OpenCloudOS-Kernel/drivers/crypto/s5p-sss.c

945 lines
24 KiB
C

/*
* Cryptographic API.
*
* Support for Samsung S5PV210 HW acceleration.
*
* Copyright (C) 2011 NetUP Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
*/
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <crypto/ctr.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/scatterwalk.h>
#define _SBF(s, v) ((v) << (s))
/* Feed control registers */
#define SSS_REG_FCINTSTAT 0x0000
#define SSS_FCINTSTAT_BRDMAINT BIT(3)
#define SSS_FCINTSTAT_BTDMAINT BIT(2)
#define SSS_FCINTSTAT_HRDMAINT BIT(1)
#define SSS_FCINTSTAT_PKDMAINT BIT(0)
#define SSS_REG_FCINTENSET 0x0004
#define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
#define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
#define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
#define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
#define SSS_REG_FCINTENCLR 0x0008
#define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
#define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
#define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
#define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
#define SSS_REG_FCINTPEND 0x000C
#define SSS_FCINTPEND_BRDMAINTP BIT(3)
#define SSS_FCINTPEND_BTDMAINTP BIT(2)
#define SSS_FCINTPEND_HRDMAINTP BIT(1)
#define SSS_FCINTPEND_PKDMAINTP BIT(0)
#define SSS_REG_FCFIFOSTAT 0x0010
#define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
#define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
#define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
#define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
#define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
#define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
#define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
#define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
#define SSS_REG_FCFIFOCTRL 0x0014
#define SSS_FCFIFOCTRL_DESSEL BIT(2)
#define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
#define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
#define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
#define SSS_REG_FCBRDMAS 0x0020
#define SSS_REG_FCBRDMAL 0x0024
#define SSS_REG_FCBRDMAC 0x0028
#define SSS_FCBRDMAC_BYTESWAP BIT(1)
#define SSS_FCBRDMAC_FLUSH BIT(0)
#define SSS_REG_FCBTDMAS 0x0030
#define SSS_REG_FCBTDMAL 0x0034
#define SSS_REG_FCBTDMAC 0x0038
#define SSS_FCBTDMAC_BYTESWAP BIT(1)
#define SSS_FCBTDMAC_FLUSH BIT(0)
#define SSS_REG_FCHRDMAS 0x0040
#define SSS_REG_FCHRDMAL 0x0044
#define SSS_REG_FCHRDMAC 0x0048
#define SSS_FCHRDMAC_BYTESWAP BIT(1)
#define SSS_FCHRDMAC_FLUSH BIT(0)
#define SSS_REG_FCPKDMAS 0x0050
#define SSS_REG_FCPKDMAL 0x0054
#define SSS_REG_FCPKDMAC 0x0058
#define SSS_FCPKDMAC_BYTESWAP BIT(3)
#define SSS_FCPKDMAC_DESCEND BIT(2)
#define SSS_FCPKDMAC_TRANSMIT BIT(1)
#define SSS_FCPKDMAC_FLUSH BIT(0)
#define SSS_REG_FCPKDMAO 0x005C
/* AES registers */
#define SSS_REG_AES_CONTROL 0x00
#define SSS_AES_BYTESWAP_DI BIT(11)
#define SSS_AES_BYTESWAP_DO BIT(10)
#define SSS_AES_BYTESWAP_IV BIT(9)
#define SSS_AES_BYTESWAP_CNT BIT(8)
#define SSS_AES_BYTESWAP_KEY BIT(7)
#define SSS_AES_KEY_CHANGE_MODE BIT(6)
#define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
#define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
#define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
#define SSS_AES_FIFO_MODE BIT(3)
#define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
#define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
#define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
#define SSS_AES_MODE_DECRYPT BIT(0)
#define SSS_REG_AES_STATUS 0x04
#define SSS_AES_BUSY BIT(2)
#define SSS_AES_INPUT_READY BIT(1)
#define SSS_AES_OUTPUT_READY BIT(0)
#define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
#define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
#define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
#define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
#define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
#define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
#define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
#define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
#define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
#define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
SSS_AES_REG(dev, reg))
/* HW engine modes */
#define FLAGS_AES_DECRYPT BIT(0)
#define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
#define FLAGS_AES_CBC _SBF(1, 0x01)
#define FLAGS_AES_CTR _SBF(1, 0x02)
#define AES_KEY_LEN 16
#define CRYPTO_QUEUE_LEN 1
/**
* struct samsung_aes_variant - platform specific SSS driver data
* @aes_offset: AES register offset from SSS module's base.
*
* Specifies platform specific configuration of SSS module.
* Note: A structure for driver specific platform data is used for future
* expansion of its usage.
*/
struct samsung_aes_variant {
unsigned int aes_offset;
};
struct s5p_aes_reqctx {
unsigned long mode;
};
struct s5p_aes_ctx {
struct s5p_aes_dev *dev;
uint8_t aes_key[AES_MAX_KEY_SIZE];
uint8_t nonce[CTR_RFC3686_NONCE_SIZE];
int keylen;
};
/**
* struct s5p_aes_dev - Crypto device state container
* @dev: Associated device
* @clk: Clock for accessing hardware
* @ioaddr: Mapped IO memory region
* @aes_ioaddr: Per-varian offset for AES block IO memory
* @irq_fc: Feed control interrupt line
* @req: Crypto request currently handled by the device
* @ctx: Configuration for currently handled crypto request
* @sg_src: Scatter list with source data for currently handled block
* in device. This is DMA-mapped into device.
* @sg_dst: Scatter list with destination data for currently handled block
* in device. This is DMA-mapped into device.
* @sg_src_cpy: In case of unaligned access, copied scatter list
* with source data.
* @sg_dst_cpy: In case of unaligned access, copied scatter list
* with destination data.
* @tasklet: New request scheduling jib
* @queue: Crypto queue
* @busy: Indicates whether the device is currently handling some request
* thus it uses some of the fields from this state, like:
* req, ctx, sg_src/dst (and copies). This essentially
* protects against concurrent access to these fields.
* @lock: Lock for protecting both access to device hardware registers
* and fields related to current request (including the busy field).
*/
struct s5p_aes_dev {
struct device *dev;
struct clk *clk;
void __iomem *ioaddr;
void __iomem *aes_ioaddr;
int irq_fc;
struct ablkcipher_request *req;
struct s5p_aes_ctx *ctx;
struct scatterlist *sg_src;
struct scatterlist *sg_dst;
struct scatterlist *sg_src_cpy;
struct scatterlist *sg_dst_cpy;
struct tasklet_struct tasklet;
struct crypto_queue queue;
bool busy;
spinlock_t lock;
};
static struct s5p_aes_dev *s5p_dev;
static const struct samsung_aes_variant s5p_aes_data = {
.aes_offset = 0x4000,
};
static const struct samsung_aes_variant exynos_aes_data = {
.aes_offset = 0x200,
};
static const struct of_device_id s5p_sss_dt_match[] = {
{
.compatible = "samsung,s5pv210-secss",
.data = &s5p_aes_data,
},
{
.compatible = "samsung,exynos4210-secss",
.data = &exynos_aes_data,
},
{ },
};
MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
static inline struct samsung_aes_variant *find_s5p_sss_version
(struct platform_device *pdev)
{
if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
const struct of_device_id *match;
match = of_match_node(s5p_sss_dt_match,
pdev->dev.of_node);
return (struct samsung_aes_variant *)match->data;
}
return (struct samsung_aes_variant *)
platform_get_device_id(pdev)->driver_data;
}
static void s5p_set_dma_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
}
static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
}
static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
{
int len;
if (!*sg)
return;
len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
free_pages((unsigned long)sg_virt(*sg), get_order(len));
kfree(*sg);
*sg = NULL;
}
static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
unsigned int nbytes, int out)
{
struct scatter_walk walk;
if (!nbytes)
return;
scatterwalk_start(&walk, sg);
scatterwalk_copychunks(buf, &walk, nbytes, out);
scatterwalk_done(&walk, out, 0);
}
static void s5p_sg_done(struct s5p_aes_dev *dev)
{
if (dev->sg_dst_cpy) {
dev_dbg(dev->dev,
"Copying %d bytes of output data back to original place\n",
dev->req->nbytes);
s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
dev->req->nbytes, 1);
}
s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
}
/* Calls the completion. Cannot be called with dev->lock hold. */
static void s5p_aes_complete(struct s5p_aes_dev *dev, int err)
{
dev->req->base.complete(&dev->req->base, err);
}
static void s5p_unset_outdata(struct s5p_aes_dev *dev)
{
dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
}
static void s5p_unset_indata(struct s5p_aes_dev *dev)
{
dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
}
static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
struct scatterlist **dst)
{
void *pages;
int len;
*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
if (!*dst)
return -ENOMEM;
len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
if (!pages) {
kfree(*dst);
*dst = NULL;
return -ENOMEM;
}
s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
sg_init_table(*dst, 1);
sg_set_buf(*dst, pages, len);
return 0;
}
static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
int err;
if (!sg->length) {
err = -EINVAL;
goto exit;
}
err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE);
if (!err) {
err = -ENOMEM;
goto exit;
}
dev->sg_dst = sg;
err = 0;
exit:
return err;
}
static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
int err;
if (!sg->length) {
err = -EINVAL;
goto exit;
}
err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE);
if (!err) {
err = -ENOMEM;
goto exit;
}
dev->sg_src = sg;
err = 0;
exit:
return err;
}
/*
* Returns -ERRNO on error (mapping of new data failed).
* On success returns:
* - 0 if there is no more data,
* - 1 if new transmitting (output) data is ready and its address+length
* have to be written to device (by calling s5p_set_dma_outdata()).
*/
static int s5p_aes_tx(struct s5p_aes_dev *dev)
{
int ret = 0;
s5p_unset_outdata(dev);
if (!sg_is_last(dev->sg_dst)) {
ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
if (!ret)
ret = 1;
}
return ret;
}
/*
* Returns -ERRNO on error (mapping of new data failed).
* On success returns:
* - 0 if there is no more data,
* - 1 if new receiving (input) data is ready and its address+length
* have to be written to device (by calling s5p_set_dma_indata()).
*/
static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
{
int ret = 0;
s5p_unset_indata(dev);
if (!sg_is_last(dev->sg_src)) {
ret = s5p_set_indata(dev, sg_next(dev->sg_src));
if (!ret)
ret = 1;
}
return ret;
}
static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
{
struct platform_device *pdev = dev_id;
struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
int err_dma_tx = 0;
int err_dma_rx = 0;
bool tx_end = false;
unsigned long flags;
uint32_t status;
int err;
spin_lock_irqsave(&dev->lock, flags);
/*
* Handle rx or tx interrupt. If there is still data (scatterlist did not
* reach end), then map next scatterlist entry.
* In case of such mapping error, s5p_aes_complete() should be called.
*
* If there is no more data in tx scatter list, call s5p_aes_complete()
* and schedule new tasklet.
*/
status = SSS_READ(dev, FCINTSTAT);
if (status & SSS_FCINTSTAT_BRDMAINT)
err_dma_rx = s5p_aes_rx(dev);
if (status & SSS_FCINTSTAT_BTDMAINT) {
if (sg_is_last(dev->sg_dst))
tx_end = true;
err_dma_tx = s5p_aes_tx(dev);
}
SSS_WRITE(dev, FCINTPEND, status);
if (err_dma_rx < 0) {
err = err_dma_rx;
goto error;
}
if (err_dma_tx < 0) {
err = err_dma_tx;
goto error;
}
if (tx_end) {
s5p_sg_done(dev);
spin_unlock_irqrestore(&dev->lock, flags);
s5p_aes_complete(dev, 0);
/* Device is still busy */
tasklet_schedule(&dev->tasklet);
} else {
/*
* Writing length of DMA block (either receiving or
* transmitting) will start the operation immediately, so this
* should be done at the end (even after clearing pending
* interrupts to not miss the interrupt).
*/
if (err_dma_tx == 1)
s5p_set_dma_outdata(dev, dev->sg_dst);
if (err_dma_rx == 1)
s5p_set_dma_indata(dev, dev->sg_src);
spin_unlock_irqrestore(&dev->lock, flags);
}
return IRQ_HANDLED;
error:
s5p_sg_done(dev);
dev->busy = false;
spin_unlock_irqrestore(&dev->lock, flags);
s5p_aes_complete(dev, err);
return IRQ_HANDLED;
}
static void s5p_set_aes(struct s5p_aes_dev *dev,
uint8_t *key, uint8_t *iv, unsigned int keylen)
{
void __iomem *keystart;
if (iv)
memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
if (keylen == AES_KEYSIZE_256)
keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
else if (keylen == AES_KEYSIZE_192)
keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
else
keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
memcpy_toio(keystart, key, keylen);
}
static bool s5p_is_sg_aligned(struct scatterlist *sg)
{
while (sg) {
if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
return false;
sg = sg_next(sg);
}
return true;
}
static int s5p_set_indata_start(struct s5p_aes_dev *dev,
struct ablkcipher_request *req)
{
struct scatterlist *sg;
int err;
dev->sg_src_cpy = NULL;
sg = req->src;
if (!s5p_is_sg_aligned(sg)) {
dev_dbg(dev->dev,
"At least one unaligned source scatter list, making a copy\n");
err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
if (err)
return err;
sg = dev->sg_src_cpy;
}
err = s5p_set_indata(dev, sg);
if (err) {
s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
return err;
}
return 0;
}
static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
struct ablkcipher_request *req)
{
struct scatterlist *sg;
int err;
dev->sg_dst_cpy = NULL;
sg = req->dst;
if (!s5p_is_sg_aligned(sg)) {
dev_dbg(dev->dev,
"At least one unaligned dest scatter list, making a copy\n");
err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
if (err)
return err;
sg = dev->sg_dst_cpy;
}
err = s5p_set_outdata(dev, sg);
if (err) {
s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
return err;
}
return 0;
}
static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
{
struct ablkcipher_request *req = dev->req;
uint32_t aes_control;
unsigned long flags;
int err;
aes_control = SSS_AES_KEY_CHANGE_MODE;
if (mode & FLAGS_AES_DECRYPT)
aes_control |= SSS_AES_MODE_DECRYPT;
if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC)
aes_control |= SSS_AES_CHAIN_MODE_CBC;
else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR)
aes_control |= SSS_AES_CHAIN_MODE_CTR;
if (dev->ctx->keylen == AES_KEYSIZE_192)
aes_control |= SSS_AES_KEY_SIZE_192;
else if (dev->ctx->keylen == AES_KEYSIZE_256)
aes_control |= SSS_AES_KEY_SIZE_256;
aes_control |= SSS_AES_FIFO_MODE;
/* as a variant it is possible to use byte swapping on DMA side */
aes_control |= SSS_AES_BYTESWAP_DI
| SSS_AES_BYTESWAP_DO
| SSS_AES_BYTESWAP_IV
| SSS_AES_BYTESWAP_KEY
| SSS_AES_BYTESWAP_CNT;
spin_lock_irqsave(&dev->lock, flags);
SSS_WRITE(dev, FCINTENCLR,
SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
SSS_WRITE(dev, FCFIFOCTRL, 0x00);
err = s5p_set_indata_start(dev, req);
if (err)
goto indata_error;
err = s5p_set_outdata_start(dev, req);
if (err)
goto outdata_error;
SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
s5p_set_aes(dev, dev->ctx->aes_key, req->info, dev->ctx->keylen);
s5p_set_dma_indata(dev, dev->sg_src);
s5p_set_dma_outdata(dev, dev->sg_dst);
SSS_WRITE(dev, FCINTENSET,
SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
spin_unlock_irqrestore(&dev->lock, flags);
return;
outdata_error:
s5p_unset_indata(dev);
indata_error:
s5p_sg_done(dev);
dev->busy = false;
spin_unlock_irqrestore(&dev->lock, flags);
s5p_aes_complete(dev, err);
}
static void s5p_tasklet_cb(unsigned long data)
{
struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
struct crypto_async_request *async_req, *backlog;
struct s5p_aes_reqctx *reqctx;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
backlog = crypto_get_backlog(&dev->queue);
async_req = crypto_dequeue_request(&dev->queue);
if (!async_req) {
dev->busy = false;
spin_unlock_irqrestore(&dev->lock, flags);
return;
}
spin_unlock_irqrestore(&dev->lock, flags);
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
dev->req = ablkcipher_request_cast(async_req);
dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
reqctx = ablkcipher_request_ctx(dev->req);
s5p_aes_crypt_start(dev, reqctx->mode);
}
static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
struct ablkcipher_request *req)
{
unsigned long flags;
int err;
spin_lock_irqsave(&dev->lock, flags);
err = ablkcipher_enqueue_request(&dev->queue, req);
if (dev->busy) {
spin_unlock_irqrestore(&dev->lock, flags);
goto exit;
}
dev->busy = true;
spin_unlock_irqrestore(&dev->lock, flags);
tasklet_schedule(&dev->tasklet);
exit:
return err;
}
static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
struct s5p_aes_dev *dev = ctx->dev;
if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
return -EINVAL;
}
reqctx->mode = mode;
return s5p_aes_handle_req(dev, req);
}
static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
const uint8_t *key, unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
if (keylen != AES_KEYSIZE_128 &&
keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
memcpy(ctx->aes_key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
{
return s5p_aes_crypt(req, 0);
}
static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
{
return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
}
static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
{
return s5p_aes_crypt(req, FLAGS_AES_CBC);
}
static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
{
return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
}
static int s5p_aes_cra_init(struct crypto_tfm *tfm)
{
struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
ctx->dev = s5p_dev;
tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
return 0;
}
static struct crypto_alg algs[] = {
{
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-s5p",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s5p_aes_ctx),
.cra_alignmask = 0x0f,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = s5p_aes_cra_init,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = s5p_aes_setkey,
.encrypt = s5p_aes_ecb_encrypt,
.decrypt = s5p_aes_ecb_decrypt,
}
},
{
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-s5p",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s5p_aes_ctx),
.cra_alignmask = 0x0f,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = s5p_aes_cra_init,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = s5p_aes_setkey,
.encrypt = s5p_aes_cbc_encrypt,
.decrypt = s5p_aes_cbc_decrypt,
}
},
};
static int s5p_aes_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
int i, j, err = -ENODEV;
struct samsung_aes_variant *variant;
struct s5p_aes_dev *pdata;
struct resource *res;
if (s5p_dev)
return -EEXIST;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(pdata->ioaddr))
return PTR_ERR(pdata->ioaddr);
variant = find_s5p_sss_version(pdev);
pdata->clk = devm_clk_get(dev, "secss");
if (IS_ERR(pdata->clk)) {
dev_err(dev, "failed to find secss clock source\n");
return -ENOENT;
}
err = clk_prepare_enable(pdata->clk);
if (err < 0) {
dev_err(dev, "Enabling SSS clk failed, err %d\n", err);
return err;
}
spin_lock_init(&pdata->lock);
pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
pdata->irq_fc = platform_get_irq(pdev, 0);
if (pdata->irq_fc < 0) {
err = pdata->irq_fc;
dev_warn(dev, "feed control interrupt is not available.\n");
goto err_irq;
}
err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
s5p_aes_interrupt, IRQF_ONESHOT,
pdev->name, pdev);
if (err < 0) {
dev_warn(dev, "feed control interrupt is not available.\n");
goto err_irq;
}
pdata->busy = false;
pdata->dev = dev;
platform_set_drvdata(pdev, pdata);
s5p_dev = pdata;
tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
for (i = 0; i < ARRAY_SIZE(algs); i++) {
err = crypto_register_alg(&algs[i]);
if (err)
goto err_algs;
}
dev_info(dev, "s5p-sss driver registered\n");
return 0;
err_algs:
dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name, err);
for (j = 0; j < i; j++)
crypto_unregister_alg(&algs[j]);
tasklet_kill(&pdata->tasklet);
err_irq:
clk_disable_unprepare(pdata->clk);
s5p_dev = NULL;
return err;
}
static int s5p_aes_remove(struct platform_device *pdev)
{
struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
int i;
if (!pdata)
return -ENODEV;
for (i = 0; i < ARRAY_SIZE(algs); i++)
crypto_unregister_alg(&algs[i]);
tasklet_kill(&pdata->tasklet);
clk_disable_unprepare(pdata->clk);
s5p_dev = NULL;
return 0;
}
static struct platform_driver s5p_aes_crypto = {
.probe = s5p_aes_probe,
.remove = s5p_aes_remove,
.driver = {
.name = "s5p-secss",
.of_match_table = s5p_sss_dt_match,
},
};
module_platform_driver(s5p_aes_crypto);
MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");