocks,
&ind_blocks, max_blks);
rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
if (gfs2_is_jdata(ip))
rblocks += data_blocks ? data_blocks : 1;
error = gfs2_trans_begin(sdp, rblocks,
PAGE_SIZE >> inode->i_blkbits);
if (error)
goto out_trans_fail;
error = fallocate_chunk(inode, offset, max_bytes, mode);
gfs2_trans_end(sdp);
if (error)
goto out_trans_fail;
len -= max_bytes;
offset += max_bytes;
gfs2_inplace_release(ip);
gfs2_quota_unlock(ip);
}
if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
i_size_write(inode, pos + count);
file_update_time(file);
mark_inode_dirty(inode);
if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
return vfs_fsync_range(file, pos, pos + count - 1,
(file->f_flags & __O_SYNC) ? 0 : 1);
return 0;
out_trans_fail:
gfs2_inplace_release(ip);
out_qunlock:
gfs2_quota_unlock(ip);
return error;
}
static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
{
struct inode *inode = file_inode(file);
struct gfs2_sbd *sdp = GFS2_SB(inode);
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_holder gh;
int ret;
if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
return -EOPNOTSUPP;
/* fallocate is needed by gfs2_grow to reserve space in the rindex */
if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
return -EOPNOTSUPP;
inode_lock(inode);
gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
ret = gfs2_glock_nq(&gh);
if (ret)
goto out_uninit;
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
(offset + len) > inode->i_size) {
ret = inode_newsize_ok(inode, offset + len);
if (ret)
goto out_unlock;
}
ret = get_write_access(inode);
if (ret)
goto out_unlock;
if (mode & FALLOC_FL_PUNCH_HOLE) {
ret = __gfs2_punch_hole(file, offset, len);
} else {
ret = __gfs2_fallocate(file, mode, offset, len);
if (ret)
gfs2_rs_deltree(&ip->i_res);
}
put_write_access(inode);
out_unlock:
gfs2_glock_dq(&gh);
out_uninit:
gfs2_holder_uninit(&gh);
inode_unlock(inode);
return ret;
}
static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
struct file *out, loff_t *ppos,
size_t len, unsigned int flags)
{
ssize_t ret;
gfs2_size_hint(out, *ppos, len);
ret = iter_file_splice_write(pipe, out, ppos, len, flags);
return ret;
}
#ifdef CONFIG_GFS2_FS_LOCKING_DLM
/**
* gfs2_lock - acquire/release a posix lock on a file
* @file: the file pointer
* @cmd: either modify or retrieve lock state, possibly wait
* @fl: type and range of lock
*
* Returns: errno
*/
static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
{
struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
struct lm_lockstruct *ls = &sdp->sd_lockstruct;
if (!(fl->fl_flags & FL_POSIX))
return -ENOLCK;
if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
return -ENOLCK;
if (cmd == F_CANCELLK) {
/* Hack: */
cmd = F_SETLK;
fl->fl_type = F_UNLCK;
}
if (unlikely(gfs2_withdrawn(sdp))) {
if (fl->fl_type == F_UNLCK)
locks_lock_file_wait(file, fl);
return -EIO;
}
if (IS_GETLK(cmd))
return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
else if (fl->fl_type == F_UNLCK)
return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
else
return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
}
static int do_flock(struct file *file, int cmd, struct file_lock *fl)
{
struct gfs2_file *fp = file->private_data;
struct gfs2_holder *fl_gh = &fp->f_fl_gh;
struct gfs2_inode *ip = GFS2_I(file_inode(file));
struct gfs2_glock *gl;
unsigned int state;
u16 flags;
int error = 0;
int sleeptime;
state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
mutex_lock(&fp->f_fl_mutex);
if (gfs2_holder_initialized(fl_gh)) {
struct file_lock request;
if (fl_gh->gh_state == state)
goto out;
locks_init_lock(&request);
request.fl_type = F_UNLCK;
request.fl_flags = FL_FLOCK;
locks_lock_file_wait(file, &request);
gfs2_glock_dq(fl_gh);
gfs2_holder_reinit(state, flags, fl_gh);
} else {
error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
&gfs2_flock_glops, CREATE, &gl);
if (error)
goto out;
gfs2_holder_init(gl, state, flags, fl_gh);
gfs2_glock_put(gl);
}
for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
error = gfs2_glock_nq(fl_gh);
if (error != GLR_TRYFAILED)
break;
fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
fl_gh->gh_error = 0;
msleep(sleeptime);
}
if (error) {
gfs2_holder_uninit(fl_gh);
if (error == GLR_TRYFAILED)
error = -EAGAIN;
} else {
error = locks_lock_file_wait(file, fl);
gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
}
out:
mutex_unlock(&fp->f_fl_mutex);
return error;
}
static void do_unflock(struct file *file, struct file_lock *fl)
{
struct gfs2_file *fp = file->private_data;
struct gfs2_holder *fl_gh = &fp->f_fl_gh;
mutex_lock(&fp->f_fl_mutex);
locks_lock_file_wait(file, fl);
if (gfs2_holder_initialized(fl_gh)) {
gfs2_glock_dq(fl_gh);
gfs2_holder_uninit(fl_gh);
}
mutex_unlock(&fp->f_fl_mutex);
}
/**
* gfs2_flock - acquire/release a flock lock on a file
* @file: the file pointer
* @cmd: either modify or retrieve lock state, possibly wait
* @fl: type and range of lock
*
* Returns: errno
*/
static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
{
if (!(fl->fl_flags & FL_FLOCK))
return -ENOLCK;
if (fl->fl_type & LOCK_MAND)
return -EOPNOTSUPP;
if (fl->fl_type == F_UNLCK) {
do_unflock(file, fl);
return 0;
} else {
return do_flock(file, cmd, fl);
}
}
const struct file_operations gfs2_file_fops = {
.llseek = gfs2_llseek,
.read_iter = gfs2_file_read_iter,
.write_iter = gfs2_file_write_iter,
.iopoll = iomap_dio_iopoll,
.unlocked_ioctl = gfs2_ioctl,
.compat_ioctl = gfs2_compat_ioctl,
.mmap = gfs2_mmap,
.open = gfs2_open,
.release = gfs2_release,
.fsync = gfs2_fsync,
.lock = gfs2_lock,
.flock = gfs2_flock,
.splice_read = generic_file_splice_read,
.splice_write = gfs2_file_splice_write,
.setlease = simple_nosetlease,
.fallocate = gfs2_fallocate,
};
const struct file_operations gfs2_dir_fops = {
.iterate_shared = gfs2_readdir,
.unlocked_ioctl = gfs2_ioctl,
.compat_ioctl = gfs2_compat_ioctl,
.open = gfs2_open,
.release = gfs2_release,
.fsync = gfs2_fsync,
.lock = gfs2_lock,
.flock = gfs2_flock,
.llseek = default_llseek,
};
#endif /* CONFIG_GFS2_FS_LOCKING_DLM */
const struct file_operations gfs2_file_fops_nolock = {
.llseek = gfs2_llseek,
.read_iter = gfs2_file_read_iter,
.write_iter = gfs2_file_write_iter,
.iopoll = iomap_dio_iopoll,
.unlocked_ioctl = gfs2_ioctl,
.compat_ioctl = gfs2_compat_ioctl,
.mmap = gfs2_mmap,
.open = gfs2_open,
.release = gfs2_release,
.fsync = gfs2_fsync,
.splice_read = generic_file_splice_read,
.splice_write = gfs2_file_splice_write,
.setlease = generic_setlease,
.fallocate = gfs2_fallocate,
};
const struct file_operations gfs2_dir_fops_nolock = {
.iterate_shared = gfs2_readdir,
.unlocked_ioctl = gfs2_ioctl,
.compat_ioctl = gfs2_compat_ioctl,
.open = gfs2_open,
.release = gfs2_release,
.fsync = gfs2_fsync,
.llseek = default_llseek,
};