OpenCloudOS-Kernel/drivers/power/supply/88pm860x_battery.c

1019 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Battery driver for Marvell 88PM860x PMIC
*
* Copyright (c) 2012 Marvell International Ltd.
* Author: Jett Zhou <jtzhou@marvell.com>
* Haojian Zhuang <haojian.zhuang@marvell.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/string.h>
#include <linux/power_supply.h>
#include <linux/mfd/88pm860x.h>
#include <linux/delay.h>
/* bit definitions of Status Query Interface 2 */
#define STATUS2_CHG (1 << 2)
#define STATUS2_BAT (1 << 3)
#define STATUS2_VBUS (1 << 4)
/* bit definitions of Measurement Enable 1 Register */
#define MEAS1_TINT (1 << 3)
#define MEAS1_GP1 (1 << 5)
/* bit definitions of Measurement Enable 3 Register */
#define MEAS3_IBAT (1 << 0)
#define MEAS3_BAT_DET (1 << 1)
#define MEAS3_CC (1 << 2)
/* bit definitions of Measurement Off Time Register */
#define MEAS_OFF_SLEEP_EN (1 << 1)
/* bit definitions of GPADC Bias Current 2 Register */
#define GPBIAS2_GPADC1_SET (2 << 4)
/* GPADC1 Bias Current value in uA unit */
#define GPBIAS2_GPADC1_UA ((GPBIAS2_GPADC1_SET >> 4) * 5 + 1)
/* bit definitions of GPADC Misc 1 Register */
#define GPMISC1_GPADC_EN (1 << 0)
/* bit definitions of Charger Control 6 Register */
#define CC6_BAT_DET_GPADC1 1
/* bit definitions of Coulomb Counter Reading Register */
#define CCNT_AVG_SEL (4 << 3)
/* bit definitions of RTC miscellaneous Register1 */
#define RTC_SOC_5LSB (0x1F << 3)
/* bit definitions of RTC Register1 */
#define RTC_SOC_3MSB (0x7)
/* bit definitions of Power up Log register */
#define BAT_WU_LOG (1<<6)
/* coulomb counter index */
#define CCNT_POS1 0
#define CCNT_POS2 1
#define CCNT_NEG1 2
#define CCNT_NEG2 3
#define CCNT_SPOS 4
#define CCNT_SNEG 5
/* OCV -- Open Circuit Voltage */
#define OCV_MODE_ACTIVE 0
#define OCV_MODE_SLEEP 1
/* Vbat range of CC for measuring Rbat */
#define LOW_BAT_THRESHOLD 3600
#define VBATT_RESISTOR_MIN 3800
#define VBATT_RESISTOR_MAX 4100
/* TBAT for batt, TINT for chip itself */
#define PM860X_TEMP_TINT (0)
#define PM860X_TEMP_TBAT (1)
/*
* Battery temperature based on NTC resistor, defined
* corresponding resistor value -- Ohm / C degeree.
*/
#define TBAT_NEG_25D 127773 /* -25 */
#define TBAT_NEG_10D 54564 /* -10 */
#define TBAT_0D 32330 /* 0 */
#define TBAT_10D 19785 /* 10 */
#define TBAT_20D 12468 /* 20 */
#define TBAT_30D 8072 /* 30 */
#define TBAT_40D 5356 /* 40 */
struct pm860x_battery_info {
struct pm860x_chip *chip;
struct i2c_client *i2c;
struct device *dev;
struct power_supply *battery;
struct mutex lock;
int status;
int irq_cc;
int irq_batt;
int max_capacity;
int resistor; /* Battery Internal Resistor */
int last_capacity;
int start_soc;
unsigned present:1;
unsigned temp_type:1; /* TINT or TBAT */
};
struct ccnt {
unsigned long long int pos;
unsigned long long int neg;
unsigned int spos;
unsigned int sneg;
int total_chg; /* mAh(3.6C) */
int total_dischg; /* mAh(3.6C) */
};
/*
* State of Charge.
* The first number is mAh(=3.6C), and the second number is percent point.
*/
static int array_soc[][2] = {
{4170, 100}, {4154, 99}, {4136, 98}, {4122, 97}, {4107, 96},
{4102, 95}, {4088, 94}, {4081, 93}, {4070, 92}, {4060, 91},
{4053, 90}, {4044, 89}, {4035, 88}, {4028, 87}, {4019, 86},
{4013, 85}, {4006, 84}, {3995, 83}, {3987, 82}, {3982, 81},
{3976, 80}, {3968, 79}, {3962, 78}, {3954, 77}, {3946, 76},
{3941, 75}, {3934, 74}, {3929, 73}, {3922, 72}, {3916, 71},
{3910, 70}, {3904, 69}, {3898, 68}, {3892, 67}, {3887, 66},
{3880, 65}, {3874, 64}, {3868, 63}, {3862, 62}, {3854, 61},
{3849, 60}, {3843, 59}, {3840, 58}, {3833, 57}, {3829, 56},
{3824, 55}, {3818, 54}, {3815, 53}, {3810, 52}, {3808, 51},
{3804, 50}, {3801, 49}, {3798, 48}, {3796, 47}, {3792, 46},
{3789, 45}, {3785, 44}, {3784, 43}, {3782, 42}, {3780, 41},
{3777, 40}, {3776, 39}, {3774, 38}, {3772, 37}, {3771, 36},
{3769, 35}, {3768, 34}, {3764, 33}, {3763, 32}, {3760, 31},
{3760, 30}, {3754, 29}, {3750, 28}, {3749, 27}, {3744, 26},
{3740, 25}, {3734, 24}, {3732, 23}, {3728, 22}, {3726, 21},
{3720, 20}, {3716, 19}, {3709, 18}, {3703, 17}, {3698, 16},
{3692, 15}, {3683, 14}, {3675, 13}, {3670, 12}, {3665, 11},
{3661, 10}, {3649, 9}, {3637, 8}, {3622, 7}, {3609, 6},
{3580, 5}, {3558, 4}, {3540, 3}, {3510, 2}, {3429, 1},
};
static struct ccnt ccnt_data;
/*
* register 1 bit[7:0] -- bit[11:4] of measured value of voltage
* register 0 bit[3:0] -- bit[3:0] of measured value of voltage
*/
static int measure_12bit_voltage(struct pm860x_battery_info *info,
int offset, int *data)
{
unsigned char buf[2];
int ret;
ret = pm860x_bulk_read(info->i2c, offset, 2, buf);
if (ret < 0)
return ret;
*data = ((buf[0] & 0xff) << 4) | (buf[1] & 0x0f);
/* V_MEAS(mV) = data * 1.8 * 1000 / (2^12) */
*data = ((*data & 0xfff) * 9 * 25) >> 9;
return 0;
}
static int measure_vbatt(struct pm860x_battery_info *info, int state,
int *data)
{
unsigned char buf[5];
int ret;
switch (state) {
case OCV_MODE_ACTIVE:
ret = measure_12bit_voltage(info, PM8607_VBAT_MEAS1, data);
if (ret)
return ret;
/* V_BATT_MEAS(mV) = value * 3 * 1.8 * 1000 / (2^12) */
*data *= 3;
break;
case OCV_MODE_SLEEP:
/*
* voltage value of VBATT in sleep mode is saved in different
* registers.
* bit[11:10] -- bit[7:6] of LDO9(0x18)
* bit[9:8] -- bit[7:6] of LDO8(0x17)
* bit[7:6] -- bit[7:6] of LDO7(0x16)
* bit[5:4] -- bit[7:6] of LDO6(0x15)
* bit[3:0] -- bit[7:4] of LDO5(0x14)
*/
ret = pm860x_bulk_read(info->i2c, PM8607_LDO5, 5, buf);
if (ret < 0)
return ret;
ret = ((buf[4] >> 6) << 10) | ((buf[3] >> 6) << 8)
| ((buf[2] >> 6) << 6) | ((buf[1] >> 6) << 4)
| (buf[0] >> 4);
/* V_BATT_MEAS(mV) = data * 3 * 1.8 * 1000 / (2^12) */
*data = ((*data & 0xff) * 27 * 25) >> 9;
break;
default:
return -EINVAL;
}
return 0;
}
/*
* Return value is signed data.
* Negative value means discharging, and positive value means charging.
*/
static int measure_current(struct pm860x_battery_info *info, int *data)
{
unsigned char buf[2];
short s;
int ret;
ret = pm860x_bulk_read(info->i2c, PM8607_IBAT_MEAS1, 2, buf);
if (ret < 0)
return ret;
s = ((buf[0] & 0xff) << 8) | (buf[1] & 0xff);
/* current(mA) = value * 0.125 */
*data = s >> 3;
return 0;
}
static int set_charger_current(struct pm860x_battery_info *info, int data,
int *old)
{
int ret;
if (data < 50 || data > 1600 || !old)
return -EINVAL;
data = ((data - 50) / 50) & 0x1f;
*old = pm860x_reg_read(info->i2c, PM8607_CHG_CTRL2);
*old = (*old & 0x1f) * 50 + 50;
ret = pm860x_set_bits(info->i2c, PM8607_CHG_CTRL2, 0x1f, data);
if (ret < 0)
return ret;
return 0;
}
static int read_ccnt(struct pm860x_battery_info *info, int offset,
int *ccnt)
{
unsigned char buf[2];
int ret;
ret = pm860x_set_bits(info->i2c, PM8607_CCNT, 7, offset & 7);
if (ret < 0)
goto out;
ret = pm860x_bulk_read(info->i2c, PM8607_CCNT_MEAS1, 2, buf);
if (ret < 0)
goto out;
*ccnt = ((buf[0] & 0xff) << 8) | (buf[1] & 0xff);
return 0;
out:
return ret;
}
static int calc_ccnt(struct pm860x_battery_info *info, struct ccnt *ccnt)
{
unsigned int sum;
int ret;
int data;
ret = read_ccnt(info, CCNT_POS1, &data);
if (ret)
goto out;
sum = data & 0xffff;
ret = read_ccnt(info, CCNT_POS2, &data);
if (ret)
goto out;
sum |= (data & 0xffff) << 16;
ccnt->pos += sum;
ret = read_ccnt(info, CCNT_NEG1, &data);
if (ret)
goto out;
sum = data & 0xffff;
ret = read_ccnt(info, CCNT_NEG2, &data);
if (ret)
goto out;
sum |= (data & 0xffff) << 16;
sum = ~sum + 1; /* since it's negative */
ccnt->neg += sum;
ret = read_ccnt(info, CCNT_SPOS, &data);
if (ret)
goto out;
ccnt->spos += data;
ret = read_ccnt(info, CCNT_SNEG, &data);
if (ret)
goto out;
/*
* charge(mAh) = count * 1.6984 * 1e(-8)
* = count * 16984 * 1.024 * 1.024 * 1.024 / (2 ^ 40)
* = count * 18236 / (2 ^ 40)
*/
ccnt->total_chg = (int) ((ccnt->pos * 18236) >> 40);
ccnt->total_dischg = (int) ((ccnt->neg * 18236) >> 40);
return 0;
out:
return ret;
}
static int clear_ccnt(struct pm860x_battery_info *info, struct ccnt *ccnt)
{
int data;
memset(ccnt, 0, sizeof(*ccnt));
/* read to clear ccnt */
read_ccnt(info, CCNT_POS1, &data);
read_ccnt(info, CCNT_POS2, &data);
read_ccnt(info, CCNT_NEG1, &data);
read_ccnt(info, CCNT_NEG2, &data);
read_ccnt(info, CCNT_SPOS, &data);
read_ccnt(info, CCNT_SNEG, &data);
return 0;
}
/* Calculate Open Circuit Voltage */
static int calc_ocv(struct pm860x_battery_info *info, int *ocv)
{
int ret;
int i;
int data;
int vbatt_avg;
int vbatt_sum;
int ibatt_avg;
int ibatt_sum;
if (!ocv)
return -EINVAL;
for (i = 0, ibatt_sum = 0, vbatt_sum = 0; i < 10; i++) {
ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data);
if (ret)
goto out;
vbatt_sum += data;
ret = measure_current(info, &data);
if (ret)
goto out;
ibatt_sum += data;
}
vbatt_avg = vbatt_sum / 10;
ibatt_avg = ibatt_sum / 10;
mutex_lock(&info->lock);
if (info->present)
*ocv = vbatt_avg - ibatt_avg * info->resistor / 1000;
else
*ocv = vbatt_avg;
mutex_unlock(&info->lock);
dev_dbg(info->dev, "VBAT average:%d, OCV:%d\n", vbatt_avg, *ocv);
return 0;
out:
return ret;
}
/* Calculate State of Charge (percent points) */
static int calc_soc(struct pm860x_battery_info *info, int state, int *soc)
{
int i;
int ocv;
int count;
int ret = -EINVAL;
if (!soc)
return -EINVAL;
switch (state) {
case OCV_MODE_ACTIVE:
ret = calc_ocv(info, &ocv);
break;
case OCV_MODE_SLEEP:
ret = measure_vbatt(info, OCV_MODE_SLEEP, &ocv);
break;
}
if (ret)
return ret;
count = ARRAY_SIZE(array_soc);
if (ocv < array_soc[count - 1][0]) {
*soc = 0;
return 0;
}
for (i = 0; i < count; i++) {
if (ocv >= array_soc[i][0]) {
*soc = array_soc[i][1];
break;
}
}
return 0;
}
static irqreturn_t pm860x_coulomb_handler(int irq, void *data)
{
struct pm860x_battery_info *info = data;
calc_ccnt(info, &ccnt_data);
return IRQ_HANDLED;
}
static irqreturn_t pm860x_batt_handler(int irq, void *data)
{
struct pm860x_battery_info *info = data;
int ret;
mutex_lock(&info->lock);
ret = pm860x_reg_read(info->i2c, PM8607_STATUS_2);
if (ret & STATUS2_BAT) {
info->present = 1;
info->temp_type = PM860X_TEMP_TBAT;
} else {
info->present = 0;
info->temp_type = PM860X_TEMP_TINT;
}
mutex_unlock(&info->lock);
/* clear ccnt since battery is attached or dettached */
clear_ccnt(info, &ccnt_data);
return IRQ_HANDLED;
}
static void pm860x_init_battery(struct pm860x_battery_info *info)
{
unsigned char buf[2];
int ret;
int data;
int bat_remove;
int soc;
/* measure enable on GPADC1 */
data = MEAS1_GP1;
if (info->temp_type == PM860X_TEMP_TINT)
data |= MEAS1_TINT;
ret = pm860x_set_bits(info->i2c, PM8607_MEAS_EN1, data, data);
if (ret)
goto out;
/* measure enable on IBAT, BAT_DET, CC. IBAT is depend on CC. */
data = MEAS3_IBAT | MEAS3_BAT_DET | MEAS3_CC;
ret = pm860x_set_bits(info->i2c, PM8607_MEAS_EN3, data, data);
if (ret)
goto out;
/* measure disable CC in sleep time */
ret = pm860x_reg_write(info->i2c, PM8607_MEAS_OFF_TIME1, 0x82);
if (ret)
goto out;
ret = pm860x_reg_write(info->i2c, PM8607_MEAS_OFF_TIME2, 0x6c);
if (ret)
goto out;
/* enable GPADC */
ret = pm860x_set_bits(info->i2c, PM8607_GPADC_MISC1,
GPMISC1_GPADC_EN, GPMISC1_GPADC_EN);
if (ret < 0)
goto out;
/* detect battery via GPADC1 */
ret = pm860x_set_bits(info->i2c, PM8607_CHG_CTRL6,
CC6_BAT_DET_GPADC1, CC6_BAT_DET_GPADC1);
if (ret < 0)
goto out;
ret = pm860x_set_bits(info->i2c, PM8607_CCNT, 7 << 3,
CCNT_AVG_SEL);
if (ret < 0)
goto out;
/* set GPADC1 bias */
ret = pm860x_set_bits(info->i2c, PM8607_GP_BIAS2, 0xF << 4,
GPBIAS2_GPADC1_SET);
if (ret < 0)
goto out;
/* check whether battery present) */
mutex_lock(&info->lock);
ret = pm860x_reg_read(info->i2c, PM8607_STATUS_2);
if (ret < 0) {
mutex_unlock(&info->lock);
goto out;
}
if (ret & STATUS2_BAT) {
info->present = 1;
info->temp_type = PM860X_TEMP_TBAT;
} else {
info->present = 0;
info->temp_type = PM860X_TEMP_TINT;
}
mutex_unlock(&info->lock);
calc_soc(info, OCV_MODE_ACTIVE, &soc);
data = pm860x_reg_read(info->i2c, PM8607_POWER_UP_LOG);
bat_remove = data & BAT_WU_LOG;
dev_dbg(info->dev, "battery wake up? %s\n",
bat_remove != 0 ? "yes" : "no");
/* restore SOC from RTC domain register */
if (bat_remove == 0) {
buf[0] = pm860x_reg_read(info->i2c, PM8607_RTC_MISC2);
buf[1] = pm860x_reg_read(info->i2c, PM8607_RTC1);
data = ((buf[1] & 0x3) << 5) | ((buf[0] >> 3) & 0x1F);
if (data > soc + 15)
info->start_soc = soc;
else if (data < soc - 15)
info->start_soc = soc;
else
info->start_soc = data;
dev_dbg(info->dev, "soc_rtc %d, soc_ocv :%d\n", data, soc);
} else {
pm860x_set_bits(info->i2c, PM8607_POWER_UP_LOG,
BAT_WU_LOG, BAT_WU_LOG);
info->start_soc = soc;
}
info->last_capacity = info->start_soc;
dev_dbg(info->dev, "init soc : %d\n", info->last_capacity);
out:
return;
}
static void set_temp_threshold(struct pm860x_battery_info *info,
int min, int max)
{
int data;
/* (tmp << 8) / 1800 */
if (min <= 0)
data = 0;
else
data = (min << 8) / 1800;
pm860x_reg_write(info->i2c, PM8607_GPADC1_HIGHTH, data);
dev_dbg(info->dev, "TEMP_HIGHTH : min: %d, 0x%x\n", min, data);
if (max <= 0)
data = 0xff;
else
data = (max << 8) / 1800;
pm860x_reg_write(info->i2c, PM8607_GPADC1_LOWTH, data);
dev_dbg(info->dev, "TEMP_LOWTH:max : %d, 0x%x\n", max, data);
}
static int measure_temp(struct pm860x_battery_info *info, int *data)
{
int ret;
int temp;
int min;
int max;
if (info->temp_type == PM860X_TEMP_TINT) {
ret = measure_12bit_voltage(info, PM8607_TINT_MEAS1, data);
if (ret)
return ret;
*data = (*data - 884) * 1000 / 3611;
} else {
ret = measure_12bit_voltage(info, PM8607_GPADC1_MEAS1, data);
if (ret)
return ret;
/* meausered Vtbat(mV) / Ibias_current(11uA)*/
*data = (*data * 1000) / GPBIAS2_GPADC1_UA;
if (*data > TBAT_NEG_25D) {
temp = -30; /* over cold , suppose -30 roughly */
max = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000;
set_temp_threshold(info, 0, max);
} else if (*data > TBAT_NEG_10D) {
temp = -15; /* -15 degree, code */
max = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000;
set_temp_threshold(info, 0, max);
} else if (*data > TBAT_0D) {
temp = -5; /* -5 degree */
min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000;
max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000;
set_temp_threshold(info, min, max);
} else if (*data > TBAT_10D) {
temp = 5; /* in range of (0, 10) */
min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000;
max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000;
set_temp_threshold(info, min, max);
} else if (*data > TBAT_20D) {
temp = 15; /* in range of (10, 20) */
min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000;
max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000;
set_temp_threshold(info, min, max);
} else if (*data > TBAT_30D) {
temp = 25; /* in range of (20, 30) */
min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000;
max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000;
set_temp_threshold(info, min, max);
} else if (*data > TBAT_40D) {
temp = 35; /* in range of (30, 40) */
min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000;
max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000;
set_temp_threshold(info, min, max);
} else {
min = TBAT_40D * GPBIAS2_GPADC1_UA / 1000;
set_temp_threshold(info, min, 0);
temp = 45; /* over heat ,suppose 45 roughly */
}
dev_dbg(info->dev, "temp_C:%d C,temp_mv:%d mv\n", temp, *data);
*data = temp;
}
return 0;
}
static int calc_resistor(struct pm860x_battery_info *info)
{
int vbatt_sum1;
int vbatt_sum2;
int chg_current;
int ibatt_sum1;
int ibatt_sum2;
int data;
int ret;
int i;
ret = measure_current(info, &data);
/* make sure that charging is launched by data > 0 */
if (ret || data < 0)
goto out;
ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data);
if (ret)
goto out;
/* calculate resistor only in CC charge mode */
if (data < VBATT_RESISTOR_MIN || data > VBATT_RESISTOR_MAX)
goto out;
/* current is saved */
if (set_charger_current(info, 500, &chg_current))
goto out;
/*
* set charge current as 500mA, wait about 500ms till charging
* process is launched and stable with the newer charging current.
*/
msleep(500);
for (i = 0, vbatt_sum1 = 0, ibatt_sum1 = 0; i < 10; i++) {
ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data);
if (ret)
goto out_meas;
vbatt_sum1 += data;
ret = measure_current(info, &data);
if (ret)
goto out_meas;
if (data < 0)
ibatt_sum1 = ibatt_sum1 - data; /* discharging */
else
ibatt_sum1 = ibatt_sum1 + data; /* charging */
}
if (set_charger_current(info, 100, &ret))
goto out_meas;
/*
* set charge current as 100mA, wait about 500ms till charging
* process is launched and stable with the newer charging current.
*/
msleep(500);
for (i = 0, vbatt_sum2 = 0, ibatt_sum2 = 0; i < 10; i++) {
ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data);
if (ret)
goto out_meas;
vbatt_sum2 += data;
ret = measure_current(info, &data);
if (ret)
goto out_meas;
if (data < 0)
ibatt_sum2 = ibatt_sum2 - data; /* discharging */
else
ibatt_sum2 = ibatt_sum2 + data; /* charging */
}
/* restore current setting */
if (set_charger_current(info, chg_current, &ret))
goto out_meas;
if ((vbatt_sum1 > vbatt_sum2) && (ibatt_sum1 > ibatt_sum2) &&
(ibatt_sum2 > 0)) {
/* calculate resistor in discharging case */
data = 1000 * (vbatt_sum1 - vbatt_sum2)
/ (ibatt_sum1 - ibatt_sum2);
if ((data - info->resistor > 0) &&
(data - info->resistor < info->resistor))
info->resistor = data;
if ((info->resistor - data > 0) &&
(info->resistor - data < data))
info->resistor = data;
}
return 0;
out_meas:
set_charger_current(info, chg_current, &ret);
out:
return -EINVAL;
}
static int calc_capacity(struct pm860x_battery_info *info, int *cap)
{
int ret;
int data;
int ibat;
int cap_ocv = 0;
int cap_cc = 0;
ret = calc_ccnt(info, &ccnt_data);
if (ret)
goto out;
soc:
data = info->max_capacity * info->start_soc / 100;
if (ccnt_data.total_dischg - ccnt_data.total_chg <= data) {
cap_cc =
data + ccnt_data.total_chg - ccnt_data.total_dischg;
} else {
clear_ccnt(info, &ccnt_data);
calc_soc(info, OCV_MODE_ACTIVE, &info->start_soc);
dev_dbg(info->dev, "restart soc = %d !\n",
info->start_soc);
goto soc;
}
cap_cc = cap_cc * 100 / info->max_capacity;
if (cap_cc < 0)
cap_cc = 0;
else if (cap_cc > 100)
cap_cc = 100;
dev_dbg(info->dev, "%s, last cap : %d", __func__,
info->last_capacity);
ret = measure_current(info, &ibat);
if (ret)
goto out;
/* Calculate the capacity when discharging(ibat < 0) */
if (ibat < 0) {
ret = calc_soc(info, OCV_MODE_ACTIVE, &cap_ocv);
if (ret)
cap_ocv = info->last_capacity;
ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data);
if (ret)
goto out;
if (data <= LOW_BAT_THRESHOLD) {
/* choose the lower capacity value to report
* between vbat and CC when vbat < 3.6v;
* than 3.6v;
*/
*cap = min(cap_ocv, cap_cc);
} else {
/* when detect vbat > 3.6v, but cap_cc < 15,and
* cap_ocv is 10% larger than cap_cc, we can think
* CC have some accumulation error, switch to OCV
* to estimate capacity;
* */
if (cap_cc < 15 && cap_ocv - cap_cc > 10)
*cap = cap_ocv;
else
*cap = cap_cc;
}
/* when discharging, make sure current capacity
* is lower than last*/
if (*cap > info->last_capacity)
*cap = info->last_capacity;
} else {
*cap = cap_cc;
}
info->last_capacity = *cap;
dev_dbg(info->dev, "%s, cap_ocv:%d cap_cc:%d, cap:%d\n",
(ibat < 0) ? "discharging" : "charging",
cap_ocv, cap_cc, *cap);
/*
* store the current capacity to RTC domain register,
* after next power up , it will be restored.
*/
pm860x_set_bits(info->i2c, PM8607_RTC_MISC2, RTC_SOC_5LSB,
(*cap & 0x1F) << 3);
pm860x_set_bits(info->i2c, PM8607_RTC1, RTC_SOC_3MSB,
((*cap >> 5) & 0x3));
return 0;
out:
return ret;
}
static void pm860x_external_power_changed(struct power_supply *psy)
{
struct pm860x_battery_info *info = dev_get_drvdata(psy->dev.parent);
calc_resistor(info);
}
static int pm860x_batt_get_prop(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct pm860x_battery_info *info = dev_get_drvdata(psy->dev.parent);
int data;
int ret;
switch (psp) {
case POWER_SUPPLY_PROP_PRESENT:
val->intval = info->present;
break;
case POWER_SUPPLY_PROP_CAPACITY:
ret = calc_capacity(info, &data);
if (ret)
return ret;
if (data < 0)
data = 0;
else if (data > 100)
data = 100;
/* return 100 if battery is not attached */
if (!info->present)
data = 100;
val->intval = data;
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
/* return real vbatt Voltage */
ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data);
if (ret)
return ret;
val->intval = data * 1000;
break;
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
/* return Open Circuit Voltage (not measured voltage) */
ret = calc_ocv(info, &data);
if (ret)
return ret;
val->intval = data * 1000;
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
ret = measure_current(info, &data);
if (ret)
return ret;
val->intval = data;
break;
case POWER_SUPPLY_PROP_TEMP:
if (info->present) {
ret = measure_temp(info, &data);
if (ret)
return ret;
data *= 10;
} else {
/* Fake Temp 25C Without Battery */
data = 250;
}
val->intval = data;
break;
default:
return -ENODEV;
}
return 0;
}
static int pm860x_batt_set_prop(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct pm860x_battery_info *info = dev_get_drvdata(psy->dev.parent);
switch (psp) {
case POWER_SUPPLY_PROP_CHARGE_FULL:
clear_ccnt(info, &ccnt_data);
info->start_soc = 100;
dev_dbg(info->dev, "chg done, update soc = %d\n",
info->start_soc);
break;
default:
return -EPERM;
}
return 0;
}
static enum power_supply_property pm860x_batt_props[] = {
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_VOLTAGE_AVG,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_TEMP,
};
static const struct power_supply_desc pm860x_battery_desc = {
.name = "battery-monitor",
.type = POWER_SUPPLY_TYPE_BATTERY,
.properties = pm860x_batt_props,
.num_properties = ARRAY_SIZE(pm860x_batt_props),
.get_property = pm860x_batt_get_prop,
.set_property = pm860x_batt_set_prop,
.external_power_changed = pm860x_external_power_changed,
};
static int pm860x_battery_probe(struct platform_device *pdev)
{
struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent);
struct pm860x_battery_info *info;
struct pm860x_power_pdata *pdata;
int ret;
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->irq_cc = platform_get_irq(pdev, 0);
if (info->irq_cc <= 0) {
dev_err(&pdev->dev, "No IRQ resource!\n");
return -EINVAL;
}
info->irq_batt = platform_get_irq(pdev, 1);
if (info->irq_batt <= 0) {
dev_err(&pdev->dev, "No IRQ resource!\n");
return -EINVAL;
}
info->chip = chip;
info->i2c =
(chip->id == CHIP_PM8607) ? chip->client : chip->companion;
info->dev = &pdev->dev;
info->status = POWER_SUPPLY_STATUS_UNKNOWN;
pdata = pdev->dev.platform_data;
mutex_init(&info->lock);
platform_set_drvdata(pdev, info);
pm860x_init_battery(info);
if (pdata && pdata->max_capacity)
info->max_capacity = pdata->max_capacity;
else
info->max_capacity = 1500; /* set default capacity */
if (pdata && pdata->resistor)
info->resistor = pdata->resistor;
else
info->resistor = 300; /* set default internal resistor */
info->battery = devm_power_supply_register(&pdev->dev,
&pm860x_battery_desc,
NULL);
if (IS_ERR(info->battery))
return PTR_ERR(info->battery);
info->battery->dev.parent = &pdev->dev;
ret = devm_request_threaded_irq(chip->dev, info->irq_cc, NULL,
pm860x_coulomb_handler, IRQF_ONESHOT,
"coulomb", info);
if (ret < 0) {
dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n",
info->irq_cc, ret);
return ret;
}
ret = devm_request_threaded_irq(chip->dev, info->irq_batt, NULL,
pm860x_batt_handler,
IRQF_ONESHOT, "battery", info);
if (ret < 0) {
dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n",
info->irq_batt, ret);
return ret;
}
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int pm860x_battery_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent);
if (device_may_wakeup(dev))
chip->wakeup_flag |= 1 << PM8607_IRQ_CC;
return 0;
}
static int pm860x_battery_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent);
if (device_may_wakeup(dev))
chip->wakeup_flag &= ~(1 << PM8607_IRQ_CC);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(pm860x_battery_pm_ops,
pm860x_battery_suspend, pm860x_battery_resume);
static struct platform_driver pm860x_battery_driver = {
.driver = {
.name = "88pm860x-battery",
.pm = &pm860x_battery_pm_ops,
},
.probe = pm860x_battery_probe,
};
module_platform_driver(pm860x_battery_driver);
MODULE_DESCRIPTION("Marvell 88PM860x Battery driver");
MODULE_LICENSE("GPL");