OpenCloudOS-Kernel/sound/soc/pxa/pxa-ssp.c

907 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* pxa-ssp.c -- ALSA Soc Audio Layer
*
* Copyright 2005,2008 Wolfson Microelectronics PLC.
* Author: Liam Girdwood
* Mark Brown <broonie@opensource.wolfsonmicro.com>
*
* TODO:
* o Test network mode for > 16bit sample size
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/pxa2xx_ssp.h>
#include <linux/of.h>
#include <linux/dmaengine.h>
#include <asm/irq.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/initval.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/pxa2xx-lib.h>
#include <sound/dmaengine_pcm.h>
#include "pxa-ssp.h"
/*
* SSP audio private data
*/
struct ssp_priv {
struct ssp_device *ssp;
struct clk *extclk;
unsigned long ssp_clk;
unsigned int sysclk;
unsigned int dai_fmt;
unsigned int configured_dai_fmt;
#ifdef CONFIG_PM
uint32_t cr0;
uint32_t cr1;
uint32_t to;
uint32_t psp;
#endif
};
static void dump_registers(struct ssp_device *ssp)
{
dev_dbg(&ssp->pdev->dev, "SSCR0 0x%08x SSCR1 0x%08x SSTO 0x%08x\n",
pxa_ssp_read_reg(ssp, SSCR0), pxa_ssp_read_reg(ssp, SSCR1),
pxa_ssp_read_reg(ssp, SSTO));
dev_dbg(&ssp->pdev->dev, "SSPSP 0x%08x SSSR 0x%08x SSACD 0x%08x\n",
pxa_ssp_read_reg(ssp, SSPSP), pxa_ssp_read_reg(ssp, SSSR),
pxa_ssp_read_reg(ssp, SSACD));
}
static void pxa_ssp_enable(struct ssp_device *ssp)
{
uint32_t sscr0;
sscr0 = __raw_readl(ssp->mmio_base + SSCR0) | SSCR0_SSE;
__raw_writel(sscr0, ssp->mmio_base + SSCR0);
}
static void pxa_ssp_disable(struct ssp_device *ssp)
{
uint32_t sscr0;
sscr0 = __raw_readl(ssp->mmio_base + SSCR0) & ~SSCR0_SSE;
__raw_writel(sscr0, ssp->mmio_base + SSCR0);
}
static void pxa_ssp_set_dma_params(struct ssp_device *ssp, int width4,
int out, struct snd_dmaengine_dai_dma_data *dma)
{
dma->addr_width = width4 ? DMA_SLAVE_BUSWIDTH_4_BYTES :
DMA_SLAVE_BUSWIDTH_2_BYTES;
dma->maxburst = 16;
dma->addr = ssp->phys_base + SSDR;
}
static int pxa_ssp_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
struct ssp_device *ssp = priv->ssp;
struct snd_dmaengine_dai_dma_data *dma;
int ret = 0;
if (!cpu_dai->active) {
clk_prepare_enable(ssp->clk);
pxa_ssp_disable(ssp);
}
if (priv->extclk)
clk_prepare_enable(priv->extclk);
dma = kzalloc(sizeof(struct snd_dmaengine_dai_dma_data), GFP_KERNEL);
if (!dma)
return -ENOMEM;
dma->chan_name = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
"tx" : "rx";
snd_soc_dai_set_dma_data(cpu_dai, substream, dma);
return ret;
}
static void pxa_ssp_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
struct ssp_device *ssp = priv->ssp;
if (!cpu_dai->active) {
pxa_ssp_disable(ssp);
clk_disable_unprepare(ssp->clk);
}
if (priv->extclk)
clk_disable_unprepare(priv->extclk);
kfree(snd_soc_dai_get_dma_data(cpu_dai, substream));
snd_soc_dai_set_dma_data(cpu_dai, substream, NULL);
}
#ifdef CONFIG_PM
static int pxa_ssp_suspend(struct snd_soc_dai *cpu_dai)
{
struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
struct ssp_device *ssp = priv->ssp;
if (!cpu_dai->active)
clk_prepare_enable(ssp->clk);
priv->cr0 = __raw_readl(ssp->mmio_base + SSCR0);
priv->cr1 = __raw_readl(ssp->mmio_base + SSCR1);
priv->to = __raw_readl(ssp->mmio_base + SSTO);
priv->psp = __raw_readl(ssp->mmio_base + SSPSP);
pxa_ssp_disable(ssp);
clk_disable_unprepare(ssp->clk);
return 0;
}
static int pxa_ssp_resume(struct snd_soc_dai *cpu_dai)
{
struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
struct ssp_device *ssp = priv->ssp;
uint32_t sssr = SSSR_ROR | SSSR_TUR | SSSR_BCE;
clk_prepare_enable(ssp->clk);
__raw_writel(sssr, ssp->mmio_base + SSSR);
__raw_writel(priv->cr0 & ~SSCR0_SSE, ssp->mmio_base + SSCR0);
__raw_writel(priv->cr1, ssp->mmio_base + SSCR1);
__raw_writel(priv->to, ssp->mmio_base + SSTO);
__raw_writel(priv->psp, ssp->mmio_base + SSPSP);
if (cpu_dai->active)
pxa_ssp_enable(ssp);
else
clk_disable_unprepare(ssp->clk);
return 0;
}
#else
#define pxa_ssp_suspend NULL
#define pxa_ssp_resume NULL
#endif
/**
* ssp_set_clkdiv - set SSP clock divider
* @div: serial clock rate divider
*/
static void pxa_ssp_set_scr(struct ssp_device *ssp, u32 div)
{
u32 sscr0 = pxa_ssp_read_reg(ssp, SSCR0);
if (ssp->type == PXA25x_SSP) {
sscr0 &= ~0x0000ff00;
sscr0 |= ((div - 2)/2) << 8; /* 2..512 */
} else {
sscr0 &= ~0x000fff00;
sscr0 |= (div - 1) << 8; /* 1..4096 */
}
pxa_ssp_write_reg(ssp, SSCR0, sscr0);
}
/*
* Set the SSP ports SYSCLK.
*/
static int pxa_ssp_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
int clk_id, unsigned int freq, int dir)
{
struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
struct ssp_device *ssp = priv->ssp;
u32 sscr0 = pxa_ssp_read_reg(ssp, SSCR0) &
~(SSCR0_ECS | SSCR0_NCS | SSCR0_MOD | SSCR0_ACS);
if (priv->extclk) {
int ret;
/*
* For DT based boards, if an extclk is given, use it
* here and configure PXA_SSP_CLK_EXT.
*/
ret = clk_set_rate(priv->extclk, freq);
if (ret < 0)
return ret;
clk_id = PXA_SSP_CLK_EXT;
}
dev_dbg(&ssp->pdev->dev,
"pxa_ssp_set_dai_sysclk id: %d, clk_id %d, freq %u\n",
cpu_dai->id, clk_id, freq);
switch (clk_id) {
case PXA_SSP_CLK_NET_PLL:
sscr0 |= SSCR0_MOD;
break;
case PXA_SSP_CLK_PLL:
/* Internal PLL is fixed */
if (ssp->type == PXA25x_SSP)
priv->sysclk = 1843200;
else
priv->sysclk = 13000000;
break;
case PXA_SSP_CLK_EXT:
priv->sysclk = freq;
sscr0 |= SSCR0_ECS;
break;
case PXA_SSP_CLK_NET:
priv->sysclk = freq;
sscr0 |= SSCR0_NCS | SSCR0_MOD;
break;
case PXA_SSP_CLK_AUDIO:
priv->sysclk = 0;
pxa_ssp_set_scr(ssp, 1);
sscr0 |= SSCR0_ACS;
break;
default:
return -ENODEV;
}
/* The SSP clock must be disabled when changing SSP clock mode
* on PXA2xx. On PXA3xx it must be enabled when doing so. */
if (ssp->type != PXA3xx_SSP)
clk_disable_unprepare(ssp->clk);
pxa_ssp_write_reg(ssp, SSCR0, sscr0);
if (ssp->type != PXA3xx_SSP)
clk_prepare_enable(ssp->clk);
return 0;
}
/*
* Configure the PLL frequency pxa27x and (afaik - pxa320 only)
*/
static int pxa_ssp_set_pll(struct ssp_priv *priv, unsigned int freq)
{
struct ssp_device *ssp = priv->ssp;
u32 ssacd = pxa_ssp_read_reg(ssp, SSACD) & ~0x70;
if (ssp->type == PXA3xx_SSP)
pxa_ssp_write_reg(ssp, SSACDD, 0);
switch (freq) {
case 5622000:
break;
case 11345000:
ssacd |= (0x1 << 4);
break;
case 12235000:
ssacd |= (0x2 << 4);
break;
case 14857000:
ssacd |= (0x3 << 4);
break;
case 32842000:
ssacd |= (0x4 << 4);
break;
case 48000000:
ssacd |= (0x5 << 4);
break;
case 0:
/* Disable */
break;
default:
/* PXA3xx has a clock ditherer which can be used to generate
* a wider range of frequencies - calculate a value for it.
*/
if (ssp->type == PXA3xx_SSP) {
u32 val;
u64 tmp = 19968;
tmp *= 1000000;
do_div(tmp, freq);
val = tmp;
val = (val << 16) | 64;
pxa_ssp_write_reg(ssp, SSACDD, val);
ssacd |= (0x6 << 4);
dev_dbg(&ssp->pdev->dev,
"Using SSACDD %x to supply %uHz\n",
val, freq);
break;
}
return -EINVAL;
}
pxa_ssp_write_reg(ssp, SSACD, ssacd);
return 0;
}
/*
* Set the active slots in TDM/Network mode
*/
static int pxa_ssp_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai,
unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
{
struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
struct ssp_device *ssp = priv->ssp;
u32 sscr0;
sscr0 = pxa_ssp_read_reg(ssp, SSCR0);
sscr0 &= ~(SSCR0_MOD | SSCR0_SlotsPerFrm(8) | SSCR0_EDSS | SSCR0_DSS);
/* set slot width */
if (slot_width > 16)
sscr0 |= SSCR0_EDSS | SSCR0_DataSize(slot_width - 16);
else
sscr0 |= SSCR0_DataSize(slot_width);
if (slots > 1) {
/* enable network mode */
sscr0 |= SSCR0_MOD;
/* set number of active slots */
sscr0 |= SSCR0_SlotsPerFrm(slots);
/* set active slot mask */
pxa_ssp_write_reg(ssp, SSTSA, tx_mask);
pxa_ssp_write_reg(ssp, SSRSA, rx_mask);
}
pxa_ssp_write_reg(ssp, SSCR0, sscr0);
return 0;
}
/*
* Tristate the SSP DAI lines
*/
static int pxa_ssp_set_dai_tristate(struct snd_soc_dai *cpu_dai,
int tristate)
{
struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
struct ssp_device *ssp = priv->ssp;
u32 sscr1;
sscr1 = pxa_ssp_read_reg(ssp, SSCR1);
if (tristate)
sscr1 &= ~SSCR1_TTE;
else
sscr1 |= SSCR1_TTE;
pxa_ssp_write_reg(ssp, SSCR1, sscr1);
return 0;
}
static int pxa_ssp_set_dai_fmt(struct snd_soc_dai *cpu_dai,
unsigned int fmt)
{
struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
case SND_SOC_DAIFMT_CBM_CFS:
case SND_SOC_DAIFMT_CBS_CFS:
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
case SND_SOC_DAIFMT_NB_IF:
case SND_SOC_DAIFMT_IB_IF:
case SND_SOC_DAIFMT_IB_NF:
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
case SND_SOC_DAIFMT_DSP_A:
case SND_SOC_DAIFMT_DSP_B:
break;
default:
return -EINVAL;
}
/* Settings will be applied in hw_params() */
priv->dai_fmt = fmt;
return 0;
}
/*
* Set up the SSP DAI format.
* The SSP Port must be inactive before calling this function as the
* physical interface format is changed.
*/
static int pxa_ssp_configure_dai_fmt(struct ssp_priv *priv)
{
struct ssp_device *ssp = priv->ssp;
u32 sscr0, sscr1, sspsp, scfr;
/* check if we need to change anything at all */
if (priv->configured_dai_fmt == priv->dai_fmt)
return 0;
/* reset port settings */
sscr0 = pxa_ssp_read_reg(ssp, SSCR0) &
~(SSCR0_PSP | SSCR0_MOD);
sscr1 = pxa_ssp_read_reg(ssp, SSCR1) &
~(SSCR1_SCLKDIR | SSCR1_SFRMDIR | SSCR1_SCFR |
SSCR1_RWOT | SSCR1_TRAIL | SSCR1_TFT | SSCR1_RFT);
sspsp = pxa_ssp_read_reg(ssp, SSPSP) &
~(SSPSP_SFRMP | SSPSP_SCMODE(3));
sscr1 |= SSCR1_RxTresh(8) | SSCR1_TxTresh(7);
switch (priv->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
sscr1 |= SSCR1_SCLKDIR | SSCR1_SFRMDIR | SSCR1_SCFR;
break;
case SND_SOC_DAIFMT_CBM_CFS:
sscr1 |= SSCR1_SCLKDIR | SSCR1_SCFR;
break;
case SND_SOC_DAIFMT_CBS_CFS:
break;
default:
return -EINVAL;
}
switch (priv->dai_fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
sspsp |= SSPSP_SFRMP;
break;
case SND_SOC_DAIFMT_NB_IF:
break;
case SND_SOC_DAIFMT_IB_IF:
sspsp |= SSPSP_SCMODE(2);
break;
case SND_SOC_DAIFMT_IB_NF:
sspsp |= SSPSP_SCMODE(2) | SSPSP_SFRMP;
break;
default:
return -EINVAL;
}
switch (priv->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
sscr0 |= SSCR0_PSP;
sscr1 |= SSCR1_RWOT | SSCR1_TRAIL;
/* See hw_params() */
break;
case SND_SOC_DAIFMT_DSP_A:
sspsp |= SSPSP_FSRT;
/* fall through */
case SND_SOC_DAIFMT_DSP_B:
sscr0 |= SSCR0_MOD | SSCR0_PSP;
sscr1 |= SSCR1_TRAIL | SSCR1_RWOT;
break;
default:
return -EINVAL;
}
pxa_ssp_write_reg(ssp, SSCR0, sscr0);
pxa_ssp_write_reg(ssp, SSCR1, sscr1);
pxa_ssp_write_reg(ssp, SSPSP, sspsp);
switch (priv->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
case SND_SOC_DAIFMT_CBM_CFS:
scfr = pxa_ssp_read_reg(ssp, SSCR1) | SSCR1_SCFR;
pxa_ssp_write_reg(ssp, SSCR1, scfr);
while (pxa_ssp_read_reg(ssp, SSSR) & SSSR_BSY)
cpu_relax();
break;
}
dump_registers(ssp);
/* Since we are configuring the timings for the format by hand
* we have to defer some things until hw_params() where we
* know parameters like the sample size.
*/
priv->configured_dai_fmt = priv->dai_fmt;
return 0;
}
struct pxa_ssp_clock_mode {
int rate;
int pll;
u8 acds;
u8 scdb;
};
static const struct pxa_ssp_clock_mode pxa_ssp_clock_modes[] = {
{ .rate = 8000, .pll = 32842000, .acds = SSACD_ACDS_32, .scdb = SSACD_SCDB_4X },
{ .rate = 11025, .pll = 5622000, .acds = SSACD_ACDS_4, .scdb = SSACD_SCDB_4X },
{ .rate = 16000, .pll = 32842000, .acds = SSACD_ACDS_16, .scdb = SSACD_SCDB_4X },
{ .rate = 22050, .pll = 5622000, .acds = SSACD_ACDS_2, .scdb = SSACD_SCDB_4X },
{ .rate = 44100, .pll = 11345000, .acds = SSACD_ACDS_2, .scdb = SSACD_SCDB_4X },
{ .rate = 48000, .pll = 12235000, .acds = SSACD_ACDS_2, .scdb = SSACD_SCDB_4X },
{ .rate = 96000, .pll = 12235000, .acds = SSACD_ACDS_4, .scdb = SSACD_SCDB_1X },
{}
};
/*
* Set the SSP audio DMA parameters and sample size.
* Can be called multiple times by oss emulation.
*/
static int pxa_ssp_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *cpu_dai)
{
struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
struct ssp_device *ssp = priv->ssp;
int chn = params_channels(params);
u32 sscr0, sspsp;
int width = snd_pcm_format_physical_width(params_format(params));
int ttsa = pxa_ssp_read_reg(ssp, SSTSA) & 0xf;
struct snd_dmaengine_dai_dma_data *dma_data;
int rate = params_rate(params);
int bclk = rate * chn * (width / 8);
int ret;
dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
/* Network mode with one active slot (ttsa == 1) can be used
* to force 16-bit frame width on the wire (for S16_LE), even
* with two channels. Use 16-bit DMA transfers for this case.
*/
pxa_ssp_set_dma_params(ssp,
((chn == 2) && (ttsa != 1)) || (width == 32),
substream->stream == SNDRV_PCM_STREAM_PLAYBACK, dma_data);
/* we can only change the settings if the port is not in use */
if (pxa_ssp_read_reg(ssp, SSCR0) & SSCR0_SSE)
return 0;
ret = pxa_ssp_configure_dai_fmt(priv);
if (ret < 0)
return ret;
/* clear selected SSP bits */
sscr0 = pxa_ssp_read_reg(ssp, SSCR0) & ~(SSCR0_DSS | SSCR0_EDSS);
/* bit size */
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
if (ssp->type == PXA3xx_SSP)
sscr0 |= SSCR0_FPCKE;
sscr0 |= SSCR0_DataSize(16);
break;
case SNDRV_PCM_FORMAT_S24_LE:
sscr0 |= (SSCR0_EDSS | SSCR0_DataSize(8));
break;
case SNDRV_PCM_FORMAT_S32_LE:
sscr0 |= (SSCR0_EDSS | SSCR0_DataSize(16));
break;
}
pxa_ssp_write_reg(ssp, SSCR0, sscr0);
if (sscr0 & SSCR0_ACS) {
ret = pxa_ssp_set_pll(priv, bclk);
/*
* If we were able to generate the bclk directly,
* all is fine. Otherwise, look up the closest rate
* from the table and also set the dividers.
*/
if (ret < 0) {
const struct pxa_ssp_clock_mode *m;
int ssacd, acds;
for (m = pxa_ssp_clock_modes; m->rate; m++) {
if (m->rate == rate)
break;
}
if (!m->rate)
return -EINVAL;
acds = m->acds;
/* The values in the table are for 16 bits */
if (width == 32)
acds--;
ret = pxa_ssp_set_pll(priv, bclk);
if (ret < 0)
return ret;
ssacd = pxa_ssp_read_reg(ssp, SSACD);
ssacd &= ~(SSACD_ACDS(7) | SSACD_SCDB_1X);
ssacd |= SSACD_ACDS(m->acds);
ssacd |= m->scdb;
pxa_ssp_write_reg(ssp, SSACD, ssacd);
}
} else if (sscr0 & SSCR0_ECS) {
/*
* For setups with external clocking, the PLL and its diviers
* are not active. Instead, the SCR bits in SSCR0 can be used
* to divide the clock.
*/
pxa_ssp_set_scr(ssp, bclk / rate);
}
switch (priv->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
sspsp = pxa_ssp_read_reg(ssp, SSPSP);
if (((priv->sysclk / bclk) == 64) && (width == 16)) {
/* This is a special case where the bitclk is 64fs
* and we're not dealing with 2*32 bits of audio
* samples.
*
* The SSP values used for that are all found out by
* trying and failing a lot; some of the registers
* needed for that mode are only available on PXA3xx.
*/
if (ssp->type != PXA3xx_SSP)
return -EINVAL;
sspsp |= SSPSP_SFRMWDTH(width * 2);
sspsp |= SSPSP_SFRMDLY(width * 4);
sspsp |= SSPSP_EDMYSTOP(3);
sspsp |= SSPSP_DMYSTOP(3);
sspsp |= SSPSP_DMYSTRT(1);
} else {
/* The frame width is the width the LRCLK is
* asserted for; the delay is expressed in
* half cycle units. We need the extra cycle
* because the data starts clocking out one BCLK
* after LRCLK changes polarity.
*/
sspsp |= SSPSP_SFRMWDTH(width + 1);
sspsp |= SSPSP_SFRMDLY((width + 1) * 2);
sspsp |= SSPSP_DMYSTRT(1);
}
pxa_ssp_write_reg(ssp, SSPSP, sspsp);
break;
default:
break;
}
/* When we use a network mode, we always require TDM slots
* - complain loudly and fail if they've not been set up yet.
*/
if ((sscr0 & SSCR0_MOD) && !ttsa) {
dev_err(&ssp->pdev->dev, "No TDM timeslot configured\n");
return -EINVAL;
}
dump_registers(ssp);
return 0;
}
static void pxa_ssp_set_running_bit(struct snd_pcm_substream *substream,
struct ssp_device *ssp, int value)
{
uint32_t sscr0 = pxa_ssp_read_reg(ssp, SSCR0);
uint32_t sscr1 = pxa_ssp_read_reg(ssp, SSCR1);
uint32_t sspsp = pxa_ssp_read_reg(ssp, SSPSP);
uint32_t sssr = pxa_ssp_read_reg(ssp, SSSR);
if (value && (sscr0 & SSCR0_SSE))
pxa_ssp_write_reg(ssp, SSCR0, sscr0 & ~SSCR0_SSE);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
if (value)
sscr1 |= SSCR1_TSRE;
else
sscr1 &= ~SSCR1_TSRE;
} else {
if (value)
sscr1 |= SSCR1_RSRE;
else
sscr1 &= ~SSCR1_RSRE;
}
pxa_ssp_write_reg(ssp, SSCR1, sscr1);
if (value) {
pxa_ssp_write_reg(ssp, SSSR, sssr);
pxa_ssp_write_reg(ssp, SSPSP, sspsp);
pxa_ssp_write_reg(ssp, SSCR0, sscr0 | SSCR0_SSE);
}
}
static int pxa_ssp_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *cpu_dai)
{
int ret = 0;
struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
struct ssp_device *ssp = priv->ssp;
int val;
switch (cmd) {
case SNDRV_PCM_TRIGGER_RESUME:
pxa_ssp_enable(ssp);
break;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
pxa_ssp_set_running_bit(substream, ssp, 1);
val = pxa_ssp_read_reg(ssp, SSSR);
pxa_ssp_write_reg(ssp, SSSR, val);
break;
case SNDRV_PCM_TRIGGER_START:
pxa_ssp_set_running_bit(substream, ssp, 1);
break;
case SNDRV_PCM_TRIGGER_STOP:
pxa_ssp_set_running_bit(substream, ssp, 0);
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
pxa_ssp_disable(ssp);
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
pxa_ssp_set_running_bit(substream, ssp, 0);
break;
default:
ret = -EINVAL;
}
dump_registers(ssp);
return ret;
}
static int pxa_ssp_probe(struct snd_soc_dai *dai)
{
struct device *dev = dai->dev;
struct ssp_priv *priv;
int ret;
priv = kzalloc(sizeof(struct ssp_priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
if (dev->of_node) {
struct device_node *ssp_handle;
ssp_handle = of_parse_phandle(dev->of_node, "port", 0);
if (!ssp_handle) {
dev_err(dev, "unable to get 'port' phandle\n");
ret = -ENODEV;
goto err_priv;
}
priv->ssp = pxa_ssp_request_of(ssp_handle, "SoC audio");
if (priv->ssp == NULL) {
ret = -ENODEV;
goto err_priv;
}
priv->extclk = devm_clk_get(dev, "extclk");
if (IS_ERR(priv->extclk)) {
ret = PTR_ERR(priv->extclk);
if (ret == -EPROBE_DEFER)
return ret;
priv->extclk = NULL;
}
} else {
priv->ssp = pxa_ssp_request(dai->id + 1, "SoC audio");
if (priv->ssp == NULL) {
ret = -ENODEV;
goto err_priv;
}
}
priv->dai_fmt = (unsigned int) -1;
snd_soc_dai_set_drvdata(dai, priv);
return 0;
err_priv:
kfree(priv);
return ret;
}
static int pxa_ssp_remove(struct snd_soc_dai *dai)
{
struct ssp_priv *priv = snd_soc_dai_get_drvdata(dai);
pxa_ssp_free(priv->ssp);
kfree(priv);
return 0;
}
#define PXA_SSP_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_11025 |\
SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 | \
SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | \
SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_64000 | \
SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000)
#define PXA_SSP_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE)
static const struct snd_soc_dai_ops pxa_ssp_dai_ops = {
.startup = pxa_ssp_startup,
.shutdown = pxa_ssp_shutdown,
.trigger = pxa_ssp_trigger,
.hw_params = pxa_ssp_hw_params,
.set_sysclk = pxa_ssp_set_dai_sysclk,
.set_fmt = pxa_ssp_set_dai_fmt,
.set_tdm_slot = pxa_ssp_set_dai_tdm_slot,
.set_tristate = pxa_ssp_set_dai_tristate,
};
static struct snd_soc_dai_driver pxa_ssp_dai = {
.probe = pxa_ssp_probe,
.remove = pxa_ssp_remove,
.suspend = pxa_ssp_suspend,
.resume = pxa_ssp_resume,
.playback = {
.channels_min = 1,
.channels_max = 8,
.rates = PXA_SSP_RATES,
.formats = PXA_SSP_FORMATS,
},
.capture = {
.channels_min = 1,
.channels_max = 8,
.rates = PXA_SSP_RATES,
.formats = PXA_SSP_FORMATS,
},
.ops = &pxa_ssp_dai_ops,
};
static const struct snd_soc_component_driver pxa_ssp_component = {
.name = "pxa-ssp",
.ops = &pxa2xx_pcm_ops,
.pcm_new = pxa2xx_soc_pcm_new,
.pcm_free = pxa2xx_pcm_free_dma_buffers,
};
#ifdef CONFIG_OF
static const struct of_device_id pxa_ssp_of_ids[] = {
{ .compatible = "mrvl,pxa-ssp-dai" },
{}
};
MODULE_DEVICE_TABLE(of, pxa_ssp_of_ids);
#endif
static int asoc_ssp_probe(struct platform_device *pdev)
{
return devm_snd_soc_register_component(&pdev->dev, &pxa_ssp_component,
&pxa_ssp_dai, 1);
}
static struct platform_driver asoc_ssp_driver = {
.driver = {
.name = "pxa-ssp-dai",
.of_match_table = of_match_ptr(pxa_ssp_of_ids),
},
.probe = asoc_ssp_probe,
};
module_platform_driver(asoc_ssp_driver);
/* Module information */
MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.com>");
MODULE_DESCRIPTION("PXA SSP/PCM SoC Interface");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:pxa-ssp-dai");