3797 lines
98 KiB
C
3797 lines
98 KiB
C
/*
|
|
* Copyright © 2010 Daniel Vetter
|
|
* Copyright © 2011-2014 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/slab.h> /* fault-inject.h is not standalone! */
|
|
|
|
#include <linux/fault-inject.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/random.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/stop_machine.h>
|
|
|
|
#include <asm/set_memory.h>
|
|
|
|
#include <drm/i915_drm.h>
|
|
|
|
#include "display/intel_frontbuffer.h"
|
|
#include "gt/intel_gt.h"
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_scatterlist.h"
|
|
#include "i915_trace.h"
|
|
#include "i915_vgpu.h"
|
|
|
|
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT)
|
|
#define DBG(...) trace_printk(__VA_ARGS__)
|
|
#else
|
|
#define DBG(...)
|
|
#endif
|
|
|
|
/**
|
|
* DOC: Global GTT views
|
|
*
|
|
* Background and previous state
|
|
*
|
|
* Historically objects could exists (be bound) in global GTT space only as
|
|
* singular instances with a view representing all of the object's backing pages
|
|
* in a linear fashion. This view will be called a normal view.
|
|
*
|
|
* To support multiple views of the same object, where the number of mapped
|
|
* pages is not equal to the backing store, or where the layout of the pages
|
|
* is not linear, concept of a GGTT view was added.
|
|
*
|
|
* One example of an alternative view is a stereo display driven by a single
|
|
* image. In this case we would have a framebuffer looking like this
|
|
* (2x2 pages):
|
|
*
|
|
* 12
|
|
* 34
|
|
*
|
|
* Above would represent a normal GGTT view as normally mapped for GPU or CPU
|
|
* rendering. In contrast, fed to the display engine would be an alternative
|
|
* view which could look something like this:
|
|
*
|
|
* 1212
|
|
* 3434
|
|
*
|
|
* In this example both the size and layout of pages in the alternative view is
|
|
* different from the normal view.
|
|
*
|
|
* Implementation and usage
|
|
*
|
|
* GGTT views are implemented using VMAs and are distinguished via enum
|
|
* i915_ggtt_view_type and struct i915_ggtt_view.
|
|
*
|
|
* A new flavour of core GEM functions which work with GGTT bound objects were
|
|
* added with the _ggtt_ infix, and sometimes with _view postfix to avoid
|
|
* renaming in large amounts of code. They take the struct i915_ggtt_view
|
|
* parameter encapsulating all metadata required to implement a view.
|
|
*
|
|
* As a helper for callers which are only interested in the normal view,
|
|
* globally const i915_ggtt_view_normal singleton instance exists. All old core
|
|
* GEM API functions, the ones not taking the view parameter, are operating on,
|
|
* or with the normal GGTT view.
|
|
*
|
|
* Code wanting to add or use a new GGTT view needs to:
|
|
*
|
|
* 1. Add a new enum with a suitable name.
|
|
* 2. Extend the metadata in the i915_ggtt_view structure if required.
|
|
* 3. Add support to i915_get_vma_pages().
|
|
*
|
|
* New views are required to build a scatter-gather table from within the
|
|
* i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
|
|
* exists for the lifetime of an VMA.
|
|
*
|
|
* Core API is designed to have copy semantics which means that passed in
|
|
* struct i915_ggtt_view does not need to be persistent (left around after
|
|
* calling the core API functions).
|
|
*
|
|
*/
|
|
|
|
#define as_pd(x) container_of((x), typeof(struct i915_page_directory), pt)
|
|
|
|
static int
|
|
i915_get_ggtt_vma_pages(struct i915_vma *vma);
|
|
|
|
static void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
|
|
{
|
|
struct intel_uncore *uncore = ggtt->vm.gt->uncore;
|
|
|
|
/*
|
|
* Note that as an uncached mmio write, this will flush the
|
|
* WCB of the writes into the GGTT before it triggers the invalidate.
|
|
*/
|
|
intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
|
|
}
|
|
|
|
static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
|
|
{
|
|
struct intel_uncore *uncore = ggtt->vm.gt->uncore;
|
|
|
|
gen6_ggtt_invalidate(ggtt);
|
|
intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
|
|
}
|
|
|
|
static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
|
|
{
|
|
intel_gtt_chipset_flush();
|
|
}
|
|
|
|
static int ppgtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 unused)
|
|
{
|
|
u32 pte_flags;
|
|
int err;
|
|
|
|
if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
|
|
err = vma->vm->allocate_va_range(vma->vm,
|
|
vma->node.start, vma->size);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Applicable to VLV, and gen8+ */
|
|
pte_flags = 0;
|
|
if (i915_gem_object_is_readonly(vma->obj))
|
|
pte_flags |= PTE_READ_ONLY;
|
|
|
|
vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ppgtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
|
|
}
|
|
|
|
static int ppgtt_set_pages(struct i915_vma *vma)
|
|
{
|
|
GEM_BUG_ON(vma->pages);
|
|
|
|
vma->pages = vma->obj->mm.pages;
|
|
|
|
vma->page_sizes = vma->obj->mm.page_sizes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void clear_pages(struct i915_vma *vma)
|
|
{
|
|
GEM_BUG_ON(!vma->pages);
|
|
|
|
if (vma->pages != vma->obj->mm.pages) {
|
|
sg_free_table(vma->pages);
|
|
kfree(vma->pages);
|
|
}
|
|
vma->pages = NULL;
|
|
|
|
memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
|
|
}
|
|
|
|
static u64 gen8_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
|
|
|
|
if (unlikely(flags & PTE_READ_ONLY))
|
|
pte &= ~_PAGE_RW;
|
|
|
|
switch (level) {
|
|
case I915_CACHE_NONE:
|
|
pte |= PPAT_UNCACHED;
|
|
break;
|
|
case I915_CACHE_WT:
|
|
pte |= PPAT_DISPLAY_ELLC;
|
|
break;
|
|
default:
|
|
pte |= PPAT_CACHED;
|
|
break;
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static u64 gen8_pde_encode(const dma_addr_t addr,
|
|
const enum i915_cache_level level)
|
|
{
|
|
u64 pde = _PAGE_PRESENT | _PAGE_RW;
|
|
pde |= addr;
|
|
if (level != I915_CACHE_NONE)
|
|
pde |= PPAT_CACHED_PDE;
|
|
else
|
|
pde |= PPAT_UNCACHED;
|
|
return pde;
|
|
}
|
|
|
|
static u64 snb_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
gen6_pte_t pte = GEN6_PTE_VALID;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_L3_LLC:
|
|
case I915_CACHE_LLC:
|
|
pte |= GEN6_PTE_CACHE_LLC;
|
|
break;
|
|
case I915_CACHE_NONE:
|
|
pte |= GEN6_PTE_UNCACHED;
|
|
break;
|
|
default:
|
|
MISSING_CASE(level);
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static u64 ivb_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
gen6_pte_t pte = GEN6_PTE_VALID;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_L3_LLC:
|
|
pte |= GEN7_PTE_CACHE_L3_LLC;
|
|
break;
|
|
case I915_CACHE_LLC:
|
|
pte |= GEN6_PTE_CACHE_LLC;
|
|
break;
|
|
case I915_CACHE_NONE:
|
|
pte |= GEN6_PTE_UNCACHED;
|
|
break;
|
|
default:
|
|
MISSING_CASE(level);
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static u64 byt_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
gen6_pte_t pte = GEN6_PTE_VALID;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
if (!(flags & PTE_READ_ONLY))
|
|
pte |= BYT_PTE_WRITEABLE;
|
|
|
|
if (level != I915_CACHE_NONE)
|
|
pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
|
|
|
|
return pte;
|
|
}
|
|
|
|
static u64 hsw_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
gen6_pte_t pte = GEN6_PTE_VALID;
|
|
pte |= HSW_PTE_ADDR_ENCODE(addr);
|
|
|
|
if (level != I915_CACHE_NONE)
|
|
pte |= HSW_WB_LLC_AGE3;
|
|
|
|
return pte;
|
|
}
|
|
|
|
static u64 iris_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
gen6_pte_t pte = GEN6_PTE_VALID;
|
|
pte |= HSW_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_NONE:
|
|
break;
|
|
case I915_CACHE_WT:
|
|
pte |= HSW_WT_ELLC_LLC_AGE3;
|
|
break;
|
|
default:
|
|
pte |= HSW_WB_ELLC_LLC_AGE3;
|
|
break;
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static void stash_init(struct pagestash *stash)
|
|
{
|
|
pagevec_init(&stash->pvec);
|
|
spin_lock_init(&stash->lock);
|
|
}
|
|
|
|
static struct page *stash_pop_page(struct pagestash *stash)
|
|
{
|
|
struct page *page = NULL;
|
|
|
|
spin_lock(&stash->lock);
|
|
if (likely(stash->pvec.nr))
|
|
page = stash->pvec.pages[--stash->pvec.nr];
|
|
spin_unlock(&stash->lock);
|
|
|
|
return page;
|
|
}
|
|
|
|
static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
|
|
{
|
|
unsigned int nr;
|
|
|
|
spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
|
|
|
|
nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
|
|
memcpy(stash->pvec.pages + stash->pvec.nr,
|
|
pvec->pages + pvec->nr - nr,
|
|
sizeof(pvec->pages[0]) * nr);
|
|
stash->pvec.nr += nr;
|
|
|
|
spin_unlock(&stash->lock);
|
|
|
|
pvec->nr -= nr;
|
|
}
|
|
|
|
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
|
|
{
|
|
struct pagevec stack;
|
|
struct page *page;
|
|
|
|
if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
|
|
i915_gem_shrink_all(vm->i915);
|
|
|
|
page = stash_pop_page(&vm->free_pages);
|
|
if (page)
|
|
return page;
|
|
|
|
if (!vm->pt_kmap_wc)
|
|
return alloc_page(gfp);
|
|
|
|
/* Look in our global stash of WC pages... */
|
|
page = stash_pop_page(&vm->i915->mm.wc_stash);
|
|
if (page)
|
|
return page;
|
|
|
|
/*
|
|
* Otherwise batch allocate pages to amortize cost of set_pages_wc.
|
|
*
|
|
* We have to be careful as page allocation may trigger the shrinker
|
|
* (via direct reclaim) which will fill up the WC stash underneath us.
|
|
* So we add our WB pages into a temporary pvec on the stack and merge
|
|
* them into the WC stash after all the allocations are complete.
|
|
*/
|
|
pagevec_init(&stack);
|
|
do {
|
|
struct page *page;
|
|
|
|
page = alloc_page(gfp);
|
|
if (unlikely(!page))
|
|
break;
|
|
|
|
stack.pages[stack.nr++] = page;
|
|
} while (pagevec_space(&stack));
|
|
|
|
if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
|
|
page = stack.pages[--stack.nr];
|
|
|
|
/* Merge spare WC pages to the global stash */
|
|
if (stack.nr)
|
|
stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
|
|
|
|
/* Push any surplus WC pages onto the local VM stash */
|
|
if (stack.nr)
|
|
stash_push_pagevec(&vm->free_pages, &stack);
|
|
}
|
|
|
|
/* Return unwanted leftovers */
|
|
if (unlikely(stack.nr)) {
|
|
WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
|
|
__pagevec_release(&stack);
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
static void vm_free_pages_release(struct i915_address_space *vm,
|
|
bool immediate)
|
|
{
|
|
struct pagevec *pvec = &vm->free_pages.pvec;
|
|
struct pagevec stack;
|
|
|
|
lockdep_assert_held(&vm->free_pages.lock);
|
|
GEM_BUG_ON(!pagevec_count(pvec));
|
|
|
|
if (vm->pt_kmap_wc) {
|
|
/*
|
|
* When we use WC, first fill up the global stash and then
|
|
* only if full immediately free the overflow.
|
|
*/
|
|
stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
|
|
|
|
/*
|
|
* As we have made some room in the VM's free_pages,
|
|
* we can wait for it to fill again. Unless we are
|
|
* inside i915_address_space_fini() and must
|
|
* immediately release the pages!
|
|
*/
|
|
if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
|
|
return;
|
|
|
|
/*
|
|
* We have to drop the lock to allow ourselves to sleep,
|
|
* so take a copy of the pvec and clear the stash for
|
|
* others to use it as we sleep.
|
|
*/
|
|
stack = *pvec;
|
|
pagevec_reinit(pvec);
|
|
spin_unlock(&vm->free_pages.lock);
|
|
|
|
pvec = &stack;
|
|
set_pages_array_wb(pvec->pages, pvec->nr);
|
|
|
|
spin_lock(&vm->free_pages.lock);
|
|
}
|
|
|
|
__pagevec_release(pvec);
|
|
}
|
|
|
|
static void vm_free_page(struct i915_address_space *vm, struct page *page)
|
|
{
|
|
/*
|
|
* On !llc, we need to change the pages back to WB. We only do so
|
|
* in bulk, so we rarely need to change the page attributes here,
|
|
* but doing so requires a stop_machine() from deep inside arch/x86/mm.
|
|
* To make detection of the possible sleep more likely, use an
|
|
* unconditional might_sleep() for everybody.
|
|
*/
|
|
might_sleep();
|
|
spin_lock(&vm->free_pages.lock);
|
|
while (!pagevec_space(&vm->free_pages.pvec))
|
|
vm_free_pages_release(vm, false);
|
|
GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
|
|
pagevec_add(&vm->free_pages.pvec, page);
|
|
spin_unlock(&vm->free_pages.lock);
|
|
}
|
|
|
|
static void i915_address_space_fini(struct i915_address_space *vm)
|
|
{
|
|
spin_lock(&vm->free_pages.lock);
|
|
if (pagevec_count(&vm->free_pages.pvec))
|
|
vm_free_pages_release(vm, true);
|
|
GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
|
|
spin_unlock(&vm->free_pages.lock);
|
|
|
|
drm_mm_takedown(&vm->mm);
|
|
|
|
mutex_destroy(&vm->mutex);
|
|
}
|
|
|
|
static void ppgtt_destroy_vma(struct i915_address_space *vm)
|
|
{
|
|
struct list_head *phases[] = {
|
|
&vm->bound_list,
|
|
&vm->unbound_list,
|
|
NULL,
|
|
}, **phase;
|
|
|
|
mutex_lock(&vm->i915->drm.struct_mutex);
|
|
for (phase = phases; *phase; phase++) {
|
|
struct i915_vma *vma, *vn;
|
|
|
|
list_for_each_entry_safe(vma, vn, *phase, vm_link)
|
|
i915_vma_destroy(vma);
|
|
}
|
|
mutex_unlock(&vm->i915->drm.struct_mutex);
|
|
}
|
|
|
|
static void __i915_vm_release(struct work_struct *work)
|
|
{
|
|
struct i915_address_space *vm =
|
|
container_of(work, struct i915_address_space, rcu.work);
|
|
|
|
ppgtt_destroy_vma(vm);
|
|
|
|
GEM_BUG_ON(!list_empty(&vm->bound_list));
|
|
GEM_BUG_ON(!list_empty(&vm->unbound_list));
|
|
|
|
vm->cleanup(vm);
|
|
i915_address_space_fini(vm);
|
|
|
|
kfree(vm);
|
|
}
|
|
|
|
void i915_vm_release(struct kref *kref)
|
|
{
|
|
struct i915_address_space *vm =
|
|
container_of(kref, struct i915_address_space, ref);
|
|
|
|
GEM_BUG_ON(i915_is_ggtt(vm));
|
|
trace_i915_ppgtt_release(vm);
|
|
|
|
vm->closed = true;
|
|
queue_rcu_work(vm->i915->wq, &vm->rcu);
|
|
}
|
|
|
|
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
|
|
{
|
|
kref_init(&vm->ref);
|
|
INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
|
|
|
|
/*
|
|
* The vm->mutex must be reclaim safe (for use in the shrinker).
|
|
* Do a dummy acquire now under fs_reclaim so that any allocation
|
|
* attempt holding the lock is immediately reported by lockdep.
|
|
*/
|
|
mutex_init(&vm->mutex);
|
|
lockdep_set_subclass(&vm->mutex, subclass);
|
|
i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
|
|
|
|
GEM_BUG_ON(!vm->total);
|
|
drm_mm_init(&vm->mm, 0, vm->total);
|
|
vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
|
|
|
|
stash_init(&vm->free_pages);
|
|
|
|
INIT_LIST_HEAD(&vm->unbound_list);
|
|
INIT_LIST_HEAD(&vm->bound_list);
|
|
}
|
|
|
|
static int __setup_page_dma(struct i915_address_space *vm,
|
|
struct i915_page_dma *p,
|
|
gfp_t gfp)
|
|
{
|
|
p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
|
|
if (unlikely(!p->page))
|
|
return -ENOMEM;
|
|
|
|
p->daddr = dma_map_page_attrs(vm->dma,
|
|
p->page, 0, PAGE_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL,
|
|
DMA_ATTR_SKIP_CPU_SYNC |
|
|
DMA_ATTR_NO_WARN);
|
|
if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
|
|
vm_free_page(vm, p->page);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int setup_page_dma(struct i915_address_space *vm,
|
|
struct i915_page_dma *p)
|
|
{
|
|
return __setup_page_dma(vm, p, __GFP_HIGHMEM);
|
|
}
|
|
|
|
static void cleanup_page_dma(struct i915_address_space *vm,
|
|
struct i915_page_dma *p)
|
|
{
|
|
dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
vm_free_page(vm, p->page);
|
|
}
|
|
|
|
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
|
|
|
|
static void
|
|
fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
|
|
{
|
|
kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
|
|
}
|
|
|
|
#define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64))
|
|
#define fill32_px(px, v) do { \
|
|
u64 v__ = lower_32_bits(v); \
|
|
fill_px((px), v__ << 32 | v__); \
|
|
} while (0)
|
|
|
|
static int
|
|
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
|
|
{
|
|
unsigned long size;
|
|
|
|
/*
|
|
* In order to utilize 64K pages for an object with a size < 2M, we will
|
|
* need to support a 64K scratch page, given that every 16th entry for a
|
|
* page-table operating in 64K mode must point to a properly aligned 64K
|
|
* region, including any PTEs which happen to point to scratch.
|
|
*
|
|
* This is only relevant for the 48b PPGTT where we support
|
|
* huge-gtt-pages, see also i915_vma_insert(). However, as we share the
|
|
* scratch (read-only) between all vm, we create one 64k scratch page
|
|
* for all.
|
|
*/
|
|
size = I915_GTT_PAGE_SIZE_4K;
|
|
if (i915_vm_is_4lvl(vm) &&
|
|
HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
|
|
size = I915_GTT_PAGE_SIZE_64K;
|
|
gfp |= __GFP_NOWARN;
|
|
}
|
|
gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
|
|
|
|
do {
|
|
unsigned int order = get_order(size);
|
|
struct page *page;
|
|
dma_addr_t addr;
|
|
|
|
page = alloc_pages(gfp, order);
|
|
if (unlikely(!page))
|
|
goto skip;
|
|
|
|
addr = dma_map_page_attrs(vm->dma,
|
|
page, 0, size,
|
|
PCI_DMA_BIDIRECTIONAL,
|
|
DMA_ATTR_SKIP_CPU_SYNC |
|
|
DMA_ATTR_NO_WARN);
|
|
if (unlikely(dma_mapping_error(vm->dma, addr)))
|
|
goto free_page;
|
|
|
|
if (unlikely(!IS_ALIGNED(addr, size)))
|
|
goto unmap_page;
|
|
|
|
vm->scratch[0].base.page = page;
|
|
vm->scratch[0].base.daddr = addr;
|
|
vm->scratch_order = order;
|
|
return 0;
|
|
|
|
unmap_page:
|
|
dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
|
|
free_page:
|
|
__free_pages(page, order);
|
|
skip:
|
|
if (size == I915_GTT_PAGE_SIZE_4K)
|
|
return -ENOMEM;
|
|
|
|
size = I915_GTT_PAGE_SIZE_4K;
|
|
gfp &= ~__GFP_NOWARN;
|
|
} while (1);
|
|
}
|
|
|
|
static void cleanup_scratch_page(struct i915_address_space *vm)
|
|
{
|
|
struct i915_page_dma *p = px_base(&vm->scratch[0]);
|
|
unsigned int order = vm->scratch_order;
|
|
|
|
dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
__free_pages(p->page, order);
|
|
}
|
|
|
|
static void free_scratch(struct i915_address_space *vm)
|
|
{
|
|
int i;
|
|
|
|
if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
|
|
return;
|
|
|
|
for (i = 1; i <= vm->top; i++) {
|
|
if (!px_dma(&vm->scratch[i]))
|
|
break;
|
|
cleanup_page_dma(vm, px_base(&vm->scratch[i]));
|
|
}
|
|
|
|
cleanup_scratch_page(vm);
|
|
}
|
|
|
|
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
|
|
{
|
|
struct i915_page_table *pt;
|
|
|
|
pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
|
|
if (unlikely(!pt))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (unlikely(setup_page_dma(vm, &pt->base))) {
|
|
kfree(pt);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
atomic_set(&pt->used, 0);
|
|
return pt;
|
|
}
|
|
|
|
static struct i915_page_directory *__alloc_pd(size_t sz)
|
|
{
|
|
struct i915_page_directory *pd;
|
|
|
|
pd = kzalloc(sz, I915_GFP_ALLOW_FAIL);
|
|
if (unlikely(!pd))
|
|
return NULL;
|
|
|
|
spin_lock_init(&pd->lock);
|
|
return pd;
|
|
}
|
|
|
|
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
|
|
{
|
|
struct i915_page_directory *pd;
|
|
|
|
pd = __alloc_pd(sizeof(*pd));
|
|
if (unlikely(!pd))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (unlikely(setup_page_dma(vm, px_base(pd)))) {
|
|
kfree(pd);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
return pd;
|
|
}
|
|
|
|
static void free_pd(struct i915_address_space *vm, struct i915_page_dma *pd)
|
|
{
|
|
cleanup_page_dma(vm, pd);
|
|
kfree(pd);
|
|
}
|
|
|
|
#define free_px(vm, px) free_pd(vm, px_base(px))
|
|
|
|
static inline void
|
|
write_dma_entry(struct i915_page_dma * const pdma,
|
|
const unsigned short idx,
|
|
const u64 encoded_entry)
|
|
{
|
|
u64 * const vaddr = kmap_atomic(pdma->page);
|
|
|
|
vaddr[idx] = encoded_entry;
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
|
|
static inline void
|
|
__set_pd_entry(struct i915_page_directory * const pd,
|
|
const unsigned short idx,
|
|
struct i915_page_dma * const to,
|
|
u64 (*encode)(const dma_addr_t, const enum i915_cache_level))
|
|
{
|
|
GEM_BUG_ON(atomic_read(px_used(pd)) > ARRAY_SIZE(pd->entry));
|
|
|
|
atomic_inc(px_used(pd));
|
|
pd->entry[idx] = to;
|
|
write_dma_entry(px_base(pd), idx, encode(to->daddr, I915_CACHE_LLC));
|
|
}
|
|
|
|
#define set_pd_entry(pd, idx, to) \
|
|
__set_pd_entry((pd), (idx), px_base(to), gen8_pde_encode)
|
|
|
|
static inline void
|
|
clear_pd_entry(struct i915_page_directory * const pd,
|
|
const unsigned short idx,
|
|
const struct i915_page_scratch * const scratch)
|
|
{
|
|
GEM_BUG_ON(atomic_read(px_used(pd)) == 0);
|
|
|
|
write_dma_entry(px_base(pd), idx, scratch->encode);
|
|
pd->entry[idx] = NULL;
|
|
atomic_dec(px_used(pd));
|
|
}
|
|
|
|
static bool
|
|
release_pd_entry(struct i915_page_directory * const pd,
|
|
const unsigned short idx,
|
|
struct i915_page_table * const pt,
|
|
const struct i915_page_scratch * const scratch)
|
|
{
|
|
bool free = false;
|
|
|
|
if (atomic_add_unless(&pt->used, -1, 1))
|
|
return false;
|
|
|
|
spin_lock(&pd->lock);
|
|
if (atomic_dec_and_test(&pt->used)) {
|
|
clear_pd_entry(pd, idx, scratch);
|
|
free = true;
|
|
}
|
|
spin_unlock(&pd->lock);
|
|
|
|
return free;
|
|
}
|
|
|
|
/*
|
|
* PDE TLBs are a pain to invalidate on GEN8+. When we modify
|
|
* the page table structures, we mark them dirty so that
|
|
* context switching/execlist queuing code takes extra steps
|
|
* to ensure that tlbs are flushed.
|
|
*/
|
|
static void mark_tlbs_dirty(struct i915_ppgtt *ppgtt)
|
|
{
|
|
ppgtt->pd_dirty_engines = ALL_ENGINES;
|
|
}
|
|
|
|
static int gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
|
|
{
|
|
struct i915_address_space *vm = &ppgtt->vm;
|
|
struct drm_i915_private *dev_priv = vm->i915;
|
|
enum vgt_g2v_type msg;
|
|
int i;
|
|
|
|
if (create)
|
|
atomic_inc(px_used(ppgtt->pd)); /* never remove */
|
|
else
|
|
atomic_dec(px_used(ppgtt->pd));
|
|
|
|
if (i915_vm_is_4lvl(vm)) {
|
|
const u64 daddr = px_dma(ppgtt->pd);
|
|
|
|
I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
|
|
I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
|
|
|
|
msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
|
|
VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
|
|
} else {
|
|
for (i = 0; i < GEN8_3LVL_PDPES; i++) {
|
|
const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
|
|
|
|
I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
|
|
I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
|
|
}
|
|
|
|
msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
|
|
VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
|
|
}
|
|
|
|
I915_WRITE(vgtif_reg(g2v_notify), msg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Index shifts into the pagetable are offset by GEN8_PTE_SHIFT [12] */
|
|
#define GEN8_PAGE_SIZE (SZ_4K) /* page and page-directory sizes are the same */
|
|
#define GEN8_PTE_SHIFT (ilog2(GEN8_PAGE_SIZE))
|
|
#define GEN8_PDES (GEN8_PAGE_SIZE / sizeof(u64))
|
|
#define gen8_pd_shift(lvl) ((lvl) * ilog2(GEN8_PDES))
|
|
#define gen8_pd_index(i, lvl) i915_pde_index((i), gen8_pd_shift(lvl))
|
|
#define __gen8_pte_shift(lvl) (GEN8_PTE_SHIFT + gen8_pd_shift(lvl))
|
|
#define __gen8_pte_index(a, lvl) i915_pde_index((a), __gen8_pte_shift(lvl))
|
|
|
|
static inline unsigned int
|
|
gen8_pd_range(u64 start, u64 end, int lvl, unsigned int *idx)
|
|
{
|
|
const int shift = gen8_pd_shift(lvl);
|
|
const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
|
|
|
|
GEM_BUG_ON(start >= end);
|
|
end += ~mask >> gen8_pd_shift(1);
|
|
|
|
*idx = i915_pde_index(start, shift);
|
|
if ((start ^ end) & mask)
|
|
return GEN8_PDES - *idx;
|
|
else
|
|
return i915_pde_index(end, shift) - *idx;
|
|
}
|
|
|
|
static inline bool gen8_pd_contains(u64 start, u64 end, int lvl)
|
|
{
|
|
const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
|
|
|
|
GEM_BUG_ON(start >= end);
|
|
return (start ^ end) & mask && (start & ~mask) == 0;
|
|
}
|
|
|
|
static inline unsigned int gen8_pt_count(u64 start, u64 end)
|
|
{
|
|
GEM_BUG_ON(start >= end);
|
|
if ((start ^ end) >> gen8_pd_shift(1))
|
|
return GEN8_PDES - (start & (GEN8_PDES - 1));
|
|
else
|
|
return end - start;
|
|
}
|
|
|
|
static inline unsigned int gen8_pd_top_count(const struct i915_address_space *vm)
|
|
{
|
|
unsigned int shift = __gen8_pte_shift(vm->top);
|
|
return (vm->total + (1ull << shift) - 1) >> shift;
|
|
}
|
|
|
|
static inline struct i915_page_directory *
|
|
gen8_pdp_for_page_index(struct i915_address_space * const vm, const u64 idx)
|
|
{
|
|
struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
|
|
|
|
if (vm->top == 2)
|
|
return ppgtt->pd;
|
|
else
|
|
return i915_pd_entry(ppgtt->pd, gen8_pd_index(idx, vm->top));
|
|
}
|
|
|
|
static inline struct i915_page_directory *
|
|
gen8_pdp_for_page_address(struct i915_address_space * const vm, const u64 addr)
|
|
{
|
|
return gen8_pdp_for_page_index(vm, addr >> GEN8_PTE_SHIFT);
|
|
}
|
|
|
|
static void __gen8_ppgtt_cleanup(struct i915_address_space *vm,
|
|
struct i915_page_directory *pd,
|
|
int count, int lvl)
|
|
{
|
|
if (lvl) {
|
|
void **pde = pd->entry;
|
|
|
|
do {
|
|
if (!*pde)
|
|
continue;
|
|
|
|
__gen8_ppgtt_cleanup(vm, *pde, GEN8_PDES, lvl - 1);
|
|
} while (pde++, --count);
|
|
}
|
|
|
|
free_px(vm, pd);
|
|
}
|
|
|
|
static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
|
|
{
|
|
struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
|
|
|
|
if (intel_vgpu_active(vm->i915))
|
|
gen8_ppgtt_notify_vgt(ppgtt, false);
|
|
|
|
__gen8_ppgtt_cleanup(vm, ppgtt->pd, gen8_pd_top_count(vm), vm->top);
|
|
free_scratch(vm);
|
|
}
|
|
|
|
static u64 __gen8_ppgtt_clear(struct i915_address_space * const vm,
|
|
struct i915_page_directory * const pd,
|
|
u64 start, const u64 end, int lvl)
|
|
{
|
|
const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
|
|
unsigned int idx, len;
|
|
|
|
len = gen8_pd_range(start, end, lvl--, &idx);
|
|
DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d}\n",
|
|
__func__, vm, lvl + 1, start, end,
|
|
idx, len, atomic_read(px_used(pd)));
|
|
GEM_BUG_ON(!len || len >= atomic_read(px_used(pd)));
|
|
|
|
do {
|
|
struct i915_page_table *pt = pd->entry[idx];
|
|
|
|
if (atomic_fetch_inc(&pt->used) >> gen8_pd_shift(1) &&
|
|
gen8_pd_contains(start, end, lvl)) {
|
|
DBG("%s(%p):{ lvl:%d, idx:%d, start:%llx, end:%llx } removing pd\n",
|
|
__func__, vm, lvl + 1, idx, start, end);
|
|
clear_pd_entry(pd, idx, scratch);
|
|
__gen8_ppgtt_cleanup(vm, as_pd(pt), I915_PDES, lvl);
|
|
start += (u64)I915_PDES << gen8_pd_shift(lvl);
|
|
continue;
|
|
}
|
|
|
|
if (lvl) {
|
|
start = __gen8_ppgtt_clear(vm, as_pd(pt),
|
|
start, end, lvl);
|
|
} else {
|
|
unsigned int count;
|
|
u64 *vaddr;
|
|
|
|
count = gen8_pt_count(start, end);
|
|
DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d} removing pte\n",
|
|
__func__, vm, lvl, start, end,
|
|
gen8_pd_index(start, 0), count,
|
|
atomic_read(&pt->used));
|
|
GEM_BUG_ON(!count || count >= atomic_read(&pt->used));
|
|
|
|
vaddr = kmap_atomic_px(pt);
|
|
memset64(vaddr + gen8_pd_index(start, 0),
|
|
vm->scratch[0].encode,
|
|
count);
|
|
kunmap_atomic(vaddr);
|
|
|
|
atomic_sub(count, &pt->used);
|
|
start += count;
|
|
}
|
|
|
|
if (release_pd_entry(pd, idx, pt, scratch))
|
|
free_px(vm, pt);
|
|
} while (idx++, --len);
|
|
|
|
return start;
|
|
}
|
|
|
|
static void gen8_ppgtt_clear(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
|
|
GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
|
|
|
|
start >>= GEN8_PTE_SHIFT;
|
|
length >>= GEN8_PTE_SHIFT;
|
|
GEM_BUG_ON(length == 0);
|
|
|
|
__gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
|
|
start, start + length, vm->top);
|
|
}
|
|
|
|
static int __gen8_ppgtt_alloc(struct i915_address_space * const vm,
|
|
struct i915_page_directory * const pd,
|
|
u64 * const start, u64 end, int lvl)
|
|
{
|
|
const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
|
|
struct i915_page_table *alloc = NULL;
|
|
unsigned int idx, len;
|
|
int ret = 0;
|
|
|
|
len = gen8_pd_range(*start, end, lvl--, &idx);
|
|
DBG("%s(%p):{lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d}\n",
|
|
__func__, vm, lvl + 1, *start, end,
|
|
idx, len, atomic_read(px_used(pd)));
|
|
GEM_BUG_ON(!len || (idx + len - 1) >> gen8_pd_shift(1));
|
|
|
|
spin_lock(&pd->lock);
|
|
GEM_BUG_ON(!atomic_read(px_used(pd))); /* Must be pinned! */
|
|
do {
|
|
struct i915_page_table *pt = pd->entry[idx];
|
|
|
|
if (!pt) {
|
|
spin_unlock(&pd->lock);
|
|
|
|
DBG("%s(%p):{ lvl:%d, idx:%d } allocating new tree\n",
|
|
__func__, vm, lvl + 1, idx);
|
|
|
|
pt = fetch_and_zero(&alloc);
|
|
if (lvl) {
|
|
if (!pt) {
|
|
pt = &alloc_pd(vm)->pt;
|
|
if (IS_ERR(pt)) {
|
|
ret = PTR_ERR(pt);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
fill_px(pt, vm->scratch[lvl].encode);
|
|
} else {
|
|
if (!pt) {
|
|
pt = alloc_pt(vm);
|
|
if (IS_ERR(pt)) {
|
|
ret = PTR_ERR(pt);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (intel_vgpu_active(vm->i915) ||
|
|
gen8_pt_count(*start, end) < I915_PDES)
|
|
fill_px(pt, vm->scratch[lvl].encode);
|
|
}
|
|
|
|
spin_lock(&pd->lock);
|
|
if (likely(!pd->entry[idx]))
|
|
set_pd_entry(pd, idx, pt);
|
|
else
|
|
alloc = pt, pt = pd->entry[idx];
|
|
}
|
|
|
|
if (lvl) {
|
|
atomic_inc(&pt->used);
|
|
spin_unlock(&pd->lock);
|
|
|
|
ret = __gen8_ppgtt_alloc(vm, as_pd(pt),
|
|
start, end, lvl);
|
|
if (unlikely(ret)) {
|
|
if (release_pd_entry(pd, idx, pt, scratch))
|
|
free_px(vm, pt);
|
|
goto out;
|
|
}
|
|
|
|
spin_lock(&pd->lock);
|
|
atomic_dec(&pt->used);
|
|
GEM_BUG_ON(!atomic_read(&pt->used));
|
|
} else {
|
|
unsigned int count = gen8_pt_count(*start, end);
|
|
|
|
DBG("%s(%p):{lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d} inserting pte\n",
|
|
__func__, vm, lvl, *start, end,
|
|
gen8_pd_index(*start, 0), count,
|
|
atomic_read(&pt->used));
|
|
|
|
atomic_add(count, &pt->used);
|
|
GEM_BUG_ON(atomic_read(&pt->used) > I915_PDES);
|
|
*start += count;
|
|
}
|
|
} while (idx++, --len);
|
|
spin_unlock(&pd->lock);
|
|
out:
|
|
if (alloc)
|
|
free_px(vm, alloc);
|
|
return ret;
|
|
}
|
|
|
|
static int gen8_ppgtt_alloc(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
u64 from;
|
|
int err;
|
|
|
|
GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
|
|
GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
|
|
|
|
start >>= GEN8_PTE_SHIFT;
|
|
length >>= GEN8_PTE_SHIFT;
|
|
GEM_BUG_ON(length == 0);
|
|
from = start;
|
|
|
|
err = __gen8_ppgtt_alloc(vm, i915_vm_to_ppgtt(vm)->pd,
|
|
&start, start + length, vm->top);
|
|
if (unlikely(err && from != start))
|
|
__gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
|
|
from, start, vm->top);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline struct sgt_dma {
|
|
struct scatterlist *sg;
|
|
dma_addr_t dma, max;
|
|
} sgt_dma(struct i915_vma *vma) {
|
|
struct scatterlist *sg = vma->pages->sgl;
|
|
dma_addr_t addr = sg_dma_address(sg);
|
|
return (struct sgt_dma) { sg, addr, addr + sg->length };
|
|
}
|
|
|
|
static __always_inline u64
|
|
gen8_ppgtt_insert_pte(struct i915_ppgtt *ppgtt,
|
|
struct i915_page_directory *pdp,
|
|
struct sgt_dma *iter,
|
|
u64 idx,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
struct i915_page_directory *pd;
|
|
const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
|
|
gen8_pte_t *vaddr;
|
|
|
|
pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2));
|
|
vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
|
|
do {
|
|
vaddr[gen8_pd_index(idx, 0)] = pte_encode | iter->dma;
|
|
|
|
iter->dma += I915_GTT_PAGE_SIZE;
|
|
if (iter->dma >= iter->max) {
|
|
iter->sg = __sg_next(iter->sg);
|
|
if (!iter->sg) {
|
|
idx = 0;
|
|
break;
|
|
}
|
|
|
|
iter->dma = sg_dma_address(iter->sg);
|
|
iter->max = iter->dma + iter->sg->length;
|
|
}
|
|
|
|
if (gen8_pd_index(++idx, 0) == 0) {
|
|
if (gen8_pd_index(idx, 1) == 0) {
|
|
/* Limited by sg length for 3lvl */
|
|
if (gen8_pd_index(idx, 2) == 0)
|
|
break;
|
|
|
|
pd = pdp->entry[gen8_pd_index(idx, 2)];
|
|
}
|
|
|
|
kunmap_atomic(vaddr);
|
|
vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
|
|
}
|
|
} while (1);
|
|
kunmap_atomic(vaddr);
|
|
|
|
return idx;
|
|
}
|
|
|
|
static void gen8_ppgtt_insert_huge(struct i915_vma *vma,
|
|
struct sgt_dma *iter,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
|
|
u64 start = vma->node.start;
|
|
dma_addr_t rem = iter->sg->length;
|
|
|
|
GEM_BUG_ON(!i915_vm_is_4lvl(vma->vm));
|
|
|
|
do {
|
|
struct i915_page_directory * const pdp =
|
|
gen8_pdp_for_page_address(vma->vm, start);
|
|
struct i915_page_directory * const pd =
|
|
i915_pd_entry(pdp, __gen8_pte_index(start, 2));
|
|
gen8_pte_t encode = pte_encode;
|
|
unsigned int maybe_64K = -1;
|
|
unsigned int page_size;
|
|
gen8_pte_t *vaddr;
|
|
u16 index;
|
|
|
|
if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
|
|
IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
|
|
rem >= I915_GTT_PAGE_SIZE_2M &&
|
|
!__gen8_pte_index(start, 0)) {
|
|
index = __gen8_pte_index(start, 1);
|
|
encode |= GEN8_PDE_PS_2M;
|
|
page_size = I915_GTT_PAGE_SIZE_2M;
|
|
|
|
vaddr = kmap_atomic_px(pd);
|
|
} else {
|
|
struct i915_page_table *pt =
|
|
i915_pt_entry(pd, __gen8_pte_index(start, 1));
|
|
|
|
index = __gen8_pte_index(start, 0);
|
|
page_size = I915_GTT_PAGE_SIZE;
|
|
|
|
if (!index &&
|
|
vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
|
|
IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
|
|
(IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
|
|
rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE))
|
|
maybe_64K = __gen8_pte_index(start, 1);
|
|
|
|
vaddr = kmap_atomic_px(pt);
|
|
}
|
|
|
|
do {
|
|
GEM_BUG_ON(iter->sg->length < page_size);
|
|
vaddr[index++] = encode | iter->dma;
|
|
|
|
start += page_size;
|
|
iter->dma += page_size;
|
|
rem -= page_size;
|
|
if (iter->dma >= iter->max) {
|
|
iter->sg = __sg_next(iter->sg);
|
|
if (!iter->sg)
|
|
break;
|
|
|
|
rem = iter->sg->length;
|
|
iter->dma = sg_dma_address(iter->sg);
|
|
iter->max = iter->dma + rem;
|
|
|
|
if (maybe_64K != -1 && index < I915_PDES &&
|
|
!(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
|
|
(IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
|
|
rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE)))
|
|
maybe_64K = -1;
|
|
|
|
if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
|
|
break;
|
|
}
|
|
} while (rem >= page_size && index < I915_PDES);
|
|
|
|
kunmap_atomic(vaddr);
|
|
|
|
/*
|
|
* Is it safe to mark the 2M block as 64K? -- Either we have
|
|
* filled whole page-table with 64K entries, or filled part of
|
|
* it and have reached the end of the sg table and we have
|
|
* enough padding.
|
|
*/
|
|
if (maybe_64K != -1 &&
|
|
(index == I915_PDES ||
|
|
(i915_vm_has_scratch_64K(vma->vm) &&
|
|
!iter->sg && IS_ALIGNED(vma->node.start +
|
|
vma->node.size,
|
|
I915_GTT_PAGE_SIZE_2M)))) {
|
|
vaddr = kmap_atomic_px(pd);
|
|
vaddr[maybe_64K] |= GEN8_PDE_IPS_64K;
|
|
kunmap_atomic(vaddr);
|
|
page_size = I915_GTT_PAGE_SIZE_64K;
|
|
|
|
/*
|
|
* We write all 4K page entries, even when using 64K
|
|
* pages. In order to verify that the HW isn't cheating
|
|
* by using the 4K PTE instead of the 64K PTE, we want
|
|
* to remove all the surplus entries. If the HW skipped
|
|
* the 64K PTE, it will read/write into the scratch page
|
|
* instead - which we detect as missing results during
|
|
* selftests.
|
|
*/
|
|
if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
|
|
u16 i;
|
|
|
|
encode = vma->vm->scratch[0].encode;
|
|
vaddr = kmap_atomic_px(i915_pt_entry(pd, maybe_64K));
|
|
|
|
for (i = 1; i < index; i += 16)
|
|
memset64(vaddr + i, encode, 15);
|
|
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
}
|
|
|
|
vma->page_sizes.gtt |= page_size;
|
|
} while (iter->sg);
|
|
}
|
|
|
|
static void gen8_ppgtt_insert(struct i915_address_space *vm,
|
|
struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
|
|
struct sgt_dma iter = sgt_dma(vma);
|
|
|
|
if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
|
|
gen8_ppgtt_insert_huge(vma, &iter, cache_level, flags);
|
|
} else {
|
|
u64 idx = vma->node.start >> GEN8_PTE_SHIFT;
|
|
|
|
do {
|
|
struct i915_page_directory * const pdp =
|
|
gen8_pdp_for_page_index(vm, idx);
|
|
|
|
idx = gen8_ppgtt_insert_pte(ppgtt, pdp, &iter, idx,
|
|
cache_level, flags);
|
|
} while (idx);
|
|
|
|
vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
static int gen8_init_scratch(struct i915_address_space *vm)
|
|
{
|
|
int ret;
|
|
int i;
|
|
|
|
/*
|
|
* If everybody agrees to not to write into the scratch page,
|
|
* we can reuse it for all vm, keeping contexts and processes separate.
|
|
*/
|
|
if (vm->has_read_only &&
|
|
vm->i915->kernel_context &&
|
|
vm->i915->kernel_context->vm) {
|
|
struct i915_address_space *clone = vm->i915->kernel_context->vm;
|
|
|
|
GEM_BUG_ON(!clone->has_read_only);
|
|
|
|
vm->scratch_order = clone->scratch_order;
|
|
memcpy(vm->scratch, clone->scratch, sizeof(vm->scratch));
|
|
px_dma(&vm->scratch[0]) = 0; /* no xfer of ownership */
|
|
return 0;
|
|
}
|
|
|
|
ret = setup_scratch_page(vm, __GFP_HIGHMEM);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vm->scratch[0].encode =
|
|
gen8_pte_encode(px_dma(&vm->scratch[0]),
|
|
I915_CACHE_LLC, vm->has_read_only);
|
|
|
|
for (i = 1; i <= vm->top; i++) {
|
|
if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[i]))))
|
|
goto free_scratch;
|
|
|
|
fill_px(&vm->scratch[i], vm->scratch[i - 1].encode);
|
|
vm->scratch[i].encode =
|
|
gen8_pde_encode(px_dma(&vm->scratch[i]),
|
|
I915_CACHE_LLC);
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_scratch:
|
|
free_scratch(vm);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
|
|
{
|
|
struct i915_address_space *vm = &ppgtt->vm;
|
|
struct i915_page_directory *pd = ppgtt->pd;
|
|
unsigned int idx;
|
|
|
|
GEM_BUG_ON(vm->top != 2);
|
|
GEM_BUG_ON(gen8_pd_top_count(vm) != GEN8_3LVL_PDPES);
|
|
|
|
for (idx = 0; idx < GEN8_3LVL_PDPES; idx++) {
|
|
struct i915_page_directory *pde;
|
|
|
|
pde = alloc_pd(vm);
|
|
if (IS_ERR(pde))
|
|
return PTR_ERR(pde);
|
|
|
|
fill_px(pde, vm->scratch[1].encode);
|
|
set_pd_entry(pd, idx, pde);
|
|
atomic_inc(px_used(pde)); /* keep pinned */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
|
|
ppgtt->vm.gt = gt;
|
|
ppgtt->vm.i915 = i915;
|
|
ppgtt->vm.dma = &i915->drm.pdev->dev;
|
|
ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
|
|
|
|
i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
|
|
|
|
ppgtt->vm.vma_ops.bind_vma = ppgtt_bind_vma;
|
|
ppgtt->vm.vma_ops.unbind_vma = ppgtt_unbind_vma;
|
|
ppgtt->vm.vma_ops.set_pages = ppgtt_set_pages;
|
|
ppgtt->vm.vma_ops.clear_pages = clear_pages;
|
|
}
|
|
|
|
static struct i915_page_directory *
|
|
gen8_alloc_top_pd(struct i915_address_space *vm)
|
|
{
|
|
const unsigned int count = gen8_pd_top_count(vm);
|
|
struct i915_page_directory *pd;
|
|
|
|
GEM_BUG_ON(count > ARRAY_SIZE(pd->entry));
|
|
|
|
pd = __alloc_pd(offsetof(typeof(*pd), entry[count]));
|
|
if (unlikely(!pd))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (unlikely(setup_page_dma(vm, px_base(pd)))) {
|
|
kfree(pd);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
fill_page_dma(px_base(pd), vm->scratch[vm->top].encode, count);
|
|
atomic_inc(px_used(pd)); /* mark as pinned */
|
|
return pd;
|
|
}
|
|
|
|
/*
|
|
* GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
|
|
* with a net effect resembling a 2-level page table in normal x86 terms. Each
|
|
* PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
|
|
* space.
|
|
*
|
|
*/
|
|
static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
|
|
{
|
|
struct i915_ppgtt *ppgtt;
|
|
int err;
|
|
|
|
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
|
|
if (!ppgtt)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ppgtt_init(ppgtt, &i915->gt);
|
|
ppgtt->vm.top = i915_vm_is_4lvl(&ppgtt->vm) ? 3 : 2;
|
|
|
|
/*
|
|
* From bdw, there is hw support for read-only pages in the PPGTT.
|
|
*
|
|
* Gen11 has HSDES#:1807136187 unresolved. Disable ro support
|
|
* for now.
|
|
*/
|
|
ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
|
|
|
|
/* There are only few exceptions for gen >=6. chv and bxt.
|
|
* And we are not sure about the latter so play safe for now.
|
|
*/
|
|
if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
|
|
ppgtt->vm.pt_kmap_wc = true;
|
|
|
|
err = gen8_init_scratch(&ppgtt->vm);
|
|
if (err)
|
|
goto err_free;
|
|
|
|
ppgtt->pd = gen8_alloc_top_pd(&ppgtt->vm);
|
|
if (IS_ERR(ppgtt->pd)) {
|
|
err = PTR_ERR(ppgtt->pd);
|
|
goto err_free_scratch;
|
|
}
|
|
|
|
if (!i915_vm_is_4lvl(&ppgtt->vm)) {
|
|
if (intel_vgpu_active(i915)) {
|
|
err = gen8_preallocate_top_level_pdp(ppgtt);
|
|
if (err)
|
|
goto err_free_pd;
|
|
}
|
|
}
|
|
|
|
ppgtt->vm.insert_entries = gen8_ppgtt_insert;
|
|
ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc;
|
|
ppgtt->vm.clear_range = gen8_ppgtt_clear;
|
|
|
|
if (intel_vgpu_active(i915))
|
|
gen8_ppgtt_notify_vgt(ppgtt, true);
|
|
|
|
ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
|
|
|
|
return ppgtt;
|
|
|
|
err_free_pd:
|
|
__gen8_ppgtt_cleanup(&ppgtt->vm, ppgtt->pd,
|
|
gen8_pd_top_count(&ppgtt->vm), ppgtt->vm.top);
|
|
err_free_scratch:
|
|
free_scratch(&ppgtt->vm);
|
|
err_free:
|
|
kfree(ppgtt);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/* Write pde (index) from the page directory @pd to the page table @pt */
|
|
static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
|
|
const unsigned int pde,
|
|
const struct i915_page_table *pt)
|
|
{
|
|
/* Caller needs to make sure the write completes if necessary */
|
|
iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
|
|
ppgtt->pd_addr + pde);
|
|
}
|
|
|
|
static void gen7_ppgtt_enable(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
u32 ecochk;
|
|
|
|
intel_uncore_rmw(uncore, GAC_ECO_BITS, 0, ECOBITS_PPGTT_CACHE64B);
|
|
|
|
ecochk = intel_uncore_read(uncore, GAM_ECOCHK);
|
|
if (IS_HASWELL(i915)) {
|
|
ecochk |= ECOCHK_PPGTT_WB_HSW;
|
|
} else {
|
|
ecochk |= ECOCHK_PPGTT_LLC_IVB;
|
|
ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
|
|
}
|
|
intel_uncore_write(uncore, GAM_ECOCHK, ecochk);
|
|
|
|
for_each_engine(engine, i915, id) {
|
|
/* GFX_MODE is per-ring on gen7+ */
|
|
ENGINE_WRITE(engine,
|
|
RING_MODE_GEN7,
|
|
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
|
|
}
|
|
}
|
|
|
|
static void gen6_ppgtt_enable(struct intel_gt *gt)
|
|
{
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
|
|
intel_uncore_rmw(uncore,
|
|
GAC_ECO_BITS,
|
|
0,
|
|
ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B);
|
|
|
|
intel_uncore_rmw(uncore,
|
|
GAB_CTL,
|
|
0,
|
|
GAB_CTL_CONT_AFTER_PAGEFAULT);
|
|
|
|
intel_uncore_rmw(uncore,
|
|
GAM_ECOCHK,
|
|
0,
|
|
ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
|
|
|
|
if (HAS_PPGTT(uncore->i915)) /* may be disabled for VT-d */
|
|
intel_uncore_write(uncore,
|
|
GFX_MODE,
|
|
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
|
|
}
|
|
|
|
/* PPGTT support for Sandybdrige/Gen6 and later */
|
|
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
|
|
const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
|
|
const gen6_pte_t scratch_pte = vm->scratch[0].encode;
|
|
unsigned int pde = first_entry / GEN6_PTES;
|
|
unsigned int pte = first_entry % GEN6_PTES;
|
|
unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
|
|
|
|
while (num_entries) {
|
|
struct i915_page_table * const pt =
|
|
i915_pt_entry(ppgtt->base.pd, pde++);
|
|
const unsigned int count = min(num_entries, GEN6_PTES - pte);
|
|
gen6_pte_t *vaddr;
|
|
|
|
GEM_BUG_ON(px_base(pt) == px_base(&vm->scratch[1]));
|
|
|
|
num_entries -= count;
|
|
|
|
GEM_BUG_ON(count > atomic_read(&pt->used));
|
|
if (!atomic_sub_return(count, &pt->used))
|
|
ppgtt->scan_for_unused_pt = true;
|
|
|
|
/*
|
|
* Note that the hw doesn't support removing PDE on the fly
|
|
* (they are cached inside the context with no means to
|
|
* invalidate the cache), so we can only reset the PTE
|
|
* entries back to scratch.
|
|
*/
|
|
|
|
vaddr = kmap_atomic_px(pt);
|
|
memset32(vaddr + pte, scratch_pte, count);
|
|
kunmap_atomic(vaddr);
|
|
|
|
pte = 0;
|
|
}
|
|
}
|
|
|
|
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
|
|
struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
|
|
struct i915_page_directory * const pd = ppgtt->pd;
|
|
unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
|
|
unsigned act_pt = first_entry / GEN6_PTES;
|
|
unsigned act_pte = first_entry % GEN6_PTES;
|
|
const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
|
|
struct sgt_dma iter = sgt_dma(vma);
|
|
gen6_pte_t *vaddr;
|
|
|
|
GEM_BUG_ON(pd->entry[act_pt] == &vm->scratch[1]);
|
|
|
|
vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
|
|
do {
|
|
vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
|
|
|
|
iter.dma += I915_GTT_PAGE_SIZE;
|
|
if (iter.dma == iter.max) {
|
|
iter.sg = __sg_next(iter.sg);
|
|
if (!iter.sg)
|
|
break;
|
|
|
|
iter.dma = sg_dma_address(iter.sg);
|
|
iter.max = iter.dma + iter.sg->length;
|
|
}
|
|
|
|
if (++act_pte == GEN6_PTES) {
|
|
kunmap_atomic(vaddr);
|
|
vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
|
|
act_pte = 0;
|
|
}
|
|
} while (1);
|
|
kunmap_atomic(vaddr);
|
|
|
|
vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
|
|
}
|
|
|
|
static int gen6_alloc_va_range(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
|
|
struct i915_page_directory * const pd = ppgtt->base.pd;
|
|
struct i915_page_table *pt, *alloc = NULL;
|
|
intel_wakeref_t wakeref;
|
|
u64 from = start;
|
|
unsigned int pde;
|
|
bool flush = false;
|
|
int ret = 0;
|
|
|
|
wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
|
|
|
|
spin_lock(&pd->lock);
|
|
gen6_for_each_pde(pt, pd, start, length, pde) {
|
|
const unsigned int count = gen6_pte_count(start, length);
|
|
|
|
if (px_base(pt) == px_base(&vm->scratch[1])) {
|
|
spin_unlock(&pd->lock);
|
|
|
|
pt = fetch_and_zero(&alloc);
|
|
if (!pt)
|
|
pt = alloc_pt(vm);
|
|
if (IS_ERR(pt)) {
|
|
ret = PTR_ERR(pt);
|
|
goto unwind_out;
|
|
}
|
|
|
|
fill32_px(pt, vm->scratch[0].encode);
|
|
|
|
spin_lock(&pd->lock);
|
|
if (pd->entry[pde] == &vm->scratch[1]) {
|
|
pd->entry[pde] = pt;
|
|
if (i915_vma_is_bound(ppgtt->vma,
|
|
I915_VMA_GLOBAL_BIND)) {
|
|
gen6_write_pde(ppgtt, pde, pt);
|
|
flush = true;
|
|
}
|
|
} else {
|
|
alloc = pt;
|
|
pt = pd->entry[pde];
|
|
}
|
|
}
|
|
|
|
atomic_add(count, &pt->used);
|
|
}
|
|
spin_unlock(&pd->lock);
|
|
|
|
if (flush) {
|
|
mark_tlbs_dirty(&ppgtt->base);
|
|
gen6_ggtt_invalidate(vm->gt->ggtt);
|
|
}
|
|
|
|
goto out;
|
|
|
|
unwind_out:
|
|
gen6_ppgtt_clear_range(vm, from, start - from);
|
|
out:
|
|
if (alloc)
|
|
free_px(vm, alloc);
|
|
intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
|
|
return ret;
|
|
}
|
|
|
|
static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
|
|
{
|
|
struct i915_address_space * const vm = &ppgtt->base.vm;
|
|
struct i915_page_directory * const pd = ppgtt->base.pd;
|
|
int ret;
|
|
|
|
ret = setup_scratch_page(vm, __GFP_HIGHMEM);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vm->scratch[0].encode =
|
|
vm->pte_encode(px_dma(&vm->scratch[0]),
|
|
I915_CACHE_NONE, PTE_READ_ONLY);
|
|
|
|
if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[1])))) {
|
|
cleanup_scratch_page(vm);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
fill32_px(&vm->scratch[1], vm->scratch[0].encode);
|
|
memset_p(pd->entry, &vm->scratch[1], I915_PDES);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
|
|
{
|
|
struct i915_page_directory * const pd = ppgtt->base.pd;
|
|
struct i915_page_dma * const scratch =
|
|
px_base(&ppgtt->base.vm.scratch[1]);
|
|
struct i915_page_table *pt;
|
|
u32 pde;
|
|
|
|
gen6_for_all_pdes(pt, pd, pde)
|
|
if (px_base(pt) != scratch)
|
|
free_px(&ppgtt->base.vm, pt);
|
|
}
|
|
|
|
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
|
|
{
|
|
struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
|
|
struct drm_i915_private *i915 = vm->i915;
|
|
|
|
/* FIXME remove the struct_mutex to bring the locking under control */
|
|
mutex_lock(&i915->drm.struct_mutex);
|
|
i915_vma_destroy(ppgtt->vma);
|
|
mutex_unlock(&i915->drm.struct_mutex);
|
|
|
|
gen6_ppgtt_free_pd(ppgtt);
|
|
free_scratch(vm);
|
|
kfree(ppgtt->base.pd);
|
|
}
|
|
|
|
static int pd_vma_set_pages(struct i915_vma *vma)
|
|
{
|
|
vma->pages = ERR_PTR(-ENODEV);
|
|
return 0;
|
|
}
|
|
|
|
static void pd_vma_clear_pages(struct i915_vma *vma)
|
|
{
|
|
GEM_BUG_ON(!vma->pages);
|
|
|
|
vma->pages = NULL;
|
|
}
|
|
|
|
static int pd_vma_bind(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 unused)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
|
|
struct gen6_ppgtt *ppgtt = vma->private;
|
|
u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
|
|
struct i915_page_table *pt;
|
|
unsigned int pde;
|
|
|
|
px_base(ppgtt->base.pd)->ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
|
|
ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
|
|
|
|
gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
|
|
gen6_write_pde(ppgtt, pde, pt);
|
|
|
|
mark_tlbs_dirty(&ppgtt->base);
|
|
gen6_ggtt_invalidate(ggtt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pd_vma_unbind(struct i915_vma *vma)
|
|
{
|
|
struct gen6_ppgtt *ppgtt = vma->private;
|
|
struct i915_page_directory * const pd = ppgtt->base.pd;
|
|
struct i915_page_dma * const scratch =
|
|
px_base(&ppgtt->base.vm.scratch[1]);
|
|
struct i915_page_table *pt;
|
|
unsigned int pde;
|
|
|
|
if (!ppgtt->scan_for_unused_pt)
|
|
return;
|
|
|
|
/* Free all no longer used page tables */
|
|
gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
|
|
if (px_base(pt) == scratch || atomic_read(&pt->used))
|
|
continue;
|
|
|
|
free_px(&ppgtt->base.vm, pt);
|
|
pd->entry[pde] = scratch;
|
|
}
|
|
|
|
ppgtt->scan_for_unused_pt = false;
|
|
}
|
|
|
|
static const struct i915_vma_ops pd_vma_ops = {
|
|
.set_pages = pd_vma_set_pages,
|
|
.clear_pages = pd_vma_clear_pages,
|
|
.bind_vma = pd_vma_bind,
|
|
.unbind_vma = pd_vma_unbind,
|
|
};
|
|
|
|
static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
|
|
{
|
|
struct drm_i915_private *i915 = ppgtt->base.vm.i915;
|
|
struct i915_ggtt *ggtt = ppgtt->base.vm.gt->ggtt;
|
|
struct i915_vma *vma;
|
|
|
|
GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
|
|
GEM_BUG_ON(size > ggtt->vm.total);
|
|
|
|
vma = i915_vma_alloc();
|
|
if (!vma)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
i915_active_init(i915, &vma->active, NULL, NULL);
|
|
|
|
vma->vm = &ggtt->vm;
|
|
vma->ops = &pd_vma_ops;
|
|
vma->private = ppgtt;
|
|
|
|
vma->size = size;
|
|
vma->fence_size = size;
|
|
vma->flags = I915_VMA_GGTT;
|
|
vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
|
|
|
|
INIT_LIST_HEAD(&vma->obj_link);
|
|
INIT_LIST_HEAD(&vma->closed_link);
|
|
|
|
mutex_lock(&vma->vm->mutex);
|
|
list_add(&vma->vm_link, &vma->vm->unbound_list);
|
|
mutex_unlock(&vma->vm->mutex);
|
|
|
|
return vma;
|
|
}
|
|
|
|
int gen6_ppgtt_pin(struct i915_ppgtt *base)
|
|
{
|
|
struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
|
|
int err;
|
|
|
|
GEM_BUG_ON(ppgtt->base.vm.closed);
|
|
|
|
/*
|
|
* Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
|
|
* which will be pinned into every active context.
|
|
* (When vma->pin_count becomes atomic, I expect we will naturally
|
|
* need a larger, unpacked, type and kill this redundancy.)
|
|
*/
|
|
if (ppgtt->pin_count++)
|
|
return 0;
|
|
|
|
/*
|
|
* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
|
|
* allocator works in address space sizes, so it's multiplied by page
|
|
* size. We allocate at the top of the GTT to avoid fragmentation.
|
|
*/
|
|
err = i915_vma_pin(ppgtt->vma,
|
|
0, GEN6_PD_ALIGN,
|
|
PIN_GLOBAL | PIN_HIGH);
|
|
if (err)
|
|
goto unpin;
|
|
|
|
return 0;
|
|
|
|
unpin:
|
|
ppgtt->pin_count = 0;
|
|
return err;
|
|
}
|
|
|
|
void gen6_ppgtt_unpin(struct i915_ppgtt *base)
|
|
{
|
|
struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
|
|
|
|
GEM_BUG_ON(!ppgtt->pin_count);
|
|
if (--ppgtt->pin_count)
|
|
return;
|
|
|
|
i915_vma_unpin(ppgtt->vma);
|
|
}
|
|
|
|
void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
|
|
{
|
|
struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
|
|
|
|
if (!ppgtt->pin_count)
|
|
return;
|
|
|
|
ppgtt->pin_count = 0;
|
|
i915_vma_unpin(ppgtt->vma);
|
|
}
|
|
|
|
static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
|
|
{
|
|
struct i915_ggtt * const ggtt = &i915->ggtt;
|
|
struct gen6_ppgtt *ppgtt;
|
|
int err;
|
|
|
|
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
|
|
if (!ppgtt)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ppgtt_init(&ppgtt->base, &i915->gt);
|
|
ppgtt->base.vm.top = 1;
|
|
|
|
ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
|
|
ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
|
|
ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
|
|
ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
|
|
|
|
ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
|
|
|
|
ppgtt->base.pd = __alloc_pd(sizeof(*ppgtt->base.pd));
|
|
if (!ppgtt->base.pd) {
|
|
err = -ENOMEM;
|
|
goto err_free;
|
|
}
|
|
|
|
err = gen6_ppgtt_init_scratch(ppgtt);
|
|
if (err)
|
|
goto err_pd;
|
|
|
|
ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
|
|
if (IS_ERR(ppgtt->vma)) {
|
|
err = PTR_ERR(ppgtt->vma);
|
|
goto err_scratch;
|
|
}
|
|
|
|
return &ppgtt->base;
|
|
|
|
err_scratch:
|
|
free_scratch(&ppgtt->base.vm);
|
|
err_pd:
|
|
kfree(ppgtt->base.pd);
|
|
err_free:
|
|
kfree(ppgtt);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void gtt_write_workarounds(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
|
|
/* This function is for gtt related workarounds. This function is
|
|
* called on driver load and after a GPU reset, so you can place
|
|
* workarounds here even if they get overwritten by GPU reset.
|
|
*/
|
|
/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
|
|
if (IS_BROADWELL(i915))
|
|
intel_uncore_write(uncore,
|
|
GEN8_L3_LRA_1_GPGPU,
|
|
GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
|
|
else if (IS_CHERRYVIEW(i915))
|
|
intel_uncore_write(uncore,
|
|
GEN8_L3_LRA_1_GPGPU,
|
|
GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
|
|
else if (IS_GEN9_LP(i915))
|
|
intel_uncore_write(uncore,
|
|
GEN8_L3_LRA_1_GPGPU,
|
|
GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
|
|
else if (INTEL_GEN(i915) >= 9)
|
|
intel_uncore_write(uncore,
|
|
GEN8_L3_LRA_1_GPGPU,
|
|
GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
|
|
|
|
/*
|
|
* To support 64K PTEs we need to first enable the use of the
|
|
* Intermediate-Page-Size(IPS) bit of the PDE field via some magical
|
|
* mmio, otherwise the page-walker will simply ignore the IPS bit. This
|
|
* shouldn't be needed after GEN10.
|
|
*
|
|
* 64K pages were first introduced from BDW+, although technically they
|
|
* only *work* from gen9+. For pre-BDW we instead have the option for
|
|
* 32K pages, but we don't currently have any support for it in our
|
|
* driver.
|
|
*/
|
|
if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
|
|
INTEL_GEN(i915) <= 10)
|
|
intel_uncore_rmw(uncore,
|
|
GEN8_GAMW_ECO_DEV_RW_IA,
|
|
0,
|
|
GAMW_ECO_ENABLE_64K_IPS_FIELD);
|
|
|
|
if (IS_GEN_RANGE(i915, 8, 11)) {
|
|
bool can_use_gtt_cache = true;
|
|
|
|
/*
|
|
* According to the BSpec if we use 2M/1G pages then we also
|
|
* need to disable the GTT cache. At least on BDW we can see
|
|
* visual corruption when using 2M pages, and not disabling the
|
|
* GTT cache.
|
|
*/
|
|
if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
|
|
can_use_gtt_cache = false;
|
|
|
|
/* WaGttCachingOffByDefault */
|
|
intel_uncore_write(uncore,
|
|
HSW_GTT_CACHE_EN,
|
|
can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
|
|
WARN_ON_ONCE(can_use_gtt_cache &&
|
|
intel_uncore_read(uncore,
|
|
HSW_GTT_CACHE_EN) == 0);
|
|
}
|
|
}
|
|
|
|
int i915_ppgtt_init_hw(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
|
|
gtt_write_workarounds(gt);
|
|
|
|
if (IS_GEN(i915, 6))
|
|
gen6_ppgtt_enable(gt);
|
|
else if (IS_GEN(i915, 7))
|
|
gen7_ppgtt_enable(gt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct i915_ppgtt *
|
|
__ppgtt_create(struct drm_i915_private *i915)
|
|
{
|
|
if (INTEL_GEN(i915) < 8)
|
|
return gen6_ppgtt_create(i915);
|
|
else
|
|
return gen8_ppgtt_create(i915);
|
|
}
|
|
|
|
struct i915_ppgtt *
|
|
i915_ppgtt_create(struct drm_i915_private *i915)
|
|
{
|
|
struct i915_ppgtt *ppgtt;
|
|
|
|
ppgtt = __ppgtt_create(i915);
|
|
if (IS_ERR(ppgtt))
|
|
return ppgtt;
|
|
|
|
trace_i915_ppgtt_create(&ppgtt->vm);
|
|
|
|
return ppgtt;
|
|
}
|
|
|
|
/* Certain Gen5 chipsets require require idling the GPU before
|
|
* unmapping anything from the GTT when VT-d is enabled.
|
|
*/
|
|
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* Query intel_iommu to see if we need the workaround. Presumably that
|
|
* was loaded first.
|
|
*/
|
|
return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
|
|
}
|
|
|
|
static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
|
|
{
|
|
struct drm_i915_private *i915 = ggtt->vm.i915;
|
|
|
|
/* Don't bother messing with faults pre GEN6 as we have little
|
|
* documentation supporting that it's a good idea.
|
|
*/
|
|
if (INTEL_GEN(i915) < 6)
|
|
return;
|
|
|
|
intel_gt_check_and_clear_faults(ggtt->vm.gt);
|
|
|
|
ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
|
|
|
|
ggtt->invalidate(ggtt);
|
|
}
|
|
|
|
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
|
|
{
|
|
ggtt_suspend_mappings(&i915->ggtt);
|
|
}
|
|
|
|
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
|
|
struct sg_table *pages)
|
|
{
|
|
do {
|
|
if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
|
|
pages->sgl, pages->nents,
|
|
PCI_DMA_BIDIRECTIONAL,
|
|
DMA_ATTR_NO_WARN))
|
|
return 0;
|
|
|
|
/*
|
|
* If the DMA remap fails, one cause can be that we have
|
|
* too many objects pinned in a small remapping table,
|
|
* such as swiotlb. Incrementally purge all other objects and
|
|
* try again - if there are no more pages to remove from
|
|
* the DMA remapper, i915_gem_shrink will return 0.
|
|
*/
|
|
GEM_BUG_ON(obj->mm.pages == pages);
|
|
} while (i915_gem_shrink(to_i915(obj->base.dev),
|
|
obj->base.size >> PAGE_SHIFT, NULL,
|
|
I915_SHRINK_BOUND |
|
|
I915_SHRINK_UNBOUND));
|
|
|
|
return -ENOSPC;
|
|
}
|
|
|
|
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
|
|
{
|
|
writeq(pte, addr);
|
|
}
|
|
|
|
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
|
|
dma_addr_t addr,
|
|
u64 offset,
|
|
enum i915_cache_level level,
|
|
u32 unused)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
|
|
gen8_pte_t __iomem *pte =
|
|
(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
|
|
|
|
gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
|
|
|
|
ggtt->invalidate(ggtt);
|
|
}
|
|
|
|
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
|
|
struct i915_vma *vma,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
|
|
struct sgt_iter sgt_iter;
|
|
gen8_pte_t __iomem *gtt_entries;
|
|
const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
|
|
dma_addr_t addr;
|
|
|
|
/*
|
|
* Note that we ignore PTE_READ_ONLY here. The caller must be careful
|
|
* not to allow the user to override access to a read only page.
|
|
*/
|
|
|
|
gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
|
|
gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
|
|
for_each_sgt_dma(addr, sgt_iter, vma->pages)
|
|
gen8_set_pte(gtt_entries++, pte_encode | addr);
|
|
|
|
/*
|
|
* We want to flush the TLBs only after we're certain all the PTE
|
|
* updates have finished.
|
|
*/
|
|
ggtt->invalidate(ggtt);
|
|
}
|
|
|
|
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
|
|
dma_addr_t addr,
|
|
u64 offset,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
|
|
gen6_pte_t __iomem *pte =
|
|
(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
|
|
|
|
iowrite32(vm->pte_encode(addr, level, flags), pte);
|
|
|
|
ggtt->invalidate(ggtt);
|
|
}
|
|
|
|
/*
|
|
* Binds an object into the global gtt with the specified cache level. The object
|
|
* will be accessible to the GPU via commands whose operands reference offsets
|
|
* within the global GTT as well as accessible by the GPU through the GMADR
|
|
* mapped BAR (dev_priv->mm.gtt->gtt).
|
|
*/
|
|
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
|
|
struct i915_vma *vma,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
|
|
gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
|
|
unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
|
|
struct sgt_iter iter;
|
|
dma_addr_t addr;
|
|
for_each_sgt_dma(addr, iter, vma->pages)
|
|
iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
|
|
|
|
/*
|
|
* We want to flush the TLBs only after we're certain all the PTE
|
|
* updates have finished.
|
|
*/
|
|
ggtt->invalidate(ggtt);
|
|
}
|
|
|
|
static void nop_clear_range(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
}
|
|
|
|
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
|
|
unsigned first_entry = start / I915_GTT_PAGE_SIZE;
|
|
unsigned num_entries = length / I915_GTT_PAGE_SIZE;
|
|
const gen8_pte_t scratch_pte = vm->scratch[0].encode;
|
|
gen8_pte_t __iomem *gtt_base =
|
|
(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
|
|
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
|
|
int i;
|
|
|
|
if (WARN(num_entries > max_entries,
|
|
"First entry = %d; Num entries = %d (max=%d)\n",
|
|
first_entry, num_entries, max_entries))
|
|
num_entries = max_entries;
|
|
|
|
for (i = 0; i < num_entries; i++)
|
|
gen8_set_pte(>t_base[i], scratch_pte);
|
|
}
|
|
|
|
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->i915;
|
|
|
|
/*
|
|
* Make sure the internal GAM fifo has been cleared of all GTT
|
|
* writes before exiting stop_machine(). This guarantees that
|
|
* any aperture accesses waiting to start in another process
|
|
* cannot back up behind the GTT writes causing a hang.
|
|
* The register can be any arbitrary GAM register.
|
|
*/
|
|
POSTING_READ(GFX_FLSH_CNTL_GEN6);
|
|
}
|
|
|
|
struct insert_page {
|
|
struct i915_address_space *vm;
|
|
dma_addr_t addr;
|
|
u64 offset;
|
|
enum i915_cache_level level;
|
|
};
|
|
|
|
static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
|
|
{
|
|
struct insert_page *arg = _arg;
|
|
|
|
gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
|
|
bxt_vtd_ggtt_wa(arg->vm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
|
|
dma_addr_t addr,
|
|
u64 offset,
|
|
enum i915_cache_level level,
|
|
u32 unused)
|
|
{
|
|
struct insert_page arg = { vm, addr, offset, level };
|
|
|
|
stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
|
|
}
|
|
|
|
struct insert_entries {
|
|
struct i915_address_space *vm;
|
|
struct i915_vma *vma;
|
|
enum i915_cache_level level;
|
|
u32 flags;
|
|
};
|
|
|
|
static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
|
|
{
|
|
struct insert_entries *arg = _arg;
|
|
|
|
gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
|
|
bxt_vtd_ggtt_wa(arg->vm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
|
|
struct i915_vma *vma,
|
|
enum i915_cache_level level,
|
|
u32 flags)
|
|
{
|
|
struct insert_entries arg = { vm, vma, level, flags };
|
|
|
|
stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
|
|
}
|
|
|
|
struct clear_range {
|
|
struct i915_address_space *vm;
|
|
u64 start;
|
|
u64 length;
|
|
};
|
|
|
|
static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
|
|
{
|
|
struct clear_range *arg = _arg;
|
|
|
|
gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
|
|
bxt_vtd_ggtt_wa(arg->vm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
|
|
u64 start,
|
|
u64 length)
|
|
{
|
|
struct clear_range arg = { vm, start, length };
|
|
|
|
stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
|
|
}
|
|
|
|
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
|
|
unsigned first_entry = start / I915_GTT_PAGE_SIZE;
|
|
unsigned num_entries = length / I915_GTT_PAGE_SIZE;
|
|
gen6_pte_t scratch_pte, __iomem *gtt_base =
|
|
(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
|
|
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
|
|
int i;
|
|
|
|
if (WARN(num_entries > max_entries,
|
|
"First entry = %d; Num entries = %d (max=%d)\n",
|
|
first_entry, num_entries, max_entries))
|
|
num_entries = max_entries;
|
|
|
|
scratch_pte = vm->scratch[0].encode;
|
|
for (i = 0; i < num_entries; i++)
|
|
iowrite32(scratch_pte, >t_base[i]);
|
|
}
|
|
|
|
static void i915_ggtt_insert_page(struct i915_address_space *vm,
|
|
dma_addr_t addr,
|
|
u64 offset,
|
|
enum i915_cache_level cache_level,
|
|
u32 unused)
|
|
{
|
|
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
|
|
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
|
|
|
|
intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
|
|
}
|
|
|
|
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
|
|
struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 unused)
|
|
{
|
|
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
|
|
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
|
|
|
|
intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
|
|
flags);
|
|
}
|
|
|
|
static void i915_ggtt_clear_range(struct i915_address_space *vm,
|
|
u64 start, u64 length)
|
|
{
|
|
intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
|
|
}
|
|
|
|
static int ggtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
struct drm_i915_private *i915 = vma->vm->i915;
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
intel_wakeref_t wakeref;
|
|
u32 pte_flags;
|
|
|
|
/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
|
|
pte_flags = 0;
|
|
if (i915_gem_object_is_readonly(obj))
|
|
pte_flags |= PTE_READ_ONLY;
|
|
|
|
with_intel_runtime_pm(&i915->runtime_pm, wakeref)
|
|
vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
|
|
|
|
vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
|
|
|
|
/*
|
|
* Without aliasing PPGTT there's no difference between
|
|
* GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
|
|
* upgrade to both bound if we bind either to avoid double-binding.
|
|
*/
|
|
vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ggtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
struct drm_i915_private *i915 = vma->vm->i915;
|
|
intel_wakeref_t wakeref;
|
|
|
|
with_intel_runtime_pm(&i915->runtime_pm, wakeref)
|
|
vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
|
|
}
|
|
|
|
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
struct drm_i915_private *i915 = vma->vm->i915;
|
|
u32 pte_flags;
|
|
int ret;
|
|
|
|
/* Currently applicable only to VLV */
|
|
pte_flags = 0;
|
|
if (i915_gem_object_is_readonly(vma->obj))
|
|
pte_flags |= PTE_READ_ONLY;
|
|
|
|
if (flags & I915_VMA_LOCAL_BIND) {
|
|
struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
|
|
|
|
if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
|
|
ret = alias->vm.allocate_va_range(&alias->vm,
|
|
vma->node.start,
|
|
vma->size);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
alias->vm.insert_entries(&alias->vm, vma,
|
|
cache_level, pte_flags);
|
|
}
|
|
|
|
if (flags & I915_VMA_GLOBAL_BIND) {
|
|
intel_wakeref_t wakeref;
|
|
|
|
with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
|
|
vma->vm->insert_entries(vma->vm, vma,
|
|
cache_level, pte_flags);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
struct drm_i915_private *i915 = vma->vm->i915;
|
|
|
|
if (vma->flags & I915_VMA_GLOBAL_BIND) {
|
|
struct i915_address_space *vm = vma->vm;
|
|
intel_wakeref_t wakeref;
|
|
|
|
with_intel_runtime_pm(&i915->runtime_pm, wakeref)
|
|
vm->clear_range(vm, vma->node.start, vma->size);
|
|
}
|
|
|
|
if (vma->flags & I915_VMA_LOCAL_BIND) {
|
|
struct i915_address_space *vm =
|
|
&i915_vm_to_ggtt(vma->vm)->alias->vm;
|
|
|
|
vm->clear_range(vm, vma->node.start, vma->size);
|
|
}
|
|
}
|
|
|
|
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
|
|
struct sg_table *pages)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
|
|
struct device *kdev = &dev_priv->drm.pdev->dev;
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
|
|
if (unlikely(ggtt->do_idle_maps)) {
|
|
if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
|
|
DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
|
|
/* Wait a bit, in hopes it avoids the hang */
|
|
udelay(10);
|
|
}
|
|
}
|
|
|
|
dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
|
|
}
|
|
|
|
static int ggtt_set_pages(struct i915_vma *vma)
|
|
{
|
|
int ret;
|
|
|
|
GEM_BUG_ON(vma->pages);
|
|
|
|
ret = i915_get_ggtt_vma_pages(vma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vma->page_sizes = vma->obj->mm.page_sizes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
|
|
unsigned long color,
|
|
u64 *start,
|
|
u64 *end)
|
|
{
|
|
if (node->allocated && node->color != color)
|
|
*start += I915_GTT_PAGE_SIZE;
|
|
|
|
/* Also leave a space between the unallocated reserved node after the
|
|
* GTT and any objects within the GTT, i.e. we use the color adjustment
|
|
* to insert a guard page to prevent prefetches crossing over the
|
|
* GTT boundary.
|
|
*/
|
|
node = list_next_entry(node, node_list);
|
|
if (node->color != color)
|
|
*end -= I915_GTT_PAGE_SIZE;
|
|
}
|
|
|
|
static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
|
|
{
|
|
struct i915_ppgtt *ppgtt;
|
|
int err;
|
|
|
|
ppgtt = i915_ppgtt_create(ggtt->vm.i915);
|
|
if (IS_ERR(ppgtt))
|
|
return PTR_ERR(ppgtt);
|
|
|
|
if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
|
|
err = -ENODEV;
|
|
goto err_ppgtt;
|
|
}
|
|
|
|
/*
|
|
* Note we only pre-allocate as far as the end of the global
|
|
* GTT. On 48b / 4-level page-tables, the difference is very,
|
|
* very significant! We have to preallocate as GVT/vgpu does
|
|
* not like the page directory disappearing.
|
|
*/
|
|
err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
|
|
if (err)
|
|
goto err_ppgtt;
|
|
|
|
ggtt->alias = ppgtt;
|
|
|
|
GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
|
|
ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
|
|
|
|
GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
|
|
ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
|
|
|
|
return 0;
|
|
|
|
err_ppgtt:
|
|
i915_vm_put(&ppgtt->vm);
|
|
return err;
|
|
}
|
|
|
|
static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
|
|
{
|
|
struct drm_i915_private *i915 = ggtt->vm.i915;
|
|
struct i915_ppgtt *ppgtt;
|
|
|
|
mutex_lock(&i915->drm.struct_mutex);
|
|
|
|
ppgtt = fetch_and_zero(&ggtt->alias);
|
|
if (!ppgtt)
|
|
goto out;
|
|
|
|
i915_vm_put(&ppgtt->vm);
|
|
|
|
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
|
|
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
|
|
|
|
out:
|
|
mutex_unlock(&i915->drm.struct_mutex);
|
|
}
|
|
|
|
static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
|
|
{
|
|
u64 size;
|
|
int ret;
|
|
|
|
if (!USES_GUC(ggtt->vm.i915))
|
|
return 0;
|
|
|
|
GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
|
|
size = ggtt->vm.total - GUC_GGTT_TOP;
|
|
|
|
ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
|
|
GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
|
|
PIN_NOEVICT);
|
|
if (ret)
|
|
DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
|
|
{
|
|
if (drm_mm_node_allocated(&ggtt->uc_fw))
|
|
drm_mm_remove_node(&ggtt->uc_fw);
|
|
}
|
|
|
|
static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
|
|
{
|
|
ggtt_release_guc_top(ggtt);
|
|
drm_mm_remove_node(&ggtt->error_capture);
|
|
}
|
|
|
|
static int init_ggtt(struct i915_ggtt *ggtt)
|
|
{
|
|
/* Let GEM Manage all of the aperture.
|
|
*
|
|
* However, leave one page at the end still bound to the scratch page.
|
|
* There are a number of places where the hardware apparently prefetches
|
|
* past the end of the object, and we've seen multiple hangs with the
|
|
* GPU head pointer stuck in a batchbuffer bound at the last page of the
|
|
* aperture. One page should be enough to keep any prefetching inside
|
|
* of the aperture.
|
|
*/
|
|
unsigned long hole_start, hole_end;
|
|
struct drm_mm_node *entry;
|
|
int ret;
|
|
|
|
/*
|
|
* GuC requires all resources that we're sharing with it to be placed in
|
|
* non-WOPCM memory. If GuC is not present or not in use we still need a
|
|
* small bias as ring wraparound at offset 0 sometimes hangs. No idea
|
|
* why.
|
|
*/
|
|
ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
|
|
intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
|
|
|
|
ret = intel_vgt_balloon(ggtt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Reserve a mappable slot for our lockless error capture */
|
|
ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
|
|
PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
|
|
0, ggtt->mappable_end,
|
|
DRM_MM_INSERT_LOW);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* The upper portion of the GuC address space has a sizeable hole
|
|
* (several MB) that is inaccessible by GuC. Reserve this range within
|
|
* GGTT as it can comfortably hold GuC/HuC firmware images.
|
|
*/
|
|
ret = ggtt_reserve_guc_top(ggtt);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/* Clear any non-preallocated blocks */
|
|
drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
|
|
DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
|
|
hole_start, hole_end);
|
|
ggtt->vm.clear_range(&ggtt->vm, hole_start,
|
|
hole_end - hole_start);
|
|
}
|
|
|
|
/* And finally clear the reserved guard page */
|
|
ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
cleanup_init_ggtt(ggtt);
|
|
return ret;
|
|
}
|
|
|
|
int i915_init_ggtt(struct drm_i915_private *i915)
|
|
{
|
|
int ret;
|
|
|
|
ret = init_ggtt(&i915->ggtt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
|
|
ret = init_aliasing_ppgtt(&i915->ggtt);
|
|
if (ret)
|
|
cleanup_init_ggtt(&i915->ggtt);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
|
|
{
|
|
struct drm_i915_private *i915 = ggtt->vm.i915;
|
|
struct i915_vma *vma, *vn;
|
|
|
|
ggtt->vm.closed = true;
|
|
|
|
rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
|
|
flush_workqueue(i915->wq);
|
|
|
|
mutex_lock(&i915->drm.struct_mutex);
|
|
|
|
list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
|
|
WARN_ON(i915_vma_unbind(vma));
|
|
|
|
if (drm_mm_node_allocated(&ggtt->error_capture))
|
|
drm_mm_remove_node(&ggtt->error_capture);
|
|
|
|
ggtt_release_guc_top(ggtt);
|
|
|
|
if (drm_mm_initialized(&ggtt->vm.mm)) {
|
|
intel_vgt_deballoon(ggtt);
|
|
i915_address_space_fini(&ggtt->vm);
|
|
}
|
|
|
|
ggtt->vm.cleanup(&ggtt->vm);
|
|
|
|
mutex_unlock(&i915->drm.struct_mutex);
|
|
|
|
arch_phys_wc_del(ggtt->mtrr);
|
|
io_mapping_fini(&ggtt->iomap);
|
|
}
|
|
|
|
/**
|
|
* i915_ggtt_driver_release - Clean up GGTT hardware initialization
|
|
* @i915: i915 device
|
|
*/
|
|
void i915_ggtt_driver_release(struct drm_i915_private *i915)
|
|
{
|
|
struct pagevec *pvec;
|
|
|
|
fini_aliasing_ppgtt(&i915->ggtt);
|
|
|
|
ggtt_cleanup_hw(&i915->ggtt);
|
|
|
|
pvec = &i915->mm.wc_stash.pvec;
|
|
if (pvec->nr) {
|
|
set_pages_array_wb(pvec->pages, pvec->nr);
|
|
__pagevec_release(pvec);
|
|
}
|
|
|
|
i915_gem_cleanup_stolen(i915);
|
|
}
|
|
|
|
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
|
|
{
|
|
snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
|
|
snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
|
|
return snb_gmch_ctl << 20;
|
|
}
|
|
|
|
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
|
|
{
|
|
bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
|
|
bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
|
|
if (bdw_gmch_ctl)
|
|
bdw_gmch_ctl = 1 << bdw_gmch_ctl;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
|
|
if (bdw_gmch_ctl > 4)
|
|
bdw_gmch_ctl = 4;
|
|
#endif
|
|
|
|
return bdw_gmch_ctl << 20;
|
|
}
|
|
|
|
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
|
|
{
|
|
gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
|
|
gmch_ctrl &= SNB_GMCH_GGMS_MASK;
|
|
|
|
if (gmch_ctrl)
|
|
return 1 << (20 + gmch_ctrl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
|
|
{
|
|
struct drm_i915_private *dev_priv = ggtt->vm.i915;
|
|
struct pci_dev *pdev = dev_priv->drm.pdev;
|
|
phys_addr_t phys_addr;
|
|
int ret;
|
|
|
|
/* For Modern GENs the PTEs and register space are split in the BAR */
|
|
phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
|
|
|
|
/*
|
|
* On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
|
|
* will be dropped. For WC mappings in general we have 64 byte burst
|
|
* writes when the WC buffer is flushed, so we can't use it, but have to
|
|
* resort to an uncached mapping. The WC issue is easily caught by the
|
|
* readback check when writing GTT PTE entries.
|
|
*/
|
|
if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
|
|
ggtt->gsm = ioremap_nocache(phys_addr, size);
|
|
else
|
|
ggtt->gsm = ioremap_wc(phys_addr, size);
|
|
if (!ggtt->gsm) {
|
|
DRM_ERROR("Failed to map the ggtt page table\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
|
|
if (ret) {
|
|
DRM_ERROR("Scratch setup failed\n");
|
|
/* iounmap will also get called at remove, but meh */
|
|
iounmap(ggtt->gsm);
|
|
return ret;
|
|
}
|
|
|
|
ggtt->vm.scratch[0].encode =
|
|
ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
|
|
I915_CACHE_NONE, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cnl_setup_private_ppat(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_WB | GEN8_PPAT_LLC);
|
|
I915_WRITE(GEN10_PAT_INDEX(1), GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
|
|
I915_WRITE(GEN10_PAT_INDEX(2), GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
|
|
I915_WRITE(GEN10_PAT_INDEX(3), GEN8_PPAT_UC);
|
|
I915_WRITE(GEN10_PAT_INDEX(4), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
|
|
I915_WRITE(GEN10_PAT_INDEX(5), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
|
|
I915_WRITE(GEN10_PAT_INDEX(6), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
|
|
I915_WRITE(GEN10_PAT_INDEX(7), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
|
|
}
|
|
|
|
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
|
|
* bits. When using advanced contexts each context stores its own PAT, but
|
|
* writing this data shouldn't be harmful even in those cases. */
|
|
static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
|
|
{
|
|
u64 pat;
|
|
|
|
pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
|
|
GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
|
|
GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
|
|
GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
|
|
GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
|
|
GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
|
|
GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
|
|
GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
|
|
|
|
I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
|
|
I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
|
|
}
|
|
|
|
static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
|
|
{
|
|
u64 pat;
|
|
|
|
/*
|
|
* Map WB on BDW to snooped on CHV.
|
|
*
|
|
* Only the snoop bit has meaning for CHV, the rest is
|
|
* ignored.
|
|
*
|
|
* The hardware will never snoop for certain types of accesses:
|
|
* - CPU GTT (GMADR->GGTT->no snoop->memory)
|
|
* - PPGTT page tables
|
|
* - some other special cycles
|
|
*
|
|
* As with BDW, we also need to consider the following for GT accesses:
|
|
* "For GGTT, there is NO pat_sel[2:0] from the entry,
|
|
* so RTL will always use the value corresponding to
|
|
* pat_sel = 000".
|
|
* Which means we must set the snoop bit in PAT entry 0
|
|
* in order to keep the global status page working.
|
|
*/
|
|
|
|
pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(1, 0) |
|
|
GEN8_PPAT(2, 0) |
|
|
GEN8_PPAT(3, 0) |
|
|
GEN8_PPAT(4, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(5, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(6, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(7, CHV_PPAT_SNOOP);
|
|
|
|
I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
|
|
I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
|
|
}
|
|
|
|
static void gen6_gmch_remove(struct i915_address_space *vm)
|
|
{
|
|
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
|
|
|
|
iounmap(ggtt->gsm);
|
|
cleanup_scratch_page(vm);
|
|
}
|
|
|
|
static void setup_private_pat(struct drm_i915_private *dev_priv)
|
|
{
|
|
GEM_BUG_ON(INTEL_GEN(dev_priv) < 8);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 10)
|
|
cnl_setup_private_ppat(dev_priv);
|
|
else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
|
|
chv_setup_private_ppat(dev_priv);
|
|
else
|
|
bdw_setup_private_ppat(dev_priv);
|
|
}
|
|
|
|
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
|
|
{
|
|
struct drm_i915_private *dev_priv = ggtt->vm.i915;
|
|
struct pci_dev *pdev = dev_priv->drm.pdev;
|
|
unsigned int size;
|
|
u16 snb_gmch_ctl;
|
|
int err;
|
|
|
|
/* TODO: We're not aware of mappable constraints on gen8 yet */
|
|
ggtt->gmadr =
|
|
(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
|
|
pci_resource_len(pdev, 2));
|
|
ggtt->mappable_end = resource_size(&ggtt->gmadr);
|
|
|
|
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
|
|
if (!err)
|
|
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
|
|
if (err)
|
|
DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
|
|
|
|
pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
size = chv_get_total_gtt_size(snb_gmch_ctl);
|
|
else
|
|
size = gen8_get_total_gtt_size(snb_gmch_ctl);
|
|
|
|
ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
|
|
ggtt->vm.cleanup = gen6_gmch_remove;
|
|
ggtt->vm.insert_page = gen8_ggtt_insert_page;
|
|
ggtt->vm.clear_range = nop_clear_range;
|
|
if (intel_scanout_needs_vtd_wa(dev_priv))
|
|
ggtt->vm.clear_range = gen8_ggtt_clear_range;
|
|
|
|
ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
|
|
|
|
/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
|
|
if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
|
|
IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
|
|
ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
|
|
ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
|
|
if (ggtt->vm.clear_range != nop_clear_range)
|
|
ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
|
|
}
|
|
|
|
ggtt->invalidate = gen6_ggtt_invalidate;
|
|
|
|
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
|
|
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
|
|
ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
|
|
ggtt->vm.vma_ops.clear_pages = clear_pages;
|
|
|
|
ggtt->vm.pte_encode = gen8_pte_encode;
|
|
|
|
setup_private_pat(dev_priv);
|
|
|
|
return ggtt_probe_common(ggtt, size);
|
|
}
|
|
|
|
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
|
|
{
|
|
struct drm_i915_private *dev_priv = ggtt->vm.i915;
|
|
struct pci_dev *pdev = dev_priv->drm.pdev;
|
|
unsigned int size;
|
|
u16 snb_gmch_ctl;
|
|
int err;
|
|
|
|
ggtt->gmadr =
|
|
(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
|
|
pci_resource_len(pdev, 2));
|
|
ggtt->mappable_end = resource_size(&ggtt->gmadr);
|
|
|
|
/* 64/512MB is the current min/max we actually know of, but this is just
|
|
* a coarse sanity check.
|
|
*/
|
|
if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
|
|
DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
|
|
return -ENXIO;
|
|
}
|
|
|
|
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
|
|
if (!err)
|
|
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
|
|
if (err)
|
|
DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
|
|
pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
|
|
|
|
size = gen6_get_total_gtt_size(snb_gmch_ctl);
|
|
ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
|
|
|
|
ggtt->vm.clear_range = nop_clear_range;
|
|
if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
|
|
ggtt->vm.clear_range = gen6_ggtt_clear_range;
|
|
ggtt->vm.insert_page = gen6_ggtt_insert_page;
|
|
ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
|
|
ggtt->vm.cleanup = gen6_gmch_remove;
|
|
|
|
ggtt->invalidate = gen6_ggtt_invalidate;
|
|
|
|
if (HAS_EDRAM(dev_priv))
|
|
ggtt->vm.pte_encode = iris_pte_encode;
|
|
else if (IS_HASWELL(dev_priv))
|
|
ggtt->vm.pte_encode = hsw_pte_encode;
|
|
else if (IS_VALLEYVIEW(dev_priv))
|
|
ggtt->vm.pte_encode = byt_pte_encode;
|
|
else if (INTEL_GEN(dev_priv) >= 7)
|
|
ggtt->vm.pte_encode = ivb_pte_encode;
|
|
else
|
|
ggtt->vm.pte_encode = snb_pte_encode;
|
|
|
|
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
|
|
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
|
|
ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
|
|
ggtt->vm.vma_ops.clear_pages = clear_pages;
|
|
|
|
return ggtt_probe_common(ggtt, size);
|
|
}
|
|
|
|
static void i915_gmch_remove(struct i915_address_space *vm)
|
|
{
|
|
intel_gmch_remove();
|
|
}
|
|
|
|
static int i915_gmch_probe(struct i915_ggtt *ggtt)
|
|
{
|
|
struct drm_i915_private *dev_priv = ggtt->vm.i915;
|
|
phys_addr_t gmadr_base;
|
|
int ret;
|
|
|
|
ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
|
|
if (!ret) {
|
|
DRM_ERROR("failed to set up gmch\n");
|
|
return -EIO;
|
|
}
|
|
|
|
intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
|
|
|
|
ggtt->gmadr =
|
|
(struct resource) DEFINE_RES_MEM(gmadr_base,
|
|
ggtt->mappable_end);
|
|
|
|
ggtt->do_idle_maps = needs_idle_maps(dev_priv);
|
|
ggtt->vm.insert_page = i915_ggtt_insert_page;
|
|
ggtt->vm.insert_entries = i915_ggtt_insert_entries;
|
|
ggtt->vm.clear_range = i915_ggtt_clear_range;
|
|
ggtt->vm.cleanup = i915_gmch_remove;
|
|
|
|
ggtt->invalidate = gmch_ggtt_invalidate;
|
|
|
|
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
|
|
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
|
|
ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
|
|
ggtt->vm.vma_ops.clear_pages = clear_pages;
|
|
|
|
if (unlikely(ggtt->do_idle_maps))
|
|
dev_notice(dev_priv->drm.dev,
|
|
"Applying Ironlake quirks for intel_iommu\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
int ret;
|
|
|
|
ggtt->vm.gt = gt;
|
|
ggtt->vm.i915 = i915;
|
|
ggtt->vm.dma = &i915->drm.pdev->dev;
|
|
|
|
if (INTEL_GEN(i915) <= 5)
|
|
ret = i915_gmch_probe(ggtt);
|
|
else if (INTEL_GEN(i915) < 8)
|
|
ret = gen6_gmch_probe(ggtt);
|
|
else
|
|
ret = gen8_gmch_probe(ggtt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if ((ggtt->vm.total - 1) >> 32) {
|
|
DRM_ERROR("We never expected a Global GTT with more than 32bits"
|
|
" of address space! Found %lldM!\n",
|
|
ggtt->vm.total >> 20);
|
|
ggtt->vm.total = 1ULL << 32;
|
|
ggtt->mappable_end =
|
|
min_t(u64, ggtt->mappable_end, ggtt->vm.total);
|
|
}
|
|
|
|
if (ggtt->mappable_end > ggtt->vm.total) {
|
|
DRM_ERROR("mappable aperture extends past end of GGTT,"
|
|
" aperture=%pa, total=%llx\n",
|
|
&ggtt->mappable_end, ggtt->vm.total);
|
|
ggtt->mappable_end = ggtt->vm.total;
|
|
}
|
|
|
|
/* GMADR is the PCI mmio aperture into the global GTT. */
|
|
DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
|
|
DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
|
|
DRM_DEBUG_DRIVER("DSM size = %lluM\n",
|
|
(u64)resource_size(&intel_graphics_stolen_res) >> 20);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_ggtt_probe_hw - Probe GGTT hardware location
|
|
* @i915: i915 device
|
|
*/
|
|
int i915_ggtt_probe_hw(struct drm_i915_private *i915)
|
|
{
|
|
int ret;
|
|
|
|
ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (intel_vtd_active())
|
|
dev_info(i915->drm.dev, "VT-d active for gfx access\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ggtt_init_hw(struct i915_ggtt *ggtt)
|
|
{
|
|
struct drm_i915_private *i915 = ggtt->vm.i915;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&i915->drm.struct_mutex);
|
|
|
|
i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
|
|
|
|
ggtt->vm.is_ggtt = true;
|
|
|
|
/* Only VLV supports read-only GGTT mappings */
|
|
ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
|
|
|
|
if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
|
|
ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
|
|
|
|
if (!io_mapping_init_wc(&ggtt->iomap,
|
|
ggtt->gmadr.start,
|
|
ggtt->mappable_end)) {
|
|
ggtt->vm.cleanup(&ggtt->vm);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
|
|
|
|
i915_ggtt_init_fences(ggtt);
|
|
|
|
out:
|
|
mutex_unlock(&i915->drm.struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_ggtt_init_hw - Initialize GGTT hardware
|
|
* @dev_priv: i915 device
|
|
*/
|
|
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
|
|
{
|
|
int ret;
|
|
|
|
stash_init(&dev_priv->mm.wc_stash);
|
|
|
|
/* Note that we use page colouring to enforce a guard page at the
|
|
* end of the address space. This is required as the CS may prefetch
|
|
* beyond the end of the batch buffer, across the page boundary,
|
|
* and beyond the end of the GTT if we do not provide a guard.
|
|
*/
|
|
ret = ggtt_init_hw(&dev_priv->ggtt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Initialise stolen early so that we may reserve preallocated
|
|
* objects for the BIOS to KMS transition.
|
|
*/
|
|
ret = i915_gem_init_stolen(dev_priv);
|
|
if (ret)
|
|
goto out_gtt_cleanup;
|
|
|
|
return 0;
|
|
|
|
out_gtt_cleanup:
|
|
dev_priv->ggtt.vm.cleanup(&dev_priv->ggtt.vm);
|
|
return ret;
|
|
}
|
|
|
|
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
|
|
{
|
|
GEM_BUG_ON(ggtt->invalidate != gen6_ggtt_invalidate);
|
|
|
|
ggtt->invalidate = guc_ggtt_invalidate;
|
|
|
|
ggtt->invalidate(ggtt);
|
|
}
|
|
|
|
void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
|
|
{
|
|
/* XXX Temporary pardon for error unload */
|
|
if (ggtt->invalidate == gen6_ggtt_invalidate)
|
|
return;
|
|
|
|
/* We should only be called after i915_ggtt_enable_guc() */
|
|
GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
|
|
|
|
ggtt->invalidate = gen6_ggtt_invalidate;
|
|
|
|
ggtt->invalidate(ggtt);
|
|
}
|
|
|
|
static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
|
|
{
|
|
struct i915_vma *vma, *vn;
|
|
bool flush = false;
|
|
|
|
intel_gt_check_and_clear_faults(ggtt->vm.gt);
|
|
|
|
mutex_lock(&ggtt->vm.mutex);
|
|
|
|
/* First fill our portion of the GTT with scratch pages */
|
|
ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
|
|
ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
|
|
|
|
/* clflush objects bound into the GGTT and rebind them. */
|
|
list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
|
|
if (!(vma->flags & I915_VMA_GLOBAL_BIND))
|
|
continue;
|
|
|
|
mutex_unlock(&ggtt->vm.mutex);
|
|
|
|
if (!i915_vma_unbind(vma))
|
|
goto lock;
|
|
|
|
WARN_ON(i915_vma_bind(vma,
|
|
obj ? obj->cache_level : 0,
|
|
PIN_UPDATE));
|
|
if (obj) { /* only used during resume => exclusive access */
|
|
flush |= fetch_and_zero(&obj->write_domain);
|
|
obj->read_domains |= I915_GEM_DOMAIN_GTT;
|
|
}
|
|
|
|
lock:
|
|
mutex_lock(&ggtt->vm.mutex);
|
|
}
|
|
|
|
ggtt->vm.closed = false;
|
|
ggtt->invalidate(ggtt);
|
|
|
|
mutex_unlock(&ggtt->vm.mutex);
|
|
|
|
if (flush)
|
|
wbinvd_on_all_cpus();
|
|
}
|
|
|
|
void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
|
|
{
|
|
ggtt_restore_mappings(&i915->ggtt);
|
|
|
|
if (INTEL_GEN(i915) >= 8)
|
|
setup_private_pat(i915);
|
|
}
|
|
|
|
static struct scatterlist *
|
|
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
|
|
unsigned int width, unsigned int height,
|
|
unsigned int stride,
|
|
struct sg_table *st, struct scatterlist *sg)
|
|
{
|
|
unsigned int column, row;
|
|
unsigned int src_idx;
|
|
|
|
for (column = 0; column < width; column++) {
|
|
src_idx = stride * (height - 1) + column + offset;
|
|
for (row = 0; row < height; row++) {
|
|
st->nents++;
|
|
/* We don't need the pages, but need to initialize
|
|
* the entries so the sg list can be happily traversed.
|
|
* The only thing we need are DMA addresses.
|
|
*/
|
|
sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
|
|
sg_dma_address(sg) =
|
|
i915_gem_object_get_dma_address(obj, src_idx);
|
|
sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
|
|
sg = sg_next(sg);
|
|
src_idx -= stride;
|
|
}
|
|
}
|
|
|
|
return sg;
|
|
}
|
|
|
|
static noinline struct sg_table *
|
|
intel_rotate_pages(struct intel_rotation_info *rot_info,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
unsigned int size = intel_rotation_info_size(rot_info);
|
|
struct sg_table *st;
|
|
struct scatterlist *sg;
|
|
int ret = -ENOMEM;
|
|
int i;
|
|
|
|
/* Allocate target SG list. */
|
|
st = kmalloc(sizeof(*st), GFP_KERNEL);
|
|
if (!st)
|
|
goto err_st_alloc;
|
|
|
|
ret = sg_alloc_table(st, size, GFP_KERNEL);
|
|
if (ret)
|
|
goto err_sg_alloc;
|
|
|
|
st->nents = 0;
|
|
sg = st->sgl;
|
|
|
|
for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
|
|
sg = rotate_pages(obj, rot_info->plane[i].offset,
|
|
rot_info->plane[i].width, rot_info->plane[i].height,
|
|
rot_info->plane[i].stride, st, sg);
|
|
}
|
|
|
|
return st;
|
|
|
|
err_sg_alloc:
|
|
kfree(st);
|
|
err_st_alloc:
|
|
|
|
DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
|
|
obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct scatterlist *
|
|
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
|
|
unsigned int width, unsigned int height,
|
|
unsigned int stride,
|
|
struct sg_table *st, struct scatterlist *sg)
|
|
{
|
|
unsigned int row;
|
|
|
|
for (row = 0; row < height; row++) {
|
|
unsigned int left = width * I915_GTT_PAGE_SIZE;
|
|
|
|
while (left) {
|
|
dma_addr_t addr;
|
|
unsigned int length;
|
|
|
|
/* We don't need the pages, but need to initialize
|
|
* the entries so the sg list can be happily traversed.
|
|
* The only thing we need are DMA addresses.
|
|
*/
|
|
|
|
addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
|
|
|
|
length = min(left, length);
|
|
|
|
st->nents++;
|
|
|
|
sg_set_page(sg, NULL, length, 0);
|
|
sg_dma_address(sg) = addr;
|
|
sg_dma_len(sg) = length;
|
|
sg = sg_next(sg);
|
|
|
|
offset += length / I915_GTT_PAGE_SIZE;
|
|
left -= length;
|
|
}
|
|
|
|
offset += stride - width;
|
|
}
|
|
|
|
return sg;
|
|
}
|
|
|
|
static noinline struct sg_table *
|
|
intel_remap_pages(struct intel_remapped_info *rem_info,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
unsigned int size = intel_remapped_info_size(rem_info);
|
|
struct sg_table *st;
|
|
struct scatterlist *sg;
|
|
int ret = -ENOMEM;
|
|
int i;
|
|
|
|
/* Allocate target SG list. */
|
|
st = kmalloc(sizeof(*st), GFP_KERNEL);
|
|
if (!st)
|
|
goto err_st_alloc;
|
|
|
|
ret = sg_alloc_table(st, size, GFP_KERNEL);
|
|
if (ret)
|
|
goto err_sg_alloc;
|
|
|
|
st->nents = 0;
|
|
sg = st->sgl;
|
|
|
|
for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
|
|
sg = remap_pages(obj, rem_info->plane[i].offset,
|
|
rem_info->plane[i].width, rem_info->plane[i].height,
|
|
rem_info->plane[i].stride, st, sg);
|
|
}
|
|
|
|
i915_sg_trim(st);
|
|
|
|
return st;
|
|
|
|
err_sg_alloc:
|
|
kfree(st);
|
|
err_st_alloc:
|
|
|
|
DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
|
|
obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static noinline struct sg_table *
|
|
intel_partial_pages(const struct i915_ggtt_view *view,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct sg_table *st;
|
|
struct scatterlist *sg, *iter;
|
|
unsigned int count = view->partial.size;
|
|
unsigned int offset;
|
|
int ret = -ENOMEM;
|
|
|
|
st = kmalloc(sizeof(*st), GFP_KERNEL);
|
|
if (!st)
|
|
goto err_st_alloc;
|
|
|
|
ret = sg_alloc_table(st, count, GFP_KERNEL);
|
|
if (ret)
|
|
goto err_sg_alloc;
|
|
|
|
iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
|
|
GEM_BUG_ON(!iter);
|
|
|
|
sg = st->sgl;
|
|
st->nents = 0;
|
|
do {
|
|
unsigned int len;
|
|
|
|
len = min(iter->length - (offset << PAGE_SHIFT),
|
|
count << PAGE_SHIFT);
|
|
sg_set_page(sg, NULL, len, 0);
|
|
sg_dma_address(sg) =
|
|
sg_dma_address(iter) + (offset << PAGE_SHIFT);
|
|
sg_dma_len(sg) = len;
|
|
|
|
st->nents++;
|
|
count -= len >> PAGE_SHIFT;
|
|
if (count == 0) {
|
|
sg_mark_end(sg);
|
|
i915_sg_trim(st); /* Drop any unused tail entries. */
|
|
|
|
return st;
|
|
}
|
|
|
|
sg = __sg_next(sg);
|
|
iter = __sg_next(iter);
|
|
offset = 0;
|
|
} while (1);
|
|
|
|
err_sg_alloc:
|
|
kfree(st);
|
|
err_st_alloc:
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int
|
|
i915_get_ggtt_vma_pages(struct i915_vma *vma)
|
|
{
|
|
int ret;
|
|
|
|
/* The vma->pages are only valid within the lifespan of the borrowed
|
|
* obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
|
|
* must be the vma->pages. A simple rule is that vma->pages must only
|
|
* be accessed when the obj->mm.pages are pinned.
|
|
*/
|
|
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
|
|
|
|
switch (vma->ggtt_view.type) {
|
|
default:
|
|
GEM_BUG_ON(vma->ggtt_view.type);
|
|
/* fall through */
|
|
case I915_GGTT_VIEW_NORMAL:
|
|
vma->pages = vma->obj->mm.pages;
|
|
return 0;
|
|
|
|
case I915_GGTT_VIEW_ROTATED:
|
|
vma->pages =
|
|
intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
|
|
break;
|
|
|
|
case I915_GGTT_VIEW_REMAPPED:
|
|
vma->pages =
|
|
intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
|
|
break;
|
|
|
|
case I915_GGTT_VIEW_PARTIAL:
|
|
vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
|
|
break;
|
|
}
|
|
|
|
ret = 0;
|
|
if (IS_ERR(vma->pages)) {
|
|
ret = PTR_ERR(vma->pages);
|
|
vma->pages = NULL;
|
|
DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
|
|
vma->ggtt_view.type, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
|
|
* @vm: the &struct i915_address_space
|
|
* @node: the &struct drm_mm_node (typically i915_vma.mode)
|
|
* @size: how much space to allocate inside the GTT,
|
|
* must be #I915_GTT_PAGE_SIZE aligned
|
|
* @offset: where to insert inside the GTT,
|
|
* must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
|
|
* (@offset + @size) must fit within the address space
|
|
* @color: color to apply to node, if this node is not from a VMA,
|
|
* color must be #I915_COLOR_UNEVICTABLE
|
|
* @flags: control search and eviction behaviour
|
|
*
|
|
* i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
|
|
* the address space (using @size and @color). If the @node does not fit, it
|
|
* tries to evict any overlapping nodes from the GTT, including any
|
|
* neighbouring nodes if the colors do not match (to ensure guard pages between
|
|
* differing domains). See i915_gem_evict_for_node() for the gory details
|
|
* on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
|
|
* evicting active overlapping objects, and any overlapping node that is pinned
|
|
* or marked as unevictable will also result in failure.
|
|
*
|
|
* Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
|
|
* asked to wait for eviction and interrupted.
|
|
*/
|
|
int i915_gem_gtt_reserve(struct i915_address_space *vm,
|
|
struct drm_mm_node *node,
|
|
u64 size, u64 offset, unsigned long color,
|
|
unsigned int flags)
|
|
{
|
|
int err;
|
|
|
|
GEM_BUG_ON(!size);
|
|
GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
|
|
GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
|
|
GEM_BUG_ON(range_overflows(offset, size, vm->total));
|
|
GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
|
|
GEM_BUG_ON(drm_mm_node_allocated(node));
|
|
|
|
node->size = size;
|
|
node->start = offset;
|
|
node->color = color;
|
|
|
|
err = drm_mm_reserve_node(&vm->mm, node);
|
|
if (err != -ENOSPC)
|
|
return err;
|
|
|
|
if (flags & PIN_NOEVICT)
|
|
return -ENOSPC;
|
|
|
|
err = i915_gem_evict_for_node(vm, node, flags);
|
|
if (err == 0)
|
|
err = drm_mm_reserve_node(&vm->mm, node);
|
|
|
|
return err;
|
|
}
|
|
|
|
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
|
|
{
|
|
u64 range, addr;
|
|
|
|
GEM_BUG_ON(range_overflows(start, len, end));
|
|
GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
|
|
|
|
range = round_down(end - len, align) - round_up(start, align);
|
|
if (range) {
|
|
if (sizeof(unsigned long) == sizeof(u64)) {
|
|
addr = get_random_long();
|
|
} else {
|
|
addr = get_random_int();
|
|
if (range > U32_MAX) {
|
|
addr <<= 32;
|
|
addr |= get_random_int();
|
|
}
|
|
}
|
|
div64_u64_rem(addr, range, &addr);
|
|
start += addr;
|
|
}
|
|
|
|
return round_up(start, align);
|
|
}
|
|
|
|
/**
|
|
* i915_gem_gtt_insert - insert a node into an address_space (GTT)
|
|
* @vm: the &struct i915_address_space
|
|
* @node: the &struct drm_mm_node (typically i915_vma.node)
|
|
* @size: how much space to allocate inside the GTT,
|
|
* must be #I915_GTT_PAGE_SIZE aligned
|
|
* @alignment: required alignment of starting offset, may be 0 but
|
|
* if specified, this must be a power-of-two and at least
|
|
* #I915_GTT_MIN_ALIGNMENT
|
|
* @color: color to apply to node
|
|
* @start: start of any range restriction inside GTT (0 for all),
|
|
* must be #I915_GTT_PAGE_SIZE aligned
|
|
* @end: end of any range restriction inside GTT (U64_MAX for all),
|
|
* must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
|
|
* @flags: control search and eviction behaviour
|
|
*
|
|
* i915_gem_gtt_insert() first searches for an available hole into which
|
|
* is can insert the node. The hole address is aligned to @alignment and
|
|
* its @size must then fit entirely within the [@start, @end] bounds. The
|
|
* nodes on either side of the hole must match @color, or else a guard page
|
|
* will be inserted between the two nodes (or the node evicted). If no
|
|
* suitable hole is found, first a victim is randomly selected and tested
|
|
* for eviction, otherwise then the LRU list of objects within the GTT
|
|
* is scanned to find the first set of replacement nodes to create the hole.
|
|
* Those old overlapping nodes are evicted from the GTT (and so must be
|
|
* rebound before any future use). Any node that is currently pinned cannot
|
|
* be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
|
|
* active and #PIN_NONBLOCK is specified, that node is also skipped when
|
|
* searching for an eviction candidate. See i915_gem_evict_something() for
|
|
* the gory details on the eviction algorithm.
|
|
*
|
|
* Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
|
|
* asked to wait for eviction and interrupted.
|
|
*/
|
|
int i915_gem_gtt_insert(struct i915_address_space *vm,
|
|
struct drm_mm_node *node,
|
|
u64 size, u64 alignment, unsigned long color,
|
|
u64 start, u64 end, unsigned int flags)
|
|
{
|
|
enum drm_mm_insert_mode mode;
|
|
u64 offset;
|
|
int err;
|
|
|
|
lockdep_assert_held(&vm->i915->drm.struct_mutex);
|
|
GEM_BUG_ON(!size);
|
|
GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
|
|
GEM_BUG_ON(alignment && !is_power_of_2(alignment));
|
|
GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
|
|
GEM_BUG_ON(start >= end);
|
|
GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
|
|
GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
|
|
GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
|
|
GEM_BUG_ON(drm_mm_node_allocated(node));
|
|
|
|
if (unlikely(range_overflows(start, size, end)))
|
|
return -ENOSPC;
|
|
|
|
if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
|
|
return -ENOSPC;
|
|
|
|
mode = DRM_MM_INSERT_BEST;
|
|
if (flags & PIN_HIGH)
|
|
mode = DRM_MM_INSERT_HIGHEST;
|
|
if (flags & PIN_MAPPABLE)
|
|
mode = DRM_MM_INSERT_LOW;
|
|
|
|
/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
|
|
* so we know that we always have a minimum alignment of 4096.
|
|
* The drm_mm range manager is optimised to return results
|
|
* with zero alignment, so where possible use the optimal
|
|
* path.
|
|
*/
|
|
BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
|
|
if (alignment <= I915_GTT_MIN_ALIGNMENT)
|
|
alignment = 0;
|
|
|
|
err = drm_mm_insert_node_in_range(&vm->mm, node,
|
|
size, alignment, color,
|
|
start, end, mode);
|
|
if (err != -ENOSPC)
|
|
return err;
|
|
|
|
if (mode & DRM_MM_INSERT_ONCE) {
|
|
err = drm_mm_insert_node_in_range(&vm->mm, node,
|
|
size, alignment, color,
|
|
start, end,
|
|
DRM_MM_INSERT_BEST);
|
|
if (err != -ENOSPC)
|
|
return err;
|
|
}
|
|
|
|
if (flags & PIN_NOEVICT)
|
|
return -ENOSPC;
|
|
|
|
/* No free space, pick a slot at random.
|
|
*
|
|
* There is a pathological case here using a GTT shared between
|
|
* mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
|
|
*
|
|
* |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
|
|
* (64k objects) (448k objects)
|
|
*
|
|
* Now imagine that the eviction LRU is ordered top-down (just because
|
|
* pathology meets real life), and that we need to evict an object to
|
|
* make room inside the aperture. The eviction scan then has to walk
|
|
* the 448k list before it finds one within range. And now imagine that
|
|
* it has to search for a new hole between every byte inside the memcpy,
|
|
* for several simultaneous clients.
|
|
*
|
|
* On a full-ppgtt system, if we have run out of available space, there
|
|
* will be lots and lots of objects in the eviction list! Again,
|
|
* searching that LRU list may be slow if we are also applying any
|
|
* range restrictions (e.g. restriction to low 4GiB) and so, for
|
|
* simplicity and similarilty between different GTT, try the single
|
|
* random replacement first.
|
|
*/
|
|
offset = random_offset(start, end,
|
|
size, alignment ?: I915_GTT_MIN_ALIGNMENT);
|
|
err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
|
|
if (err != -ENOSPC)
|
|
return err;
|
|
|
|
/* Randomly selected placement is pinned, do a search */
|
|
err = i915_gem_evict_something(vm, size, alignment, color,
|
|
start, end, flags);
|
|
if (err)
|
|
return err;
|
|
|
|
return drm_mm_insert_node_in_range(&vm->mm, node,
|
|
size, alignment, color,
|
|
start, end, DRM_MM_INSERT_EVICT);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
|
|
#include "selftests/mock_gtt.c"
|
|
#include "selftests/i915_gem_gtt.c"
|
|
#endif
|