OpenCloudOS-Kernel/drivers/misc/habanalabs/common/hw_queue.c

1140 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "habanalabs.h"
#include <linux/slab.h>
/*
* hl_queue_add_ptr - add to pi or ci and checks if it wraps around
*
* @ptr: the current pi/ci value
* @val: the amount to add
*
* Add val to ptr. It can go until twice the queue length.
*/
inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
{
ptr += val;
ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
return ptr;
}
static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
{
return atomic_read(ci) & ((queue_len << 1) - 1);
}
static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
{
int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
if (delta >= 0)
return (queue_len - delta);
else
return (abs(delta) - queue_len);
}
void hl_hw_queue_update_ci(struct hl_cs *cs)
{
struct hl_device *hdev = cs->ctx->hdev;
struct hl_hw_queue *q;
int i;
if (hdev->disabled)
return;
q = &hdev->kernel_queues[0];
/* There are no internal queues if H/W queues are being used */
if (!hdev->asic_prop.max_queues || q->queue_type == QUEUE_TYPE_HW)
return;
/* We must increment CI for every queue that will never get a
* completion, there are 2 scenarios this can happen:
* 1. All queues of a non completion CS will never get a completion.
* 2. Internal queues never gets completion.
*/
for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
if (!cs_needs_completion(cs) || q->queue_type == QUEUE_TYPE_INT)
atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
}
}
/*
* hl_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
* H/W queue.
* @hdev: pointer to habanalabs device structure
* @q: pointer to habanalabs queue structure
* @ctl: BD's control word
* @len: BD's length
* @ptr: BD's pointer
*
* This function assumes there is enough space on the queue to submit a new
* BD to it. It initializes the next BD and calls the device specific
* function to set the pi (and doorbell)
*
* This function must be called when the scheduler mutex is taken
*
*/
void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
u32 ctl, u32 len, u64 ptr)
{
struct hl_bd *bd;
bd = q->kernel_address;
bd += hl_pi_2_offset(q->pi);
bd->ctl = cpu_to_le32(ctl);
bd->len = cpu_to_le32(len);
bd->ptr = cpu_to_le64(ptr);
q->pi = hl_queue_inc_ptr(q->pi);
hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
}
/*
* ext_queue_sanity_checks - perform some sanity checks on external queue
*
* @hdev : pointer to hl_device structure
* @q : pointer to hl_hw_queue structure
* @num_of_entries : how many entries to check for space
* @reserve_cq_entry : whether to reserve an entry in the cq
*
* H/W queues spinlock should be taken before calling this function
*
* Perform the following:
* - Make sure we have enough space in the h/w queue
* - Make sure we have enough space in the completion queue
* - Reserve space in the completion queue (needs to be reversed if there
* is a failure down the road before the actual submission of work). Only
* do this action if reserve_cq_entry is true
*
*/
static int ext_queue_sanity_checks(struct hl_device *hdev,
struct hl_hw_queue *q, int num_of_entries,
bool reserve_cq_entry)
{
atomic_t *free_slots =
&hdev->completion_queue[q->cq_id].free_slots_cnt;
int free_slots_cnt;
/* Check we have enough space in the queue */
free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
if (free_slots_cnt < num_of_entries) {
dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
q->hw_queue_id, num_of_entries);
return -EAGAIN;
}
if (reserve_cq_entry) {
/*
* Check we have enough space in the completion queue
* Add -1 to counter (decrement) unless counter was already 0
* In that case, CQ is full so we can't submit a new CB because
* we won't get ack on its completion
* atomic_add_unless will return 0 if counter was already 0
*/
if (atomic_add_negative(num_of_entries * -1, free_slots)) {
dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
num_of_entries, q->hw_queue_id);
atomic_add(num_of_entries, free_slots);
return -EAGAIN;
}
}
return 0;
}
/*
* int_queue_sanity_checks - perform some sanity checks on internal queue
*
* @hdev : pointer to hl_device structure
* @q : pointer to hl_hw_queue structure
* @num_of_entries : how many entries to check for space
*
* H/W queues spinlock should be taken before calling this function
*
* Perform the following:
* - Make sure we have enough space in the h/w queue
*
*/
static int int_queue_sanity_checks(struct hl_device *hdev,
struct hl_hw_queue *q,
int num_of_entries)
{
int free_slots_cnt;
if (num_of_entries > q->int_queue_len) {
dev_err(hdev->dev,
"Cannot populate queue %u with %u jobs\n",
q->hw_queue_id, num_of_entries);
return -ENOMEM;
}
/* Check we have enough space in the queue */
free_slots_cnt = queue_free_slots(q, q->int_queue_len);
if (free_slots_cnt < num_of_entries) {
dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
q->hw_queue_id, num_of_entries);
return -EAGAIN;
}
return 0;
}
/*
* hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
* @hdev: Pointer to hl_device structure.
* @q: Pointer to hl_hw_queue structure.
* @num_of_entries: How many entries to check for space.
*
* Notice: We do not reserve queue entries so this function mustn't be called
* more than once per CS for the same queue
*
*/
static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
int num_of_entries)
{
int free_slots_cnt;
/* Check we have enough space in the queue */
free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
if (free_slots_cnt < num_of_entries) {
dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
q->hw_queue_id, num_of_entries);
return -EAGAIN;
}
return 0;
}
/*
* hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
*
* @hdev: pointer to hl_device structure
* @hw_queue_id: Queue's type
* @cb_size: size of CB
* @cb_ptr: pointer to CB location
*
* This function sends a single CB, that must NOT generate a completion entry.
* Sending CPU messages can be done instead via 'hl_hw_queue_submit_bd()'
*/
int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
u32 cb_size, u64 cb_ptr)
{
struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
int rc = 0;
hdev->asic_funcs->hw_queues_lock(hdev);
if (hdev->disabled) {
rc = -EPERM;
goto out;
}
/*
* hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
* type only on init phase, when the queues are empty and being tested,
* so there is no need for sanity checks.
*/
if (q->queue_type != QUEUE_TYPE_HW) {
rc = ext_queue_sanity_checks(hdev, q, 1, false);
if (rc)
goto out;
}
hl_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
out:
hdev->asic_funcs->hw_queues_unlock(hdev);
return rc;
}
/*
* ext_queue_schedule_job - submit a JOB to an external queue
*
* @job: pointer to the job that needs to be submitted to the queue
*
* This function must be called when the scheduler mutex is taken
*
*/
static void ext_queue_schedule_job(struct hl_cs_job *job)
{
struct hl_device *hdev = job->cs->ctx->hdev;
struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
struct hl_cq_entry cq_pkt;
struct hl_cq *cq;
u64 cq_addr;
struct hl_cb *cb;
u32 ctl;
u32 len;
u64 ptr;
/*
* Update the JOB ID inside the BD CTL so the device would know what
* to write in the completion queue
*/
ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
cb = job->patched_cb;
len = job->job_cb_size;
ptr = cb->bus_address;
/* Skip completion flow in case this is a non completion CS */
if (!cs_needs_completion(job->cs))
goto submit_bd;
cq_pkt.data = cpu_to_le32(
((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
& CQ_ENTRY_SHADOW_INDEX_MASK) |
FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
/*
* No need to protect pi_offset because scheduling to the
* H/W queues is done under the scheduler mutex
*
* No need to check if CQ is full because it was already
* checked in ext_queue_sanity_checks
*/
cq = &hdev->completion_queue[q->cq_id];
cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
cq_addr,
le32_to_cpu(cq_pkt.data),
q->msi_vec,
job->contains_dma_pkt);
q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
cq->pi = hl_cq_inc_ptr(cq->pi);
submit_bd:
hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
}
/*
* int_queue_schedule_job - submit a JOB to an internal queue
*
* @job: pointer to the job that needs to be submitted to the queue
*
* This function must be called when the scheduler mutex is taken
*
*/
static void int_queue_schedule_job(struct hl_cs_job *job)
{
struct hl_device *hdev = job->cs->ctx->hdev;
struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
struct hl_bd bd;
__le64 *pi;
bd.ctl = 0;
bd.len = cpu_to_le32(job->job_cb_size);
if (job->is_kernel_allocated_cb)
/* bus_address is actually a mmu mapped address
* allocated from an internal pool
*/
bd.ptr = cpu_to_le64(job->user_cb->bus_address);
else
bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
q->pi++;
q->pi &= ((q->int_queue_len << 1) - 1);
hdev->asic_funcs->pqe_write(hdev, pi, &bd);
hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
}
/*
* hw_queue_schedule_job - submit a JOB to a H/W queue
*
* @job: pointer to the job that needs to be submitted to the queue
*
* This function must be called when the scheduler mutex is taken
*
*/
static void hw_queue_schedule_job(struct hl_cs_job *job)
{
struct hl_device *hdev = job->cs->ctx->hdev;
struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
u64 ptr;
u32 offset, ctl, len;
/*
* Upon PQE completion, COMP_DATA is used as the write data to the
* completion queue (QMAN HBW message), and COMP_OFFSET is used as the
* write address offset in the SM block (QMAN LBW message).
* The write address offset is calculated as "COMP_OFFSET << 2".
*/
offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
len = job->job_cb_size;
/*
* A patched CB is created only if a user CB was allocated by driver and
* MMU is disabled. If MMU is enabled, the user CB should be used
* instead. If the user CB wasn't allocated by driver, assume that it
* holds an address.
*/
if (job->patched_cb)
ptr = job->patched_cb->bus_address;
else if (job->is_kernel_allocated_cb)
ptr = job->user_cb->bus_address;
else
ptr = (u64) (uintptr_t) job->user_cb;
hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
}
static int init_signal_cs(struct hl_device *hdev,
struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
{
struct hl_sync_stream_properties *prop;
struct hl_hw_sob *hw_sob;
u32 q_idx;
int rc = 0;
q_idx = job->hw_queue_id;
prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
hw_sob = &prop->hw_sob[prop->curr_sob_offset];
cs_cmpl->hw_sob = hw_sob;
cs_cmpl->sob_val = prop->next_sob_val;
dev_dbg(hdev->dev,
"generate signal CB, sob_id: %d, sob val: %u, q_idx: %d, seq: %llu\n",
cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx,
cs_cmpl->cs_seq);
/* we set an EB since we must make sure all oeprations are done
* when sending the signal
*/
hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
cs_cmpl->hw_sob->sob_id, 0, true);
rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, 1,
false);
return rc;
}
void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
struct hl_cs *cs, struct hl_cs_job *job,
struct hl_cs_compl *cs_cmpl)
{
struct hl_cs_encaps_sig_handle *handle = cs->encaps_sig_hdl;
u32 offset = 0;
cs_cmpl->hw_sob = handle->hw_sob;
/* Note that encaps_sig_wait_offset was validated earlier in the flow
* for offset value which exceeds the max reserved signal count.
* always decrement 1 of the offset since when the user
* set offset 1 for example he mean to wait only for the first
* signal only, which will be pre_sob_val, and if he set offset 2
* then the value required is (pre_sob_val + 1) and so on...
* if user set wait offset to 0, then treat it as legacy wait cs,
* wait for the next signal.
*/
if (job->encaps_sig_wait_offset)
offset = job->encaps_sig_wait_offset - 1;
cs_cmpl->sob_val = handle->pre_sob_val + offset;
}
static int init_wait_cs(struct hl_device *hdev, struct hl_cs *cs,
struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
{
struct hl_gen_wait_properties wait_prop;
struct hl_sync_stream_properties *prop;
struct hl_cs_compl *signal_cs_cmpl;
u32 q_idx;
q_idx = job->hw_queue_id;
prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
signal_cs_cmpl = container_of(cs->signal_fence,
struct hl_cs_compl,
base_fence);
if (cs->encaps_signals) {
/* use the encaps signal handle stored earlier in the flow
* and set the SOB information from the encaps
* signals handle
*/
hl_hw_queue_encaps_sig_set_sob_info(hdev, cs, job, cs_cmpl);
dev_dbg(hdev->dev, "Wait for encaps signals handle, qidx(%u), CS sequence(%llu), sob val: 0x%x, offset: %u\n",
cs->encaps_sig_hdl->q_idx,
cs->encaps_sig_hdl->cs_seq,
cs_cmpl->sob_val,
job->encaps_sig_wait_offset);
} else {
/* Copy the SOB id and value of the signal CS */
cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
}
/* check again if the signal cs already completed.
* if yes then don't send any wait cs since the hw_sob
* could be in reset already. if signal is not completed
* then get refcount to hw_sob to prevent resetting the sob
* while wait cs is not submitted.
* note that this check is protected by two locks,
* hw queue lock and completion object lock,
* and the same completion object lock also protects
* the hw_sob reset handler function.
* The hw_queue lock prevent out of sync of hw_sob
* refcount value, changed by signal/wait flows.
*/
spin_lock(&signal_cs_cmpl->lock);
if (completion_done(&cs->signal_fence->completion)) {
spin_unlock(&signal_cs_cmpl->lock);
return -EINVAL;
}
kref_get(&cs_cmpl->hw_sob->kref);
spin_unlock(&signal_cs_cmpl->lock);
dev_dbg(hdev->dev,
"generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d, seq: %llu\n",
cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
prop->base_mon_id, q_idx, cs->sequence);
wait_prop.data = (void *) job->patched_cb;
wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
wait_prop.sob_mask = 0x1;
wait_prop.sob_val = cs_cmpl->sob_val;
wait_prop.mon_id = prop->base_mon_id;
wait_prop.q_idx = q_idx;
wait_prop.size = 0;
hdev->asic_funcs->gen_wait_cb(hdev, &wait_prop);
mb();
hl_fence_put(cs->signal_fence);
cs->signal_fence = NULL;
return 0;
}
/*
* init_signal_wait_cs - initialize a signal/wait CS
* @cs: pointer to the signal/wait CS
*
* H/W queues spinlock should be taken before calling this function
*/
static int init_signal_wait_cs(struct hl_cs *cs)
{
struct hl_ctx *ctx = cs->ctx;
struct hl_device *hdev = ctx->hdev;
struct hl_cs_job *job;
struct hl_cs_compl *cs_cmpl =
container_of(cs->fence, struct hl_cs_compl, base_fence);
int rc = 0;
/* There is only one job in a signal/wait CS */
job = list_first_entry(&cs->job_list, struct hl_cs_job,
cs_node);
if (cs->type & CS_TYPE_SIGNAL)
rc = init_signal_cs(hdev, job, cs_cmpl);
else if (cs->type & CS_TYPE_WAIT)
rc = init_wait_cs(hdev, cs, job, cs_cmpl);
return rc;
}
static int encaps_sig_first_staged_cs_handler
(struct hl_device *hdev, struct hl_cs *cs)
{
struct hl_cs_compl *cs_cmpl =
container_of(cs->fence,
struct hl_cs_compl, base_fence);
struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
struct hl_encaps_signals_mgr *mgr;
int rc = 0;
mgr = &hdev->compute_ctx->sig_mgr;
spin_lock(&mgr->lock);
encaps_sig_hdl = idr_find(&mgr->handles, cs->encaps_sig_hdl_id);
if (encaps_sig_hdl) {
/*
* Set handler CS sequence,
* the CS which contains the encapsulated signals.
*/
encaps_sig_hdl->cs_seq = cs->sequence;
/* store the handle and set encaps signal indication,
* to be used later in cs_do_release to put the last
* reference to encaps signals handlers.
*/
cs_cmpl->encaps_signals = true;
cs_cmpl->encaps_sig_hdl = encaps_sig_hdl;
/* set hw_sob pointer in completion object
* since it's used in cs_do_release flow to put
* refcount to sob
*/
cs_cmpl->hw_sob = encaps_sig_hdl->hw_sob;
cs_cmpl->sob_val = encaps_sig_hdl->pre_sob_val +
encaps_sig_hdl->count;
dev_dbg(hdev->dev, "CS seq (%llu) added to encaps signal handler id (%u), count(%u), qidx(%u), sob(%u), val(%u)\n",
cs->sequence, encaps_sig_hdl->id,
encaps_sig_hdl->count,
encaps_sig_hdl->q_idx,
cs_cmpl->hw_sob->sob_id,
cs_cmpl->sob_val);
} else {
dev_err(hdev->dev, "encaps handle id(%u) wasn't found!\n",
cs->encaps_sig_hdl_id);
rc = -EINVAL;
}
spin_unlock(&mgr->lock);
return rc;
}
/*
* hl_hw_queue_schedule_cs - schedule a command submission
* @cs: pointer to the CS
*/
int hl_hw_queue_schedule_cs(struct hl_cs *cs)
{
enum hl_device_status status;
struct hl_cs_counters_atomic *cntr;
struct hl_ctx *ctx = cs->ctx;
struct hl_device *hdev = ctx->hdev;
struct hl_cs_job *job, *tmp;
struct hl_hw_queue *q;
int rc = 0, i, cq_cnt;
bool first_entry;
u32 max_queues;
cntr = &hdev->aggregated_cs_counters;
hdev->asic_funcs->hw_queues_lock(hdev);
if (!hl_device_operational(hdev, &status)) {
atomic64_inc(&cntr->device_in_reset_drop_cnt);
atomic64_inc(&ctx->cs_counters.device_in_reset_drop_cnt);
dev_err(hdev->dev,
"device is %s, CS rejected!\n", hdev->status[status]);
rc = -EPERM;
goto out;
}
max_queues = hdev->asic_prop.max_queues;
q = &hdev->kernel_queues[0];
for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
if (cs->jobs_in_queue_cnt[i]) {
switch (q->queue_type) {
case QUEUE_TYPE_EXT:
rc = ext_queue_sanity_checks(hdev, q,
cs->jobs_in_queue_cnt[i],
cs_needs_completion(cs) ?
true : false);
break;
case QUEUE_TYPE_INT:
rc = int_queue_sanity_checks(hdev, q,
cs->jobs_in_queue_cnt[i]);
break;
case QUEUE_TYPE_HW:
rc = hw_queue_sanity_checks(hdev, q,
cs->jobs_in_queue_cnt[i]);
break;
default:
dev_err(hdev->dev, "Queue type %d is invalid\n",
q->queue_type);
rc = -EINVAL;
break;
}
if (rc) {
atomic64_inc(
&ctx->cs_counters.queue_full_drop_cnt);
atomic64_inc(&cntr->queue_full_drop_cnt);
goto unroll_cq_resv;
}
if (q->queue_type == QUEUE_TYPE_EXT)
cq_cnt++;
}
}
if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT)) {
rc = init_signal_wait_cs(cs);
if (rc)
goto unroll_cq_resv;
} else if (cs->type == CS_TYPE_COLLECTIVE_WAIT) {
rc = hdev->asic_funcs->collective_wait_init_cs(cs);
if (rc)
goto unroll_cq_resv;
}
if (cs->encaps_signals && cs->staged_first) {
rc = encaps_sig_first_staged_cs_handler(hdev, cs);
if (rc)
goto unroll_cq_resv;
}
spin_lock(&hdev->cs_mirror_lock);
/* Verify staged CS exists and add to the staged list */
if (cs->staged_cs && !cs->staged_first) {
struct hl_cs *staged_cs;
staged_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
if (!staged_cs) {
dev_err(hdev->dev,
"Cannot find staged submission sequence %llu",
cs->staged_sequence);
rc = -EINVAL;
goto unlock_cs_mirror;
}
if (is_staged_cs_last_exists(hdev, staged_cs)) {
dev_err(hdev->dev,
"Staged submission sequence %llu already submitted",
cs->staged_sequence);
rc = -EINVAL;
goto unlock_cs_mirror;
}
list_add_tail(&cs->staged_cs_node, &staged_cs->staged_cs_node);
/* update stream map of the first CS */
if (hdev->supports_wait_for_multi_cs)
staged_cs->fence->stream_master_qid_map |=
cs->fence->stream_master_qid_map;
}
list_add_tail(&cs->mirror_node, &hdev->cs_mirror_list);
/* Queue TDR if the CS is the first entry and if timeout is wanted */
first_entry = list_first_entry(&hdev->cs_mirror_list,
struct hl_cs, mirror_node) == cs;
if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
first_entry && cs_needs_timeout(cs)) {
cs->tdr_active = true;
schedule_delayed_work(&cs->work_tdr, cs->timeout_jiffies);
}
spin_unlock(&hdev->cs_mirror_lock);
list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
switch (job->queue_type) {
case QUEUE_TYPE_EXT:
ext_queue_schedule_job(job);
break;
case QUEUE_TYPE_INT:
int_queue_schedule_job(job);
break;
case QUEUE_TYPE_HW:
hw_queue_schedule_job(job);
break;
default:
break;
}
cs->submitted = true;
goto out;
unlock_cs_mirror:
spin_unlock(&hdev->cs_mirror_lock);
unroll_cq_resv:
q = &hdev->kernel_queues[0];
for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
if ((q->queue_type == QUEUE_TYPE_EXT) &&
(cs->jobs_in_queue_cnt[i])) {
atomic_t *free_slots =
&hdev->completion_queue[i].free_slots_cnt;
atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
cq_cnt--;
}
}
out:
hdev->asic_funcs->hw_queues_unlock(hdev);
return rc;
}
/*
* hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
*
* @hdev: pointer to hl_device structure
* @hw_queue_id: which queue to increment its ci
*/
void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
{
struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
atomic_inc(&q->ci);
}
static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
bool is_cpu_queue)
{
void *p;
int rc;
if (is_cpu_queue)
p = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
HL_QUEUE_SIZE_IN_BYTES,
&q->bus_address);
else
p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
HL_QUEUE_SIZE_IN_BYTES,
&q->bus_address,
GFP_KERNEL | __GFP_ZERO);
if (!p)
return -ENOMEM;
q->kernel_address = p;
q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH,
sizeof(*q->shadow_queue),
GFP_KERNEL);
if (!q->shadow_queue) {
dev_err(hdev->dev,
"Failed to allocate shadow queue for H/W queue %d\n",
q->hw_queue_id);
rc = -ENOMEM;
goto free_queue;
}
/* Make sure read/write pointers are initialized to start of queue */
atomic_set(&q->ci, 0);
q->pi = 0;
return 0;
free_queue:
if (is_cpu_queue)
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
HL_QUEUE_SIZE_IN_BYTES,
q->kernel_address);
else
hdev->asic_funcs->asic_dma_free_coherent(hdev,
HL_QUEUE_SIZE_IN_BYTES,
q->kernel_address,
q->bus_address);
return rc;
}
static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
{
void *p;
p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
&q->bus_address, &q->int_queue_len);
if (!p) {
dev_err(hdev->dev,
"Failed to get base address for internal queue %d\n",
q->hw_queue_id);
return -EFAULT;
}
q->kernel_address = p;
q->pi = 0;
atomic_set(&q->ci, 0);
return 0;
}
static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
{
return ext_and_cpu_queue_init(hdev, q, true);
}
static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
{
return ext_and_cpu_queue_init(hdev, q, false);
}
static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
{
void *p;
p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
HL_QUEUE_SIZE_IN_BYTES,
&q->bus_address,
GFP_KERNEL | __GFP_ZERO);
if (!p)
return -ENOMEM;
q->kernel_address = p;
/* Make sure read/write pointers are initialized to start of queue */
atomic_set(&q->ci, 0);
q->pi = 0;
return 0;
}
static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
{
struct hl_sync_stream_properties *sync_stream_prop;
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct hl_hw_sob *hw_sob;
int sob, reserved_mon_idx, queue_idx;
sync_stream_prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
/* We use 'collective_mon_idx' as a running index in order to reserve
* monitors for collective master/slave queues.
* collective master queue gets 2 reserved monitors
* collective slave queue gets 1 reserved monitor
*/
if (hdev->kernel_queues[q_idx].collective_mode ==
HL_COLLECTIVE_MASTER) {
reserved_mon_idx = hdev->collective_mon_idx;
/* reserve the first monitor for collective master queue */
sync_stream_prop->collective_mstr_mon_id[0] =
prop->collective_first_mon + reserved_mon_idx;
/* reserve the second monitor for collective master queue */
sync_stream_prop->collective_mstr_mon_id[1] =
prop->collective_first_mon + reserved_mon_idx + 1;
hdev->collective_mon_idx += HL_COLLECTIVE_RSVD_MSTR_MONS;
} else if (hdev->kernel_queues[q_idx].collective_mode ==
HL_COLLECTIVE_SLAVE) {
reserved_mon_idx = hdev->collective_mon_idx++;
/* reserve a monitor for collective slave queue */
sync_stream_prop->collective_slave_mon_id =
prop->collective_first_mon + reserved_mon_idx;
}
if (!hdev->kernel_queues[q_idx].supports_sync_stream)
return;
queue_idx = hdev->sync_stream_queue_idx++;
sync_stream_prop->base_sob_id = prop->sync_stream_first_sob +
(queue_idx * HL_RSVD_SOBS);
sync_stream_prop->base_mon_id = prop->sync_stream_first_mon +
(queue_idx * HL_RSVD_MONS);
sync_stream_prop->next_sob_val = 1;
sync_stream_prop->curr_sob_offset = 0;
for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
hw_sob = &sync_stream_prop->hw_sob[sob];
hw_sob->hdev = hdev;
hw_sob->sob_id = sync_stream_prop->base_sob_id + sob;
hw_sob->sob_addr =
hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
hw_sob->q_idx = q_idx;
kref_init(&hw_sob->kref);
}
}
static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
{
struct hl_sync_stream_properties *prop =
&hdev->kernel_queues[q_idx].sync_stream_prop;
/*
* In case we got here due to a stuck CS, the refcnt might be bigger
* than 1 and therefore we reset it.
*/
kref_init(&prop->hw_sob[prop->curr_sob_offset].kref);
prop->curr_sob_offset = 0;
prop->next_sob_val = 1;
}
/*
* queue_init - main initialization function for H/W queue object
*
* @hdev: pointer to hl_device device structure
* @q: pointer to hl_hw_queue queue structure
* @hw_queue_id: The id of the H/W queue
*
* Allocate dma-able memory for the queue and initialize fields
* Returns 0 on success
*/
static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
u32 hw_queue_id)
{
int rc;
q->hw_queue_id = hw_queue_id;
switch (q->queue_type) {
case QUEUE_TYPE_EXT:
rc = ext_queue_init(hdev, q);
break;
case QUEUE_TYPE_INT:
rc = int_queue_init(hdev, q);
break;
case QUEUE_TYPE_CPU:
rc = cpu_queue_init(hdev, q);
break;
case QUEUE_TYPE_HW:
rc = hw_queue_init(hdev, q);
break;
case QUEUE_TYPE_NA:
q->valid = 0;
return 0;
default:
dev_crit(hdev->dev, "wrong queue type %d during init\n",
q->queue_type);
rc = -EINVAL;
break;
}
sync_stream_queue_init(hdev, q->hw_queue_id);
if (rc)
return rc;
q->valid = 1;
return 0;
}
/*
* hw_queue_fini - destroy queue
*
* @hdev: pointer to hl_device device structure
* @q: pointer to hl_hw_queue queue structure
*
* Free the queue memory
*/
static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
{
if (!q->valid)
return;
/*
* If we arrived here, there are no jobs waiting on this queue
* so we can safely remove it.
* This is because this function can only called when:
* 1. Either a context is deleted, which only can occur if all its
* jobs were finished
* 2. A context wasn't able to be created due to failure or timeout,
* which means there are no jobs on the queue yet
*
* The only exception are the queues of the kernel context, but
* if they are being destroyed, it means that the entire module is
* being removed. If the module is removed, it means there is no open
* user context. It also means that if a job was submitted by
* the kernel driver (e.g. context creation), the job itself was
* released by the kernel driver when a timeout occurred on its
* Completion. Thus, we don't need to release it again.
*/
if (q->queue_type == QUEUE_TYPE_INT)
return;
kfree(q->shadow_queue);
if (q->queue_type == QUEUE_TYPE_CPU)
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
HL_QUEUE_SIZE_IN_BYTES,
q->kernel_address);
else
hdev->asic_funcs->asic_dma_free_coherent(hdev,
HL_QUEUE_SIZE_IN_BYTES,
q->kernel_address,
q->bus_address);
}
int hl_hw_queues_create(struct hl_device *hdev)
{
struct asic_fixed_properties *asic = &hdev->asic_prop;
struct hl_hw_queue *q;
int i, rc, q_ready_cnt;
hdev->kernel_queues = kcalloc(asic->max_queues,
sizeof(*hdev->kernel_queues), GFP_KERNEL);
if (!hdev->kernel_queues) {
dev_err(hdev->dev, "Not enough memory for H/W queues\n");
return -ENOMEM;
}
/* Initialize the H/W queues */
for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
i < asic->max_queues ; i++, q_ready_cnt++, q++) {
q->queue_type = asic->hw_queues_props[i].type;
q->supports_sync_stream =
asic->hw_queues_props[i].supports_sync_stream;
q->collective_mode = asic->hw_queues_props[i].collective_mode;
rc = queue_init(hdev, q, i);
if (rc) {
dev_err(hdev->dev,
"failed to initialize queue %d\n", i);
goto release_queues;
}
}
return 0;
release_queues:
for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
queue_fini(hdev, q);
kfree(hdev->kernel_queues);
return rc;
}
void hl_hw_queues_destroy(struct hl_device *hdev)
{
struct hl_hw_queue *q;
u32 max_queues = hdev->asic_prop.max_queues;
int i;
for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
queue_fini(hdev, q);
kfree(hdev->kernel_queues);
}
void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
{
struct hl_hw_queue *q;
u32 max_queues = hdev->asic_prop.max_queues;
int i;
for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
if ((!q->valid) ||
((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
continue;
q->pi = 0;
atomic_set(&q->ci, 0);
if (q->supports_sync_stream)
sync_stream_queue_reset(hdev, q->hw_queue_id);
}
}