OpenCloudOS-Kernel/drivers/net/ethernet/sfc/nic.h

697 lines
24 KiB
C

/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2013 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_NIC_H
#define EFX_NIC_H
#include <linux/net_tstamp.h>
#include <linux/i2c-algo-bit.h>
#include "net_driver.h"
#include "efx.h"
#include "mcdi.h"
enum {
/* Revisions 0-2 were Falcon A0, A1 and B0 respectively.
* They are not supported by this driver but these revision numbers
* form part of the ethtool API for register dumping.
*/
EFX_REV_SIENA_A0 = 3,
EFX_REV_HUNT_A0 = 4,
};
static inline int efx_nic_rev(struct efx_nic *efx)
{
return efx->type->revision;
}
u32 efx_farch_fpga_ver(struct efx_nic *efx);
/* Read the current event from the event queue */
static inline efx_qword_t *efx_event(struct efx_channel *channel,
unsigned int index)
{
return ((efx_qword_t *) (channel->eventq.buf.addr)) +
(index & channel->eventq_mask);
}
/* See if an event is present
*
* We check both the high and low dword of the event for all ones. We
* wrote all ones when we cleared the event, and no valid event can
* have all ones in either its high or low dwords. This approach is
* robust against reordering.
*
* Note that using a single 64-bit comparison is incorrect; even
* though the CPU read will be atomic, the DMA write may not be.
*/
static inline int efx_event_present(efx_qword_t *event)
{
return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
EFX_DWORD_IS_ALL_ONES(event->dword[1]));
}
/* Returns a pointer to the specified transmit descriptor in the TX
* descriptor queue belonging to the specified channel.
*/
static inline efx_qword_t *
efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
{
return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
}
/* Get partner of a TX queue, seen as part of the same net core queue */
static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
{
if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
else
return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
}
/* Report whether this TX queue would be empty for the given write_count.
* May return false negative.
*/
static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
unsigned int write_count)
{
unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
if (empty_read_count == 0)
return false;
return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
}
/* Report whether the NIC considers this TX queue empty, using
* packet_write_count (the write count recorded for the last completable
* doorbell push). May return false negative. EF10 only, which is OK
* because only EF10 supports PIO.
*/
static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
{
EFX_WARN_ON_ONCE_PARANOID(!tx_queue->efx->type->option_descriptors);
return __efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count);
}
/* Decide whether we can use TX PIO, ie. write packet data directly into
* a buffer on the device. This can reduce latency at the expense of
* throughput, so we only do this if both hardware and software TX rings
* are empty. This also ensures that only one packet at a time can be
* using the PIO buffer.
*/
static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
{
struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
return tx_queue->piobuf && efx_nic_tx_is_empty(tx_queue) &&
efx_nic_tx_is_empty(partner);
}
/* Decide whether to push a TX descriptor to the NIC vs merely writing
* the doorbell. This can reduce latency when we are adding a single
* descriptor to an empty queue, but is otherwise pointless. Further,
* Falcon and Siena have hardware bugs (SF bug 33851) that may be
* triggered if we don't check this.
* We use the write_count used for the last doorbell push, to get the
* NIC's view of the tx queue.
*/
static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
unsigned int write_count)
{
bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
tx_queue->empty_read_count = 0;
return was_empty && tx_queue->write_count - write_count == 1;
}
/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *
efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
{
return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
}
enum {
PHY_TYPE_NONE = 0,
PHY_TYPE_TXC43128 = 1,
PHY_TYPE_88E1111 = 2,
PHY_TYPE_SFX7101 = 3,
PHY_TYPE_QT2022C2 = 4,
PHY_TYPE_PM8358 = 6,
PHY_TYPE_SFT9001A = 8,
PHY_TYPE_QT2025C = 9,
PHY_TYPE_SFT9001B = 10,
};
/* Alignment of PCIe DMA boundaries (4KB) */
#define EFX_PAGE_SIZE 4096
/* Size and alignment of buffer table entries (same) */
#define EFX_BUF_SIZE EFX_PAGE_SIZE
/* NIC-generic software stats */
enum {
GENERIC_STAT_rx_noskb_drops,
GENERIC_STAT_rx_nodesc_trunc,
GENERIC_STAT_COUNT
};
enum {
SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
SIENA_STAT_tx_good_bytes,
SIENA_STAT_tx_bad_bytes,
SIENA_STAT_tx_packets,
SIENA_STAT_tx_bad,
SIENA_STAT_tx_pause,
SIENA_STAT_tx_control,
SIENA_STAT_tx_unicast,
SIENA_STAT_tx_multicast,
SIENA_STAT_tx_broadcast,
SIENA_STAT_tx_lt64,
SIENA_STAT_tx_64,
SIENA_STAT_tx_65_to_127,
SIENA_STAT_tx_128_to_255,
SIENA_STAT_tx_256_to_511,
SIENA_STAT_tx_512_to_1023,
SIENA_STAT_tx_1024_to_15xx,
SIENA_STAT_tx_15xx_to_jumbo,
SIENA_STAT_tx_gtjumbo,
SIENA_STAT_tx_collision,
SIENA_STAT_tx_single_collision,
SIENA_STAT_tx_multiple_collision,
SIENA_STAT_tx_excessive_collision,
SIENA_STAT_tx_deferred,
SIENA_STAT_tx_late_collision,
SIENA_STAT_tx_excessive_deferred,
SIENA_STAT_tx_non_tcpudp,
SIENA_STAT_tx_mac_src_error,
SIENA_STAT_tx_ip_src_error,
SIENA_STAT_rx_bytes,
SIENA_STAT_rx_good_bytes,
SIENA_STAT_rx_bad_bytes,
SIENA_STAT_rx_packets,
SIENA_STAT_rx_good,
SIENA_STAT_rx_bad,
SIENA_STAT_rx_pause,
SIENA_STAT_rx_control,
SIENA_STAT_rx_unicast,
SIENA_STAT_rx_multicast,
SIENA_STAT_rx_broadcast,
SIENA_STAT_rx_lt64,
SIENA_STAT_rx_64,
SIENA_STAT_rx_65_to_127,
SIENA_STAT_rx_128_to_255,
SIENA_STAT_rx_256_to_511,
SIENA_STAT_rx_512_to_1023,
SIENA_STAT_rx_1024_to_15xx,
SIENA_STAT_rx_15xx_to_jumbo,
SIENA_STAT_rx_gtjumbo,
SIENA_STAT_rx_bad_gtjumbo,
SIENA_STAT_rx_overflow,
SIENA_STAT_rx_false_carrier,
SIENA_STAT_rx_symbol_error,
SIENA_STAT_rx_align_error,
SIENA_STAT_rx_length_error,
SIENA_STAT_rx_internal_error,
SIENA_STAT_rx_nodesc_drop_cnt,
SIENA_STAT_COUNT
};
/**
* struct siena_nic_data - Siena NIC state
* @efx: Pointer back to main interface structure
* @wol_filter_id: Wake-on-LAN packet filter id
* @stats: Hardware statistics
* @vf: Array of &struct siena_vf objects
* @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
* @vfdi_status: Common VFDI status page to be dmad to VF address space.
* @local_addr_list: List of local addresses. Protected by %local_lock.
* @local_page_list: List of DMA addressable pages used to broadcast
* %local_addr_list. Protected by %local_lock.
* @local_lock: Mutex protecting %local_addr_list and %local_page_list.
* @peer_work: Work item to broadcast peer addresses to VMs.
*/
struct siena_nic_data {
struct efx_nic *efx;
int wol_filter_id;
u64 stats[SIENA_STAT_COUNT];
#ifdef CONFIG_SFC_SRIOV
struct siena_vf *vf;
struct efx_channel *vfdi_channel;
unsigned vf_buftbl_base;
struct efx_buffer vfdi_status;
struct list_head local_addr_list;
struct list_head local_page_list;
struct mutex local_lock;
struct work_struct peer_work;
#endif
};
enum {
EF10_STAT_port_tx_bytes = GENERIC_STAT_COUNT,
EF10_STAT_port_tx_packets,
EF10_STAT_port_tx_pause,
EF10_STAT_port_tx_control,
EF10_STAT_port_tx_unicast,
EF10_STAT_port_tx_multicast,
EF10_STAT_port_tx_broadcast,
EF10_STAT_port_tx_lt64,
EF10_STAT_port_tx_64,
EF10_STAT_port_tx_65_to_127,
EF10_STAT_port_tx_128_to_255,
EF10_STAT_port_tx_256_to_511,
EF10_STAT_port_tx_512_to_1023,
EF10_STAT_port_tx_1024_to_15xx,
EF10_STAT_port_tx_15xx_to_jumbo,
EF10_STAT_port_rx_bytes,
EF10_STAT_port_rx_bytes_minus_good_bytes,
EF10_STAT_port_rx_good_bytes,
EF10_STAT_port_rx_bad_bytes,
EF10_STAT_port_rx_packets,
EF10_STAT_port_rx_good,
EF10_STAT_port_rx_bad,
EF10_STAT_port_rx_pause,
EF10_STAT_port_rx_control,
EF10_STAT_port_rx_unicast,
EF10_STAT_port_rx_multicast,
EF10_STAT_port_rx_broadcast,
EF10_STAT_port_rx_lt64,
EF10_STAT_port_rx_64,
EF10_STAT_port_rx_65_to_127,
EF10_STAT_port_rx_128_to_255,
EF10_STAT_port_rx_256_to_511,
EF10_STAT_port_rx_512_to_1023,
EF10_STAT_port_rx_1024_to_15xx,
EF10_STAT_port_rx_15xx_to_jumbo,
EF10_STAT_port_rx_gtjumbo,
EF10_STAT_port_rx_bad_gtjumbo,
EF10_STAT_port_rx_overflow,
EF10_STAT_port_rx_align_error,
EF10_STAT_port_rx_length_error,
EF10_STAT_port_rx_nodesc_drops,
EF10_STAT_port_rx_pm_trunc_bb_overflow,
EF10_STAT_port_rx_pm_discard_bb_overflow,
EF10_STAT_port_rx_pm_trunc_vfifo_full,
EF10_STAT_port_rx_pm_discard_vfifo_full,
EF10_STAT_port_rx_pm_trunc_qbb,
EF10_STAT_port_rx_pm_discard_qbb,
EF10_STAT_port_rx_pm_discard_mapping,
EF10_STAT_port_rx_dp_q_disabled_packets,
EF10_STAT_port_rx_dp_di_dropped_packets,
EF10_STAT_port_rx_dp_streaming_packets,
EF10_STAT_port_rx_dp_hlb_fetch,
EF10_STAT_port_rx_dp_hlb_wait,
EF10_STAT_rx_unicast,
EF10_STAT_rx_unicast_bytes,
EF10_STAT_rx_multicast,
EF10_STAT_rx_multicast_bytes,
EF10_STAT_rx_broadcast,
EF10_STAT_rx_broadcast_bytes,
EF10_STAT_rx_bad,
EF10_STAT_rx_bad_bytes,
EF10_STAT_rx_overflow,
EF10_STAT_tx_unicast,
EF10_STAT_tx_unicast_bytes,
EF10_STAT_tx_multicast,
EF10_STAT_tx_multicast_bytes,
EF10_STAT_tx_broadcast,
EF10_STAT_tx_broadcast_bytes,
EF10_STAT_tx_bad,
EF10_STAT_tx_bad_bytes,
EF10_STAT_tx_overflow,
EF10_STAT_V1_COUNT,
EF10_STAT_fec_uncorrected_errors = EF10_STAT_V1_COUNT,
EF10_STAT_fec_corrected_errors,
EF10_STAT_fec_corrected_symbols_lane0,
EF10_STAT_fec_corrected_symbols_lane1,
EF10_STAT_fec_corrected_symbols_lane2,
EF10_STAT_fec_corrected_symbols_lane3,
EF10_STAT_ctpio_vi_busy_fallback,
EF10_STAT_ctpio_long_write_success,
EF10_STAT_ctpio_missing_dbell_fail,
EF10_STAT_ctpio_overflow_fail,
EF10_STAT_ctpio_underflow_fail,
EF10_STAT_ctpio_timeout_fail,
EF10_STAT_ctpio_noncontig_wr_fail,
EF10_STAT_ctpio_frm_clobber_fail,
EF10_STAT_ctpio_invalid_wr_fail,
EF10_STAT_ctpio_vi_clobber_fallback,
EF10_STAT_ctpio_unqualified_fallback,
EF10_STAT_ctpio_runt_fallback,
EF10_STAT_ctpio_success,
EF10_STAT_ctpio_fallback,
EF10_STAT_ctpio_poison,
EF10_STAT_ctpio_erase,
EF10_STAT_COUNT
};
/* Maximum number of TX PIO buffers we may allocate to a function.
* This matches the total number of buffers on each SFC9100-family
* controller.
*/
#define EF10_TX_PIOBUF_COUNT 16
/**
* struct efx_ef10_nic_data - EF10 architecture NIC state
* @mcdi_buf: DMA buffer for MCDI
* @warm_boot_count: Last seen MC warm boot count
* @vi_base: Absolute index of first VI in this function
* @n_allocated_vis: Number of VIs allocated to this function
* @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
* @must_restore_rss_contexts: Flag: RSS contexts have yet to be restored after
* MC reboot
* @must_restore_filters: Flag: filters have yet to be restored after MC reboot
* @n_piobufs: Number of PIO buffers allocated to this function
* @wc_membase: Base address of write-combining mapping of the memory BAR
* @pio_write_base: Base address for writing PIO buffers
* @pio_write_vi_base: Relative VI number for @pio_write_base
* @piobuf_handle: Handle of each PIO buffer allocated
* @piobuf_size: size of a single PIO buffer
* @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
* reboot
* @rx_rss_context_exclusive: Whether our RSS context is exclusive or shared
* @stats: Hardware statistics
* @workaround_35388: Flag: firmware supports workaround for bug 35388
* @workaround_26807: Flag: firmware supports workaround for bug 26807
* @workaround_61265: Flag: firmware supports workaround for bug 61265
* @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
* after MC reboot
* @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
* %MC_CMD_GET_CAPABILITIES response)
* @datapath_caps2: Further Capabilities of datapath firmware (FLAGS2 field of
* %MC_CMD_GET_CAPABILITIES response)
* @rx_dpcpu_fw_id: Firmware ID of the RxDPCPU
* @tx_dpcpu_fw_id: Firmware ID of the TxDPCPU
* @vport_id: The function's vport ID, only relevant for PFs
* @must_probe_vswitching: Flag: vswitching has yet to be setup after MC reboot
* @pf_index: The number for this PF, or the parent PF if this is a VF
#ifdef CONFIG_SFC_SRIOV
* @vf: Pointer to VF data structure
#endif
* @vport_mac: The MAC address on the vport, only for PFs; VFs will be zero
* @vlan_list: List of VLANs added over the interface. Serialised by vlan_lock.
* @vlan_lock: Lock to serialize access to vlan_list.
* @udp_tunnels: UDP tunnel port numbers and types.
* @udp_tunnels_dirty: flag indicating a reboot occurred while pushing
* @udp_tunnels to hardware and thus the push must be re-done.
* @udp_tunnels_lock: Serialises writes to @udp_tunnels and @udp_tunnels_dirty.
*/
struct efx_ef10_nic_data {
struct efx_buffer mcdi_buf;
u16 warm_boot_count;
unsigned int vi_base;
unsigned int n_allocated_vis;
bool must_realloc_vis;
bool must_restore_rss_contexts;
bool must_restore_filters;
unsigned int n_piobufs;
void __iomem *wc_membase, *pio_write_base;
unsigned int pio_write_vi_base;
unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
u16 piobuf_size;
bool must_restore_piobufs;
bool rx_rss_context_exclusive;
u64 stats[EF10_STAT_COUNT];
bool workaround_35388;
bool workaround_26807;
bool workaround_61265;
bool must_check_datapath_caps;
u32 datapath_caps;
u32 datapath_caps2;
unsigned int rx_dpcpu_fw_id;
unsigned int tx_dpcpu_fw_id;
unsigned int vport_id;
bool must_probe_vswitching;
unsigned int pf_index;
u8 port_id[ETH_ALEN];
#ifdef CONFIG_SFC_SRIOV
unsigned int vf_index;
struct ef10_vf *vf;
#endif
u8 vport_mac[ETH_ALEN];
struct list_head vlan_list;
struct mutex vlan_lock;
struct efx_udp_tunnel udp_tunnels[16];
bool udp_tunnels_dirty;
struct mutex udp_tunnels_lock;
u64 licensed_features;
};
int efx_init_sriov(void);
void efx_fini_sriov(void);
struct ethtool_ts_info;
int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
struct efx_channel *efx_ptp_channel(struct efx_nic *efx);
void efx_ptp_remove(struct efx_nic *efx);
int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
int efx_ptp_get_mode(struct efx_nic *efx);
int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
unsigned int new_mode);
int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
struct sk_buff *skb);
static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
struct sk_buff *skb)
{
if (channel->sync_events_state == SYNC_EVENTS_VALID)
__efx_rx_skb_attach_timestamp(channel, skb);
}
void efx_ptp_start_datapath(struct efx_nic *efx);
void efx_ptp_stop_datapath(struct efx_nic *efx);
bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx);
ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue);
extern const struct efx_nic_type falcon_a1_nic_type;
extern const struct efx_nic_type falcon_b0_nic_type;
extern const struct efx_nic_type siena_a0_nic_type;
extern const struct efx_nic_type efx_hunt_a0_nic_type;
extern const struct efx_nic_type efx_hunt_a0_vf_nic_type;
/**************************************************************************
*
* Externs
*
**************************************************************************
*/
int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
/* TX data path */
static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
{
return tx_queue->efx->type->tx_probe(tx_queue);
}
static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
{
tx_queue->efx->type->tx_init(tx_queue);
}
static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
{
tx_queue->efx->type->tx_remove(tx_queue);
}
static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
{
tx_queue->efx->type->tx_write(tx_queue);
}
/* RX data path */
static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
{
return rx_queue->efx->type->rx_probe(rx_queue);
}
static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
{
rx_queue->efx->type->rx_init(rx_queue);
}
static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
{
rx_queue->efx->type->rx_remove(rx_queue);
}
static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
rx_queue->efx->type->rx_write(rx_queue);
}
static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
{
rx_queue->efx->type->rx_defer_refill(rx_queue);
}
/* Event data path */
static inline int efx_nic_probe_eventq(struct efx_channel *channel)
{
return channel->efx->type->ev_probe(channel);
}
static inline int efx_nic_init_eventq(struct efx_channel *channel)
{
return channel->efx->type->ev_init(channel);
}
static inline void efx_nic_fini_eventq(struct efx_channel *channel)
{
channel->efx->type->ev_fini(channel);
}
static inline void efx_nic_remove_eventq(struct efx_channel *channel)
{
channel->efx->type->ev_remove(channel);
}
static inline int
efx_nic_process_eventq(struct efx_channel *channel, int quota)
{
return channel->efx->type->ev_process(channel, quota);
}
static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
{
channel->efx->type->ev_read_ack(channel);
}
void efx_nic_event_test_start(struct efx_channel *channel);
/* Falcon/Siena queue operations */
int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
dma_addr_t dma_addr, unsigned int len);
int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
int efx_farch_ev_probe(struct efx_channel *channel);
int efx_farch_ev_init(struct efx_channel *channel);
void efx_farch_ev_fini(struct efx_channel *channel);
void efx_farch_ev_remove(struct efx_channel *channel);
int efx_farch_ev_process(struct efx_channel *channel, int quota);
void efx_farch_ev_read_ack(struct efx_channel *channel);
void efx_farch_ev_test_generate(struct efx_channel *channel);
/* Falcon/Siena filter operations */
int efx_farch_filter_table_probe(struct efx_nic *efx);
void efx_farch_filter_table_restore(struct efx_nic *efx);
void efx_farch_filter_table_remove(struct efx_nic *efx);
void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
bool replace);
int efx_farch_filter_remove_safe(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id);
int efx_farch_filter_get_safe(struct efx_nic *efx,
enum efx_filter_priority priority, u32 filter_id,
struct efx_filter_spec *);
int efx_farch_filter_clear_rx(struct efx_nic *efx,
enum efx_filter_priority priority);
u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
enum efx_filter_priority priority);
u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
enum efx_filter_priority priority, u32 *buf,
u32 size);
#ifdef CONFIG_RFS_ACCEL
bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
unsigned int index);
#endif
void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
bool efx_nic_event_present(struct efx_channel *channel);
/* Some statistics are computed as A - B where A and B each increase
* linearly with some hardware counter(s) and the counters are read
* asynchronously. If the counters contributing to B are always read
* after those contributing to A, the computed value may be lower than
* the true value by some variable amount, and may decrease between
* subsequent computations.
*
* We should never allow statistics to decrease or to exceed the true
* value. Since the computed value will never be greater than the
* true value, we can achieve this by only storing the computed value
* when it increases.
*/
static inline void efx_update_diff_stat(u64 *stat, u64 diff)
{
if ((s64)(diff - *stat) > 0)
*stat = diff;
}
/* Interrupts */
int efx_nic_init_interrupt(struct efx_nic *efx);
int efx_nic_irq_test_start(struct efx_nic *efx);
void efx_nic_fini_interrupt(struct efx_nic *efx);
/* Falcon/Siena interrupts */
void efx_farch_irq_enable_master(struct efx_nic *efx);
int efx_farch_irq_test_generate(struct efx_nic *efx);
void efx_farch_irq_disable_master(struct efx_nic *efx);
irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
{
return READ_ONCE(channel->event_test_cpu);
}
static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
{
return READ_ONCE(efx->last_irq_cpu);
}
/* Global Resources */
int efx_nic_flush_queues(struct efx_nic *efx);
void siena_prepare_flush(struct efx_nic *efx);
int efx_farch_fini_dmaq(struct efx_nic *efx);
void efx_farch_finish_flr(struct efx_nic *efx);
void siena_finish_flush(struct efx_nic *efx);
void falcon_start_nic_stats(struct efx_nic *efx);
void falcon_stop_nic_stats(struct efx_nic *efx);
int falcon_reset_xaui(struct efx_nic *efx);
void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
void efx_farch_init_common(struct efx_nic *efx);
void efx_ef10_handle_drain_event(struct efx_nic *efx);
void efx_farch_rx_push_indir_table(struct efx_nic *efx);
void efx_farch_rx_pull_indir_table(struct efx_nic *efx);
int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
unsigned int len, gfp_t gfp_flags);
void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
/* Tests */
struct efx_farch_register_test {
unsigned address;
efx_oword_t mask;
};
int efx_farch_test_registers(struct efx_nic *efx,
const struct efx_farch_register_test *regs,
size_t n_regs);
size_t efx_nic_get_regs_len(struct efx_nic *efx);
void efx_nic_get_regs(struct efx_nic *efx, void *buf);
size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
const unsigned long *mask, u8 *names);
void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
const unsigned long *mask, u64 *stats,
const void *dma_buf, bool accumulate);
void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
#define EFX_MAX_FLUSH_TIME 5000
void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
efx_qword_t *event);
#endif /* EFX_NIC_H */