OpenCloudOS-Kernel/drivers/iio/imu/bmi160/bmi160_core.c

899 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* BMI160 - Bosch IMU (accel, gyro plus external magnetometer)
*
* Copyright (c) 2016, Intel Corporation.
* Copyright (c) 2019, Martin Kelly.
*
* IIO core driver for BMI160, with support for I2C/SPI busses
*
* TODO: magnetometer, hardware FIFO
*/
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/acpi.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/of_irq.h>
#include <linux/regulator/consumer.h>
#include <linux/iio/iio.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/buffer.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include "bmi160.h"
#define BMI160_REG_CHIP_ID 0x00
#define BMI160_CHIP_ID_VAL 0xD1
#define BMI160_REG_PMU_STATUS 0x03
/* X axis data low byte address, the rest can be obtained using axis offset */
#define BMI160_REG_DATA_MAGN_XOUT_L 0x04
#define BMI160_REG_DATA_GYRO_XOUT_L 0x0C
#define BMI160_REG_DATA_ACCEL_XOUT_L 0x12
#define BMI160_REG_ACCEL_CONFIG 0x40
#define BMI160_ACCEL_CONFIG_ODR_MASK GENMASK(3, 0)
#define BMI160_ACCEL_CONFIG_BWP_MASK GENMASK(6, 4)
#define BMI160_REG_ACCEL_RANGE 0x41
#define BMI160_ACCEL_RANGE_2G 0x03
#define BMI160_ACCEL_RANGE_4G 0x05
#define BMI160_ACCEL_RANGE_8G 0x08
#define BMI160_ACCEL_RANGE_16G 0x0C
#define BMI160_REG_GYRO_CONFIG 0x42
#define BMI160_GYRO_CONFIG_ODR_MASK GENMASK(3, 0)
#define BMI160_GYRO_CONFIG_BWP_MASK GENMASK(5, 4)
#define BMI160_REG_GYRO_RANGE 0x43
#define BMI160_GYRO_RANGE_2000DPS 0x00
#define BMI160_GYRO_RANGE_1000DPS 0x01
#define BMI160_GYRO_RANGE_500DPS 0x02
#define BMI160_GYRO_RANGE_250DPS 0x03
#define BMI160_GYRO_RANGE_125DPS 0x04
#define BMI160_REG_CMD 0x7E
#define BMI160_CMD_ACCEL_PM_SUSPEND 0x10
#define BMI160_CMD_ACCEL_PM_NORMAL 0x11
#define BMI160_CMD_ACCEL_PM_LOW_POWER 0x12
#define BMI160_CMD_GYRO_PM_SUSPEND 0x14
#define BMI160_CMD_GYRO_PM_NORMAL 0x15
#define BMI160_CMD_GYRO_PM_FAST_STARTUP 0x17
#define BMI160_CMD_SOFTRESET 0xB6
#define BMI160_REG_INT_EN 0x51
#define BMI160_DRDY_INT_EN BIT(4)
#define BMI160_REG_INT_OUT_CTRL 0x53
#define BMI160_INT_OUT_CTRL_MASK 0x0f
#define BMI160_INT1_OUT_CTRL_SHIFT 0
#define BMI160_INT2_OUT_CTRL_SHIFT 4
#define BMI160_EDGE_TRIGGERED BIT(0)
#define BMI160_ACTIVE_HIGH BIT(1)
#define BMI160_OPEN_DRAIN BIT(2)
#define BMI160_OUTPUT_EN BIT(3)
#define BMI160_REG_INT_LATCH 0x54
#define BMI160_INT1_LATCH_MASK BIT(4)
#define BMI160_INT2_LATCH_MASK BIT(5)
/* INT1 and INT2 are in the opposite order as in INT_OUT_CTRL! */
#define BMI160_REG_INT_MAP 0x56
#define BMI160_INT1_MAP_DRDY_EN 0x80
#define BMI160_INT2_MAP_DRDY_EN 0x08
#define BMI160_REG_DUMMY 0x7F
#define BMI160_NORMAL_WRITE_USLEEP 2
#define BMI160_SUSPENDED_WRITE_USLEEP 450
#define BMI160_ACCEL_PMU_MIN_USLEEP 3800
#define BMI160_GYRO_PMU_MIN_USLEEP 80000
#define BMI160_SOFTRESET_USLEEP 1000
#define BMI160_CHANNEL(_type, _axis, _index) { \
.type = _type, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = _index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_LE, \
}, \
.ext_info = bmi160_ext_info, \
}
/* scan indexes follow DATA register order */
enum bmi160_scan_axis {
BMI160_SCAN_EXT_MAGN_X = 0,
BMI160_SCAN_EXT_MAGN_Y,
BMI160_SCAN_EXT_MAGN_Z,
BMI160_SCAN_RHALL,
BMI160_SCAN_GYRO_X,
BMI160_SCAN_GYRO_Y,
BMI160_SCAN_GYRO_Z,
BMI160_SCAN_ACCEL_X,
BMI160_SCAN_ACCEL_Y,
BMI160_SCAN_ACCEL_Z,
BMI160_SCAN_TIMESTAMP,
};
enum bmi160_sensor_type {
BMI160_ACCEL = 0,
BMI160_GYRO,
BMI160_EXT_MAGN,
BMI160_NUM_SENSORS /* must be last */
};
enum bmi160_int_pin {
BMI160_PIN_INT1,
BMI160_PIN_INT2
};
const struct regmap_config bmi160_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
};
EXPORT_SYMBOL(bmi160_regmap_config);
struct bmi160_regs {
u8 data; /* LSB byte register for X-axis */
u8 config;
u8 config_odr_mask;
u8 config_bwp_mask;
u8 range;
u8 pmu_cmd_normal;
u8 pmu_cmd_suspend;
};
static struct bmi160_regs bmi160_regs[] = {
[BMI160_ACCEL] = {
.data = BMI160_REG_DATA_ACCEL_XOUT_L,
.config = BMI160_REG_ACCEL_CONFIG,
.config_odr_mask = BMI160_ACCEL_CONFIG_ODR_MASK,
.config_bwp_mask = BMI160_ACCEL_CONFIG_BWP_MASK,
.range = BMI160_REG_ACCEL_RANGE,
.pmu_cmd_normal = BMI160_CMD_ACCEL_PM_NORMAL,
.pmu_cmd_suspend = BMI160_CMD_ACCEL_PM_SUSPEND,
},
[BMI160_GYRO] = {
.data = BMI160_REG_DATA_GYRO_XOUT_L,
.config = BMI160_REG_GYRO_CONFIG,
.config_odr_mask = BMI160_GYRO_CONFIG_ODR_MASK,
.config_bwp_mask = BMI160_GYRO_CONFIG_BWP_MASK,
.range = BMI160_REG_GYRO_RANGE,
.pmu_cmd_normal = BMI160_CMD_GYRO_PM_NORMAL,
.pmu_cmd_suspend = BMI160_CMD_GYRO_PM_SUSPEND,
},
};
static unsigned long bmi160_pmu_time[] = {
[BMI160_ACCEL] = BMI160_ACCEL_PMU_MIN_USLEEP,
[BMI160_GYRO] = BMI160_GYRO_PMU_MIN_USLEEP,
};
struct bmi160_scale {
u8 bits;
int uscale;
};
struct bmi160_odr {
u8 bits;
int odr;
int uodr;
};
static const struct bmi160_scale bmi160_accel_scale[] = {
{ BMI160_ACCEL_RANGE_2G, 598},
{ BMI160_ACCEL_RANGE_4G, 1197},
{ BMI160_ACCEL_RANGE_8G, 2394},
{ BMI160_ACCEL_RANGE_16G, 4788},
};
static const struct bmi160_scale bmi160_gyro_scale[] = {
{ BMI160_GYRO_RANGE_2000DPS, 1065},
{ BMI160_GYRO_RANGE_1000DPS, 532},
{ BMI160_GYRO_RANGE_500DPS, 266},
{ BMI160_GYRO_RANGE_250DPS, 133},
{ BMI160_GYRO_RANGE_125DPS, 66},
};
struct bmi160_scale_item {
const struct bmi160_scale *tbl;
int num;
};
static const struct bmi160_scale_item bmi160_scale_table[] = {
[BMI160_ACCEL] = {
.tbl = bmi160_accel_scale,
.num = ARRAY_SIZE(bmi160_accel_scale),
},
[BMI160_GYRO] = {
.tbl = bmi160_gyro_scale,
.num = ARRAY_SIZE(bmi160_gyro_scale),
},
};
static const struct bmi160_odr bmi160_accel_odr[] = {
{0x01, 0, 781250},
{0x02, 1, 562500},
{0x03, 3, 125000},
{0x04, 6, 250000},
{0x05, 12, 500000},
{0x06, 25, 0},
{0x07, 50, 0},
{0x08, 100, 0},
{0x09, 200, 0},
{0x0A, 400, 0},
{0x0B, 800, 0},
{0x0C, 1600, 0},
};
static const struct bmi160_odr bmi160_gyro_odr[] = {
{0x06, 25, 0},
{0x07, 50, 0},
{0x08, 100, 0},
{0x09, 200, 0},
{0x0A, 400, 0},
{0x0B, 800, 0},
{0x0C, 1600, 0},
{0x0D, 3200, 0},
};
struct bmi160_odr_item {
const struct bmi160_odr *tbl;
int num;
};
static const struct bmi160_odr_item bmi160_odr_table[] = {
[BMI160_ACCEL] = {
.tbl = bmi160_accel_odr,
.num = ARRAY_SIZE(bmi160_accel_odr),
},
[BMI160_GYRO] = {
.tbl = bmi160_gyro_odr,
.num = ARRAY_SIZE(bmi160_gyro_odr),
},
};
static const struct iio_mount_matrix *
bmi160_get_mount_matrix(const struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct bmi160_data *data = iio_priv(indio_dev);
return &data->orientation;
}
static const struct iio_chan_spec_ext_info bmi160_ext_info[] = {
IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmi160_get_mount_matrix),
{ }
};
static const struct iio_chan_spec bmi160_channels[] = {
BMI160_CHANNEL(IIO_ACCEL, X, BMI160_SCAN_ACCEL_X),
BMI160_CHANNEL(IIO_ACCEL, Y, BMI160_SCAN_ACCEL_Y),
BMI160_CHANNEL(IIO_ACCEL, Z, BMI160_SCAN_ACCEL_Z),
BMI160_CHANNEL(IIO_ANGL_VEL, X, BMI160_SCAN_GYRO_X),
BMI160_CHANNEL(IIO_ANGL_VEL, Y, BMI160_SCAN_GYRO_Y),
BMI160_CHANNEL(IIO_ANGL_VEL, Z, BMI160_SCAN_GYRO_Z),
IIO_CHAN_SOFT_TIMESTAMP(BMI160_SCAN_TIMESTAMP),
};
static enum bmi160_sensor_type bmi160_to_sensor(enum iio_chan_type iio_type)
{
switch (iio_type) {
case IIO_ACCEL:
return BMI160_ACCEL;
case IIO_ANGL_VEL:
return BMI160_GYRO;
default:
return -EINVAL;
}
}
static
int bmi160_set_mode(struct bmi160_data *data, enum bmi160_sensor_type t,
bool mode)
{
int ret;
u8 cmd;
if (mode)
cmd = bmi160_regs[t].pmu_cmd_normal;
else
cmd = bmi160_regs[t].pmu_cmd_suspend;
ret = regmap_write(data->regmap, BMI160_REG_CMD, cmd);
if (ret)
return ret;
usleep_range(bmi160_pmu_time[t], bmi160_pmu_time[t] + 1000);
return 0;
}
static
int bmi160_set_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
int uscale)
{
int i;
for (i = 0; i < bmi160_scale_table[t].num; i++)
if (bmi160_scale_table[t].tbl[i].uscale == uscale)
break;
if (i == bmi160_scale_table[t].num)
return -EINVAL;
return regmap_write(data->regmap, bmi160_regs[t].range,
bmi160_scale_table[t].tbl[i].bits);
}
static
int bmi160_get_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
int *uscale)
{
int i, ret, val;
ret = regmap_read(data->regmap, bmi160_regs[t].range, &val);
if (ret)
return ret;
for (i = 0; i < bmi160_scale_table[t].num; i++)
if (bmi160_scale_table[t].tbl[i].bits == val) {
*uscale = bmi160_scale_table[t].tbl[i].uscale;
return 0;
}
return -EINVAL;
}
static int bmi160_get_data(struct bmi160_data *data, int chan_type,
int axis, int *val)
{
u8 reg;
int ret;
__le16 sample;
enum bmi160_sensor_type t = bmi160_to_sensor(chan_type);
reg = bmi160_regs[t].data + (axis - IIO_MOD_X) * sizeof(sample);
ret = regmap_bulk_read(data->regmap, reg, &sample, sizeof(sample));
if (ret)
return ret;
*val = sign_extend32(le16_to_cpu(sample), 15);
return 0;
}
static
int bmi160_set_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
int odr, int uodr)
{
int i;
for (i = 0; i < bmi160_odr_table[t].num; i++)
if (bmi160_odr_table[t].tbl[i].odr == odr &&
bmi160_odr_table[t].tbl[i].uodr == uodr)
break;
if (i >= bmi160_odr_table[t].num)
return -EINVAL;
return regmap_update_bits(data->regmap,
bmi160_regs[t].config,
bmi160_regs[t].config_odr_mask,
bmi160_odr_table[t].tbl[i].bits);
}
static int bmi160_get_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
int *odr, int *uodr)
{
int i, val, ret;
ret = regmap_read(data->regmap, bmi160_regs[t].config, &val);
if (ret)
return ret;
val &= bmi160_regs[t].config_odr_mask;
for (i = 0; i < bmi160_odr_table[t].num; i++)
if (val == bmi160_odr_table[t].tbl[i].bits)
break;
if (i >= bmi160_odr_table[t].num)
return -EINVAL;
*odr = bmi160_odr_table[t].tbl[i].odr;
*uodr = bmi160_odr_table[t].tbl[i].uodr;
return 0;
}
static irqreturn_t bmi160_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct bmi160_data *data = iio_priv(indio_dev);
int i, ret, j = 0, base = BMI160_REG_DATA_MAGN_XOUT_L;
__le16 sample;
for_each_set_bit(i, indio_dev->active_scan_mask,
indio_dev->masklength) {
ret = regmap_bulk_read(data->regmap, base + i * sizeof(sample),
&sample, sizeof(sample));
if (ret)
goto done;
data->buf[j++] = sample;
}
iio_push_to_buffers_with_timestamp(indio_dev, data->buf, pf->timestamp);
done:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int bmi160_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
int ret;
struct bmi160_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = bmi160_get_data(data, chan->type, chan->channel2, val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = 0;
ret = bmi160_get_scale(data,
bmi160_to_sensor(chan->type), val2);
return ret ? ret : IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = bmi160_get_odr(data, bmi160_to_sensor(chan->type),
val, val2);
return ret ? ret : IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
return 0;
}
static int bmi160_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct bmi160_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return bmi160_set_scale(data,
bmi160_to_sensor(chan->type), val2);
case IIO_CHAN_INFO_SAMP_FREQ:
return bmi160_set_odr(data, bmi160_to_sensor(chan->type),
val, val2);
default:
return -EINVAL;
}
return 0;
}
static
IIO_CONST_ATTR(in_accel_sampling_frequency_available,
"0.78125 1.5625 3.125 6.25 12.5 25 50 100 200 400 800 1600");
static
IIO_CONST_ATTR(in_anglvel_sampling_frequency_available,
"25 50 100 200 400 800 1600 3200");
static
IIO_CONST_ATTR(in_accel_scale_available,
"0.000598 0.001197 0.002394 0.004788");
static
IIO_CONST_ATTR(in_anglvel_scale_available,
"0.001065 0.000532 0.000266 0.000133 0.000066");
static struct attribute *bmi160_attrs[] = {
&iio_const_attr_in_accel_sampling_frequency_available.dev_attr.attr,
&iio_const_attr_in_anglvel_sampling_frequency_available.dev_attr.attr,
&iio_const_attr_in_accel_scale_available.dev_attr.attr,
&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
NULL,
};
static const struct attribute_group bmi160_attrs_group = {
.attrs = bmi160_attrs,
};
static const struct iio_info bmi160_info = {
.read_raw = bmi160_read_raw,
.write_raw = bmi160_write_raw,
.attrs = &bmi160_attrs_group,
};
static const char *bmi160_match_acpi_device(struct device *dev)
{
const struct acpi_device_id *id;
id = acpi_match_device(dev->driver->acpi_match_table, dev);
if (!id)
return NULL;
return dev_name(dev);
}
static int bmi160_write_conf_reg(struct regmap *regmap, unsigned int reg,
unsigned int mask, unsigned int bits,
unsigned int write_usleep)
{
int ret;
unsigned int val;
ret = regmap_read(regmap, reg, &val);
if (ret)
return ret;
val = (val & ~mask) | bits;
ret = regmap_write(regmap, reg, val);
if (ret)
return ret;
/*
* We need to wait after writing before we can write again. See the
* datasheet, page 93.
*/
usleep_range(write_usleep, write_usleep + 1000);
return 0;
}
static int bmi160_config_pin(struct regmap *regmap, enum bmi160_int_pin pin,
bool open_drain, u8 irq_mask,
unsigned long write_usleep)
{
int ret;
struct device *dev = regmap_get_device(regmap);
u8 int_out_ctrl_shift;
u8 int_latch_mask;
u8 int_map_mask;
u8 int_out_ctrl_mask;
u8 int_out_ctrl_bits;
const char *pin_name;
switch (pin) {
case BMI160_PIN_INT1:
int_out_ctrl_shift = BMI160_INT1_OUT_CTRL_SHIFT;
int_latch_mask = BMI160_INT1_LATCH_MASK;
int_map_mask = BMI160_INT1_MAP_DRDY_EN;
break;
case BMI160_PIN_INT2:
int_out_ctrl_shift = BMI160_INT2_OUT_CTRL_SHIFT;
int_latch_mask = BMI160_INT2_LATCH_MASK;
int_map_mask = BMI160_INT2_MAP_DRDY_EN;
break;
}
int_out_ctrl_mask = BMI160_INT_OUT_CTRL_MASK << int_out_ctrl_shift;
/*
* Enable the requested pin with the right settings:
* - Push-pull/open-drain
* - Active low/high
* - Edge/level triggered
*/
int_out_ctrl_bits = BMI160_OUTPUT_EN;
if (open_drain)
/* Default is push-pull. */
int_out_ctrl_bits |= BMI160_OPEN_DRAIN;
int_out_ctrl_bits |= irq_mask;
int_out_ctrl_bits <<= int_out_ctrl_shift;
ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_OUT_CTRL,
int_out_ctrl_mask, int_out_ctrl_bits,
write_usleep);
if (ret)
return ret;
/* Set the pin to input mode with no latching. */
ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_LATCH,
int_latch_mask, int_latch_mask,
write_usleep);
if (ret)
return ret;
/* Map interrupts to the requested pin. */
ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_MAP,
int_map_mask, int_map_mask,
write_usleep);
if (ret) {
switch (pin) {
case BMI160_PIN_INT1:
pin_name = "INT1";
break;
case BMI160_PIN_INT2:
pin_name = "INT2";
break;
}
dev_err(dev, "Failed to configure %s IRQ pin", pin_name);
}
return ret;
}
int bmi160_enable_irq(struct regmap *regmap, bool enable)
{
unsigned int enable_bit = 0;
if (enable)
enable_bit = BMI160_DRDY_INT_EN;
return bmi160_write_conf_reg(regmap, BMI160_REG_INT_EN,
BMI160_DRDY_INT_EN, enable_bit,
BMI160_NORMAL_WRITE_USLEEP);
}
EXPORT_SYMBOL(bmi160_enable_irq);
static int bmi160_get_irq(struct device_node *of_node, enum bmi160_int_pin *pin)
{
int irq;
/* Use INT1 if possible, otherwise fall back to INT2. */
irq = of_irq_get_byname(of_node, "INT1");
if (irq > 0) {
*pin = BMI160_PIN_INT1;
return irq;
}
irq = of_irq_get_byname(of_node, "INT2");
if (irq > 0)
*pin = BMI160_PIN_INT2;
return irq;
}
static int bmi160_config_device_irq(struct iio_dev *indio_dev, int irq_type,
enum bmi160_int_pin pin)
{
bool open_drain;
u8 irq_mask;
struct bmi160_data *data = iio_priv(indio_dev);
struct device *dev = regmap_get_device(data->regmap);
/* Level-triggered, active-low is the default if we set all zeroes. */
if (irq_type == IRQF_TRIGGER_RISING)
irq_mask = BMI160_ACTIVE_HIGH | BMI160_EDGE_TRIGGERED;
else if (irq_type == IRQF_TRIGGER_FALLING)
irq_mask = BMI160_EDGE_TRIGGERED;
else if (irq_type == IRQF_TRIGGER_HIGH)
irq_mask = BMI160_ACTIVE_HIGH;
else if (irq_type == IRQF_TRIGGER_LOW)
irq_mask = 0;
else {
dev_err(&indio_dev->dev,
"Invalid interrupt type 0x%x specified\n", irq_type);
return -EINVAL;
}
open_drain = of_property_read_bool(dev->of_node, "drive-open-drain");
return bmi160_config_pin(data->regmap, pin, open_drain, irq_mask,
BMI160_NORMAL_WRITE_USLEEP);
}
static int bmi160_setup_irq(struct iio_dev *indio_dev, int irq,
enum bmi160_int_pin pin)
{
struct irq_data *desc;
u32 irq_type;
int ret;
desc = irq_get_irq_data(irq);
if (!desc) {
dev_err(&indio_dev->dev, "Could not find IRQ %d\n", irq);
return -EINVAL;
}
irq_type = irqd_get_trigger_type(desc);
ret = bmi160_config_device_irq(indio_dev, irq_type, pin);
if (ret)
return ret;
return bmi160_probe_trigger(indio_dev, irq, irq_type);
}
static int bmi160_chip_init(struct bmi160_data *data, bool use_spi)
{
int ret;
unsigned int val;
struct device *dev = regmap_get_device(data->regmap);
ret = regulator_bulk_enable(ARRAY_SIZE(data->supplies), data->supplies);
if (ret) {
dev_err(dev, "Failed to enable regulators: %d\n", ret);
return ret;
}
ret = regmap_write(data->regmap, BMI160_REG_CMD, BMI160_CMD_SOFTRESET);
if (ret)
return ret;
usleep_range(BMI160_SOFTRESET_USLEEP, BMI160_SOFTRESET_USLEEP + 1);
/*
* CS rising edge is needed before starting SPI, so do a dummy read
* See Section 3.2.1, page 86 of the datasheet
*/
if (use_spi) {
ret = regmap_read(data->regmap, BMI160_REG_DUMMY, &val);
if (ret)
return ret;
}
ret = regmap_read(data->regmap, BMI160_REG_CHIP_ID, &val);
if (ret) {
dev_err(dev, "Error reading chip id\n");
return ret;
}
if (val != BMI160_CHIP_ID_VAL) {
dev_err(dev, "Wrong chip id, got %x expected %x\n",
val, BMI160_CHIP_ID_VAL);
return -ENODEV;
}
ret = bmi160_set_mode(data, BMI160_ACCEL, true);
if (ret)
return ret;
ret = bmi160_set_mode(data, BMI160_GYRO, true);
if (ret)
return ret;
return 0;
}
static int bmi160_data_rdy_trigger_set_state(struct iio_trigger *trig,
bool enable)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct bmi160_data *data = iio_priv(indio_dev);
return bmi160_enable_irq(data->regmap, enable);
}
static const struct iio_trigger_ops bmi160_trigger_ops = {
.set_trigger_state = &bmi160_data_rdy_trigger_set_state,
};
int bmi160_probe_trigger(struct iio_dev *indio_dev, int irq, u32 irq_type)
{
struct bmi160_data *data = iio_priv(indio_dev);
int ret;
data->trig = devm_iio_trigger_alloc(&indio_dev->dev, "%s-dev%d",
indio_dev->name, indio_dev->id);
if (data->trig == NULL)
return -ENOMEM;
ret = devm_request_irq(&indio_dev->dev, irq,
&iio_trigger_generic_data_rdy_poll,
irq_type, "bmi160", data->trig);
if (ret)
return ret;
data->trig->dev.parent = regmap_get_device(data->regmap);
data->trig->ops = &bmi160_trigger_ops;
iio_trigger_set_drvdata(data->trig, indio_dev);
ret = devm_iio_trigger_register(&indio_dev->dev, data->trig);
if (ret)
return ret;
indio_dev->trig = iio_trigger_get(data->trig);
return 0;
}
static void bmi160_chip_uninit(void *data)
{
struct bmi160_data *bmi_data = data;
struct device *dev = regmap_get_device(bmi_data->regmap);
int ret;
bmi160_set_mode(bmi_data, BMI160_GYRO, false);
bmi160_set_mode(bmi_data, BMI160_ACCEL, false);
ret = regulator_bulk_disable(ARRAY_SIZE(bmi_data->supplies),
bmi_data->supplies);
if (ret)
dev_err(dev, "Failed to disable regulators: %d\n", ret);
}
int bmi160_core_probe(struct device *dev, struct regmap *regmap,
const char *name, bool use_spi)
{
struct iio_dev *indio_dev;
struct bmi160_data *data;
int irq;
enum bmi160_int_pin int_pin;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
dev_set_drvdata(dev, indio_dev);
data->regmap = regmap;
data->supplies[0].supply = "vdd";
data->supplies[1].supply = "vddio";
ret = devm_regulator_bulk_get(dev,
ARRAY_SIZE(data->supplies),
data->supplies);
if (ret) {
dev_err(dev, "Failed to get regulators: %d\n", ret);
return ret;
}
ret = iio_read_mount_matrix(dev, "mount-matrix",
&data->orientation);
if (ret)
return ret;
ret = bmi160_chip_init(data, use_spi);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, bmi160_chip_uninit, data);
if (ret)
return ret;
if (!name && ACPI_HANDLE(dev))
name = bmi160_match_acpi_device(dev);
indio_dev->channels = bmi160_channels;
indio_dev->num_channels = ARRAY_SIZE(bmi160_channels);
indio_dev->name = name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &bmi160_info;
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
iio_pollfunc_store_time,
bmi160_trigger_handler, NULL);
if (ret)
return ret;
irq = bmi160_get_irq(dev->of_node, &int_pin);
if (irq > 0) {
ret = bmi160_setup_irq(indio_dev, irq, int_pin);
if (ret)
dev_err(&indio_dev->dev, "Failed to setup IRQ %d\n",
irq);
} else {
dev_info(&indio_dev->dev, "Not setting up IRQ trigger\n");
}
return devm_iio_device_register(dev, indio_dev);
}
EXPORT_SYMBOL_GPL(bmi160_core_probe);
MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
MODULE_DESCRIPTION("Bosch BMI160 driver");
MODULE_LICENSE("GPL v2");