OpenCloudOS-Kernel/drivers/gpu/drm/i915/i915_gem_gtt.c

3575 lines
93 KiB
C

/*
* Copyright © 2010 Daniel Vetter
* Copyright © 2011-2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <linux/seq_file.h>
#include <linux/stop_machine.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_vgpu.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include "intel_frontbuffer.h"
#define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
/**
* DOC: Global GTT views
*
* Background and previous state
*
* Historically objects could exists (be bound) in global GTT space only as
* singular instances with a view representing all of the object's backing pages
* in a linear fashion. This view will be called a normal view.
*
* To support multiple views of the same object, where the number of mapped
* pages is not equal to the backing store, or where the layout of the pages
* is not linear, concept of a GGTT view was added.
*
* One example of an alternative view is a stereo display driven by a single
* image. In this case we would have a framebuffer looking like this
* (2x2 pages):
*
* 12
* 34
*
* Above would represent a normal GGTT view as normally mapped for GPU or CPU
* rendering. In contrast, fed to the display engine would be an alternative
* view which could look something like this:
*
* 1212
* 3434
*
* In this example both the size and layout of pages in the alternative view is
* different from the normal view.
*
* Implementation and usage
*
* GGTT views are implemented using VMAs and are distinguished via enum
* i915_ggtt_view_type and struct i915_ggtt_view.
*
* A new flavour of core GEM functions which work with GGTT bound objects were
* added with the _ggtt_ infix, and sometimes with _view postfix to avoid
* renaming in large amounts of code. They take the struct i915_ggtt_view
* parameter encapsulating all metadata required to implement a view.
*
* As a helper for callers which are only interested in the normal view,
* globally const i915_ggtt_view_normal singleton instance exists. All old core
* GEM API functions, the ones not taking the view parameter, are operating on,
* or with the normal GGTT view.
*
* Code wanting to add or use a new GGTT view needs to:
*
* 1. Add a new enum with a suitable name.
* 2. Extend the metadata in the i915_ggtt_view structure if required.
* 3. Add support to i915_get_vma_pages().
*
* New views are required to build a scatter-gather table from within the
* i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
* exists for the lifetime of an VMA.
*
* Core API is designed to have copy semantics which means that passed in
* struct i915_ggtt_view does not need to be persistent (left around after
* calling the core API functions).
*
*/
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);
const struct i915_ggtt_view i915_ggtt_view_normal = {
.type = I915_GGTT_VIEW_NORMAL,
};
const struct i915_ggtt_view i915_ggtt_view_rotated = {
.type = I915_GGTT_VIEW_ROTATED,
};
int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
int enable_ppgtt)
{
bool has_aliasing_ppgtt;
bool has_full_ppgtt;
bool has_full_48bit_ppgtt;
has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
has_full_48bit_ppgtt =
IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
if (intel_vgpu_active(dev_priv)) {
/* emulation is too hard */
has_full_ppgtt = false;
has_full_48bit_ppgtt = false;
}
if (!has_aliasing_ppgtt)
return 0;
/*
* We don't allow disabling PPGTT for gen9+ as it's a requirement for
* execlists, the sole mechanism available to submit work.
*/
if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
return 0;
if (enable_ppgtt == 1)
return 1;
if (enable_ppgtt == 2 && has_full_ppgtt)
return 2;
if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
return 3;
#ifdef CONFIG_INTEL_IOMMU
/* Disable ppgtt on SNB if VT-d is on. */
if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
DRM_INFO("Disabling PPGTT because VT-d is on\n");
return 0;
}
#endif
/* Early VLV doesn't have this */
if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
return 0;
}
if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
return has_full_48bit_ppgtt ? 3 : 2;
else
return has_aliasing_ppgtt ? 1 : 0;
}
static int ppgtt_bind_vma(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 unused)
{
u32 pte_flags = 0;
vma->pages = vma->obj->mm.pages;
/* Currently applicable only to VLV */
if (vma->obj->gt_ro)
pte_flags |= PTE_READ_ONLY;
vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
cache_level, pte_flags);
return 0;
}
static void ppgtt_unbind_vma(struct i915_vma *vma)
{
vma->vm->clear_range(vma->vm,
vma->node.start,
vma->size);
}
static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
enum i915_cache_level level)
{
gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
pte |= addr;
switch (level) {
case I915_CACHE_NONE:
pte |= PPAT_UNCACHED_INDEX;
break;
case I915_CACHE_WT:
pte |= PPAT_DISPLAY_ELLC_INDEX;
break;
default:
pte |= PPAT_CACHED_INDEX;
break;
}
return pte;
}
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
const enum i915_cache_level level)
{
gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
pde |= addr;
if (level != I915_CACHE_NONE)
pde |= PPAT_CACHED_PDE_INDEX;
else
pde |= PPAT_UNCACHED_INDEX;
return pde;
}
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode
static gen6_pte_t snb_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 unused)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= GEN6_PTE_ADDR_ENCODE(addr);
switch (level) {
case I915_CACHE_L3_LLC:
case I915_CACHE_LLC:
pte |= GEN6_PTE_CACHE_LLC;
break;
case I915_CACHE_NONE:
pte |= GEN6_PTE_UNCACHED;
break;
default:
MISSING_CASE(level);
}
return pte;
}
static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 unused)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= GEN6_PTE_ADDR_ENCODE(addr);
switch (level) {
case I915_CACHE_L3_LLC:
pte |= GEN7_PTE_CACHE_L3_LLC;
break;
case I915_CACHE_LLC:
pte |= GEN6_PTE_CACHE_LLC;
break;
case I915_CACHE_NONE:
pte |= GEN6_PTE_UNCACHED;
break;
default:
MISSING_CASE(level);
}
return pte;
}
static gen6_pte_t byt_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= GEN6_PTE_ADDR_ENCODE(addr);
if (!(flags & PTE_READ_ONLY))
pte |= BYT_PTE_WRITEABLE;
if (level != I915_CACHE_NONE)
pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
return pte;
}
static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 unused)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= HSW_PTE_ADDR_ENCODE(addr);
if (level != I915_CACHE_NONE)
pte |= HSW_WB_LLC_AGE3;
return pte;
}
static gen6_pte_t iris_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 unused)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= HSW_PTE_ADDR_ENCODE(addr);
switch (level) {
case I915_CACHE_NONE:
break;
case I915_CACHE_WT:
pte |= HSW_WT_ELLC_LLC_AGE3;
break;
default:
pte |= HSW_WB_ELLC_LLC_AGE3;
break;
}
return pte;
}
static int __setup_page_dma(struct drm_i915_private *dev_priv,
struct i915_page_dma *p, gfp_t flags)
{
struct device *kdev = &dev_priv->drm.pdev->dev;
p->page = alloc_page(flags);
if (!p->page)
return -ENOMEM;
p->daddr = dma_map_page(kdev,
p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
if (dma_mapping_error(kdev, p->daddr)) {
__free_page(p->page);
return -EINVAL;
}
return 0;
}
static int setup_page_dma(struct drm_i915_private *dev_priv,
struct i915_page_dma *p)
{
return __setup_page_dma(dev_priv, p, I915_GFP_DMA);
}
static void cleanup_page_dma(struct drm_i915_private *dev_priv,
struct i915_page_dma *p)
{
struct pci_dev *pdev = dev_priv->drm.pdev;
if (WARN_ON(!p->page))
return;
dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
__free_page(p->page);
memset(p, 0, sizeof(*p));
}
static void *kmap_page_dma(struct i915_page_dma *p)
{
return kmap_atomic(p->page);
}
/* We use the flushing unmap only with ppgtt structures:
* page directories, page tables and scratch pages.
*/
static void kunmap_page_dma(struct drm_i915_private *dev_priv, void *vaddr)
{
/* There are only few exceptions for gen >=6. chv and bxt.
* And we are not sure about the latter so play safe for now.
*/
if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
drm_clflush_virt_range(vaddr, PAGE_SIZE);
kunmap_atomic(vaddr);
}
#define kmap_px(px) kmap_page_dma(px_base(px))
#define kunmap_px(ppgtt, vaddr) \
kunmap_page_dma(to_i915((ppgtt)->base.dev), (vaddr))
#define setup_px(dev_priv, px) setup_page_dma((dev_priv), px_base(px))
#define cleanup_px(dev_priv, px) cleanup_page_dma((dev_priv), px_base(px))
#define fill_px(dev_priv, px, v) fill_page_dma((dev_priv), px_base(px), (v))
#define fill32_px(dev_priv, px, v) \
fill_page_dma_32((dev_priv), px_base(px), (v))
static void fill_page_dma(struct drm_i915_private *dev_priv,
struct i915_page_dma *p, const uint64_t val)
{
int i;
uint64_t * const vaddr = kmap_page_dma(p);
for (i = 0; i < 512; i++)
vaddr[i] = val;
kunmap_page_dma(dev_priv, vaddr);
}
static void fill_page_dma_32(struct drm_i915_private *dev_priv,
struct i915_page_dma *p, const uint32_t val32)
{
uint64_t v = val32;
v = v << 32 | val32;
fill_page_dma(dev_priv, p, v);
}
static int
setup_scratch_page(struct drm_i915_private *dev_priv,
struct i915_page_dma *scratch,
gfp_t gfp)
{
return __setup_page_dma(dev_priv, scratch, gfp | __GFP_ZERO);
}
static void cleanup_scratch_page(struct drm_i915_private *dev_priv,
struct i915_page_dma *scratch)
{
cleanup_page_dma(dev_priv, scratch);
}
static struct i915_page_table *alloc_pt(struct drm_i915_private *dev_priv)
{
struct i915_page_table *pt;
const size_t count = INTEL_GEN(dev_priv) >= 8 ? GEN8_PTES : GEN6_PTES;
int ret = -ENOMEM;
pt = kzalloc(sizeof(*pt), GFP_KERNEL);
if (!pt)
return ERR_PTR(-ENOMEM);
pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
GFP_KERNEL);
if (!pt->used_ptes)
goto fail_bitmap;
ret = setup_px(dev_priv, pt);
if (ret)
goto fail_page_m;
return pt;
fail_page_m:
kfree(pt->used_ptes);
fail_bitmap:
kfree(pt);
return ERR_PTR(ret);
}
static void free_pt(struct drm_i915_private *dev_priv,
struct i915_page_table *pt)
{
cleanup_px(dev_priv, pt);
kfree(pt->used_ptes);
kfree(pt);
}
static void gen8_initialize_pt(struct i915_address_space *vm,
struct i915_page_table *pt)
{
gen8_pte_t scratch_pte;
scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC);
fill_px(to_i915(vm->dev), pt, scratch_pte);
}
static void gen6_initialize_pt(struct i915_address_space *vm,
struct i915_page_table *pt)
{
gen6_pte_t scratch_pte;
WARN_ON(vm->scratch_page.daddr == 0);
scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC, 0);
fill32_px(to_i915(vm->dev), pt, scratch_pte);
}
static struct i915_page_directory *alloc_pd(struct drm_i915_private *dev_priv)
{
struct i915_page_directory *pd;
int ret = -ENOMEM;
pd = kzalloc(sizeof(*pd), GFP_KERNEL);
if (!pd)
return ERR_PTR(-ENOMEM);
pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
sizeof(*pd->used_pdes), GFP_KERNEL);
if (!pd->used_pdes)
goto fail_bitmap;
ret = setup_px(dev_priv, pd);
if (ret)
goto fail_page_m;
return pd;
fail_page_m:
kfree(pd->used_pdes);
fail_bitmap:
kfree(pd);
return ERR_PTR(ret);
}
static void free_pd(struct drm_i915_private *dev_priv,
struct i915_page_directory *pd)
{
if (px_page(pd)) {
cleanup_px(dev_priv, pd);
kfree(pd->used_pdes);
kfree(pd);
}
}
static void gen8_initialize_pd(struct i915_address_space *vm,
struct i915_page_directory *pd)
{
gen8_pde_t scratch_pde;
scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
fill_px(to_i915(vm->dev), pd, scratch_pde);
}
static int __pdp_init(struct drm_i915_private *dev_priv,
struct i915_page_directory_pointer *pdp)
{
size_t pdpes = I915_PDPES_PER_PDP(dev_priv);
pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
sizeof(unsigned long),
GFP_KERNEL);
if (!pdp->used_pdpes)
return -ENOMEM;
pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
GFP_KERNEL);
if (!pdp->page_directory) {
kfree(pdp->used_pdpes);
/* the PDP might be the statically allocated top level. Keep it
* as clean as possible */
pdp->used_pdpes = NULL;
return -ENOMEM;
}
return 0;
}
static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
kfree(pdp->used_pdpes);
kfree(pdp->page_directory);
pdp->page_directory = NULL;
}
static struct
i915_page_directory_pointer *alloc_pdp(struct drm_i915_private *dev_priv)
{
struct i915_page_directory_pointer *pdp;
int ret = -ENOMEM;
WARN_ON(!USES_FULL_48BIT_PPGTT(dev_priv));
pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
if (!pdp)
return ERR_PTR(-ENOMEM);
ret = __pdp_init(dev_priv, pdp);
if (ret)
goto fail_bitmap;
ret = setup_px(dev_priv, pdp);
if (ret)
goto fail_page_m;
return pdp;
fail_page_m:
__pdp_fini(pdp);
fail_bitmap:
kfree(pdp);
return ERR_PTR(ret);
}
static void free_pdp(struct drm_i915_private *dev_priv,
struct i915_page_directory_pointer *pdp)
{
__pdp_fini(pdp);
if (USES_FULL_48BIT_PPGTT(dev_priv)) {
cleanup_px(dev_priv, pdp);
kfree(pdp);
}
}
static void gen8_initialize_pdp(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp)
{
gen8_ppgtt_pdpe_t scratch_pdpe;
scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
fill_px(to_i915(vm->dev), pdp, scratch_pdpe);
}
static void gen8_initialize_pml4(struct i915_address_space *vm,
struct i915_pml4 *pml4)
{
gen8_ppgtt_pml4e_t scratch_pml4e;
scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
I915_CACHE_LLC);
fill_px(to_i915(vm->dev), pml4, scratch_pml4e);
}
static void
gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
struct i915_page_directory_pointer *pdp,
struct i915_page_directory *pd,
int index)
{
gen8_ppgtt_pdpe_t *page_directorypo;
if (!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)))
return;
page_directorypo = kmap_px(pdp);
page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
kunmap_px(ppgtt, page_directorypo);
}
static void
gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
struct i915_pml4 *pml4,
struct i915_page_directory_pointer *pdp,
int index)
{
gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
WARN_ON(!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)));
pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
kunmap_px(ppgtt, pagemap);
}
/* Broadwell Page Directory Pointer Descriptors */
static int gen8_write_pdp(struct drm_i915_gem_request *req,
unsigned entry,
dma_addr_t addr)
{
struct intel_ring *ring = req->ring;
struct intel_engine_cs *engine = req->engine;
int ret;
BUG_ON(entry >= 4);
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
intel_ring_emit(ring, upper_32_bits(addr));
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
intel_ring_emit(ring, lower_32_bits(addr));
intel_ring_advance(ring);
return 0;
}
static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
int i, ret;
for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
ret = gen8_write_pdp(req, i, pd_daddr);
if (ret)
return ret;
}
return 0;
}
static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
}
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
* the page table structures, we mark them dirty so that
* context switching/execlist queuing code takes extra steps
* to ensure that tlbs are flushed.
*/
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
ppgtt->pd_dirty_rings = INTEL_INFO(to_i915(ppgtt->base.dev))->ring_mask;
}
/* Removes entries from a single page table, releasing it if it's empty.
* Caller can use the return value to update higher-level entries.
*/
static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
struct i915_page_table *pt,
uint64_t start,
uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
unsigned int num_entries = gen8_pte_count(start, length);
unsigned int pte = gen8_pte_index(start);
unsigned int pte_end = pte + num_entries;
gen8_pte_t *pt_vaddr;
gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC);
if (WARN_ON(!px_page(pt)))
return false;
GEM_BUG_ON(pte_end > GEN8_PTES);
bitmap_clear(pt->used_ptes, pte, num_entries);
if (bitmap_empty(pt->used_ptes, GEN8_PTES)) {
free_pt(to_i915(vm->dev), pt);
return true;
}
pt_vaddr = kmap_px(pt);
while (pte < pte_end)
pt_vaddr[pte++] = scratch_pte;
kunmap_px(ppgtt, pt_vaddr);
return false;
}
/* Removes entries from a single page dir, releasing it if it's empty.
* Caller can use the return value to update higher-level entries
*/
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
struct i915_page_directory *pd,
uint64_t start,
uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct i915_page_table *pt;
uint64_t pde;
gen8_pde_t *pde_vaddr;
gen8_pde_t scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt),
I915_CACHE_LLC);
gen8_for_each_pde(pt, pd, start, length, pde) {
if (WARN_ON(!pd->page_table[pde]))
break;
if (gen8_ppgtt_clear_pt(vm, pt, start, length)) {
__clear_bit(pde, pd->used_pdes);
pde_vaddr = kmap_px(pd);
pde_vaddr[pde] = scratch_pde;
kunmap_px(ppgtt, pde_vaddr);
}
}
if (bitmap_empty(pd->used_pdes, I915_PDES)) {
free_pd(to_i915(vm->dev), pd);
return true;
}
return false;
}
/* Removes entries from a single page dir pointer, releasing it if it's empty.
* Caller can use the return value to update higher-level entries
*/
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp,
uint64_t start,
uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct drm_i915_private *dev_priv = to_i915(vm->dev);
struct i915_page_directory *pd;
uint64_t pdpe;
gen8_ppgtt_pdpe_t *pdpe_vaddr;
gen8_ppgtt_pdpe_t scratch_pdpe =
gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
if (WARN_ON(!pdp->page_directory[pdpe]))
break;
if (gen8_ppgtt_clear_pd(vm, pd, start, length)) {
__clear_bit(pdpe, pdp->used_pdpes);
if (USES_FULL_48BIT_PPGTT(dev_priv)) {
pdpe_vaddr = kmap_px(pdp);
pdpe_vaddr[pdpe] = scratch_pdpe;
kunmap_px(ppgtt, pdpe_vaddr);
}
}
}
mark_tlbs_dirty(ppgtt);
if (USES_FULL_48BIT_PPGTT(dev_priv) &&
bitmap_empty(pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv))) {
free_pdp(dev_priv, pdp);
return true;
}
return false;
}
/* Removes entries from a single pml4.
* This is the top-level structure in 4-level page tables used on gen8+.
* Empty entries are always scratch pml4e.
*/
static void gen8_ppgtt_clear_pml4(struct i915_address_space *vm,
struct i915_pml4 *pml4,
uint64_t start,
uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct i915_page_directory_pointer *pdp;
uint64_t pml4e;
gen8_ppgtt_pml4e_t *pml4e_vaddr;
gen8_ppgtt_pml4e_t scratch_pml4e =
gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC);
GEM_BUG_ON(!USES_FULL_48BIT_PPGTT(to_i915(vm->dev)));
gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
if (WARN_ON(!pml4->pdps[pml4e]))
break;
if (gen8_ppgtt_clear_pdp(vm, pdp, start, length)) {
__clear_bit(pml4e, pml4->used_pml4es);
pml4e_vaddr = kmap_px(pml4);
pml4e_vaddr[pml4e] = scratch_pml4e;
kunmap_px(ppgtt, pml4e_vaddr);
}
}
}
static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
uint64_t start, uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
if (USES_FULL_48BIT_PPGTT(to_i915(vm->dev)))
gen8_ppgtt_clear_pml4(vm, &ppgtt->pml4, start, length);
else
gen8_ppgtt_clear_pdp(vm, &ppgtt->pdp, start, length);
}
static void
gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp,
struct sg_page_iter *sg_iter,
uint64_t start,
enum i915_cache_level cache_level)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
gen8_pte_t *pt_vaddr;
unsigned pdpe = gen8_pdpe_index(start);
unsigned pde = gen8_pde_index(start);
unsigned pte = gen8_pte_index(start);
pt_vaddr = NULL;
while (__sg_page_iter_next(sg_iter)) {
if (pt_vaddr == NULL) {
struct i915_page_directory *pd = pdp->page_directory[pdpe];
struct i915_page_table *pt = pd->page_table[pde];
pt_vaddr = kmap_px(pt);
}
pt_vaddr[pte] =
gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
cache_level);
if (++pte == GEN8_PTES) {
kunmap_px(ppgtt, pt_vaddr);
pt_vaddr = NULL;
if (++pde == I915_PDES) {
if (++pdpe == I915_PDPES_PER_PDP(to_i915(vm->dev)))
break;
pde = 0;
}
pte = 0;
}
}
if (pt_vaddr)
kunmap_px(ppgtt, pt_vaddr);
}
static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
struct sg_table *pages,
uint64_t start,
enum i915_cache_level cache_level,
u32 unused)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct sg_page_iter sg_iter;
__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
if (!USES_FULL_48BIT_PPGTT(to_i915(vm->dev))) {
gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
cache_level);
} else {
struct i915_page_directory_pointer *pdp;
uint64_t pml4e;
uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
start, cache_level);
}
}
}
static void gen8_free_page_tables(struct drm_i915_private *dev_priv,
struct i915_page_directory *pd)
{
int i;
if (!px_page(pd))
return;
for_each_set_bit(i, pd->used_pdes, I915_PDES) {
if (WARN_ON(!pd->page_table[i]))
continue;
free_pt(dev_priv, pd->page_table[i]);
pd->page_table[i] = NULL;
}
}
static int gen8_init_scratch(struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = to_i915(vm->dev);
int ret;
ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
if (ret)
return ret;
vm->scratch_pt = alloc_pt(dev_priv);
if (IS_ERR(vm->scratch_pt)) {
ret = PTR_ERR(vm->scratch_pt);
goto free_scratch_page;
}
vm->scratch_pd = alloc_pd(dev_priv);
if (IS_ERR(vm->scratch_pd)) {
ret = PTR_ERR(vm->scratch_pd);
goto free_pt;
}
if (USES_FULL_48BIT_PPGTT(dev_priv)) {
vm->scratch_pdp = alloc_pdp(dev_priv);
if (IS_ERR(vm->scratch_pdp)) {
ret = PTR_ERR(vm->scratch_pdp);
goto free_pd;
}
}
gen8_initialize_pt(vm, vm->scratch_pt);
gen8_initialize_pd(vm, vm->scratch_pd);
if (USES_FULL_48BIT_PPGTT(dev_priv))
gen8_initialize_pdp(vm, vm->scratch_pdp);
return 0;
free_pd:
free_pd(dev_priv, vm->scratch_pd);
free_pt:
free_pt(dev_priv, vm->scratch_pt);
free_scratch_page:
cleanup_scratch_page(dev_priv, &vm->scratch_page);
return ret;
}
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
enum vgt_g2v_type msg;
struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
int i;
if (USES_FULL_48BIT_PPGTT(dev_priv)) {
u64 daddr = px_dma(&ppgtt->pml4);
I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
} else {
for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
}
msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
}
I915_WRITE(vgtif_reg(g2v_notify), msg);
return 0;
}
static void gen8_free_scratch(struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = to_i915(vm->dev);
if (USES_FULL_48BIT_PPGTT(dev_priv))
free_pdp(dev_priv, vm->scratch_pdp);
free_pd(dev_priv, vm->scratch_pd);
free_pt(dev_priv, vm->scratch_pt);
cleanup_scratch_page(dev_priv, &vm->scratch_page);
}
static void gen8_ppgtt_cleanup_3lvl(struct drm_i915_private *dev_priv,
struct i915_page_directory_pointer *pdp)
{
int i;
for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)) {
if (WARN_ON(!pdp->page_directory[i]))
continue;
gen8_free_page_tables(dev_priv, pdp->page_directory[i]);
free_pd(dev_priv, pdp->page_directory[i]);
}
free_pdp(dev_priv, pdp);
}
static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
int i;
for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
if (WARN_ON(!ppgtt->pml4.pdps[i]))
continue;
gen8_ppgtt_cleanup_3lvl(dev_priv, ppgtt->pml4.pdps[i]);
}
cleanup_px(dev_priv, &ppgtt->pml4);
}
static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = to_i915(vm->dev);
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
if (intel_vgpu_active(dev_priv))
gen8_ppgtt_notify_vgt(ppgtt, false);
if (!USES_FULL_48BIT_PPGTT(dev_priv))
gen8_ppgtt_cleanup_3lvl(dev_priv, &ppgtt->pdp);
else
gen8_ppgtt_cleanup_4lvl(ppgtt);
gen8_free_scratch(vm);
}
/**
* gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
* @vm: Master vm structure.
* @pd: Page directory for this address range.
* @start: Starting virtual address to begin allocations.
* @length: Size of the allocations.
* @new_pts: Bitmap set by function with new allocations. Likely used by the
* caller to free on error.
*
* Allocate the required number of page tables. Extremely similar to
* gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
* the page directory boundary (instead of the page directory pointer). That
* boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
* possible, and likely that the caller will need to use multiple calls of this
* function to achieve the appropriate allocation.
*
* Return: 0 if success; negative error code otherwise.
*/
static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
struct i915_page_directory *pd,
uint64_t start,
uint64_t length,
unsigned long *new_pts)
{
struct drm_i915_private *dev_priv = to_i915(vm->dev);
struct i915_page_table *pt;
uint32_t pde;
gen8_for_each_pde(pt, pd, start, length, pde) {
/* Don't reallocate page tables */
if (test_bit(pde, pd->used_pdes)) {
/* Scratch is never allocated this way */
WARN_ON(pt == vm->scratch_pt);
continue;
}
pt = alloc_pt(dev_priv);
if (IS_ERR(pt))
goto unwind_out;
gen8_initialize_pt(vm, pt);
pd->page_table[pde] = pt;
__set_bit(pde, new_pts);
trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
}
return 0;
unwind_out:
for_each_set_bit(pde, new_pts, I915_PDES)
free_pt(dev_priv, pd->page_table[pde]);
return -ENOMEM;
}
/**
* gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
* @vm: Master vm structure.
* @pdp: Page directory pointer for this address range.
* @start: Starting virtual address to begin allocations.
* @length: Size of the allocations.
* @new_pds: Bitmap set by function with new allocations. Likely used by the
* caller to free on error.
*
* Allocate the required number of page directories starting at the pde index of
* @start, and ending at the pde index @start + @length. This function will skip
* over already allocated page directories within the range, and only allocate
* new ones, setting the appropriate pointer within the pdp as well as the
* correct position in the bitmap @new_pds.
*
* The function will only allocate the pages within the range for a give page
* directory pointer. In other words, if @start + @length straddles a virtually
* addressed PDP boundary (512GB for 4k pages), there will be more allocations
* required by the caller, This is not currently possible, and the BUG in the
* code will prevent it.
*
* Return: 0 if success; negative error code otherwise.
*/
static int
gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp,
uint64_t start,
uint64_t length,
unsigned long *new_pds)
{
struct drm_i915_private *dev_priv = to_i915(vm->dev);
struct i915_page_directory *pd;
uint32_t pdpe;
uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
WARN_ON(!bitmap_empty(new_pds, pdpes));
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
if (test_bit(pdpe, pdp->used_pdpes))
continue;
pd = alloc_pd(dev_priv);
if (IS_ERR(pd))
goto unwind_out;
gen8_initialize_pd(vm, pd);
pdp->page_directory[pdpe] = pd;
__set_bit(pdpe, new_pds);
trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
}
return 0;
unwind_out:
for_each_set_bit(pdpe, new_pds, pdpes)
free_pd(dev_priv, pdp->page_directory[pdpe]);
return -ENOMEM;
}
/**
* gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
* @vm: Master vm structure.
* @pml4: Page map level 4 for this address range.
* @start: Starting virtual address to begin allocations.
* @length: Size of the allocations.
* @new_pdps: Bitmap set by function with new allocations. Likely used by the
* caller to free on error.
*
* Allocate the required number of page directory pointers. Extremely similar to
* gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
* The main difference is here we are limited by the pml4 boundary (instead of
* the page directory pointer).
*
* Return: 0 if success; negative error code otherwise.
*/
static int
gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
struct i915_pml4 *pml4,
uint64_t start,
uint64_t length,
unsigned long *new_pdps)
{
struct drm_i915_private *dev_priv = to_i915(vm->dev);
struct i915_page_directory_pointer *pdp;
uint32_t pml4e;
WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
if (!test_bit(pml4e, pml4->used_pml4es)) {
pdp = alloc_pdp(dev_priv);
if (IS_ERR(pdp))
goto unwind_out;
gen8_initialize_pdp(vm, pdp);
pml4->pdps[pml4e] = pdp;
__set_bit(pml4e, new_pdps);
trace_i915_page_directory_pointer_entry_alloc(vm,
pml4e,
start,
GEN8_PML4E_SHIFT);
}
}
return 0;
unwind_out:
for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
free_pdp(dev_priv, pml4->pdps[pml4e]);
return -ENOMEM;
}
static void
free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
{
kfree(new_pts);
kfree(new_pds);
}
/* Fills in the page directory bitmap, and the array of page tables bitmap. Both
* of these are based on the number of PDPEs in the system.
*/
static
int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
unsigned long **new_pts,
uint32_t pdpes)
{
unsigned long *pds;
unsigned long *pts;
pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
if (!pds)
return -ENOMEM;
pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
GFP_TEMPORARY);
if (!pts)
goto err_out;
*new_pds = pds;
*new_pts = pts;
return 0;
err_out:
free_gen8_temp_bitmaps(pds, pts);
return -ENOMEM;
}
static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp,
uint64_t start,
uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
unsigned long *new_page_dirs, *new_page_tables;
struct drm_i915_private *dev_priv = to_i915(vm->dev);
struct i915_page_directory *pd;
const uint64_t orig_start = start;
const uint64_t orig_length = length;
uint32_t pdpe;
uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
int ret;
/* Wrap is never okay since we can only represent 48b, and we don't
* actually use the other side of the canonical address space.
*/
if (WARN_ON(start + length < start))
return -ENODEV;
if (WARN_ON(start + length > vm->total))
return -ENODEV;
ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
if (ret)
return ret;
/* Do the allocations first so we can easily bail out */
ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
new_page_dirs);
if (ret) {
free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
return ret;
}
/* For every page directory referenced, allocate page tables */
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
if (ret)
goto err_out;
}
start = orig_start;
length = orig_length;
/* Allocations have completed successfully, so set the bitmaps, and do
* the mappings. */
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
gen8_pde_t *const page_directory = kmap_px(pd);
struct i915_page_table *pt;
uint64_t pd_len = length;
uint64_t pd_start = start;
uint32_t pde;
/* Every pd should be allocated, we just did that above. */
WARN_ON(!pd);
gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
/* Same reasoning as pd */
WARN_ON(!pt);
WARN_ON(!pd_len);
WARN_ON(!gen8_pte_count(pd_start, pd_len));
/* Set our used ptes within the page table */
bitmap_set(pt->used_ptes,
gen8_pte_index(pd_start),
gen8_pte_count(pd_start, pd_len));
/* Our pde is now pointing to the pagetable, pt */
__set_bit(pde, pd->used_pdes);
/* Map the PDE to the page table */
page_directory[pde] = gen8_pde_encode(px_dma(pt),
I915_CACHE_LLC);
trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
gen8_pte_index(start),
gen8_pte_count(start, length),
GEN8_PTES);
/* NB: We haven't yet mapped ptes to pages. At this
* point we're still relying on insert_entries() */
}
kunmap_px(ppgtt, page_directory);
__set_bit(pdpe, pdp->used_pdpes);
gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
}
free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
mark_tlbs_dirty(ppgtt);
return 0;
err_out:
while (pdpe--) {
unsigned long temp;
for_each_set_bit(temp, new_page_tables + pdpe *
BITS_TO_LONGS(I915_PDES), I915_PDES)
free_pt(dev_priv,
pdp->page_directory[pdpe]->page_table[temp]);
}
for_each_set_bit(pdpe, new_page_dirs, pdpes)
free_pd(dev_priv, pdp->page_directory[pdpe]);
free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
mark_tlbs_dirty(ppgtt);
return ret;
}
static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
struct i915_pml4 *pml4,
uint64_t start,
uint64_t length)
{
DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct i915_page_directory_pointer *pdp;
uint64_t pml4e;
int ret = 0;
/* Do the pml4 allocations first, so we don't need to track the newly
* allocated tables below the pdp */
bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
/* The pagedirectory and pagetable allocations are done in the shared 3
* and 4 level code. Just allocate the pdps.
*/
ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
new_pdps);
if (ret)
return ret;
WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
"The allocation has spanned more than 512GB. "
"It is highly likely this is incorrect.");
gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
WARN_ON(!pdp);
ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
if (ret)
goto err_out;
gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
}
bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
GEN8_PML4ES_PER_PML4);
return 0;
err_out:
for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
gen8_ppgtt_cleanup_3lvl(to_i915(vm->dev), pml4->pdps[pml4e]);
return ret;
}
static int gen8_alloc_va_range(struct i915_address_space *vm,
uint64_t start, uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
if (USES_FULL_48BIT_PPGTT(to_i915(vm->dev)))
return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
else
return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
}
static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
uint64_t start, uint64_t length,
gen8_pte_t scratch_pte,
struct seq_file *m)
{
struct i915_page_directory *pd;
uint32_t pdpe;
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
struct i915_page_table *pt;
uint64_t pd_len = length;
uint64_t pd_start = start;
uint32_t pde;
if (!test_bit(pdpe, pdp->used_pdpes))
continue;
seq_printf(m, "\tPDPE #%d\n", pdpe);
gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
uint32_t pte;
gen8_pte_t *pt_vaddr;
if (!test_bit(pde, pd->used_pdes))
continue;
pt_vaddr = kmap_px(pt);
for (pte = 0; pte < GEN8_PTES; pte += 4) {
uint64_t va =
(pdpe << GEN8_PDPE_SHIFT) |
(pde << GEN8_PDE_SHIFT) |
(pte << GEN8_PTE_SHIFT);
int i;
bool found = false;
for (i = 0; i < 4; i++)
if (pt_vaddr[pte + i] != scratch_pte)
found = true;
if (!found)
continue;
seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
for (i = 0; i < 4; i++) {
if (pt_vaddr[pte + i] != scratch_pte)
seq_printf(m, " %llx", pt_vaddr[pte + i]);
else
seq_puts(m, " SCRATCH ");
}
seq_puts(m, "\n");
}
/* don't use kunmap_px, it could trigger
* an unnecessary flush.
*/
kunmap_atomic(pt_vaddr);
}
}
}
static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
struct i915_address_space *vm = &ppgtt->base;
uint64_t start = ppgtt->base.start;
uint64_t length = ppgtt->base.total;
gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC);
if (!USES_FULL_48BIT_PPGTT(to_i915(vm->dev))) {
gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
} else {
uint64_t pml4e;
struct i915_pml4 *pml4 = &ppgtt->pml4;
struct i915_page_directory_pointer *pdp;
gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
if (!test_bit(pml4e, pml4->used_pml4es))
continue;
seq_printf(m, " PML4E #%llu\n", pml4e);
gen8_dump_pdp(pdp, start, length, scratch_pte, m);
}
}
}
static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
{
unsigned long *new_page_dirs, *new_page_tables;
uint32_t pdpes = I915_PDPES_PER_PDP(to_i915(ppgtt->base.dev));
int ret;
/* We allocate temp bitmap for page tables for no gain
* but as this is for init only, lets keep the things simple
*/
ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
if (ret)
return ret;
/* Allocate for all pdps regardless of how the ppgtt
* was defined.
*/
ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
0, 1ULL << 32,
new_page_dirs);
if (!ret)
*ppgtt->pdp.used_pdpes = *new_page_dirs;
free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
return ret;
}
/*
* GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
* with a net effect resembling a 2-level page table in normal x86 terms. Each
* PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
* space.
*
*/
static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
{
struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
int ret;
ret = gen8_init_scratch(&ppgtt->base);
if (ret)
return ret;
ppgtt->base.start = 0;
ppgtt->base.cleanup = gen8_ppgtt_cleanup;
ppgtt->base.allocate_va_range = gen8_alloc_va_range;
ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
ppgtt->base.clear_range = gen8_ppgtt_clear_range;
ppgtt->base.unbind_vma = ppgtt_unbind_vma;
ppgtt->base.bind_vma = ppgtt_bind_vma;
ppgtt->debug_dump = gen8_dump_ppgtt;
if (USES_FULL_48BIT_PPGTT(dev_priv)) {
ret = setup_px(dev_priv, &ppgtt->pml4);
if (ret)
goto free_scratch;
gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
ppgtt->base.total = 1ULL << 48;
ppgtt->switch_mm = gen8_48b_mm_switch;
} else {
ret = __pdp_init(dev_priv, &ppgtt->pdp);
if (ret)
goto free_scratch;
ppgtt->base.total = 1ULL << 32;
ppgtt->switch_mm = gen8_legacy_mm_switch;
trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
0, 0,
GEN8_PML4E_SHIFT);
if (intel_vgpu_active(dev_priv)) {
ret = gen8_preallocate_top_level_pdps(ppgtt);
if (ret)
goto free_scratch;
}
}
if (intel_vgpu_active(dev_priv))
gen8_ppgtt_notify_vgt(ppgtt, true);
return 0;
free_scratch:
gen8_free_scratch(&ppgtt->base);
return ret;
}
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
struct i915_address_space *vm = &ppgtt->base;
struct i915_page_table *unused;
gen6_pte_t scratch_pte;
uint32_t pd_entry;
uint32_t pte, pde;
uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC, 0);
gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
u32 expected;
gen6_pte_t *pt_vaddr;
const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
pd_entry = readl(ppgtt->pd_addr + pde);
expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
if (pd_entry != expected)
seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
pde,
pd_entry,
expected);
seq_printf(m, "\tPDE: %x\n", pd_entry);
pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
for (pte = 0; pte < GEN6_PTES; pte+=4) {
unsigned long va =
(pde * PAGE_SIZE * GEN6_PTES) +
(pte * PAGE_SIZE);
int i;
bool found = false;
for (i = 0; i < 4; i++)
if (pt_vaddr[pte + i] != scratch_pte)
found = true;
if (!found)
continue;
seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
for (i = 0; i < 4; i++) {
if (pt_vaddr[pte + i] != scratch_pte)
seq_printf(m, " %08x", pt_vaddr[pte + i]);
else
seq_puts(m, " SCRATCH ");
}
seq_puts(m, "\n");
}
kunmap_px(ppgtt, pt_vaddr);
}
}
/* Write pde (index) from the page directory @pd to the page table @pt */
static void gen6_write_pde(struct i915_page_directory *pd,
const int pde, struct i915_page_table *pt)
{
/* Caller needs to make sure the write completes if necessary */
struct i915_hw_ppgtt *ppgtt =
container_of(pd, struct i915_hw_ppgtt, pd);
u32 pd_entry;
pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
pd_entry |= GEN6_PDE_VALID;
writel(pd_entry, ppgtt->pd_addr + pde);
}
/* Write all the page tables found in the ppgtt structure to incrementing page
* directories. */
static void gen6_write_page_range(struct drm_i915_private *dev_priv,
struct i915_page_directory *pd,
uint32_t start, uint32_t length)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
struct i915_page_table *pt;
uint32_t pde;
gen6_for_each_pde(pt, pd, start, length, pde)
gen6_write_pde(pd, pde, pt);
/* Make sure write is complete before other code can use this page
* table. Also require for WC mapped PTEs */
readl(ggtt->gsm);
}
static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
{
BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
return (ppgtt->pd.base.ggtt_offset / 64) << 16;
}
static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
struct intel_ring *ring = req->ring;
struct intel_engine_cs *engine = req->engine;
int ret;
/* NB: TLBs must be flushed and invalidated before a switch */
ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
if (ret)
return ret;
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
intel_ring_emit(ring, PP_DIR_DCLV_2G);
intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
intel_ring_emit(ring, get_pd_offset(ppgtt));
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
struct intel_ring *ring = req->ring;
struct intel_engine_cs *engine = req->engine;
int ret;
/* NB: TLBs must be flushed and invalidated before a switch */
ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
if (ret)
return ret;
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
intel_ring_emit(ring, PP_DIR_DCLV_2G);
intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
intel_ring_emit(ring, get_pd_offset(ppgtt));
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
/* XXX: RCS is the only one to auto invalidate the TLBs? */
if (engine->id != RCS) {
ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
if (ret)
return ret;
}
return 0;
}
static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *engine = req->engine;
struct drm_i915_private *dev_priv = req->i915;
I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
return 0;
}
static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, dev_priv, id) {
u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
GEN8_GFX_PPGTT_48B : 0;
I915_WRITE(RING_MODE_GEN7(engine),
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
}
}
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
uint32_t ecochk, ecobits;
enum intel_engine_id id;
ecobits = I915_READ(GAC_ECO_BITS);
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
ecochk = I915_READ(GAM_ECOCHK);
if (IS_HASWELL(dev_priv)) {
ecochk |= ECOCHK_PPGTT_WB_HSW;
} else {
ecochk |= ECOCHK_PPGTT_LLC_IVB;
ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
}
I915_WRITE(GAM_ECOCHK, ecochk);
for_each_engine(engine, dev_priv, id) {
/* GFX_MODE is per-ring on gen7+ */
I915_WRITE(RING_MODE_GEN7(engine),
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
}
}
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
{
uint32_t ecochk, gab_ctl, ecobits;
ecobits = I915_READ(GAC_ECO_BITS);
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
ECOBITS_PPGTT_CACHE64B);
gab_ctl = I915_READ(GAB_CTL);
I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
ecochk = I915_READ(GAM_ECOCHK);
I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
}
/* PPGTT support for Sandybdrige/Gen6 and later */
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
uint64_t start,
uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
gen6_pte_t *pt_vaddr, scratch_pte;
unsigned first_entry = start >> PAGE_SHIFT;
unsigned num_entries = length >> PAGE_SHIFT;
unsigned act_pt = first_entry / GEN6_PTES;
unsigned first_pte = first_entry % GEN6_PTES;
unsigned last_pte, i;
scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC, 0);
while (num_entries) {
last_pte = first_pte + num_entries;
if (last_pte > GEN6_PTES)
last_pte = GEN6_PTES;
pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
for (i = first_pte; i < last_pte; i++)
pt_vaddr[i] = scratch_pte;
kunmap_px(ppgtt, pt_vaddr);
num_entries -= last_pte - first_pte;
first_pte = 0;
act_pt++;
}
}
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
struct sg_table *pages,
uint64_t start,
enum i915_cache_level cache_level, u32 flags)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
unsigned first_entry = start >> PAGE_SHIFT;
unsigned act_pt = first_entry / GEN6_PTES;
unsigned act_pte = first_entry % GEN6_PTES;
gen6_pte_t *pt_vaddr = NULL;
struct sgt_iter sgt_iter;
dma_addr_t addr;
for_each_sgt_dma(addr, sgt_iter, pages) {
if (pt_vaddr == NULL)
pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
pt_vaddr[act_pte] =
vm->pte_encode(addr, cache_level, flags);
if (++act_pte == GEN6_PTES) {
kunmap_px(ppgtt, pt_vaddr);
pt_vaddr = NULL;
act_pt++;
act_pte = 0;
}
}
if (pt_vaddr)
kunmap_px(ppgtt, pt_vaddr);
}
static int gen6_alloc_va_range(struct i915_address_space *vm,
uint64_t start_in, uint64_t length_in)
{
DECLARE_BITMAP(new_page_tables, I915_PDES);
struct drm_i915_private *dev_priv = to_i915(vm->dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct i915_page_table *pt;
uint32_t start, length, start_save, length_save;
uint32_t pde;
int ret;
if (WARN_ON(start_in + length_in > ppgtt->base.total))
return -ENODEV;
start = start_save = start_in;
length = length_save = length_in;
bitmap_zero(new_page_tables, I915_PDES);
/* The allocation is done in two stages so that we can bail out with
* minimal amount of pain. The first stage finds new page tables that
* need allocation. The second stage marks use ptes within the page
* tables.
*/
gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
if (pt != vm->scratch_pt) {
WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
continue;
}
/* We've already allocated a page table */
WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
pt = alloc_pt(dev_priv);
if (IS_ERR(pt)) {
ret = PTR_ERR(pt);
goto unwind_out;
}
gen6_initialize_pt(vm, pt);
ppgtt->pd.page_table[pde] = pt;
__set_bit(pde, new_page_tables);
trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
}
start = start_save;
length = length_save;
gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
bitmap_zero(tmp_bitmap, GEN6_PTES);
bitmap_set(tmp_bitmap, gen6_pte_index(start),
gen6_pte_count(start, length));
if (__test_and_clear_bit(pde, new_page_tables))
gen6_write_pde(&ppgtt->pd, pde, pt);
trace_i915_page_table_entry_map(vm, pde, pt,
gen6_pte_index(start),
gen6_pte_count(start, length),
GEN6_PTES);
bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
GEN6_PTES);
}
WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
/* Make sure write is complete before other code can use this page
* table. Also require for WC mapped PTEs */
readl(ggtt->gsm);
mark_tlbs_dirty(ppgtt);
return 0;
unwind_out:
for_each_set_bit(pde, new_page_tables, I915_PDES) {
struct i915_page_table *pt = ppgtt->pd.page_table[pde];
ppgtt->pd.page_table[pde] = vm->scratch_pt;
free_pt(dev_priv, pt);
}
mark_tlbs_dirty(ppgtt);
return ret;
}
static int gen6_init_scratch(struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = to_i915(vm->dev);
int ret;
ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
if (ret)
return ret;
vm->scratch_pt = alloc_pt(dev_priv);
if (IS_ERR(vm->scratch_pt)) {
cleanup_scratch_page(dev_priv, &vm->scratch_page);
return PTR_ERR(vm->scratch_pt);
}
gen6_initialize_pt(vm, vm->scratch_pt);
return 0;
}
static void gen6_free_scratch(struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = to_i915(vm->dev);
free_pt(dev_priv, vm->scratch_pt);
cleanup_scratch_page(dev_priv, &vm->scratch_page);
}
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct i915_page_directory *pd = &ppgtt->pd;
struct drm_i915_private *dev_priv = to_i915(vm->dev);
struct i915_page_table *pt;
uint32_t pde;
drm_mm_remove_node(&ppgtt->node);
gen6_for_all_pdes(pt, pd, pde)
if (pt != vm->scratch_pt)
free_pt(dev_priv, pt);
gen6_free_scratch(vm);
}
static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
{
struct i915_address_space *vm = &ppgtt->base;
struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
bool retried = false;
int ret;
/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
* allocator works in address space sizes, so it's multiplied by page
* size. We allocate at the top of the GTT to avoid fragmentation.
*/
BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
ret = gen6_init_scratch(vm);
if (ret)
return ret;
alloc:
ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
&ppgtt->node, GEN6_PD_SIZE,
GEN6_PD_ALIGN, 0,
0, ggtt->base.total,
DRM_MM_TOPDOWN);
if (ret == -ENOSPC && !retried) {
ret = i915_gem_evict_something(&ggtt->base,
GEN6_PD_SIZE, GEN6_PD_ALIGN,
I915_CACHE_NONE,
0, ggtt->base.total,
0);
if (ret)
goto err_out;
retried = true;
goto alloc;
}
if (ret)
goto err_out;
if (ppgtt->node.start < ggtt->mappable_end)
DRM_DEBUG("Forced to use aperture for PDEs\n");
return 0;
err_out:
gen6_free_scratch(vm);
return ret;
}
static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
{
return gen6_ppgtt_allocate_page_directories(ppgtt);
}
static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
uint64_t start, uint64_t length)
{
struct i915_page_table *unused;
uint32_t pde;
gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
}
static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
{
struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
int ret;
ppgtt->base.pte_encode = ggtt->base.pte_encode;
if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
ppgtt->switch_mm = gen6_mm_switch;
else if (IS_HASWELL(dev_priv))
ppgtt->switch_mm = hsw_mm_switch;
else if (IS_GEN7(dev_priv))
ppgtt->switch_mm = gen7_mm_switch;
else
BUG();
ret = gen6_ppgtt_alloc(ppgtt);
if (ret)
return ret;
ppgtt->base.allocate_va_range = gen6_alloc_va_range;
ppgtt->base.clear_range = gen6_ppgtt_clear_range;
ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
ppgtt->base.unbind_vma = ppgtt_unbind_vma;
ppgtt->base.bind_vma = ppgtt_bind_vma;
ppgtt->base.cleanup = gen6_ppgtt_cleanup;
ppgtt->base.start = 0;
ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
ppgtt->debug_dump = gen6_dump_ppgtt;
ppgtt->pd.base.ggtt_offset =
ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
ppgtt->node.size >> 20,
ppgtt->node.start / PAGE_SIZE);
DRM_DEBUG("Adding PPGTT at offset %x\n",
ppgtt->pd.base.ggtt_offset << 10);
return 0;
}
static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_private *dev_priv)
{
ppgtt->base.dev = &dev_priv->drm;
if (INTEL_INFO(dev_priv)->gen < 8)
return gen6_ppgtt_init(ppgtt);
else
return gen8_ppgtt_init(ppgtt);
}
static void i915_address_space_init(struct i915_address_space *vm,
struct drm_i915_private *dev_priv,
const char *name)
{
i915_gem_timeline_init(dev_priv, &vm->timeline, name);
drm_mm_init(&vm->mm, vm->start, vm->total);
INIT_LIST_HEAD(&vm->active_list);
INIT_LIST_HEAD(&vm->inactive_list);
INIT_LIST_HEAD(&vm->unbound_list);
list_add_tail(&vm->global_link, &dev_priv->vm_list);
}
static void i915_address_space_fini(struct i915_address_space *vm)
{
i915_gem_timeline_fini(&vm->timeline);
drm_mm_takedown(&vm->mm);
list_del(&vm->global_link);
}
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
{
/* This function is for gtt related workarounds. This function is
* called on driver load and after a GPU reset, so you can place
* workarounds here even if they get overwritten by GPU reset.
*/
/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
if (IS_BROADWELL(dev_priv))
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
else if (IS_CHERRYVIEW(dev_priv))
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
else if (IS_SKYLAKE(dev_priv))
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
else if (IS_BROXTON(dev_priv))
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
}
static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_private *dev_priv,
struct drm_i915_file_private *file_priv,
const char *name)
{
int ret;
ret = __hw_ppgtt_init(ppgtt, dev_priv);
if (ret == 0) {
kref_init(&ppgtt->ref);
i915_address_space_init(&ppgtt->base, dev_priv, name);
ppgtt->base.file = file_priv;
}
return ret;
}
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
{
gtt_write_workarounds(dev_priv);
/* In the case of execlists, PPGTT is enabled by the context descriptor
* and the PDPs are contained within the context itself. We don't
* need to do anything here. */
if (i915.enable_execlists)
return 0;
if (!USES_PPGTT(dev_priv))
return 0;
if (IS_GEN6(dev_priv))
gen6_ppgtt_enable(dev_priv);
else if (IS_GEN7(dev_priv))
gen7_ppgtt_enable(dev_priv);
else if (INTEL_GEN(dev_priv) >= 8)
gen8_ppgtt_enable(dev_priv);
else
MISSING_CASE(INTEL_GEN(dev_priv));
return 0;
}
struct i915_hw_ppgtt *
i915_ppgtt_create(struct drm_i915_private *dev_priv,
struct drm_i915_file_private *fpriv,
const char *name)
{
struct i915_hw_ppgtt *ppgtt;
int ret;
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
if (!ppgtt)
return ERR_PTR(-ENOMEM);
ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv, name);
if (ret) {
kfree(ppgtt);
return ERR_PTR(ret);
}
trace_i915_ppgtt_create(&ppgtt->base);
return ppgtt;
}
void i915_ppgtt_release(struct kref *kref)
{
struct i915_hw_ppgtt *ppgtt =
container_of(kref, struct i915_hw_ppgtt, ref);
trace_i915_ppgtt_release(&ppgtt->base);
/* vmas should already be unbound and destroyed */
WARN_ON(!list_empty(&ppgtt->base.active_list));
WARN_ON(!list_empty(&ppgtt->base.inactive_list));
WARN_ON(!list_empty(&ppgtt->base.unbound_list));
i915_address_space_fini(&ppgtt->base);
ppgtt->base.cleanup(&ppgtt->base);
kfree(ppgtt);
}
/* Certain Gen5 chipsets require require idling the GPU before
* unmapping anything from the GTT when VT-d is enabled.
*/
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
{
#ifdef CONFIG_INTEL_IOMMU
/* Query intel_iommu to see if we need the workaround. Presumably that
* was loaded first.
*/
if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
return true;
#endif
return false;
}
void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
if (INTEL_INFO(dev_priv)->gen < 6)
return;
for_each_engine(engine, dev_priv, id) {
u32 fault_reg;
fault_reg = I915_READ(RING_FAULT_REG(engine));
if (fault_reg & RING_FAULT_VALID) {
DRM_DEBUG_DRIVER("Unexpected fault\n"
"\tAddr: 0x%08lx\n"
"\tAddress space: %s\n"
"\tSource ID: %d\n"
"\tType: %d\n",
fault_reg & PAGE_MASK,
fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
RING_FAULT_SRCID(fault_reg),
RING_FAULT_FAULT_TYPE(fault_reg));
I915_WRITE(RING_FAULT_REG(engine),
fault_reg & ~RING_FAULT_VALID);
}
}
/* Engine specific init may not have been done till this point. */
if (dev_priv->engine[RCS])
POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
}
static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
{
if (INTEL_INFO(dev_priv)->gen < 6) {
intel_gtt_chipset_flush();
} else {
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
}
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
/* Don't bother messing with faults pre GEN6 as we have little
* documentation supporting that it's a good idea.
*/
if (INTEL_GEN(dev_priv) < 6)
return;
i915_check_and_clear_faults(dev_priv);
ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
i915_ggtt_flush(dev_priv);
}
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages)
{
if (dma_map_sg(&obj->base.dev->pdev->dev,
pages->sgl, pages->nents,
PCI_DMA_BIDIRECTIONAL))
return 0;
return -ENOSPC;
}
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
{
writeq(pte, addr);
}
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
dma_addr_t addr,
uint64_t offset,
enum i915_cache_level level,
u32 unused)
{
struct drm_i915_private *dev_priv = to_i915(vm->dev);
gen8_pte_t __iomem *pte =
(gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
(offset >> PAGE_SHIFT);
gen8_set_pte(pte, gen8_pte_encode(addr, level));
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
struct sg_table *st,
uint64_t start,
enum i915_cache_level level, u32 unused)
{
struct drm_i915_private *dev_priv = to_i915(vm->dev);
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
struct sgt_iter sgt_iter;
gen8_pte_t __iomem *gtt_entries;
gen8_pte_t gtt_entry;
dma_addr_t addr;
int i = 0;
gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
for_each_sgt_dma(addr, sgt_iter, st) {
gtt_entry = gen8_pte_encode(addr, level);
gen8_set_pte(&gtt_entries[i++], gtt_entry);
}
/*
* XXX: This serves as a posting read to make sure that the PTE has
* actually been updated. There is some concern that even though
* registers and PTEs are within the same BAR that they are potentially
* of NUMA access patterns. Therefore, even with the way we assume
* hardware should work, we must keep this posting read for paranoia.
*/
if (i != 0)
WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
/* This next bit makes the above posting read even more important. We
* want to flush the TLBs only after we're certain all the PTE updates
* have finished.
*/
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
struct insert_entries {
struct i915_address_space *vm;
struct sg_table *st;
uint64_t start;
enum i915_cache_level level;
u32 flags;
};
static int gen8_ggtt_insert_entries__cb(void *_arg)
{
struct insert_entries *arg = _arg;
gen8_ggtt_insert_entries(arg->vm, arg->st,
arg->start, arg->level, arg->flags);
return 0;
}
static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
struct sg_table *st,
uint64_t start,
enum i915_cache_level level,
u32 flags)
{
struct insert_entries arg = { vm, st, start, level, flags };
stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
}
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
dma_addr_t addr,
uint64_t offset,
enum i915_cache_level level,
u32 flags)
{
struct drm_i915_private *dev_priv = to_i915(vm->dev);
gen6_pte_t __iomem *pte =
(gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
(offset >> PAGE_SHIFT);
iowrite32(vm->pte_encode(addr, level, flags), pte);
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
/*
* Binds an object into the global gtt with the specified cache level. The object
* will be accessible to the GPU via commands whose operands reference offsets
* within the global GTT as well as accessible by the GPU through the GMADR
* mapped BAR (dev_priv->mm.gtt->gtt).
*/
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
struct sg_table *st,
uint64_t start,
enum i915_cache_level level, u32 flags)
{
struct drm_i915_private *dev_priv = to_i915(vm->dev);
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
struct sgt_iter sgt_iter;
gen6_pte_t __iomem *gtt_entries;
gen6_pte_t gtt_entry;
dma_addr_t addr;
int i = 0;
gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
for_each_sgt_dma(addr, sgt_iter, st) {
gtt_entry = vm->pte_encode(addr, level, flags);
iowrite32(gtt_entry, &gtt_entries[i++]);
}
/* XXX: This serves as a posting read to make sure that the PTE has
* actually been updated. There is some concern that even though
* registers and PTEs are within the same BAR that they are potentially
* of NUMA access patterns. Therefore, even with the way we assume
* hardware should work, we must keep this posting read for paranoia.
*/
if (i != 0)
WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
/* This next bit makes the above posting read even more important. We
* want to flush the TLBs only after we're certain all the PTE updates
* have finished.
*/
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
static void nop_clear_range(struct i915_address_space *vm,
uint64_t start, uint64_t length)
{
}
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
uint64_t start, uint64_t length)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
unsigned first_entry = start >> PAGE_SHIFT;
unsigned num_entries = length >> PAGE_SHIFT;
gen8_pte_t scratch_pte, __iomem *gtt_base =
(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
int i;
if (WARN(num_entries > max_entries,
"First entry = %d; Num entries = %d (max=%d)\n",
first_entry, num_entries, max_entries))
num_entries = max_entries;
scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC);
for (i = 0; i < num_entries; i++)
gen8_set_pte(&gtt_base[i], scratch_pte);
readl(gtt_base);
}
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
uint64_t start,
uint64_t length)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
unsigned first_entry = start >> PAGE_SHIFT;
unsigned num_entries = length >> PAGE_SHIFT;
gen6_pte_t scratch_pte, __iomem *gtt_base =
(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
int i;
if (WARN(num_entries > max_entries,
"First entry = %d; Num entries = %d (max=%d)\n",
first_entry, num_entries, max_entries))
num_entries = max_entries;
scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC, 0);
for (i = 0; i < num_entries; i++)
iowrite32(scratch_pte, &gtt_base[i]);
readl(gtt_base);
}
static void i915_ggtt_insert_page(struct i915_address_space *vm,
dma_addr_t addr,
uint64_t offset,
enum i915_cache_level cache_level,
u32 unused)
{
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
struct sg_table *pages,
uint64_t start,
enum i915_cache_level cache_level, u32 unused)
{
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
}
static void i915_ggtt_clear_range(struct i915_address_space *vm,
uint64_t start,
uint64_t length)
{
intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
}
static int ggtt_bind_vma(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags)
{
struct drm_i915_private *i915 = to_i915(vma->vm->dev);
struct drm_i915_gem_object *obj = vma->obj;
u32 pte_flags = 0;
int ret;
ret = i915_get_ggtt_vma_pages(vma);
if (ret)
return ret;
/* Currently applicable only to VLV */
if (obj->gt_ro)
pte_flags |= PTE_READ_ONLY;
intel_runtime_pm_get(i915);
vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
cache_level, pte_flags);
intel_runtime_pm_put(i915);
/*
* Without aliasing PPGTT there's no difference between
* GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
* upgrade to both bound if we bind either to avoid double-binding.
*/
vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
return 0;
}
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags)
{
struct drm_i915_private *i915 = to_i915(vma->vm->dev);
u32 pte_flags;
int ret;
ret = i915_get_ggtt_vma_pages(vma);
if (ret)
return ret;
/* Currently applicable only to VLV */
pte_flags = 0;
if (vma->obj->gt_ro)
pte_flags |= PTE_READ_ONLY;
if (flags & I915_VMA_GLOBAL_BIND) {
intel_runtime_pm_get(i915);
vma->vm->insert_entries(vma->vm,
vma->pages, vma->node.start,
cache_level, pte_flags);
intel_runtime_pm_put(i915);
}
if (flags & I915_VMA_LOCAL_BIND) {
struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
appgtt->base.insert_entries(&appgtt->base,
vma->pages, vma->node.start,
cache_level, pte_flags);
}
return 0;
}
static void ggtt_unbind_vma(struct i915_vma *vma)
{
struct drm_i915_private *i915 = to_i915(vma->vm->dev);
struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
const u64 size = min(vma->size, vma->node.size);
if (vma->flags & I915_VMA_GLOBAL_BIND) {
intel_runtime_pm_get(i915);
vma->vm->clear_range(vma->vm,
vma->node.start, size);
intel_runtime_pm_put(i915);
}
if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
appgtt->base.clear_range(&appgtt->base,
vma->node.start, size);
}
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct device *kdev = &dev_priv->drm.pdev->dev;
struct i915_ggtt *ggtt = &dev_priv->ggtt;
if (unlikely(ggtt->do_idle_maps)) {
if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) {
DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
/* Wait a bit, in hopes it avoids the hang */
udelay(10);
}
}
dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
}
static void i915_gtt_color_adjust(struct drm_mm_node *node,
unsigned long color,
u64 *start,
u64 *end)
{
if (node->color != color)
*start += 4096;
node = list_first_entry_or_null(&node->node_list,
struct drm_mm_node,
node_list);
if (node && node->allocated && node->color != color)
*end -= 4096;
}
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
{
/* Let GEM Manage all of the aperture.
*
* However, leave one page at the end still bound to the scratch page.
* There are a number of places where the hardware apparently prefetches
* past the end of the object, and we've seen multiple hangs with the
* GPU head pointer stuck in a batchbuffer bound at the last page of the
* aperture. One page should be enough to keep any prefetching inside
* of the aperture.
*/
struct i915_ggtt *ggtt = &dev_priv->ggtt;
unsigned long hole_start, hole_end;
struct i915_hw_ppgtt *ppgtt;
struct drm_mm_node *entry;
int ret;
ret = intel_vgt_balloon(dev_priv);
if (ret)
return ret;
/* Reserve a mappable slot for our lockless error capture */
ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
&ggtt->error_capture,
4096, 0, -1,
0, ggtt->mappable_end,
0, 0);
if (ret)
return ret;
/* Clear any non-preallocated blocks */
drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
hole_start, hole_end);
ggtt->base.clear_range(&ggtt->base, hole_start,
hole_end - hole_start);
}
/* And finally clear the reserved guard page */
ggtt->base.clear_range(&ggtt->base,
ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
if (!ppgtt) {
ret = -ENOMEM;
goto err;
}
ret = __hw_ppgtt_init(ppgtt, dev_priv);
if (ret)
goto err_ppgtt;
if (ppgtt->base.allocate_va_range) {
ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
ppgtt->base.total);
if (ret)
goto err_ppgtt_cleanup;
}
ppgtt->base.clear_range(&ppgtt->base,
ppgtt->base.start,
ppgtt->base.total);
dev_priv->mm.aliasing_ppgtt = ppgtt;
WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
ggtt->base.bind_vma = aliasing_gtt_bind_vma;
}
return 0;
err_ppgtt_cleanup:
ppgtt->base.cleanup(&ppgtt->base);
err_ppgtt:
kfree(ppgtt);
err:
drm_mm_remove_node(&ggtt->error_capture);
return ret;
}
/**
* i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
* @dev_priv: i915 device
*/
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
if (dev_priv->mm.aliasing_ppgtt) {
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
ppgtt->base.cleanup(&ppgtt->base);
kfree(ppgtt);
}
i915_gem_cleanup_stolen(&dev_priv->drm);
if (drm_mm_node_allocated(&ggtt->error_capture))
drm_mm_remove_node(&ggtt->error_capture);
if (drm_mm_initialized(&ggtt->base.mm)) {
intel_vgt_deballoon(dev_priv);
mutex_lock(&dev_priv->drm.struct_mutex);
i915_address_space_fini(&ggtt->base);
mutex_unlock(&dev_priv->drm.struct_mutex);
}
ggtt->base.cleanup(&ggtt->base);
arch_phys_wc_del(ggtt->mtrr);
io_mapping_fini(&ggtt->mappable);
}
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
{
snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
return snb_gmch_ctl << 20;
}
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
{
bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
if (bdw_gmch_ctl)
bdw_gmch_ctl = 1 << bdw_gmch_ctl;
#ifdef CONFIG_X86_32
/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
if (bdw_gmch_ctl > 4)
bdw_gmch_ctl = 4;
#endif
return bdw_gmch_ctl << 20;
}
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
{
gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
gmch_ctrl &= SNB_GMCH_GGMS_MASK;
if (gmch_ctrl)
return 1 << (20 + gmch_ctrl);
return 0;
}
static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
{
snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
return snb_gmch_ctl << 25; /* 32 MB units */
}
static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
{
bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
return bdw_gmch_ctl << 25; /* 32 MB units */
}
static size_t chv_get_stolen_size(u16 gmch_ctrl)
{
gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
gmch_ctrl &= SNB_GMCH_GMS_MASK;
/*
* 0x0 to 0x10: 32MB increments starting at 0MB
* 0x11 to 0x16: 4MB increments starting at 8MB
* 0x17 to 0x1d: 4MB increments start at 36MB
*/
if (gmch_ctrl < 0x11)
return gmch_ctrl << 25;
else if (gmch_ctrl < 0x17)
return (gmch_ctrl - 0x11 + 2) << 22;
else
return (gmch_ctrl - 0x17 + 9) << 22;
}
static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
{
gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
if (gen9_gmch_ctl < 0xf0)
return gen9_gmch_ctl << 25; /* 32 MB units */
else
/* 4MB increments starting at 0xf0 for 4MB */
return (gen9_gmch_ctl - 0xf0 + 1) << 22;
}
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
{
struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
struct pci_dev *pdev = ggtt->base.dev->pdev;
phys_addr_t phys_addr;
int ret;
/* For Modern GENs the PTEs and register space are split in the BAR */
phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
/*
* On BXT writes larger than 64 bit to the GTT pagetable range will be
* dropped. For WC mappings in general we have 64 byte burst writes
* when the WC buffer is flushed, so we can't use it, but have to
* resort to an uncached mapping. The WC issue is easily caught by the
* readback check when writing GTT PTE entries.
*/
if (IS_BROXTON(dev_priv))
ggtt->gsm = ioremap_nocache(phys_addr, size);
else
ggtt->gsm = ioremap_wc(phys_addr, size);
if (!ggtt->gsm) {
DRM_ERROR("Failed to map the ggtt page table\n");
return -ENOMEM;
}
ret = setup_scratch_page(dev_priv, &ggtt->base.scratch_page, GFP_DMA32);
if (ret) {
DRM_ERROR("Scratch setup failed\n");
/* iounmap will also get called at remove, but meh */
iounmap(ggtt->gsm);
return ret;
}
return 0;
}
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
* bits. When using advanced contexts each context stores its own PAT, but
* writing this data shouldn't be harmful even in those cases. */
static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
{
uint64_t pat;
pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
if (!USES_PPGTT(dev_priv))
/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
* so RTL will always use the value corresponding to
* pat_sel = 000".
* So let's disable cache for GGTT to avoid screen corruptions.
* MOCS still can be used though.
* - System agent ggtt writes (i.e. cpu gtt mmaps) already work
* before this patch, i.e. the same uncached + snooping access
* like on gen6/7 seems to be in effect.
* - So this just fixes blitter/render access. Again it looks
* like it's not just uncached access, but uncached + snooping.
* So we can still hold onto all our assumptions wrt cpu
* clflushing on LLC machines.
*/
pat = GEN8_PPAT(0, GEN8_PPAT_UC);
/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
* write would work. */
I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
}
static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
{
uint64_t pat;
/*
* Map WB on BDW to snooped on CHV.
*
* Only the snoop bit has meaning for CHV, the rest is
* ignored.
*
* The hardware will never snoop for certain types of accesses:
* - CPU GTT (GMADR->GGTT->no snoop->memory)
* - PPGTT page tables
* - some other special cycles
*
* As with BDW, we also need to consider the following for GT accesses:
* "For GGTT, there is NO pat_sel[2:0] from the entry,
* so RTL will always use the value corresponding to
* pat_sel = 000".
* Which means we must set the snoop bit in PAT entry 0
* in order to keep the global status page working.
*/
pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
GEN8_PPAT(1, 0) |
GEN8_PPAT(2, 0) |
GEN8_PPAT(3, 0) |
GEN8_PPAT(4, CHV_PPAT_SNOOP) |
GEN8_PPAT(5, CHV_PPAT_SNOOP) |
GEN8_PPAT(6, CHV_PPAT_SNOOP) |
GEN8_PPAT(7, CHV_PPAT_SNOOP);
I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
}
static void gen6_gmch_remove(struct i915_address_space *vm)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
iounmap(ggtt->gsm);
cleanup_scratch_page(to_i915(vm->dev), &vm->scratch_page);
}
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
struct pci_dev *pdev = dev_priv->drm.pdev;
unsigned int size;
u16 snb_gmch_ctl;
/* TODO: We're not aware of mappable constraints on gen8 yet */
ggtt->mappable_base = pci_resource_start(pdev, 2);
ggtt->mappable_end = pci_resource_len(pdev, 2);
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
if (INTEL_GEN(dev_priv) >= 9) {
ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
size = gen8_get_total_gtt_size(snb_gmch_ctl);
} else if (IS_CHERRYVIEW(dev_priv)) {
ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
size = chv_get_total_gtt_size(snb_gmch_ctl);
} else {
ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
size = gen8_get_total_gtt_size(snb_gmch_ctl);
}
ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
chv_setup_private_ppat(dev_priv);
else
bdw_setup_private_ppat(dev_priv);
ggtt->base.cleanup = gen6_gmch_remove;
ggtt->base.bind_vma = ggtt_bind_vma;
ggtt->base.unbind_vma = ggtt_unbind_vma;
ggtt->base.insert_page = gen8_ggtt_insert_page;
ggtt->base.clear_range = nop_clear_range;
if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
ggtt->base.clear_range = gen8_ggtt_clear_range;
ggtt->base.insert_entries = gen8_ggtt_insert_entries;
if (IS_CHERRYVIEW(dev_priv))
ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
return ggtt_probe_common(ggtt, size);
}
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
struct pci_dev *pdev = dev_priv->drm.pdev;
unsigned int size;
u16 snb_gmch_ctl;
ggtt->mappable_base = pci_resource_start(pdev, 2);
ggtt->mappable_end = pci_resource_len(pdev, 2);
/* 64/512MB is the current min/max we actually know of, but this is just
* a coarse sanity check.
*/
if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
return -ENXIO;
}
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
size = gen6_get_total_gtt_size(snb_gmch_ctl);
ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
ggtt->base.clear_range = gen6_ggtt_clear_range;
ggtt->base.insert_page = gen6_ggtt_insert_page;
ggtt->base.insert_entries = gen6_ggtt_insert_entries;
ggtt->base.bind_vma = ggtt_bind_vma;
ggtt->base.unbind_vma = ggtt_unbind_vma;
ggtt->base.cleanup = gen6_gmch_remove;
if (HAS_EDRAM(dev_priv))
ggtt->base.pte_encode = iris_pte_encode;
else if (IS_HASWELL(dev_priv))
ggtt->base.pte_encode = hsw_pte_encode;
else if (IS_VALLEYVIEW(dev_priv))
ggtt->base.pte_encode = byt_pte_encode;
else if (INTEL_GEN(dev_priv) >= 7)
ggtt->base.pte_encode = ivb_pte_encode;
else
ggtt->base.pte_encode = snb_pte_encode;
return ggtt_probe_common(ggtt, size);
}
static void i915_gmch_remove(struct i915_address_space *vm)
{
intel_gmch_remove();
}
static int i915_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
int ret;
ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
if (!ret) {
DRM_ERROR("failed to set up gmch\n");
return -EIO;
}
intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
&ggtt->mappable_base, &ggtt->mappable_end);
ggtt->do_idle_maps = needs_idle_maps(dev_priv);
ggtt->base.insert_page = i915_ggtt_insert_page;
ggtt->base.insert_entries = i915_ggtt_insert_entries;
ggtt->base.clear_range = i915_ggtt_clear_range;
ggtt->base.bind_vma = ggtt_bind_vma;
ggtt->base.unbind_vma = ggtt_unbind_vma;
ggtt->base.cleanup = i915_gmch_remove;
if (unlikely(ggtt->do_idle_maps))
DRM_INFO("applying Ironlake quirks for intel_iommu\n");
return 0;
}
/**
* i915_ggtt_probe_hw - Probe GGTT hardware location
* @dev_priv: i915 device
*/
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
int ret;
ggtt->base.dev = &dev_priv->drm;
if (INTEL_GEN(dev_priv) <= 5)
ret = i915_gmch_probe(ggtt);
else if (INTEL_GEN(dev_priv) < 8)
ret = gen6_gmch_probe(ggtt);
else
ret = gen8_gmch_probe(ggtt);
if (ret)
return ret;
if ((ggtt->base.total - 1) >> 32) {
DRM_ERROR("We never expected a Global GTT with more than 32bits"
" of address space! Found %lldM!\n",
ggtt->base.total >> 20);
ggtt->base.total = 1ULL << 32;
ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
}
if (ggtt->mappable_end > ggtt->base.total) {
DRM_ERROR("mappable aperture extends past end of GGTT,"
" aperture=%llx, total=%llx\n",
ggtt->mappable_end, ggtt->base.total);
ggtt->mappable_end = ggtt->base.total;
}
/* GMADR is the PCI mmio aperture into the global GTT. */
DRM_INFO("Memory usable by graphics device = %lluM\n",
ggtt->base.total >> 20);
DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
#ifdef CONFIG_INTEL_IOMMU
if (intel_iommu_gfx_mapped)
DRM_INFO("VT-d active for gfx access\n");
#endif
return 0;
}
/**
* i915_ggtt_init_hw - Initialize GGTT hardware
* @dev_priv: i915 device
*/
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
int ret;
INIT_LIST_HEAD(&dev_priv->vm_list);
/* Subtract the guard page before address space initialization to
* shrink the range used by drm_mm.
*/
mutex_lock(&dev_priv->drm.struct_mutex);
ggtt->base.total -= PAGE_SIZE;
i915_address_space_init(&ggtt->base, dev_priv, "[global]");
ggtt->base.total += PAGE_SIZE;
if (!HAS_LLC(dev_priv))
ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
mutex_unlock(&dev_priv->drm.struct_mutex);
if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
dev_priv->ggtt.mappable_base,
dev_priv->ggtt.mappable_end)) {
ret = -EIO;
goto out_gtt_cleanup;
}
ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
/*
* Initialise stolen early so that we may reserve preallocated
* objects for the BIOS to KMS transition.
*/
ret = i915_gem_init_stolen(dev_priv);
if (ret)
goto out_gtt_cleanup;
return 0;
out_gtt_cleanup:
ggtt->base.cleanup(&ggtt->base);
return ret;
}
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
{
if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
return -EIO;
return 0;
}
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
struct drm_i915_gem_object *obj, *on;
i915_check_and_clear_faults(dev_priv);
/* First fill our portion of the GTT with scratch pages */
ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
/* clflush objects bound into the GGTT and rebind them. */
list_for_each_entry_safe(obj, on,
&dev_priv->mm.bound_list, global_link) {
bool ggtt_bound = false;
struct i915_vma *vma;
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (vma->vm != &ggtt->base)
continue;
if (!i915_vma_unbind(vma))
continue;
WARN_ON(i915_vma_bind(vma, obj->cache_level,
PIN_UPDATE));
ggtt_bound = true;
}
if (ggtt_bound)
WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
}
ggtt->base.closed = false;
if (INTEL_GEN(dev_priv) >= 8) {
if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
chv_setup_private_ppat(dev_priv);
else
bdw_setup_private_ppat(dev_priv);
return;
}
if (USES_PPGTT(dev_priv)) {
struct i915_address_space *vm;
list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
/* TODO: Perhaps it shouldn't be gen6 specific */
struct i915_hw_ppgtt *ppgtt;
if (i915_is_ggtt(vm))
ppgtt = dev_priv->mm.aliasing_ppgtt;
else
ppgtt = i915_vm_to_ppgtt(vm);
gen6_write_page_range(dev_priv, &ppgtt->pd,
0, ppgtt->base.total);
}
}
i915_ggtt_flush(dev_priv);
}
struct i915_vma *
i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
const struct i915_ggtt_view *view)
{
struct rb_node *rb;
rb = obj->vma_tree.rb_node;
while (rb) {
struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
long cmp;
cmp = i915_vma_compare(vma, vm, view);
if (cmp == 0)
return vma;
if (cmp < 0)
rb = rb->rb_right;
else
rb = rb->rb_left;
}
return NULL;
}
struct i915_vma *
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
const struct i915_ggtt_view *view)
{
struct i915_vma *vma;
lockdep_assert_held(&obj->base.dev->struct_mutex);
GEM_BUG_ON(view && !i915_is_ggtt(vm));
vma = i915_gem_obj_to_vma(obj, vm, view);
if (!vma) {
vma = i915_vma_create(obj, vm, view);
GEM_BUG_ON(vma != i915_gem_obj_to_vma(obj, vm, view));
}
GEM_BUG_ON(i915_vma_is_closed(vma));
return vma;
}
static struct scatterlist *
rotate_pages(const dma_addr_t *in, unsigned int offset,
unsigned int width, unsigned int height,
unsigned int stride,
struct sg_table *st, struct scatterlist *sg)
{
unsigned int column, row;
unsigned int src_idx;
for (column = 0; column < width; column++) {
src_idx = stride * (height - 1) + column;
for (row = 0; row < height; row++) {
st->nents++;
/* We don't need the pages, but need to initialize
* the entries so the sg list can be happily traversed.
* The only thing we need are DMA addresses.
*/
sg_set_page(sg, NULL, PAGE_SIZE, 0);
sg_dma_address(sg) = in[offset + src_idx];
sg_dma_len(sg) = PAGE_SIZE;
sg = sg_next(sg);
src_idx -= stride;
}
}
return sg;
}
static struct sg_table *
intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info,
struct drm_i915_gem_object *obj)
{
const size_t n_pages = obj->base.size / PAGE_SIZE;
unsigned int size = intel_rotation_info_size(rot_info);
struct sgt_iter sgt_iter;
dma_addr_t dma_addr;
unsigned long i;
dma_addr_t *page_addr_list;
struct sg_table *st;
struct scatterlist *sg;
int ret = -ENOMEM;
/* Allocate a temporary list of source pages for random access. */
page_addr_list = drm_malloc_gfp(n_pages,
sizeof(dma_addr_t),
GFP_TEMPORARY);
if (!page_addr_list)
return ERR_PTR(ret);
/* Allocate target SG list. */
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto err_st_alloc;
ret = sg_alloc_table(st, size, GFP_KERNEL);
if (ret)
goto err_sg_alloc;
/* Populate source page list from the object. */
i = 0;
for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
page_addr_list[i++] = dma_addr;
GEM_BUG_ON(i != n_pages);
st->nents = 0;
sg = st->sgl;
for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
rot_info->plane[i].width, rot_info->plane[i].height,
rot_info->plane[i].stride, st, sg);
}
DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
drm_free_large(page_addr_list);
return st;
err_sg_alloc:
kfree(st);
err_st_alloc:
drm_free_large(page_addr_list);
DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
return ERR_PTR(ret);
}
static struct sg_table *
intel_partial_pages(const struct i915_ggtt_view *view,
struct drm_i915_gem_object *obj)
{
struct sg_table *st;
struct scatterlist *sg, *iter;
unsigned int count = view->params.partial.size;
unsigned int offset;
int ret = -ENOMEM;
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto err_st_alloc;
ret = sg_alloc_table(st, count, GFP_KERNEL);
if (ret)
goto err_sg_alloc;
iter = i915_gem_object_get_sg(obj,
view->params.partial.offset,
&offset);
GEM_BUG_ON(!iter);
sg = st->sgl;
st->nents = 0;
do {
unsigned int len;
len = min(iter->length - (offset << PAGE_SHIFT),
count << PAGE_SHIFT);
sg_set_page(sg, NULL, len, 0);
sg_dma_address(sg) =
sg_dma_address(iter) + (offset << PAGE_SHIFT);
sg_dma_len(sg) = len;
st->nents++;
count -= len >> PAGE_SHIFT;
if (count == 0) {
sg_mark_end(sg);
return st;
}
sg = __sg_next(sg);
iter = __sg_next(iter);
offset = 0;
} while (1);
err_sg_alloc:
kfree(st);
err_st_alloc:
return ERR_PTR(ret);
}
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma)
{
int ret = 0;
/* The vma->pages are only valid within the lifespan of the borrowed
* obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
* must be the vma->pages. A simple rule is that vma->pages must only
* be accessed when the obj->mm.pages are pinned.
*/
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
if (vma->pages)
return 0;
if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
vma->pages = vma->obj->mm.pages;
else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
vma->pages =
intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
else
WARN_ONCE(1, "GGTT view %u not implemented!\n",
vma->ggtt_view.type);
if (!vma->pages) {
DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
vma->ggtt_view.type);
ret = -EINVAL;
} else if (IS_ERR(vma->pages)) {
ret = PTR_ERR(vma->pages);
vma->pages = NULL;
DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
vma->ggtt_view.type, ret);
}
return ret;
}