OpenCloudOS-Kernel/arch/x86/kernel/cpu/bugs.c

1622 lines
45 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 1994 Linus Torvalds
*
* Cyrix stuff, June 1998 by:
* - Rafael R. Reilova (moved everything from head.S),
* <rreilova@ececs.uc.edu>
* - Channing Corn (tests & fixes),
* - Andrew D. Balsa (code cleanup).
*/
#include <linux/init.h>
#include <linux/utsname.h>
#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/nospec.h>
#include <linux/prctl.h>
#include <linux/sched/smt.h>
#include <asm/spec-ctrl.h>
#include <asm/cmdline.h>
#include <asm/bugs.h>
#include <asm/processor.h>
#include <asm/processor-flags.h>
#include <asm/fpu/internal.h>
#include <asm/msr.h>
#include <asm/vmx.h>
#include <asm/paravirt.h>
#include <asm/alternative.h>
#include <asm/pgtable.h>
#include <asm/set_memory.h>
#include <asm/intel-family.h>
#include <asm/e820/api.h>
#include <asm/hypervisor.h>
#include "cpu.h"
static void __init spectre_v1_select_mitigation(void);
static void __init spectre_v2_select_mitigation(void);
static void __init ssb_select_mitigation(void);
static void __init l1tf_select_mitigation(void);
static void __init mds_select_mitigation(void);
static void __init mds_print_mitigation(void);
static void __init taa_select_mitigation(void);
/* The base value of the SPEC_CTRL MSR that always has to be preserved. */
u64 x86_spec_ctrl_base;
EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
static DEFINE_MUTEX(spec_ctrl_mutex);
/*
* The vendor and possibly platform specific bits which can be modified in
* x86_spec_ctrl_base.
*/
static u64 __ro_after_init x86_spec_ctrl_mask = SPEC_CTRL_IBRS;
/*
* AMD specific MSR info for Speculative Store Bypass control.
* x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
*/
u64 __ro_after_init x86_amd_ls_cfg_base;
u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
/* Control conditional STIBP in switch_to() */
DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
/* Control conditional IBPB in switch_mm() */
DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
/* Control unconditional IBPB in switch_mm() */
DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
/* Control MDS CPU buffer clear before returning to user space */
DEFINE_STATIC_KEY_FALSE(mds_user_clear);
EXPORT_SYMBOL_GPL(mds_user_clear);
/* Control MDS CPU buffer clear before idling (halt, mwait) */
DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
EXPORT_SYMBOL_GPL(mds_idle_clear);
void __init check_bugs(void)
{
identify_boot_cpu();
/*
* identify_boot_cpu() initialized SMT support information, let the
* core code know.
*/
cpu_smt_check_topology();
if (!IS_ENABLED(CONFIG_SMP)) {
pr_info("CPU: ");
print_cpu_info(&boot_cpu_data);
}
/*
* Read the SPEC_CTRL MSR to account for reserved bits which may
* have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
* init code as it is not enumerated and depends on the family.
*/
if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
/* Allow STIBP in MSR_SPEC_CTRL if supported */
if (boot_cpu_has(X86_FEATURE_STIBP))
x86_spec_ctrl_mask |= SPEC_CTRL_STIBP;
/* Select the proper CPU mitigations before patching alternatives: */
spectre_v1_select_mitigation();
spectre_v2_select_mitigation();
ssb_select_mitigation();
l1tf_select_mitigation();
mds_select_mitigation();
taa_select_mitigation();
/*
* As MDS and TAA mitigations are inter-related, print MDS
* mitigation until after TAA mitigation selection is done.
*/
mds_print_mitigation();
arch_smt_update();
#ifdef CONFIG_X86_32
/*
* Check whether we are able to run this kernel safely on SMP.
*
* - i386 is no longer supported.
* - In order to run on anything without a TSC, we need to be
* compiled for a i486.
*/
if (boot_cpu_data.x86 < 4)
panic("Kernel requires i486+ for 'invlpg' and other features");
init_utsname()->machine[1] =
'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
alternative_instructions();
fpu__init_check_bugs();
#else /* CONFIG_X86_64 */
alternative_instructions();
/*
* Make sure the first 2MB area is not mapped by huge pages
* There are typically fixed size MTRRs in there and overlapping
* MTRRs into large pages causes slow downs.
*
* Right now we don't do that with gbpages because there seems
* very little benefit for that case.
*/
if (!direct_gbpages)
set_memory_4k((unsigned long)__va(0), 1);
#endif
}
void
x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
{
u64 msrval, guestval, hostval = x86_spec_ctrl_base;
struct thread_info *ti = current_thread_info();
/* Is MSR_SPEC_CTRL implemented ? */
if (static_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) {
/*
* Restrict guest_spec_ctrl to supported values. Clear the
* modifiable bits in the host base value and or the
* modifiable bits from the guest value.
*/
guestval = hostval & ~x86_spec_ctrl_mask;
guestval |= guest_spec_ctrl & x86_spec_ctrl_mask;
/* SSBD controlled in MSR_SPEC_CTRL */
if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
static_cpu_has(X86_FEATURE_AMD_SSBD))
hostval |= ssbd_tif_to_spec_ctrl(ti->flags);
/* Conditional STIBP enabled? */
if (static_branch_unlikely(&switch_to_cond_stibp))
hostval |= stibp_tif_to_spec_ctrl(ti->flags);
if (hostval != guestval) {
msrval = setguest ? guestval : hostval;
wrmsrl(MSR_IA32_SPEC_CTRL, msrval);
}
}
/*
* If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
* MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
*/
if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
!static_cpu_has(X86_FEATURE_VIRT_SSBD))
return;
/*
* If the host has SSBD mitigation enabled, force it in the host's
* virtual MSR value. If its not permanently enabled, evaluate
* current's TIF_SSBD thread flag.
*/
if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
hostval = SPEC_CTRL_SSBD;
else
hostval = ssbd_tif_to_spec_ctrl(ti->flags);
/* Sanitize the guest value */
guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
if (hostval != guestval) {
unsigned long tif;
tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
ssbd_spec_ctrl_to_tif(hostval);
speculation_ctrl_update(tif);
}
}
EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
static void x86_amd_ssb_disable(void)
{
u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
wrmsrl(MSR_AMD64_LS_CFG, msrval);
}
#undef pr_fmt
#define pr_fmt(fmt) "MDS: " fmt
/* Default mitigation for MDS-affected CPUs */
static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
static bool mds_nosmt __ro_after_init = false;
static const char * const mds_strings[] = {
[MDS_MITIGATION_OFF] = "Vulnerable",
[MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
[MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
};
static void __init mds_select_mitigation(void)
{
if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
mds_mitigation = MDS_MITIGATION_OFF;
return;
}
if (mds_mitigation == MDS_MITIGATION_FULL) {
if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
mds_mitigation = MDS_MITIGATION_VMWERV;
static_branch_enable(&mds_user_clear);
if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
(mds_nosmt || cpu_mitigations_auto_nosmt()))
cpu_smt_disable(false);
}
}
static void __init mds_print_mitigation(void)
{
if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off())
return;
pr_info("%s\n", mds_strings[mds_mitigation]);
}
static int __init mds_cmdline(char *str)
{
if (!boot_cpu_has_bug(X86_BUG_MDS))
return 0;
if (!str)
return -EINVAL;
if (!strcmp(str, "off"))
mds_mitigation = MDS_MITIGATION_OFF;
else if (!strcmp(str, "full"))
mds_mitigation = MDS_MITIGATION_FULL;
else if (!strcmp(str, "full,nosmt")) {
mds_mitigation = MDS_MITIGATION_FULL;
mds_nosmt = true;
}
return 0;
}
early_param("mds", mds_cmdline);
#undef pr_fmt
#define pr_fmt(fmt) "TAA: " fmt
enum taa_mitigations {
TAA_MITIGATION_OFF,
TAA_MITIGATION_UCODE_NEEDED,
TAA_MITIGATION_VERW,
TAA_MITIGATION_TSX_DISABLED,
};
/* Default mitigation for TAA-affected CPUs */
static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
static bool taa_nosmt __ro_after_init;
static const char * const taa_strings[] = {
[TAA_MITIGATION_OFF] = "Vulnerable",
[TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
[TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
[TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
};
static void __init taa_select_mitigation(void)
{
u64 ia32_cap;
if (!boot_cpu_has_bug(X86_BUG_TAA)) {
taa_mitigation = TAA_MITIGATION_OFF;
return;
}
/* TSX previously disabled by tsx=off */
if (!boot_cpu_has(X86_FEATURE_RTM)) {
taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
goto out;
}
if (cpu_mitigations_off()) {
taa_mitigation = TAA_MITIGATION_OFF;
return;
}
/*
* TAA mitigation via VERW is turned off if both
* tsx_async_abort=off and mds=off are specified.
*/
if (taa_mitigation == TAA_MITIGATION_OFF &&
mds_mitigation == MDS_MITIGATION_OFF)
goto out;
if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
taa_mitigation = TAA_MITIGATION_VERW;
else
taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
/*
* VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
* A microcode update fixes this behavior to clear CPU buffers. It also
* adds support for MSR_IA32_TSX_CTRL which is enumerated by the
* ARCH_CAP_TSX_CTRL_MSR bit.
*
* On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
* update is required.
*/
ia32_cap = x86_read_arch_cap_msr();
if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
!(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
/*
* TSX is enabled, select alternate mitigation for TAA which is
* the same as MDS. Enable MDS static branch to clear CPU buffers.
*
* For guests that can't determine whether the correct microcode is
* present on host, enable the mitigation for UCODE_NEEDED as well.
*/
static_branch_enable(&mds_user_clear);
if (taa_nosmt || cpu_mitigations_auto_nosmt())
cpu_smt_disable(false);
/*
* Update MDS mitigation, if necessary, as the mds_user_clear is
* now enabled for TAA mitigation.
*/
if (mds_mitigation == MDS_MITIGATION_OFF &&
boot_cpu_has_bug(X86_BUG_MDS)) {
mds_mitigation = MDS_MITIGATION_FULL;
mds_select_mitigation();
}
out:
pr_info("%s\n", taa_strings[taa_mitigation]);
}
static int __init tsx_async_abort_parse_cmdline(char *str)
{
if (!boot_cpu_has_bug(X86_BUG_TAA))
return 0;
if (!str)
return -EINVAL;
if (!strcmp(str, "off")) {
taa_mitigation = TAA_MITIGATION_OFF;
} else if (!strcmp(str, "full")) {
taa_mitigation = TAA_MITIGATION_VERW;
} else if (!strcmp(str, "full,nosmt")) {
taa_mitigation = TAA_MITIGATION_VERW;
taa_nosmt = true;
}
return 0;
}
early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
#undef pr_fmt
#define pr_fmt(fmt) "Spectre V1 : " fmt
enum spectre_v1_mitigation {
SPECTRE_V1_MITIGATION_NONE,
SPECTRE_V1_MITIGATION_AUTO,
};
static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
SPECTRE_V1_MITIGATION_AUTO;
static const char * const spectre_v1_strings[] = {
[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
};
/*
* Does SMAP provide full mitigation against speculative kernel access to
* userspace?
*/
static bool smap_works_speculatively(void)
{
if (!boot_cpu_has(X86_FEATURE_SMAP))
return false;
/*
* On CPUs which are vulnerable to Meltdown, SMAP does not
* prevent speculative access to user data in the L1 cache.
* Consider SMAP to be non-functional as a mitigation on these
* CPUs.
*/
if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
return false;
return true;
}
static void __init spectre_v1_select_mitigation(void)
{
if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
return;
}
if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
/*
* With Spectre v1, a user can speculatively control either
* path of a conditional swapgs with a user-controlled GS
* value. The mitigation is to add lfences to both code paths.
*
* If FSGSBASE is enabled, the user can put a kernel address in
* GS, in which case SMAP provides no protection.
*
* [ NOTE: Don't check for X86_FEATURE_FSGSBASE until the
* FSGSBASE enablement patches have been merged. ]
*
* If FSGSBASE is disabled, the user can only put a user space
* address in GS. That makes an attack harder, but still
* possible if there's no SMAP protection.
*/
if (!smap_works_speculatively()) {
/*
* Mitigation can be provided from SWAPGS itself or
* PTI as the CR3 write in the Meltdown mitigation
* is serializing.
*
* If neither is there, mitigate with an LFENCE to
* stop speculation through swapgs.
*/
if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
!boot_cpu_has(X86_FEATURE_PTI))
setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
/*
* Enable lfences in the kernel entry (non-swapgs)
* paths, to prevent user entry from speculatively
* skipping swapgs.
*/
setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
}
}
pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
}
static int __init nospectre_v1_cmdline(char *str)
{
spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
return 0;
}
early_param("nospectre_v1", nospectre_v1_cmdline);
#undef pr_fmt
#define pr_fmt(fmt) "Spectre V2 : " fmt
static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
SPECTRE_V2_NONE;
static enum spectre_v2_user_mitigation spectre_v2_user __ro_after_init =
SPECTRE_V2_USER_NONE;
#ifdef CONFIG_RETPOLINE
static bool spectre_v2_bad_module;
bool retpoline_module_ok(bool has_retpoline)
{
if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
return true;
pr_err("System may be vulnerable to spectre v2\n");
spectre_v2_bad_module = true;
return false;
}
static inline const char *spectre_v2_module_string(void)
{
return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
}
#else
static inline const char *spectre_v2_module_string(void) { return ""; }
#endif
static inline bool match_option(const char *arg, int arglen, const char *opt)
{
int len = strlen(opt);
return len == arglen && !strncmp(arg, opt, len);
}
/* The kernel command line selection for spectre v2 */
enum spectre_v2_mitigation_cmd {
SPECTRE_V2_CMD_NONE,
SPECTRE_V2_CMD_AUTO,
SPECTRE_V2_CMD_FORCE,
SPECTRE_V2_CMD_RETPOLINE,
SPECTRE_V2_CMD_RETPOLINE_GENERIC,
SPECTRE_V2_CMD_RETPOLINE_AMD,
};
enum spectre_v2_user_cmd {
SPECTRE_V2_USER_CMD_NONE,
SPECTRE_V2_USER_CMD_AUTO,
SPECTRE_V2_USER_CMD_FORCE,
SPECTRE_V2_USER_CMD_PRCTL,
SPECTRE_V2_USER_CMD_PRCTL_IBPB,
SPECTRE_V2_USER_CMD_SECCOMP,
SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
};
static const char * const spectre_v2_user_strings[] = {
[SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
[SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
[SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
[SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
[SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
};
static const struct {
const char *option;
enum spectre_v2_user_cmd cmd;
bool secure;
} v2_user_options[] __initconst = {
{ "auto", SPECTRE_V2_USER_CMD_AUTO, false },
{ "off", SPECTRE_V2_USER_CMD_NONE, false },
{ "on", SPECTRE_V2_USER_CMD_FORCE, true },
{ "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
{ "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
{ "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
{ "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
};
static void __init spec_v2_user_print_cond(const char *reason, bool secure)
{
if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
pr_info("spectre_v2_user=%s forced on command line.\n", reason);
}
static enum spectre_v2_user_cmd __init
spectre_v2_parse_user_cmdline(enum spectre_v2_mitigation_cmd v2_cmd)
{
char arg[20];
int ret, i;
switch (v2_cmd) {
case SPECTRE_V2_CMD_NONE:
return SPECTRE_V2_USER_CMD_NONE;
case SPECTRE_V2_CMD_FORCE:
return SPECTRE_V2_USER_CMD_FORCE;
default:
break;
}
ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
arg, sizeof(arg));
if (ret < 0)
return SPECTRE_V2_USER_CMD_AUTO;
for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
if (match_option(arg, ret, v2_user_options[i].option)) {
spec_v2_user_print_cond(v2_user_options[i].option,
v2_user_options[i].secure);
return v2_user_options[i].cmd;
}
}
pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
return SPECTRE_V2_USER_CMD_AUTO;
}
static void __init
spectre_v2_user_select_mitigation(enum spectre_v2_mitigation_cmd v2_cmd)
{
enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
bool smt_possible = IS_ENABLED(CONFIG_SMP);
enum spectre_v2_user_cmd cmd;
if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
return;
if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
smt_possible = false;
cmd = spectre_v2_parse_user_cmdline(v2_cmd);
switch (cmd) {
case SPECTRE_V2_USER_CMD_NONE:
goto set_mode;
case SPECTRE_V2_USER_CMD_FORCE:
mode = SPECTRE_V2_USER_STRICT;
break;
case SPECTRE_V2_USER_CMD_PRCTL:
case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
mode = SPECTRE_V2_USER_PRCTL;
break;
case SPECTRE_V2_USER_CMD_AUTO:
case SPECTRE_V2_USER_CMD_SECCOMP:
case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
if (IS_ENABLED(CONFIG_SECCOMP))
mode = SPECTRE_V2_USER_SECCOMP;
else
mode = SPECTRE_V2_USER_PRCTL;
break;
}
/*
* At this point, an STIBP mode other than "off" has been set.
* If STIBP support is not being forced, check if STIBP always-on
* is preferred.
*/
if (mode != SPECTRE_V2_USER_STRICT &&
boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
mode = SPECTRE_V2_USER_STRICT_PREFERRED;
/* Initialize Indirect Branch Prediction Barrier */
if (boot_cpu_has(X86_FEATURE_IBPB)) {
setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
switch (cmd) {
case SPECTRE_V2_USER_CMD_FORCE:
case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
static_branch_enable(&switch_mm_always_ibpb);
break;
case SPECTRE_V2_USER_CMD_PRCTL:
case SPECTRE_V2_USER_CMD_AUTO:
case SPECTRE_V2_USER_CMD_SECCOMP:
static_branch_enable(&switch_mm_cond_ibpb);
break;
default:
break;
}
pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
static_key_enabled(&switch_mm_always_ibpb) ?
"always-on" : "conditional");
}
/* If enhanced IBRS is enabled no STIBP required */
if (spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED)
return;
/*
* If SMT is not possible or STIBP is not available clear the STIBP
* mode.
*/
if (!smt_possible || !boot_cpu_has(X86_FEATURE_STIBP))
mode = SPECTRE_V2_USER_NONE;
set_mode:
spectre_v2_user = mode;
/* Only print the STIBP mode when SMT possible */
if (smt_possible)
pr_info("%s\n", spectre_v2_user_strings[mode]);
}
static const char * const spectre_v2_strings[] = {
[SPECTRE_V2_NONE] = "Vulnerable",
[SPECTRE_V2_RETPOLINE_GENERIC] = "Mitigation: Full generic retpoline",
[SPECTRE_V2_RETPOLINE_AMD] = "Mitigation: Full AMD retpoline",
[SPECTRE_V2_IBRS_ENHANCED] = "Mitigation: Enhanced IBRS",
};
static const struct {
const char *option;
enum spectre_v2_mitigation_cmd cmd;
bool secure;
} mitigation_options[] __initconst = {
{ "off", SPECTRE_V2_CMD_NONE, false },
{ "on", SPECTRE_V2_CMD_FORCE, true },
{ "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
{ "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_AMD, false },
{ "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
{ "auto", SPECTRE_V2_CMD_AUTO, false },
};
static void __init spec_v2_print_cond(const char *reason, bool secure)
{
if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
pr_info("%s selected on command line.\n", reason);
}
static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
{
enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
char arg[20];
int ret, i;
if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
cpu_mitigations_off())
return SPECTRE_V2_CMD_NONE;
ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
if (ret < 0)
return SPECTRE_V2_CMD_AUTO;
for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
if (!match_option(arg, ret, mitigation_options[i].option))
continue;
cmd = mitigation_options[i].cmd;
break;
}
if (i >= ARRAY_SIZE(mitigation_options)) {
pr_err("unknown option (%s). Switching to AUTO select\n", arg);
return SPECTRE_V2_CMD_AUTO;
}
if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
cmd == SPECTRE_V2_CMD_RETPOLINE_AMD ||
cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC) &&
!IS_ENABLED(CONFIG_RETPOLINE)) {
pr_err("%s selected but not compiled in. Switching to AUTO select\n", mitigation_options[i].option);
return SPECTRE_V2_CMD_AUTO;
}
if (cmd == SPECTRE_V2_CMD_RETPOLINE_AMD &&
boot_cpu_data.x86_vendor != X86_VENDOR_HYGON &&
boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
pr_err("retpoline,amd selected but CPU is not AMD. Switching to AUTO select\n");
return SPECTRE_V2_CMD_AUTO;
}
spec_v2_print_cond(mitigation_options[i].option,
mitigation_options[i].secure);
return cmd;
}
static void __init spectre_v2_select_mitigation(void)
{
enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
/*
* If the CPU is not affected and the command line mode is NONE or AUTO
* then nothing to do.
*/
if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
(cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
return;
switch (cmd) {
case SPECTRE_V2_CMD_NONE:
return;
case SPECTRE_V2_CMD_FORCE:
case SPECTRE_V2_CMD_AUTO:
if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
mode = SPECTRE_V2_IBRS_ENHANCED;
/* Force it so VMEXIT will restore correctly */
x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
goto specv2_set_mode;
}
if (IS_ENABLED(CONFIG_RETPOLINE))
goto retpoline_auto;
break;
case SPECTRE_V2_CMD_RETPOLINE_AMD:
if (IS_ENABLED(CONFIG_RETPOLINE))
goto retpoline_amd;
break;
case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
if (IS_ENABLED(CONFIG_RETPOLINE))
goto retpoline_generic;
break;
case SPECTRE_V2_CMD_RETPOLINE:
if (IS_ENABLED(CONFIG_RETPOLINE))
goto retpoline_auto;
break;
}
pr_err("Spectre mitigation: kernel not compiled with retpoline; no mitigation available!");
return;
retpoline_auto:
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
retpoline_amd:
if (!boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
pr_err("Spectre mitigation: LFENCE not serializing, switching to generic retpoline\n");
goto retpoline_generic;
}
mode = SPECTRE_V2_RETPOLINE_AMD;
setup_force_cpu_cap(X86_FEATURE_RETPOLINE_AMD);
setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
} else {
retpoline_generic:
mode = SPECTRE_V2_RETPOLINE_GENERIC;
setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
}
specv2_set_mode:
spectre_v2_enabled = mode;
pr_info("%s\n", spectre_v2_strings[mode]);
/*
* If spectre v2 protection has been enabled, unconditionally fill
* RSB during a context switch; this protects against two independent
* issues:
*
* - RSB underflow (and switch to BTB) on Skylake+
* - SpectreRSB variant of spectre v2 on X86_BUG_SPECTRE_V2 CPUs
*/
setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
/*
* Retpoline means the kernel is safe because it has no indirect
* branches. Enhanced IBRS protects firmware too, so, enable restricted
* speculation around firmware calls only when Enhanced IBRS isn't
* supported.
*
* Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
* the user might select retpoline on the kernel command line and if
* the CPU supports Enhanced IBRS, kernel might un-intentionally not
* enable IBRS around firmware calls.
*/
if (boot_cpu_has(X86_FEATURE_IBRS) && mode != SPECTRE_V2_IBRS_ENHANCED) {
setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
pr_info("Enabling Restricted Speculation for firmware calls\n");
}
/* Set up IBPB and STIBP depending on the general spectre V2 command */
spectre_v2_user_select_mitigation(cmd);
}
static void update_stibp_msr(void * __unused)
{
wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
}
/* Update x86_spec_ctrl_base in case SMT state changed. */
static void update_stibp_strict(void)
{
u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
if (sched_smt_active())
mask |= SPEC_CTRL_STIBP;
if (mask == x86_spec_ctrl_base)
return;
pr_info("Update user space SMT mitigation: STIBP %s\n",
mask & SPEC_CTRL_STIBP ? "always-on" : "off");
x86_spec_ctrl_base = mask;
on_each_cpu(update_stibp_msr, NULL, 1);
}
/* Update the static key controlling the evaluation of TIF_SPEC_IB */
static void update_indir_branch_cond(void)
{
if (sched_smt_active())
static_branch_enable(&switch_to_cond_stibp);
else
static_branch_disable(&switch_to_cond_stibp);
}
#undef pr_fmt
#define pr_fmt(fmt) fmt
/* Update the static key controlling the MDS CPU buffer clear in idle */
static void update_mds_branch_idle(void)
{
/*
* Enable the idle clearing if SMT is active on CPUs which are
* affected only by MSBDS and not any other MDS variant.
*
* The other variants cannot be mitigated when SMT is enabled, so
* clearing the buffers on idle just to prevent the Store Buffer
* repartitioning leak would be a window dressing exercise.
*/
if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
return;
if (sched_smt_active())
static_branch_enable(&mds_idle_clear);
else
static_branch_disable(&mds_idle_clear);
}
#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
void cpu_bugs_smt_update(void)
{
mutex_lock(&spec_ctrl_mutex);
switch (spectre_v2_user) {
case SPECTRE_V2_USER_NONE:
break;
case SPECTRE_V2_USER_STRICT:
case SPECTRE_V2_USER_STRICT_PREFERRED:
update_stibp_strict();
break;
case SPECTRE_V2_USER_PRCTL:
case SPECTRE_V2_USER_SECCOMP:
update_indir_branch_cond();
break;
}
switch (mds_mitigation) {
case MDS_MITIGATION_FULL:
case MDS_MITIGATION_VMWERV:
if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
pr_warn_once(MDS_MSG_SMT);
update_mds_branch_idle();
break;
case MDS_MITIGATION_OFF:
break;
}
switch (taa_mitigation) {
case TAA_MITIGATION_VERW:
case TAA_MITIGATION_UCODE_NEEDED:
if (sched_smt_active())
pr_warn_once(TAA_MSG_SMT);
break;
case TAA_MITIGATION_TSX_DISABLED:
case TAA_MITIGATION_OFF:
break;
}
mutex_unlock(&spec_ctrl_mutex);
}
#undef pr_fmt
#define pr_fmt(fmt) "Speculative Store Bypass: " fmt
static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
/* The kernel command line selection */
enum ssb_mitigation_cmd {
SPEC_STORE_BYPASS_CMD_NONE,
SPEC_STORE_BYPASS_CMD_AUTO,
SPEC_STORE_BYPASS_CMD_ON,
SPEC_STORE_BYPASS_CMD_PRCTL,
SPEC_STORE_BYPASS_CMD_SECCOMP,
};
static const char * const ssb_strings[] = {
[SPEC_STORE_BYPASS_NONE] = "Vulnerable",
[SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
[SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
[SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
};
static const struct {
const char *option;
enum ssb_mitigation_cmd cmd;
} ssb_mitigation_options[] __initconst = {
{ "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
{ "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
{ "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
{ "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
{ "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
};
static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
{
enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
char arg[20];
int ret, i;
if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
cpu_mitigations_off()) {
return SPEC_STORE_BYPASS_CMD_NONE;
} else {
ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
arg, sizeof(arg));
if (ret < 0)
return SPEC_STORE_BYPASS_CMD_AUTO;
for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
if (!match_option(arg, ret, ssb_mitigation_options[i].option))
continue;
cmd = ssb_mitigation_options[i].cmd;
break;
}
if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
pr_err("unknown option (%s). Switching to AUTO select\n", arg);
return SPEC_STORE_BYPASS_CMD_AUTO;
}
}
return cmd;
}
static enum ssb_mitigation __init __ssb_select_mitigation(void)
{
enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
enum ssb_mitigation_cmd cmd;
if (!boot_cpu_has(X86_FEATURE_SSBD))
return mode;
cmd = ssb_parse_cmdline();
if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
(cmd == SPEC_STORE_BYPASS_CMD_NONE ||
cmd == SPEC_STORE_BYPASS_CMD_AUTO))
return mode;
switch (cmd) {
case SPEC_STORE_BYPASS_CMD_AUTO:
case SPEC_STORE_BYPASS_CMD_SECCOMP:
/*
* Choose prctl+seccomp as the default mode if seccomp is
* enabled.
*/
if (IS_ENABLED(CONFIG_SECCOMP))
mode = SPEC_STORE_BYPASS_SECCOMP;
else
mode = SPEC_STORE_BYPASS_PRCTL;
break;
case SPEC_STORE_BYPASS_CMD_ON:
mode = SPEC_STORE_BYPASS_DISABLE;
break;
case SPEC_STORE_BYPASS_CMD_PRCTL:
mode = SPEC_STORE_BYPASS_PRCTL;
break;
case SPEC_STORE_BYPASS_CMD_NONE:
break;
}
/*
* If SSBD is controlled by the SPEC_CTRL MSR, then set the proper
* bit in the mask to allow guests to use the mitigation even in the
* case where the host does not enable it.
*/
if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
static_cpu_has(X86_FEATURE_AMD_SSBD)) {
x86_spec_ctrl_mask |= SPEC_CTRL_SSBD;
}
/*
* We have three CPU feature flags that are in play here:
* - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
* - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
* - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
*/
if (mode == SPEC_STORE_BYPASS_DISABLE) {
setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
/*
* Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
* use a completely different MSR and bit dependent on family.
*/
if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
!static_cpu_has(X86_FEATURE_AMD_SSBD)) {
x86_amd_ssb_disable();
} else {
x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
}
}
return mode;
}
static void ssb_select_mitigation(void)
{
ssb_mode = __ssb_select_mitigation();
if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
pr_info("%s\n", ssb_strings[ssb_mode]);
}
#undef pr_fmt
#define pr_fmt(fmt) "Speculation prctl: " fmt
static void task_update_spec_tif(struct task_struct *tsk)
{
/* Force the update of the real TIF bits */
set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
/*
* Immediately update the speculation control MSRs for the current
* task, but for a non-current task delay setting the CPU
* mitigation until it is scheduled next.
*
* This can only happen for SECCOMP mitigation. For PRCTL it's
* always the current task.
*/
if (tsk == current)
speculation_ctrl_update_current();
}
static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
{
if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
return -ENXIO;
switch (ctrl) {
case PR_SPEC_ENABLE:
/* If speculation is force disabled, enable is not allowed */
if (task_spec_ssb_force_disable(task))
return -EPERM;
task_clear_spec_ssb_disable(task);
task_clear_spec_ssb_noexec(task);
task_update_spec_tif(task);
break;
case PR_SPEC_DISABLE:
task_set_spec_ssb_disable(task);
task_clear_spec_ssb_noexec(task);
task_update_spec_tif(task);
break;
case PR_SPEC_FORCE_DISABLE:
task_set_spec_ssb_disable(task);
task_set_spec_ssb_force_disable(task);
task_clear_spec_ssb_noexec(task);
task_update_spec_tif(task);
break;
case PR_SPEC_DISABLE_NOEXEC:
if (task_spec_ssb_force_disable(task))
return -EPERM;
task_set_spec_ssb_disable(task);
task_set_spec_ssb_noexec(task);
task_update_spec_tif(task);
break;
default:
return -ERANGE;
}
return 0;
}
static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
{
switch (ctrl) {
case PR_SPEC_ENABLE:
if (spectre_v2_user == SPECTRE_V2_USER_NONE)
return 0;
/*
* Indirect branch speculation is always disabled in strict
* mode.
*/
if (spectre_v2_user == SPECTRE_V2_USER_STRICT ||
spectre_v2_user == SPECTRE_V2_USER_STRICT_PREFERRED)
return -EPERM;
task_clear_spec_ib_disable(task);
task_update_spec_tif(task);
break;
case PR_SPEC_DISABLE:
case PR_SPEC_FORCE_DISABLE:
/*
* Indirect branch speculation is always allowed when
* mitigation is force disabled.
*/
if (spectre_v2_user == SPECTRE_V2_USER_NONE)
return -EPERM;
if (spectre_v2_user == SPECTRE_V2_USER_STRICT ||
spectre_v2_user == SPECTRE_V2_USER_STRICT_PREFERRED)
return 0;
task_set_spec_ib_disable(task);
if (ctrl == PR_SPEC_FORCE_DISABLE)
task_set_spec_ib_force_disable(task);
task_update_spec_tif(task);
break;
default:
return -ERANGE;
}
return 0;
}
int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
unsigned long ctrl)
{
switch (which) {
case PR_SPEC_STORE_BYPASS:
return ssb_prctl_set(task, ctrl);
case PR_SPEC_INDIRECT_BRANCH:
return ib_prctl_set(task, ctrl);
default:
return -ENODEV;
}
}
#ifdef CONFIG_SECCOMP
void arch_seccomp_spec_mitigate(struct task_struct *task)
{
if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
if (spectre_v2_user == SPECTRE_V2_USER_SECCOMP)
ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
}
#endif
static int ssb_prctl_get(struct task_struct *task)
{
switch (ssb_mode) {
case SPEC_STORE_BYPASS_DISABLE:
return PR_SPEC_DISABLE;
case SPEC_STORE_BYPASS_SECCOMP:
case SPEC_STORE_BYPASS_PRCTL:
if (task_spec_ssb_force_disable(task))
return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
if (task_spec_ssb_noexec(task))
return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
if (task_spec_ssb_disable(task))
return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
default:
if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
return PR_SPEC_ENABLE;
return PR_SPEC_NOT_AFFECTED;
}
}
static int ib_prctl_get(struct task_struct *task)
{
if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
return PR_SPEC_NOT_AFFECTED;
switch (spectre_v2_user) {
case SPECTRE_V2_USER_NONE:
return PR_SPEC_ENABLE;
case SPECTRE_V2_USER_PRCTL:
case SPECTRE_V2_USER_SECCOMP:
if (task_spec_ib_force_disable(task))
return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
if (task_spec_ib_disable(task))
return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
case SPECTRE_V2_USER_STRICT:
case SPECTRE_V2_USER_STRICT_PREFERRED:
return PR_SPEC_DISABLE;
default:
return PR_SPEC_NOT_AFFECTED;
}
}
int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
{
switch (which) {
case PR_SPEC_STORE_BYPASS:
return ssb_prctl_get(task);
case PR_SPEC_INDIRECT_BRANCH:
return ib_prctl_get(task);
default:
return -ENODEV;
}
}
void x86_spec_ctrl_setup_ap(void)
{
if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
x86_amd_ssb_disable();
}
bool itlb_multihit_kvm_mitigation;
EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
#undef pr_fmt
#define pr_fmt(fmt) "L1TF: " fmt
/* Default mitigation for L1TF-affected CPUs */
enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
#if IS_ENABLED(CONFIG_KVM_INTEL)
EXPORT_SYMBOL_GPL(l1tf_mitigation);
#endif
enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
/*
* These CPUs all support 44bits physical address space internally in the
* cache but CPUID can report a smaller number of physical address bits.
*
* The L1TF mitigation uses the top most address bit for the inversion of
* non present PTEs. When the installed memory reaches into the top most
* address bit due to memory holes, which has been observed on machines
* which report 36bits physical address bits and have 32G RAM installed,
* then the mitigation range check in l1tf_select_mitigation() triggers.
* This is a false positive because the mitigation is still possible due to
* the fact that the cache uses 44bit internally. Use the cache bits
* instead of the reported physical bits and adjust them on the affected
* machines to 44bit if the reported bits are less than 44.
*/
static void override_cache_bits(struct cpuinfo_x86 *c)
{
if (c->x86 != 6)
return;
switch (c->x86_model) {
case INTEL_FAM6_NEHALEM:
case INTEL_FAM6_WESTMERE:
case INTEL_FAM6_SANDYBRIDGE:
case INTEL_FAM6_IVYBRIDGE:
case INTEL_FAM6_HASWELL:
case INTEL_FAM6_HASWELL_L:
case INTEL_FAM6_HASWELL_G:
case INTEL_FAM6_BROADWELL:
case INTEL_FAM6_BROADWELL_G:
case INTEL_FAM6_SKYLAKE_L:
case INTEL_FAM6_SKYLAKE:
case INTEL_FAM6_KABYLAKE_L:
case INTEL_FAM6_KABYLAKE:
if (c->x86_cache_bits < 44)
c->x86_cache_bits = 44;
break;
}
}
static void __init l1tf_select_mitigation(void)
{
u64 half_pa;
if (!boot_cpu_has_bug(X86_BUG_L1TF))
return;
if (cpu_mitigations_off())
l1tf_mitigation = L1TF_MITIGATION_OFF;
else if (cpu_mitigations_auto_nosmt())
l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
override_cache_bits(&boot_cpu_data);
switch (l1tf_mitigation) {
case L1TF_MITIGATION_OFF:
case L1TF_MITIGATION_FLUSH_NOWARN:
case L1TF_MITIGATION_FLUSH:
break;
case L1TF_MITIGATION_FLUSH_NOSMT:
case L1TF_MITIGATION_FULL:
cpu_smt_disable(false);
break;
case L1TF_MITIGATION_FULL_FORCE:
cpu_smt_disable(true);
break;
}
#if CONFIG_PGTABLE_LEVELS == 2
pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
return;
#endif
half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
half_pa);
pr_info("However, doing so will make a part of your RAM unusable.\n");
pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
return;
}
setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
}
static int __init l1tf_cmdline(char *str)
{
if (!boot_cpu_has_bug(X86_BUG_L1TF))
return 0;
if (!str)
return -EINVAL;
if (!strcmp(str, "off"))
l1tf_mitigation = L1TF_MITIGATION_OFF;
else if (!strcmp(str, "flush,nowarn"))
l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
else if (!strcmp(str, "flush"))
l1tf_mitigation = L1TF_MITIGATION_FLUSH;
else if (!strcmp(str, "flush,nosmt"))
l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
else if (!strcmp(str, "full"))
l1tf_mitigation = L1TF_MITIGATION_FULL;
else if (!strcmp(str, "full,force"))
l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
return 0;
}
early_param("l1tf", l1tf_cmdline);
#undef pr_fmt
#define pr_fmt(fmt) fmt
#ifdef CONFIG_SYSFS
#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
#if IS_ENABLED(CONFIG_KVM_INTEL)
static const char * const l1tf_vmx_states[] = {
[VMENTER_L1D_FLUSH_AUTO] = "auto",
[VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
[VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
[VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
[VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
[VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
};
static ssize_t l1tf_show_state(char *buf)
{
if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
(l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
sched_smt_active())) {
return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
l1tf_vmx_states[l1tf_vmx_mitigation]);
}
return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
l1tf_vmx_states[l1tf_vmx_mitigation],
sched_smt_active() ? "vulnerable" : "disabled");
}
static ssize_t itlb_multihit_show_state(char *buf)
{
if (itlb_multihit_kvm_mitigation)
return sprintf(buf, "KVM: Mitigation: Split huge pages\n");
else
return sprintf(buf, "KVM: Vulnerable\n");
}
#else
static ssize_t l1tf_show_state(char *buf)
{
return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
}
static ssize_t itlb_multihit_show_state(char *buf)
{
return sprintf(buf, "Processor vulnerable\n");
}
#endif
static ssize_t mds_show_state(char *buf)
{
if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
return sprintf(buf, "%s; SMT Host state unknown\n",
mds_strings[mds_mitigation]);
}
if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
(mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
sched_smt_active() ? "mitigated" : "disabled"));
}
return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
sched_smt_active() ? "vulnerable" : "disabled");
}
static ssize_t tsx_async_abort_show_state(char *buf)
{
if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
(taa_mitigation == TAA_MITIGATION_OFF))
return sprintf(buf, "%s\n", taa_strings[taa_mitigation]);
if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
return sprintf(buf, "%s; SMT Host state unknown\n",
taa_strings[taa_mitigation]);
}
return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
sched_smt_active() ? "vulnerable" : "disabled");
}
static char *stibp_state(void)
{
if (spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED)
return "";
switch (spectre_v2_user) {
case SPECTRE_V2_USER_NONE:
return ", STIBP: disabled";
case SPECTRE_V2_USER_STRICT:
return ", STIBP: forced";
case SPECTRE_V2_USER_STRICT_PREFERRED:
return ", STIBP: always-on";
case SPECTRE_V2_USER_PRCTL:
case SPECTRE_V2_USER_SECCOMP:
if (static_key_enabled(&switch_to_cond_stibp))
return ", STIBP: conditional";
}
return "";
}
static char *ibpb_state(void)
{
if (boot_cpu_has(X86_FEATURE_IBPB)) {
if (static_key_enabled(&switch_mm_always_ibpb))
return ", IBPB: always-on";
if (static_key_enabled(&switch_mm_cond_ibpb))
return ", IBPB: conditional";
return ", IBPB: disabled";
}
return "";
}
static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
char *buf, unsigned int bug)
{
if (!boot_cpu_has_bug(bug))
return sprintf(buf, "Not affected\n");
switch (bug) {
case X86_BUG_CPU_MELTDOWN:
if (boot_cpu_has(X86_FEATURE_PTI))
return sprintf(buf, "Mitigation: PTI\n");
if (hypervisor_is_type(X86_HYPER_XEN_PV))
return sprintf(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
break;
case X86_BUG_SPECTRE_V1:
return sprintf(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
case X86_BUG_SPECTRE_V2:
return sprintf(buf, "%s%s%s%s%s%s\n", spectre_v2_strings[spectre_v2_enabled],
ibpb_state(),
boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
stibp_state(),
boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
spectre_v2_module_string());
case X86_BUG_SPEC_STORE_BYPASS:
return sprintf(buf, "%s\n", ssb_strings[ssb_mode]);
case X86_BUG_L1TF:
if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
return l1tf_show_state(buf);
break;
case X86_BUG_MDS:
return mds_show_state(buf);
case X86_BUG_TAA:
return tsx_async_abort_show_state(buf);
case X86_BUG_ITLB_MULTIHIT:
return itlb_multihit_show_state(buf);
default:
break;
}
return sprintf(buf, "Vulnerable\n");
}
ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
{
return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
}
ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
{
return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
}
ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
{
return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
}
ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
{
return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
}
ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
{
return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
}
ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
{
return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
}
ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
{
return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
}
ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
{
return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
}
#endif