1207 lines
34 KiB
C
1207 lines
34 KiB
C
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_log.h"
|
|
|
|
|
|
kmem_zone_t *xfs_buf_item_zone;
|
|
|
|
static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_buf_log_item, bli_item);
|
|
}
|
|
|
|
STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
|
|
|
|
static inline int
|
|
xfs_buf_log_format_size(
|
|
struct xfs_buf_log_format *blfp)
|
|
{
|
|
return offsetof(struct xfs_buf_log_format, blf_data_map) +
|
|
(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
|
|
}
|
|
|
|
/*
|
|
* This returns the number of log iovecs needed to log the
|
|
* given buf log item.
|
|
*
|
|
* It calculates this as 1 iovec for the buf log format structure
|
|
* and 1 for each stretch of non-contiguous chunks to be logged.
|
|
* Contiguous chunks are logged in a single iovec.
|
|
*
|
|
* If the XFS_BLI_STALE flag has been set, then log nothing.
|
|
*/
|
|
STATIC void
|
|
xfs_buf_item_size_segment(
|
|
struct xfs_buf_log_item *bip,
|
|
struct xfs_buf_log_format *blfp,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_buf *bp = bip->bli_buf;
|
|
int next_bit;
|
|
int last_bit;
|
|
|
|
last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
|
|
if (last_bit == -1)
|
|
return;
|
|
|
|
/*
|
|
* initial count for a dirty buffer is 2 vectors - the format structure
|
|
* and the first dirty region.
|
|
*/
|
|
*nvecs += 2;
|
|
*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
|
|
|
|
while (last_bit != -1) {
|
|
/*
|
|
* This takes the bit number to start looking from and
|
|
* returns the next set bit from there. It returns -1
|
|
* if there are no more bits set or the start bit is
|
|
* beyond the end of the bitmap.
|
|
*/
|
|
next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
|
|
last_bit + 1);
|
|
/*
|
|
* If we run out of bits, leave the loop,
|
|
* else if we find a new set of bits bump the number of vecs,
|
|
* else keep scanning the current set of bits.
|
|
*/
|
|
if (next_bit == -1) {
|
|
break;
|
|
} else if (next_bit != last_bit + 1) {
|
|
last_bit = next_bit;
|
|
(*nvecs)++;
|
|
} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
|
|
(xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
|
|
XFS_BLF_CHUNK)) {
|
|
last_bit = next_bit;
|
|
(*nvecs)++;
|
|
} else {
|
|
last_bit++;
|
|
}
|
|
*nbytes += XFS_BLF_CHUNK;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This returns the number of log iovecs needed to log the given buf log item.
|
|
*
|
|
* It calculates this as 1 iovec for the buf log format structure and 1 for each
|
|
* stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
|
|
* in a single iovec.
|
|
*
|
|
* Discontiguous buffers need a format structure per region that that is being
|
|
* logged. This makes the changes in the buffer appear to log recovery as though
|
|
* they came from separate buffers, just like would occur if multiple buffers
|
|
* were used instead of a single discontiguous buffer. This enables
|
|
* discontiguous buffers to be in-memory constructs, completely transparent to
|
|
* what ends up on disk.
|
|
*
|
|
* If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
|
|
* format structures.
|
|
*/
|
|
STATIC void
|
|
xfs_buf_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_buf_log_item *bip = BUF_ITEM(lip);
|
|
int i;
|
|
|
|
ASSERT(atomic_read(&bip->bli_refcount) > 0);
|
|
if (bip->bli_flags & XFS_BLI_STALE) {
|
|
/*
|
|
* The buffer is stale, so all we need to log
|
|
* is the buf log format structure with the
|
|
* cancel flag in it.
|
|
*/
|
|
trace_xfs_buf_item_size_stale(bip);
|
|
ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
|
|
*nvecs += bip->bli_format_count;
|
|
for (i = 0; i < bip->bli_format_count; i++) {
|
|
*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
|
|
}
|
|
return;
|
|
}
|
|
|
|
ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
|
|
|
|
if (bip->bli_flags & XFS_BLI_ORDERED) {
|
|
/*
|
|
* The buffer has been logged just to order it.
|
|
* It is not being included in the transaction
|
|
* commit, so no vectors are used at all.
|
|
*/
|
|
trace_xfs_buf_item_size_ordered(bip);
|
|
*nvecs = XFS_LOG_VEC_ORDERED;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* the vector count is based on the number of buffer vectors we have
|
|
* dirty bits in. This will only be greater than one when we have a
|
|
* compound buffer with more than one segment dirty. Hence for compound
|
|
* buffers we need to track which segment the dirty bits correspond to,
|
|
* and when we move from one segment to the next increment the vector
|
|
* count for the extra buf log format structure that will need to be
|
|
* written.
|
|
*/
|
|
for (i = 0; i < bip->bli_format_count; i++) {
|
|
xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
|
|
nvecs, nbytes);
|
|
}
|
|
trace_xfs_buf_item_size(bip);
|
|
}
|
|
|
|
static inline void
|
|
xfs_buf_item_copy_iovec(
|
|
struct xfs_log_vec *lv,
|
|
struct xfs_log_iovec **vecp,
|
|
struct xfs_buf *bp,
|
|
uint offset,
|
|
int first_bit,
|
|
uint nbits)
|
|
{
|
|
offset += first_bit * XFS_BLF_CHUNK;
|
|
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
|
|
xfs_buf_offset(bp, offset),
|
|
nbits * XFS_BLF_CHUNK);
|
|
}
|
|
|
|
static inline bool
|
|
xfs_buf_item_straddle(
|
|
struct xfs_buf *bp,
|
|
uint offset,
|
|
int next_bit,
|
|
int last_bit)
|
|
{
|
|
return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
|
|
(xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
|
|
XFS_BLF_CHUNK);
|
|
}
|
|
|
|
static void
|
|
xfs_buf_item_format_segment(
|
|
struct xfs_buf_log_item *bip,
|
|
struct xfs_log_vec *lv,
|
|
struct xfs_log_iovec **vecp,
|
|
uint offset,
|
|
struct xfs_buf_log_format *blfp)
|
|
{
|
|
struct xfs_buf *bp = bip->bli_buf;
|
|
uint base_size;
|
|
int first_bit;
|
|
int last_bit;
|
|
int next_bit;
|
|
uint nbits;
|
|
|
|
/* copy the flags across from the base format item */
|
|
blfp->blf_flags = bip->__bli_format.blf_flags;
|
|
|
|
/*
|
|
* Base size is the actual size of the ondisk structure - it reflects
|
|
* the actual size of the dirty bitmap rather than the size of the in
|
|
* memory structure.
|
|
*/
|
|
base_size = xfs_buf_log_format_size(blfp);
|
|
|
|
first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
|
|
if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
|
|
/*
|
|
* If the map is not be dirty in the transaction, mark
|
|
* the size as zero and do not advance the vector pointer.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
|
|
blfp->blf_size = 1;
|
|
|
|
if (bip->bli_flags & XFS_BLI_STALE) {
|
|
/*
|
|
* The buffer is stale, so all we need to log
|
|
* is the buf log format structure with the
|
|
* cancel flag in it.
|
|
*/
|
|
trace_xfs_buf_item_format_stale(bip);
|
|
ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Fill in an iovec for each set of contiguous chunks.
|
|
*/
|
|
last_bit = first_bit;
|
|
nbits = 1;
|
|
for (;;) {
|
|
/*
|
|
* This takes the bit number to start looking from and
|
|
* returns the next set bit from there. It returns -1
|
|
* if there are no more bits set or the start bit is
|
|
* beyond the end of the bitmap.
|
|
*/
|
|
next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
|
|
(uint)last_bit + 1);
|
|
/*
|
|
* If we run out of bits fill in the last iovec and get out of
|
|
* the loop. Else if we start a new set of bits then fill in
|
|
* the iovec for the series we were looking at and start
|
|
* counting the bits in the new one. Else we're still in the
|
|
* same set of bits so just keep counting and scanning.
|
|
*/
|
|
if (next_bit == -1) {
|
|
xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
|
|
first_bit, nbits);
|
|
blfp->blf_size++;
|
|
break;
|
|
} else if (next_bit != last_bit + 1 ||
|
|
xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
|
|
xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
|
|
first_bit, nbits);
|
|
blfp->blf_size++;
|
|
first_bit = next_bit;
|
|
last_bit = next_bit;
|
|
nbits = 1;
|
|
} else {
|
|
last_bit++;
|
|
nbits++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given log buf item. It fills the first entry with a buf log
|
|
* format structure, and the rest point to contiguous chunks
|
|
* within the buffer.
|
|
*/
|
|
STATIC void
|
|
xfs_buf_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_buf_log_item *bip = BUF_ITEM(lip);
|
|
struct xfs_buf *bp = bip->bli_buf;
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
uint offset = 0;
|
|
int i;
|
|
|
|
ASSERT(atomic_read(&bip->bli_refcount) > 0);
|
|
ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
|
|
(bip->bli_flags & XFS_BLI_STALE));
|
|
ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
|
|
(xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
|
|
&& xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
|
|
|
|
|
|
/*
|
|
* If it is an inode buffer, transfer the in-memory state to the
|
|
* format flags and clear the in-memory state.
|
|
*
|
|
* For buffer based inode allocation, we do not transfer
|
|
* this state if the inode buffer allocation has not yet been committed
|
|
* to the log as setting the XFS_BLI_INODE_BUF flag will prevent
|
|
* correct replay of the inode allocation.
|
|
*
|
|
* For icreate item based inode allocation, the buffers aren't written
|
|
* to the journal during allocation, and hence we should always tag the
|
|
* buffer as an inode buffer so that the correct unlinked list replay
|
|
* occurs during recovery.
|
|
*/
|
|
if (bip->bli_flags & XFS_BLI_INODE_BUF) {
|
|
if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
|
|
!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
|
|
xfs_log_item_in_current_chkpt(lip)))
|
|
bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
|
|
bip->bli_flags &= ~XFS_BLI_INODE_BUF;
|
|
}
|
|
|
|
if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
|
|
XFS_BLI_ORDERED) {
|
|
/*
|
|
* The buffer has been logged just to order it. It is not being
|
|
* included in the transaction commit, so don't format it.
|
|
*/
|
|
trace_xfs_buf_item_format_ordered(bip);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < bip->bli_format_count; i++) {
|
|
xfs_buf_item_format_segment(bip, lv, &vecp, offset,
|
|
&bip->bli_formats[i]);
|
|
offset += BBTOB(bp->b_maps[i].bm_len);
|
|
}
|
|
|
|
/*
|
|
* Check to make sure everything is consistent.
|
|
*/
|
|
trace_xfs_buf_item_format(bip);
|
|
}
|
|
|
|
/*
|
|
* This is called to pin the buffer associated with the buf log item in memory
|
|
* so it cannot be written out.
|
|
*
|
|
* We also always take a reference to the buffer log item here so that the bli
|
|
* is held while the item is pinned in memory. This means that we can
|
|
* unconditionally drop the reference count a transaction holds when the
|
|
* transaction is completed.
|
|
*/
|
|
STATIC void
|
|
xfs_buf_item_pin(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_buf_log_item *bip = BUF_ITEM(lip);
|
|
|
|
ASSERT(atomic_read(&bip->bli_refcount) > 0);
|
|
ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
|
|
(bip->bli_flags & XFS_BLI_ORDERED) ||
|
|
(bip->bli_flags & XFS_BLI_STALE));
|
|
|
|
trace_xfs_buf_item_pin(bip);
|
|
|
|
atomic_inc(&bip->bli_refcount);
|
|
atomic_inc(&bip->bli_buf->b_pin_count);
|
|
}
|
|
|
|
/*
|
|
* This is called to unpin the buffer associated with the buf log
|
|
* item which was previously pinned with a call to xfs_buf_item_pin().
|
|
*
|
|
* Also drop the reference to the buf item for the current transaction.
|
|
* If the XFS_BLI_STALE flag is set and we are the last reference,
|
|
* then free up the buf log item and unlock the buffer.
|
|
*
|
|
* If the remove flag is set we are called from uncommit in the
|
|
* forced-shutdown path. If that is true and the reference count on
|
|
* the log item is going to drop to zero we need to free the item's
|
|
* descriptor in the transaction.
|
|
*/
|
|
STATIC void
|
|
xfs_buf_item_unpin(
|
|
struct xfs_log_item *lip,
|
|
int remove)
|
|
{
|
|
struct xfs_buf_log_item *bip = BUF_ITEM(lip);
|
|
xfs_buf_t *bp = bip->bli_buf;
|
|
struct xfs_ail *ailp = lip->li_ailp;
|
|
int stale = bip->bli_flags & XFS_BLI_STALE;
|
|
int freed;
|
|
|
|
ASSERT(bp->b_fspriv == bip);
|
|
ASSERT(atomic_read(&bip->bli_refcount) > 0);
|
|
|
|
trace_xfs_buf_item_unpin(bip);
|
|
|
|
freed = atomic_dec_and_test(&bip->bli_refcount);
|
|
|
|
if (atomic_dec_and_test(&bp->b_pin_count))
|
|
wake_up_all(&bp->b_waiters);
|
|
|
|
if (freed && stale) {
|
|
ASSERT(bip->bli_flags & XFS_BLI_STALE);
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
ASSERT(bp->b_flags & XBF_STALE);
|
|
ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
|
|
|
|
trace_xfs_buf_item_unpin_stale(bip);
|
|
|
|
if (remove) {
|
|
/*
|
|
* If we are in a transaction context, we have to
|
|
* remove the log item from the transaction as we are
|
|
* about to release our reference to the buffer. If we
|
|
* don't, the unlock that occurs later in
|
|
* xfs_trans_uncommit() will try to reference the
|
|
* buffer which we no longer have a hold on.
|
|
*/
|
|
if (lip->li_desc)
|
|
xfs_trans_del_item(lip);
|
|
|
|
/*
|
|
* Since the transaction no longer refers to the buffer,
|
|
* the buffer should no longer refer to the transaction.
|
|
*/
|
|
bp->b_transp = NULL;
|
|
}
|
|
|
|
/*
|
|
* If we get called here because of an IO error, we may
|
|
* or may not have the item on the AIL. xfs_trans_ail_delete()
|
|
* will take care of that situation.
|
|
* xfs_trans_ail_delete() drops the AIL lock.
|
|
*/
|
|
if (bip->bli_flags & XFS_BLI_STALE_INODE) {
|
|
xfs_buf_do_callbacks(bp);
|
|
bp->b_fspriv = NULL;
|
|
bp->b_iodone = NULL;
|
|
} else {
|
|
spin_lock(&ailp->xa_lock);
|
|
xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
|
|
xfs_buf_item_relse(bp);
|
|
ASSERT(bp->b_fspriv == NULL);
|
|
}
|
|
xfs_buf_relse(bp);
|
|
} else if (freed && remove) {
|
|
/*
|
|
* There are currently two references to the buffer - the active
|
|
* LRU reference and the buf log item. What we are about to do
|
|
* here - simulate a failed IO completion - requires 3
|
|
* references.
|
|
*
|
|
* The LRU reference is removed by the xfs_buf_stale() call. The
|
|
* buf item reference is removed by the xfs_buf_iodone()
|
|
* callback that is run by xfs_buf_do_callbacks() during ioend
|
|
* processing (via the bp->b_iodone callback), and then finally
|
|
* the ioend processing will drop the IO reference if the buffer
|
|
* is marked XBF_ASYNC.
|
|
*
|
|
* Hence we need to take an additional reference here so that IO
|
|
* completion processing doesn't free the buffer prematurely.
|
|
*/
|
|
xfs_buf_lock(bp);
|
|
xfs_buf_hold(bp);
|
|
bp->b_flags |= XBF_ASYNC;
|
|
xfs_buf_ioerror(bp, -EIO);
|
|
bp->b_flags &= ~XBF_DONE;
|
|
xfs_buf_stale(bp);
|
|
xfs_buf_ioend(bp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
|
|
* seconds so as to not spam logs too much on repeated detection of the same
|
|
* buffer being bad..
|
|
*/
|
|
|
|
static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
|
|
|
|
STATIC uint
|
|
xfs_buf_item_push(
|
|
struct xfs_log_item *lip,
|
|
struct list_head *buffer_list)
|
|
{
|
|
struct xfs_buf_log_item *bip = BUF_ITEM(lip);
|
|
struct xfs_buf *bp = bip->bli_buf;
|
|
uint rval = XFS_ITEM_SUCCESS;
|
|
|
|
if (xfs_buf_ispinned(bp))
|
|
return XFS_ITEM_PINNED;
|
|
if (!xfs_buf_trylock(bp)) {
|
|
/*
|
|
* If we have just raced with a buffer being pinned and it has
|
|
* been marked stale, we could end up stalling until someone else
|
|
* issues a log force to unpin the stale buffer. Check for the
|
|
* race condition here so xfsaild recognizes the buffer is pinned
|
|
* and queues a log force to move it along.
|
|
*/
|
|
if (xfs_buf_ispinned(bp))
|
|
return XFS_ITEM_PINNED;
|
|
return XFS_ITEM_LOCKED;
|
|
}
|
|
|
|
ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
|
|
|
|
trace_xfs_buf_item_push(bip);
|
|
|
|
/* has a previous flush failed due to IO errors? */
|
|
if ((bp->b_flags & XBF_WRITE_FAIL) &&
|
|
___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
|
|
xfs_warn(bp->b_target->bt_mount,
|
|
"Failing async write on buffer block 0x%llx. Retrying async write.",
|
|
(long long)bp->b_bn);
|
|
}
|
|
|
|
if (!xfs_buf_delwri_queue(bp, buffer_list))
|
|
rval = XFS_ITEM_FLUSHING;
|
|
xfs_buf_unlock(bp);
|
|
return rval;
|
|
}
|
|
|
|
/*
|
|
* Release the buffer associated with the buf log item. If there is no dirty
|
|
* logged data associated with the buffer recorded in the buf log item, then
|
|
* free the buf log item and remove the reference to it in the buffer.
|
|
*
|
|
* This call ignores the recursion count. It is only called when the buffer
|
|
* should REALLY be unlocked, regardless of the recursion count.
|
|
*
|
|
* We unconditionally drop the transaction's reference to the log item. If the
|
|
* item was logged, then another reference was taken when it was pinned, so we
|
|
* can safely drop the transaction reference now. This also allows us to avoid
|
|
* potential races with the unpin code freeing the bli by not referencing the
|
|
* bli after we've dropped the reference count.
|
|
*
|
|
* If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
|
|
* if necessary but do not unlock the buffer. This is for support of
|
|
* xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
|
|
* free the item.
|
|
*/
|
|
STATIC void
|
|
xfs_buf_item_unlock(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_buf_log_item *bip = BUF_ITEM(lip);
|
|
struct xfs_buf *bp = bip->bli_buf;
|
|
bool clean;
|
|
bool aborted;
|
|
int flags;
|
|
|
|
/* Clear the buffer's association with this transaction. */
|
|
bp->b_transp = NULL;
|
|
|
|
/*
|
|
* If this is a transaction abort, don't return early. Instead, allow
|
|
* the brelse to happen. Normally it would be done for stale
|
|
* (cancelled) buffers at unpin time, but we'll never go through the
|
|
* pin/unpin cycle if we abort inside commit.
|
|
*/
|
|
aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
|
|
/*
|
|
* Before possibly freeing the buf item, copy the per-transaction state
|
|
* so we can reference it safely later after clearing it from the
|
|
* buffer log item.
|
|
*/
|
|
flags = bip->bli_flags;
|
|
bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
|
|
|
|
/*
|
|
* If the buf item is marked stale, then don't do anything. We'll
|
|
* unlock the buffer and free the buf item when the buffer is unpinned
|
|
* for the last time.
|
|
*/
|
|
if (flags & XFS_BLI_STALE) {
|
|
trace_xfs_buf_item_unlock_stale(bip);
|
|
ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
|
|
if (!aborted) {
|
|
atomic_dec(&bip->bli_refcount);
|
|
return;
|
|
}
|
|
}
|
|
|
|
trace_xfs_buf_item_unlock(bip);
|
|
|
|
/*
|
|
* If the buf item isn't tracking any data, free it, otherwise drop the
|
|
* reference we hold to it. If we are aborting the transaction, this may
|
|
* be the only reference to the buf item, so we free it anyway
|
|
* regardless of whether it is dirty or not. A dirty abort implies a
|
|
* shutdown, anyway.
|
|
*
|
|
* Ordered buffers are dirty but may have no recorded changes, so ensure
|
|
* we only release clean items here.
|
|
*/
|
|
clean = (flags & XFS_BLI_DIRTY) ? false : true;
|
|
if (clean) {
|
|
int i;
|
|
for (i = 0; i < bip->bli_format_count; i++) {
|
|
if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
|
|
bip->bli_formats[i].blf_map_size)) {
|
|
clean = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clean buffers, by definition, cannot be in the AIL. However, aborted
|
|
* buffers may be in the AIL regardless of dirty state. An aborted
|
|
* transaction that invalidates a buffer already in the AIL may have
|
|
* marked it stale and cleared the dirty state, for example.
|
|
*
|
|
* Therefore if we are aborting a buffer and we've just taken the last
|
|
* reference away, we have to check if it is in the AIL before freeing
|
|
* it. We need to free it in this case, because an aborted transaction
|
|
* has already shut the filesystem down and this is the last chance we
|
|
* will have to do so.
|
|
*/
|
|
if (atomic_dec_and_test(&bip->bli_refcount)) {
|
|
if (aborted) {
|
|
ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
|
|
xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
|
|
xfs_buf_item_relse(bp);
|
|
} else if (clean)
|
|
xfs_buf_item_relse(bp);
|
|
}
|
|
|
|
if (!(flags & XFS_BLI_HOLD))
|
|
xfs_buf_relse(bp);
|
|
}
|
|
|
|
/*
|
|
* This is called to find out where the oldest active copy of the
|
|
* buf log item in the on disk log resides now that the last log
|
|
* write of it completed at the given lsn.
|
|
* We always re-log all the dirty data in a buffer, so usually the
|
|
* latest copy in the on disk log is the only one that matters. For
|
|
* those cases we simply return the given lsn.
|
|
*
|
|
* The one exception to this is for buffers full of newly allocated
|
|
* inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
|
|
* flag set, indicating that only the di_next_unlinked fields from the
|
|
* inodes in the buffers will be replayed during recovery. If the
|
|
* original newly allocated inode images have not yet been flushed
|
|
* when the buffer is so relogged, then we need to make sure that we
|
|
* keep the old images in the 'active' portion of the log. We do this
|
|
* by returning the original lsn of that transaction here rather than
|
|
* the current one.
|
|
*/
|
|
STATIC xfs_lsn_t
|
|
xfs_buf_item_committed(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_buf_log_item *bip = BUF_ITEM(lip);
|
|
|
|
trace_xfs_buf_item_committed(bip);
|
|
|
|
if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
|
|
return lip->li_lsn;
|
|
return lsn;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_buf_item_committing(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t commit_lsn)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* This is the ops vector shared by all buf log items.
|
|
*/
|
|
static const struct xfs_item_ops xfs_buf_item_ops = {
|
|
.iop_size = xfs_buf_item_size,
|
|
.iop_format = xfs_buf_item_format,
|
|
.iop_pin = xfs_buf_item_pin,
|
|
.iop_unpin = xfs_buf_item_unpin,
|
|
.iop_unlock = xfs_buf_item_unlock,
|
|
.iop_committed = xfs_buf_item_committed,
|
|
.iop_push = xfs_buf_item_push,
|
|
.iop_committing = xfs_buf_item_committing
|
|
};
|
|
|
|
STATIC int
|
|
xfs_buf_item_get_format(
|
|
struct xfs_buf_log_item *bip,
|
|
int count)
|
|
{
|
|
ASSERT(bip->bli_formats == NULL);
|
|
bip->bli_format_count = count;
|
|
|
|
if (count == 1) {
|
|
bip->bli_formats = &bip->__bli_format;
|
|
return 0;
|
|
}
|
|
|
|
bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
|
|
KM_SLEEP);
|
|
if (!bip->bli_formats)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_buf_item_free_format(
|
|
struct xfs_buf_log_item *bip)
|
|
{
|
|
if (bip->bli_formats != &bip->__bli_format) {
|
|
kmem_free(bip->bli_formats);
|
|
bip->bli_formats = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate a new buf log item to go with the given buffer.
|
|
* Set the buffer's b_fsprivate field to point to the new
|
|
* buf log item. If there are other item's attached to the
|
|
* buffer (see xfs_buf_attach_iodone() below), then put the
|
|
* buf log item at the front.
|
|
*/
|
|
int
|
|
xfs_buf_item_init(
|
|
struct xfs_buf *bp,
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_log_item *lip = bp->b_fspriv;
|
|
struct xfs_buf_log_item *bip;
|
|
int chunks;
|
|
int map_size;
|
|
int error;
|
|
int i;
|
|
|
|
/*
|
|
* Check to see if there is already a buf log item for
|
|
* this buffer. If there is, it is guaranteed to be
|
|
* the first. If we do already have one, there is
|
|
* nothing to do here so return.
|
|
*/
|
|
ASSERT(bp->b_target->bt_mount == mp);
|
|
if (lip != NULL && lip->li_type == XFS_LI_BUF)
|
|
return 0;
|
|
|
|
bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
|
|
xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
|
|
bip->bli_buf = bp;
|
|
|
|
/*
|
|
* chunks is the number of XFS_BLF_CHUNK size pieces the buffer
|
|
* can be divided into. Make sure not to truncate any pieces.
|
|
* map_size is the size of the bitmap needed to describe the
|
|
* chunks of the buffer.
|
|
*
|
|
* Discontiguous buffer support follows the layout of the underlying
|
|
* buffer. This makes the implementation as simple as possible.
|
|
*/
|
|
error = xfs_buf_item_get_format(bip, bp->b_map_count);
|
|
ASSERT(error == 0);
|
|
if (error) { /* to stop gcc throwing set-but-unused warnings */
|
|
kmem_zone_free(xfs_buf_item_zone, bip);
|
|
return error;
|
|
}
|
|
|
|
|
|
for (i = 0; i < bip->bli_format_count; i++) {
|
|
chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
|
|
XFS_BLF_CHUNK);
|
|
map_size = DIV_ROUND_UP(chunks, NBWORD);
|
|
|
|
bip->bli_formats[i].blf_type = XFS_LI_BUF;
|
|
bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
|
|
bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
|
|
bip->bli_formats[i].blf_map_size = map_size;
|
|
}
|
|
|
|
/*
|
|
* Put the buf item into the list of items attached to the
|
|
* buffer at the front.
|
|
*/
|
|
if (bp->b_fspriv)
|
|
bip->bli_item.li_bio_list = bp->b_fspriv;
|
|
bp->b_fspriv = bip;
|
|
xfs_buf_hold(bp);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Mark bytes first through last inclusive as dirty in the buf
|
|
* item's bitmap.
|
|
*/
|
|
static void
|
|
xfs_buf_item_log_segment(
|
|
uint first,
|
|
uint last,
|
|
uint *map)
|
|
{
|
|
uint first_bit;
|
|
uint last_bit;
|
|
uint bits_to_set;
|
|
uint bits_set;
|
|
uint word_num;
|
|
uint *wordp;
|
|
uint bit;
|
|
uint end_bit;
|
|
uint mask;
|
|
|
|
/*
|
|
* Convert byte offsets to bit numbers.
|
|
*/
|
|
first_bit = first >> XFS_BLF_SHIFT;
|
|
last_bit = last >> XFS_BLF_SHIFT;
|
|
|
|
/*
|
|
* Calculate the total number of bits to be set.
|
|
*/
|
|
bits_to_set = last_bit - first_bit + 1;
|
|
|
|
/*
|
|
* Get a pointer to the first word in the bitmap
|
|
* to set a bit in.
|
|
*/
|
|
word_num = first_bit >> BIT_TO_WORD_SHIFT;
|
|
wordp = &map[word_num];
|
|
|
|
/*
|
|
* Calculate the starting bit in the first word.
|
|
*/
|
|
bit = first_bit & (uint)(NBWORD - 1);
|
|
|
|
/*
|
|
* First set any bits in the first word of our range.
|
|
* If it starts at bit 0 of the word, it will be
|
|
* set below rather than here. That is what the variable
|
|
* bit tells us. The variable bits_set tracks the number
|
|
* of bits that have been set so far. End_bit is the number
|
|
* of the last bit to be set in this word plus one.
|
|
*/
|
|
if (bit) {
|
|
end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
|
|
mask = ((1U << (end_bit - bit)) - 1) << bit;
|
|
*wordp |= mask;
|
|
wordp++;
|
|
bits_set = end_bit - bit;
|
|
} else {
|
|
bits_set = 0;
|
|
}
|
|
|
|
/*
|
|
* Now set bits a whole word at a time that are between
|
|
* first_bit and last_bit.
|
|
*/
|
|
while ((bits_to_set - bits_set) >= NBWORD) {
|
|
*wordp |= 0xffffffff;
|
|
bits_set += NBWORD;
|
|
wordp++;
|
|
}
|
|
|
|
/*
|
|
* Finally, set any bits left to be set in one last partial word.
|
|
*/
|
|
end_bit = bits_to_set - bits_set;
|
|
if (end_bit) {
|
|
mask = (1U << end_bit) - 1;
|
|
*wordp |= mask;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark bytes first through last inclusive as dirty in the buf
|
|
* item's bitmap.
|
|
*/
|
|
void
|
|
xfs_buf_item_log(
|
|
xfs_buf_log_item_t *bip,
|
|
uint first,
|
|
uint last)
|
|
{
|
|
int i;
|
|
uint start;
|
|
uint end;
|
|
struct xfs_buf *bp = bip->bli_buf;
|
|
|
|
/*
|
|
* walk each buffer segment and mark them dirty appropriately.
|
|
*/
|
|
start = 0;
|
|
for (i = 0; i < bip->bli_format_count; i++) {
|
|
if (start > last)
|
|
break;
|
|
end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
|
|
|
|
/* skip to the map that includes the first byte to log */
|
|
if (first > end) {
|
|
start += BBTOB(bp->b_maps[i].bm_len);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Trim the range to this segment and mark it in the bitmap.
|
|
* Note that we must convert buffer offsets to segment relative
|
|
* offsets (e.g., the first byte of each segment is byte 0 of
|
|
* that segment).
|
|
*/
|
|
if (first < start)
|
|
first = start;
|
|
if (end > last)
|
|
end = last;
|
|
xfs_buf_item_log_segment(first - start, end - start,
|
|
&bip->bli_formats[i].blf_data_map[0]);
|
|
|
|
start += BBTOB(bp->b_maps[i].bm_len);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Return 1 if the buffer has been logged or ordered in a transaction (at any
|
|
* point, not just the current transaction) and 0 if not.
|
|
*/
|
|
uint
|
|
xfs_buf_item_dirty(
|
|
xfs_buf_log_item_t *bip)
|
|
{
|
|
return (bip->bli_flags & XFS_BLI_DIRTY);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_buf_item_free(
|
|
xfs_buf_log_item_t *bip)
|
|
{
|
|
xfs_buf_item_free_format(bip);
|
|
kmem_free(bip->bli_item.li_lv_shadow);
|
|
kmem_zone_free(xfs_buf_item_zone, bip);
|
|
}
|
|
|
|
/*
|
|
* This is called when the buf log item is no longer needed. It should
|
|
* free the buf log item associated with the given buffer and clear
|
|
* the buffer's pointer to the buf log item. If there are no more
|
|
* items in the list, clear the b_iodone field of the buffer (see
|
|
* xfs_buf_attach_iodone() below).
|
|
*/
|
|
void
|
|
xfs_buf_item_relse(
|
|
xfs_buf_t *bp)
|
|
{
|
|
xfs_buf_log_item_t *bip = bp->b_fspriv;
|
|
|
|
trace_xfs_buf_item_relse(bp, _RET_IP_);
|
|
ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
|
|
|
|
bp->b_fspriv = bip->bli_item.li_bio_list;
|
|
if (bp->b_fspriv == NULL)
|
|
bp->b_iodone = NULL;
|
|
|
|
xfs_buf_rele(bp);
|
|
xfs_buf_item_free(bip);
|
|
}
|
|
|
|
|
|
/*
|
|
* Add the given log item with its callback to the list of callbacks
|
|
* to be called when the buffer's I/O completes. If it is not set
|
|
* already, set the buffer's b_iodone() routine to be
|
|
* xfs_buf_iodone_callbacks() and link the log item into the list of
|
|
* items rooted at b_fsprivate. Items are always added as the second
|
|
* entry in the list if there is a first, because the buf item code
|
|
* assumes that the buf log item is first.
|
|
*/
|
|
void
|
|
xfs_buf_attach_iodone(
|
|
xfs_buf_t *bp,
|
|
void (*cb)(xfs_buf_t *, xfs_log_item_t *),
|
|
xfs_log_item_t *lip)
|
|
{
|
|
xfs_log_item_t *head_lip;
|
|
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
|
|
lip->li_cb = cb;
|
|
head_lip = bp->b_fspriv;
|
|
if (head_lip) {
|
|
lip->li_bio_list = head_lip->li_bio_list;
|
|
head_lip->li_bio_list = lip;
|
|
} else {
|
|
bp->b_fspriv = lip;
|
|
}
|
|
|
|
ASSERT(bp->b_iodone == NULL ||
|
|
bp->b_iodone == xfs_buf_iodone_callbacks);
|
|
bp->b_iodone = xfs_buf_iodone_callbacks;
|
|
}
|
|
|
|
/*
|
|
* We can have many callbacks on a buffer. Running the callbacks individually
|
|
* can cause a lot of contention on the AIL lock, so we allow for a single
|
|
* callback to be able to scan the remaining lip->li_bio_list for other items
|
|
* of the same type and callback to be processed in the first call.
|
|
*
|
|
* As a result, the loop walking the callback list below will also modify the
|
|
* list. it removes the first item from the list and then runs the callback.
|
|
* The loop then restarts from the new head of the list. This allows the
|
|
* callback to scan and modify the list attached to the buffer and we don't
|
|
* have to care about maintaining a next item pointer.
|
|
*/
|
|
STATIC void
|
|
xfs_buf_do_callbacks(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_log_item *lip;
|
|
|
|
while ((lip = bp->b_fspriv) != NULL) {
|
|
bp->b_fspriv = lip->li_bio_list;
|
|
ASSERT(lip->li_cb != NULL);
|
|
/*
|
|
* Clear the next pointer so we don't have any
|
|
* confusion if the item is added to another buf.
|
|
* Don't touch the log item after calling its
|
|
* callback, because it could have freed itself.
|
|
*/
|
|
lip->li_bio_list = NULL;
|
|
lip->li_cb(bp, lip);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
xfs_buf_iodone_callback_error(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_log_item *lip = bp->b_fspriv;
|
|
struct xfs_mount *mp = lip->li_mountp;
|
|
static ulong lasttime;
|
|
static xfs_buftarg_t *lasttarg;
|
|
struct xfs_error_cfg *cfg;
|
|
|
|
/*
|
|
* If we've already decided to shutdown the filesystem because of
|
|
* I/O errors, there's no point in giving this a retry.
|
|
*/
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
goto out_stale;
|
|
|
|
if (bp->b_target != lasttarg ||
|
|
time_after(jiffies, (lasttime + 5*HZ))) {
|
|
lasttime = jiffies;
|
|
xfs_buf_ioerror_alert(bp, __func__);
|
|
}
|
|
lasttarg = bp->b_target;
|
|
|
|
/* synchronous writes will have callers process the error */
|
|
if (!(bp->b_flags & XBF_ASYNC))
|
|
goto out_stale;
|
|
|
|
trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
|
|
ASSERT(bp->b_iodone != NULL);
|
|
|
|
cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
|
|
|
|
/*
|
|
* If the write was asynchronous then no one will be looking for the
|
|
* error. If this is the first failure of this type, clear the error
|
|
* state and write the buffer out again. This means we always retry an
|
|
* async write failure at least once, but we also need to set the buffer
|
|
* up to behave correctly now for repeated failures.
|
|
*/
|
|
if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
|
|
bp->b_last_error != bp->b_error) {
|
|
bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
|
|
bp->b_last_error = bp->b_error;
|
|
if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
|
|
!bp->b_first_retry_time)
|
|
bp->b_first_retry_time = jiffies;
|
|
|
|
xfs_buf_ioerror(bp, 0);
|
|
xfs_buf_submit(bp);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Repeated failure on an async write. Take action according to the
|
|
* error configuration we have been set up to use.
|
|
*/
|
|
|
|
if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
|
|
++bp->b_retries > cfg->max_retries)
|
|
goto permanent_error;
|
|
if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
|
|
time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
|
|
goto permanent_error;
|
|
|
|
/* At unmount we may treat errors differently */
|
|
if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
|
|
goto permanent_error;
|
|
|
|
/* still a transient error, higher layers will retry */
|
|
xfs_buf_ioerror(bp, 0);
|
|
xfs_buf_relse(bp);
|
|
return true;
|
|
|
|
/*
|
|
* Permanent error - we need to trigger a shutdown if we haven't already
|
|
* to indicate that inconsistency will result from this action.
|
|
*/
|
|
permanent_error:
|
|
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
|
|
out_stale:
|
|
xfs_buf_stale(bp);
|
|
bp->b_flags |= XBF_DONE;
|
|
trace_xfs_buf_error_relse(bp, _RET_IP_);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* This is the iodone() function for buffers which have had callbacks attached
|
|
* to them by xfs_buf_attach_iodone(). We need to iterate the items on the
|
|
* callback list, mark the buffer as having no more callbacks and then push the
|
|
* buffer through IO completion processing.
|
|
*/
|
|
void
|
|
xfs_buf_iodone_callbacks(
|
|
struct xfs_buf *bp)
|
|
{
|
|
/*
|
|
* If there is an error, process it. Some errors require us
|
|
* to run callbacks after failure processing is done so we
|
|
* detect that and take appropriate action.
|
|
*/
|
|
if (bp->b_error && xfs_buf_iodone_callback_error(bp))
|
|
return;
|
|
|
|
/*
|
|
* Successful IO or permanent error. Either way, we can clear the
|
|
* retry state here in preparation for the next error that may occur.
|
|
*/
|
|
bp->b_last_error = 0;
|
|
bp->b_retries = 0;
|
|
bp->b_first_retry_time = 0;
|
|
|
|
xfs_buf_do_callbacks(bp);
|
|
bp->b_fspriv = NULL;
|
|
bp->b_iodone = NULL;
|
|
xfs_buf_ioend(bp);
|
|
}
|
|
|
|
/*
|
|
* This is the iodone() function for buffers which have been
|
|
* logged. It is called when they are eventually flushed out.
|
|
* It should remove the buf item from the AIL, and free the buf item.
|
|
* It is called by xfs_buf_iodone_callbacks() above which will take
|
|
* care of cleaning up the buffer itself.
|
|
*/
|
|
void
|
|
xfs_buf_iodone(
|
|
struct xfs_buf *bp,
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_ail *ailp = lip->li_ailp;
|
|
|
|
ASSERT(BUF_ITEM(lip)->bli_buf == bp);
|
|
|
|
xfs_buf_rele(bp);
|
|
|
|
/*
|
|
* If we are forcibly shutting down, this may well be
|
|
* off the AIL already. That's because we simulate the
|
|
* log-committed callbacks to unpin these buffers. Or we may never
|
|
* have put this item on AIL because of the transaction was
|
|
* aborted forcibly. xfs_trans_ail_delete() takes care of these.
|
|
*
|
|
* Either way, AIL is useless if we're forcing a shutdown.
|
|
*/
|
|
spin_lock(&ailp->xa_lock);
|
|
xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
|
|
xfs_buf_item_free(BUF_ITEM(lip));
|
|
}
|