OpenCloudOS-Kernel/drivers/dma/sh/shdmac.c

937 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Renesas SuperH DMA Engine support
*
* base is drivers/dma/flsdma.c
*
* Copyright (C) 2011-2012 Guennadi Liakhovetski <g.liakhovetski@gmx.de>
* Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>
* Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved.
* Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
*
* - DMA of SuperH does not have Hardware DMA chain mode.
* - MAX DMA size is 16MB.
*
*/
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kdebug.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/rculist.h>
#include <linux/sh_dma.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include "../dmaengine.h"
#include "shdma.h"
/* DMA registers */
#define SAR 0x00 /* Source Address Register */
#define DAR 0x04 /* Destination Address Register */
#define TCR 0x08 /* Transfer Count Register */
#define CHCR 0x0C /* Channel Control Register */
#define DMAOR 0x40 /* DMA Operation Register */
#define TEND 0x18 /* USB-DMAC */
#define SH_DMAE_DRV_NAME "sh-dma-engine"
/* Default MEMCPY transfer size = 2^2 = 4 bytes */
#define LOG2_DEFAULT_XFER_SIZE 2
#define SH_DMA_SLAVE_NUMBER 256
#define SH_DMA_TCR_MAX (16 * 1024 * 1024 - 1)
/*
* Used for write-side mutual exclusion for the global device list,
* read-side synchronization by way of RCU, and per-controller data.
*/
static DEFINE_SPINLOCK(sh_dmae_lock);
static LIST_HEAD(sh_dmae_devices);
/*
* Different DMAC implementations provide different ways to clear DMA channels:
* (1) none - no CHCLR registers are available
* (2) one CHCLR register per channel - 0 has to be written to it to clear
* channel buffers
* (3) one CHCLR per several channels - 1 has to be written to the bit,
* corresponding to the specific channel to reset it
*/
static void channel_clear(struct sh_dmae_chan *sh_dc)
{
struct sh_dmae_device *shdev = to_sh_dev(sh_dc);
const struct sh_dmae_channel *chan_pdata = shdev->pdata->channel +
sh_dc->shdma_chan.id;
u32 val = shdev->pdata->chclr_bitwise ? 1 << chan_pdata->chclr_bit : 0;
__raw_writel(val, shdev->chan_reg + chan_pdata->chclr_offset);
}
static void sh_dmae_writel(struct sh_dmae_chan *sh_dc, u32 data, u32 reg)
{
__raw_writel(data, sh_dc->base + reg);
}
static u32 sh_dmae_readl(struct sh_dmae_chan *sh_dc, u32 reg)
{
return __raw_readl(sh_dc->base + reg);
}
static u16 dmaor_read(struct sh_dmae_device *shdev)
{
void __iomem *addr = shdev->chan_reg + DMAOR;
if (shdev->pdata->dmaor_is_32bit)
return __raw_readl(addr);
else
return __raw_readw(addr);
}
static void dmaor_write(struct sh_dmae_device *shdev, u16 data)
{
void __iomem *addr = shdev->chan_reg + DMAOR;
if (shdev->pdata->dmaor_is_32bit)
__raw_writel(data, addr);
else
__raw_writew(data, addr);
}
static void chcr_write(struct sh_dmae_chan *sh_dc, u32 data)
{
struct sh_dmae_device *shdev = to_sh_dev(sh_dc);
__raw_writel(data, sh_dc->base + shdev->chcr_offset);
}
static u32 chcr_read(struct sh_dmae_chan *sh_dc)
{
struct sh_dmae_device *shdev = to_sh_dev(sh_dc);
return __raw_readl(sh_dc->base + shdev->chcr_offset);
}
/*
* Reset DMA controller
*
* SH7780 has two DMAOR register
*/
static void sh_dmae_ctl_stop(struct sh_dmae_device *shdev)
{
unsigned short dmaor;
unsigned long flags;
spin_lock_irqsave(&sh_dmae_lock, flags);
dmaor = dmaor_read(shdev);
dmaor_write(shdev, dmaor & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME));
spin_unlock_irqrestore(&sh_dmae_lock, flags);
}
static int sh_dmae_rst(struct sh_dmae_device *shdev)
{
unsigned short dmaor;
unsigned long flags;
spin_lock_irqsave(&sh_dmae_lock, flags);
dmaor = dmaor_read(shdev) & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME);
if (shdev->pdata->chclr_present) {
int i;
for (i = 0; i < shdev->pdata->channel_num; i++) {
struct sh_dmae_chan *sh_chan = shdev->chan[i];
if (sh_chan)
channel_clear(sh_chan);
}
}
dmaor_write(shdev, dmaor | shdev->pdata->dmaor_init);
dmaor = dmaor_read(shdev);
spin_unlock_irqrestore(&sh_dmae_lock, flags);
if (dmaor & (DMAOR_AE | DMAOR_NMIF)) {
dev_warn(shdev->shdma_dev.dma_dev.dev, "Can't initialize DMAOR.\n");
return -EIO;
}
if (shdev->pdata->dmaor_init & ~dmaor)
dev_warn(shdev->shdma_dev.dma_dev.dev,
"DMAOR=0x%x hasn't latched the initial value 0x%x.\n",
dmaor, shdev->pdata->dmaor_init);
return 0;
}
static bool dmae_is_busy(struct sh_dmae_chan *sh_chan)
{
u32 chcr = chcr_read(sh_chan);
if ((chcr & (CHCR_DE | CHCR_TE)) == CHCR_DE)
return true; /* working */
return false; /* waiting */
}
static unsigned int calc_xmit_shift(struct sh_dmae_chan *sh_chan, u32 chcr)
{
struct sh_dmae_device *shdev = to_sh_dev(sh_chan);
const struct sh_dmae_pdata *pdata = shdev->pdata;
int cnt = ((chcr & pdata->ts_low_mask) >> pdata->ts_low_shift) |
((chcr & pdata->ts_high_mask) >> pdata->ts_high_shift);
if (cnt >= pdata->ts_shift_num)
cnt = 0;
return pdata->ts_shift[cnt];
}
static u32 log2size_to_chcr(struct sh_dmae_chan *sh_chan, int l2size)
{
struct sh_dmae_device *shdev = to_sh_dev(sh_chan);
const struct sh_dmae_pdata *pdata = shdev->pdata;
int i;
for (i = 0; i < pdata->ts_shift_num; i++)
if (pdata->ts_shift[i] == l2size)
break;
if (i == pdata->ts_shift_num)
i = 0;
return ((i << pdata->ts_low_shift) & pdata->ts_low_mask) |
((i << pdata->ts_high_shift) & pdata->ts_high_mask);
}
static void dmae_set_reg(struct sh_dmae_chan *sh_chan, struct sh_dmae_regs *hw)
{
sh_dmae_writel(sh_chan, hw->sar, SAR);
sh_dmae_writel(sh_chan, hw->dar, DAR);
sh_dmae_writel(sh_chan, hw->tcr >> sh_chan->xmit_shift, TCR);
}
static void dmae_start(struct sh_dmae_chan *sh_chan)
{
struct sh_dmae_device *shdev = to_sh_dev(sh_chan);
u32 chcr = chcr_read(sh_chan);
if (shdev->pdata->needs_tend_set)
sh_dmae_writel(sh_chan, 0xFFFFFFFF, TEND);
chcr |= CHCR_DE | shdev->chcr_ie_bit;
chcr_write(sh_chan, chcr & ~CHCR_TE);
}
static void dmae_init(struct sh_dmae_chan *sh_chan)
{
/*
* Default configuration for dual address memory-memory transfer.
*/
u32 chcr = DM_INC | SM_INC | RS_AUTO | log2size_to_chcr(sh_chan,
LOG2_DEFAULT_XFER_SIZE);
sh_chan->xmit_shift = calc_xmit_shift(sh_chan, chcr);
chcr_write(sh_chan, chcr);
}
static int dmae_set_chcr(struct sh_dmae_chan *sh_chan, u32 val)
{
/* If DMA is active, cannot set CHCR. TODO: remove this superfluous check */
if (dmae_is_busy(sh_chan))
return -EBUSY;
sh_chan->xmit_shift = calc_xmit_shift(sh_chan, val);
chcr_write(sh_chan, val);
return 0;
}
static int dmae_set_dmars(struct sh_dmae_chan *sh_chan, u16 val)
{
struct sh_dmae_device *shdev = to_sh_dev(sh_chan);
const struct sh_dmae_pdata *pdata = shdev->pdata;
const struct sh_dmae_channel *chan_pdata = &pdata->channel[sh_chan->shdma_chan.id];
void __iomem *addr = shdev->dmars;
unsigned int shift = chan_pdata->dmars_bit;
if (dmae_is_busy(sh_chan))
return -EBUSY;
if (pdata->no_dmars)
return 0;
/* in the case of a missing DMARS resource use first memory window */
if (!addr)
addr = shdev->chan_reg;
addr += chan_pdata->dmars;
__raw_writew((__raw_readw(addr) & (0xff00 >> shift)) | (val << shift),
addr);
return 0;
}
static void sh_dmae_start_xfer(struct shdma_chan *schan,
struct shdma_desc *sdesc)
{
struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan,
shdma_chan);
struct sh_dmae_desc *sh_desc = container_of(sdesc,
struct sh_dmae_desc, shdma_desc);
dev_dbg(sh_chan->shdma_chan.dev, "Queue #%d to %d: %u@%x -> %x\n",
sdesc->async_tx.cookie, sh_chan->shdma_chan.id,
sh_desc->hw.tcr, sh_desc->hw.sar, sh_desc->hw.dar);
/* Get the ld start address from ld_queue */
dmae_set_reg(sh_chan, &sh_desc->hw);
dmae_start(sh_chan);
}
static bool sh_dmae_channel_busy(struct shdma_chan *schan)
{
struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan,
shdma_chan);
return dmae_is_busy(sh_chan);
}
static void sh_dmae_setup_xfer(struct shdma_chan *schan,
int slave_id)
{
struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan,
shdma_chan);
if (slave_id >= 0) {
const struct sh_dmae_slave_config *cfg =
sh_chan->config;
dmae_set_dmars(sh_chan, cfg->mid_rid);
dmae_set_chcr(sh_chan, cfg->chcr);
} else {
dmae_init(sh_chan);
}
}
/*
* Find a slave channel configuration from the contoller list by either a slave
* ID in the non-DT case, or by a MID/RID value in the DT case
*/
static const struct sh_dmae_slave_config *dmae_find_slave(
struct sh_dmae_chan *sh_chan, int match)
{
struct sh_dmae_device *shdev = to_sh_dev(sh_chan);
const struct sh_dmae_pdata *pdata = shdev->pdata;
const struct sh_dmae_slave_config *cfg;
int i;
if (!sh_chan->shdma_chan.dev->of_node) {
if (match >= SH_DMA_SLAVE_NUMBER)
return NULL;
for (i = 0, cfg = pdata->slave; i < pdata->slave_num; i++, cfg++)
if (cfg->slave_id == match)
return cfg;
} else {
for (i = 0, cfg = pdata->slave; i < pdata->slave_num; i++, cfg++)
if (cfg->mid_rid == match) {
sh_chan->shdma_chan.slave_id = i;
return cfg;
}
}
return NULL;
}
static int sh_dmae_set_slave(struct shdma_chan *schan,
int slave_id, dma_addr_t slave_addr, bool try)
{
struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan,
shdma_chan);
const struct sh_dmae_slave_config *cfg = dmae_find_slave(sh_chan, slave_id);
if (!cfg)
return -ENXIO;
if (!try) {
sh_chan->config = cfg;
sh_chan->slave_addr = slave_addr ? : cfg->addr;
}
return 0;
}
static void dmae_halt(struct sh_dmae_chan *sh_chan)
{
struct sh_dmae_device *shdev = to_sh_dev(sh_chan);
u32 chcr = chcr_read(sh_chan);
chcr &= ~(CHCR_DE | CHCR_TE | shdev->chcr_ie_bit);
chcr_write(sh_chan, chcr);
}
static int sh_dmae_desc_setup(struct shdma_chan *schan,
struct shdma_desc *sdesc,
dma_addr_t src, dma_addr_t dst, size_t *len)
{
struct sh_dmae_desc *sh_desc = container_of(sdesc,
struct sh_dmae_desc, shdma_desc);
if (*len > schan->max_xfer_len)
*len = schan->max_xfer_len;
sh_desc->hw.sar = src;
sh_desc->hw.dar = dst;
sh_desc->hw.tcr = *len;
return 0;
}
static void sh_dmae_halt(struct shdma_chan *schan)
{
struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan,
shdma_chan);
dmae_halt(sh_chan);
}
static bool sh_dmae_chan_irq(struct shdma_chan *schan, int irq)
{
struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan,
shdma_chan);
if (!(chcr_read(sh_chan) & CHCR_TE))
return false;
/* DMA stop */
dmae_halt(sh_chan);
return true;
}
static size_t sh_dmae_get_partial(struct shdma_chan *schan,
struct shdma_desc *sdesc)
{
struct sh_dmae_chan *sh_chan = container_of(schan, struct sh_dmae_chan,
shdma_chan);
struct sh_dmae_desc *sh_desc = container_of(sdesc,
struct sh_dmae_desc, shdma_desc);
return sh_desc->hw.tcr -
(sh_dmae_readl(sh_chan, TCR) << sh_chan->xmit_shift);
}
/* Called from error IRQ or NMI */
static bool sh_dmae_reset(struct sh_dmae_device *shdev)
{
bool ret;
/* halt the dma controller */
sh_dmae_ctl_stop(shdev);
/* We cannot detect, which channel caused the error, have to reset all */
ret = shdma_reset(&shdev->shdma_dev);
sh_dmae_rst(shdev);
return ret;
}
static irqreturn_t sh_dmae_err(int irq, void *data)
{
struct sh_dmae_device *shdev = data;
if (!(dmaor_read(shdev) & DMAOR_AE))
return IRQ_NONE;
sh_dmae_reset(shdev);
return IRQ_HANDLED;
}
static bool sh_dmae_desc_completed(struct shdma_chan *schan,
struct shdma_desc *sdesc)
{
struct sh_dmae_chan *sh_chan = container_of(schan,
struct sh_dmae_chan, shdma_chan);
struct sh_dmae_desc *sh_desc = container_of(sdesc,
struct sh_dmae_desc, shdma_desc);
u32 sar_buf = sh_dmae_readl(sh_chan, SAR);
u32 dar_buf = sh_dmae_readl(sh_chan, DAR);
return (sdesc->direction == DMA_DEV_TO_MEM &&
(sh_desc->hw.dar + sh_desc->hw.tcr) == dar_buf) ||
(sdesc->direction != DMA_DEV_TO_MEM &&
(sh_desc->hw.sar + sh_desc->hw.tcr) == sar_buf);
}
static bool sh_dmae_nmi_notify(struct sh_dmae_device *shdev)
{
/* Fast path out if NMIF is not asserted for this controller */
if ((dmaor_read(shdev) & DMAOR_NMIF) == 0)
return false;
return sh_dmae_reset(shdev);
}
static int sh_dmae_nmi_handler(struct notifier_block *self,
unsigned long cmd, void *data)
{
struct sh_dmae_device *shdev;
int ret = NOTIFY_DONE;
bool triggered;
/*
* Only concern ourselves with NMI events.
*
* Normally we would check the die chain value, but as this needs
* to be architecture independent, check for NMI context instead.
*/
if (!in_nmi())
return NOTIFY_DONE;
rcu_read_lock();
list_for_each_entry_rcu(shdev, &sh_dmae_devices, node) {
/*
* Only stop if one of the controllers has NMIF asserted,
* we do not want to interfere with regular address error
* handling or NMI events that don't concern the DMACs.
*/
triggered = sh_dmae_nmi_notify(shdev);
if (triggered == true)
ret = NOTIFY_OK;
}
rcu_read_unlock();
return ret;
}
static struct notifier_block sh_dmae_nmi_notifier __read_mostly = {
.notifier_call = sh_dmae_nmi_handler,
/* Run before NMI debug handler and KGDB */
.priority = 1,
};
static int sh_dmae_chan_probe(struct sh_dmae_device *shdev, int id,
int irq, unsigned long flags)
{
const struct sh_dmae_channel *chan_pdata = &shdev->pdata->channel[id];
struct shdma_dev *sdev = &shdev->shdma_dev;
struct platform_device *pdev = to_platform_device(sdev->dma_dev.dev);
struct sh_dmae_chan *sh_chan;
struct shdma_chan *schan;
int err;
sh_chan = devm_kzalloc(sdev->dma_dev.dev, sizeof(struct sh_dmae_chan),
GFP_KERNEL);
if (!sh_chan)
return -ENOMEM;
schan = &sh_chan->shdma_chan;
schan->max_xfer_len = SH_DMA_TCR_MAX + 1;
shdma_chan_probe(sdev, schan, id);
sh_chan->base = shdev->chan_reg + chan_pdata->offset;
/* set up channel irq */
if (pdev->id >= 0)
snprintf(sh_chan->dev_id, sizeof(sh_chan->dev_id),
"sh-dmae%d.%d", pdev->id, id);
else
snprintf(sh_chan->dev_id, sizeof(sh_chan->dev_id),
"sh-dma%d", id);
err = shdma_request_irq(schan, irq, flags, sh_chan->dev_id);
if (err) {
dev_err(sdev->dma_dev.dev,
"DMA channel %d request_irq error %d\n",
id, err);
goto err_no_irq;
}
shdev->chan[id] = sh_chan;
return 0;
err_no_irq:
/* remove from dmaengine device node */
shdma_chan_remove(schan);
return err;
}
static void sh_dmae_chan_remove(struct sh_dmae_device *shdev)
{
struct shdma_chan *schan;
int i;
shdma_for_each_chan(schan, &shdev->shdma_dev, i) {
BUG_ON(!schan);
shdma_chan_remove(schan);
}
}
#ifdef CONFIG_PM
static int sh_dmae_runtime_suspend(struct device *dev)
{
struct sh_dmae_device *shdev = dev_get_drvdata(dev);
sh_dmae_ctl_stop(shdev);
return 0;
}
static int sh_dmae_runtime_resume(struct device *dev)
{
struct sh_dmae_device *shdev = dev_get_drvdata(dev);
return sh_dmae_rst(shdev);
}
#endif
#ifdef CONFIG_PM_SLEEP
static int sh_dmae_suspend(struct device *dev)
{
struct sh_dmae_device *shdev = dev_get_drvdata(dev);
sh_dmae_ctl_stop(shdev);
return 0;
}
static int sh_dmae_resume(struct device *dev)
{
struct sh_dmae_device *shdev = dev_get_drvdata(dev);
int i, ret;
ret = sh_dmae_rst(shdev);
if (ret < 0)
dev_err(dev, "Failed to reset!\n");
for (i = 0; i < shdev->pdata->channel_num; i++) {
struct sh_dmae_chan *sh_chan = shdev->chan[i];
if (!sh_chan->shdma_chan.desc_num)
continue;
if (sh_chan->shdma_chan.slave_id >= 0) {
const struct sh_dmae_slave_config *cfg = sh_chan->config;
dmae_set_dmars(sh_chan, cfg->mid_rid);
dmae_set_chcr(sh_chan, cfg->chcr);
} else {
dmae_init(sh_chan);
}
}
return 0;
}
#endif
static const struct dev_pm_ops sh_dmae_pm = {
SET_SYSTEM_SLEEP_PM_OPS(sh_dmae_suspend, sh_dmae_resume)
SET_RUNTIME_PM_OPS(sh_dmae_runtime_suspend, sh_dmae_runtime_resume,
NULL)
};
static dma_addr_t sh_dmae_slave_addr(struct shdma_chan *schan)
{
struct sh_dmae_chan *sh_chan = container_of(schan,
struct sh_dmae_chan, shdma_chan);
/*
* Implicit BUG_ON(!sh_chan->config)
* This is an exclusive slave DMA operation, may only be called after a
* successful slave configuration.
*/
return sh_chan->slave_addr;
}
static struct shdma_desc *sh_dmae_embedded_desc(void *buf, int i)
{
return &((struct sh_dmae_desc *)buf)[i].shdma_desc;
}
static const struct shdma_ops sh_dmae_shdma_ops = {
.desc_completed = sh_dmae_desc_completed,
.halt_channel = sh_dmae_halt,
.channel_busy = sh_dmae_channel_busy,
.slave_addr = sh_dmae_slave_addr,
.desc_setup = sh_dmae_desc_setup,
.set_slave = sh_dmae_set_slave,
.setup_xfer = sh_dmae_setup_xfer,
.start_xfer = sh_dmae_start_xfer,
.embedded_desc = sh_dmae_embedded_desc,
.chan_irq = sh_dmae_chan_irq,
.get_partial = sh_dmae_get_partial,
};
static int sh_dmae_probe(struct platform_device *pdev)
{
const enum dma_slave_buswidth widths =
DMA_SLAVE_BUSWIDTH_1_BYTE | DMA_SLAVE_BUSWIDTH_2_BYTES |
DMA_SLAVE_BUSWIDTH_4_BYTES | DMA_SLAVE_BUSWIDTH_8_BYTES |
DMA_SLAVE_BUSWIDTH_16_BYTES | DMA_SLAVE_BUSWIDTH_32_BYTES;
const struct sh_dmae_pdata *pdata;
unsigned long chan_flag[SH_DMAE_MAX_CHANNELS] = {};
int chan_irq[SH_DMAE_MAX_CHANNELS];
unsigned long irqflags = 0;
int err, errirq, i, irq_cnt = 0, irqres = 0, irq_cap = 0;
struct sh_dmae_device *shdev;
struct dma_device *dma_dev;
struct resource *dmars, *errirq_res, *chanirq_res;
if (pdev->dev.of_node)
pdata = of_device_get_match_data(&pdev->dev);
else
pdata = dev_get_platdata(&pdev->dev);
/* get platform data */
if (!pdata || !pdata->channel_num)
return -ENODEV;
/* DMARS area is optional */
dmars = platform_get_resource(pdev, IORESOURCE_MEM, 1);
/*
* IRQ resources:
* 1. there always must be at least one IRQ IO-resource. On SH4 it is
* the error IRQ, in which case it is the only IRQ in this resource:
* start == end. If it is the only IRQ resource, all channels also
* use the same IRQ.
* 2. DMA channel IRQ resources can be specified one per resource or in
* ranges (start != end)
* 3. iff all events (channels and, optionally, error) on this
* controller use the same IRQ, only one IRQ resource can be
* specified, otherwise there must be one IRQ per channel, even if
* some of them are equal
* 4. if all IRQs on this controller are equal or if some specific IRQs
* specify IORESOURCE_IRQ_SHAREABLE in their resources, they will be
* requested with the IRQF_SHARED flag
*/
errirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!errirq_res)
return -ENODEV;
shdev = devm_kzalloc(&pdev->dev, sizeof(struct sh_dmae_device),
GFP_KERNEL);
if (!shdev)
return -ENOMEM;
dma_dev = &shdev->shdma_dev.dma_dev;
shdev->chan_reg = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(shdev->chan_reg))
return PTR_ERR(shdev->chan_reg);
if (dmars) {
shdev->dmars = devm_ioremap_resource(&pdev->dev, dmars);
if (IS_ERR(shdev->dmars))
return PTR_ERR(shdev->dmars);
}
dma_dev->src_addr_widths = widths;
dma_dev->dst_addr_widths = widths;
dma_dev->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
if (!pdata->slave_only)
dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
if (pdata->slave && pdata->slave_num)
dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
/* Default transfer size of 32 bytes requires 32-byte alignment */
dma_dev->copy_align = LOG2_DEFAULT_XFER_SIZE;
shdev->shdma_dev.ops = &sh_dmae_shdma_ops;
shdev->shdma_dev.desc_size = sizeof(struct sh_dmae_desc);
err = shdma_init(&pdev->dev, &shdev->shdma_dev,
pdata->channel_num);
if (err < 0)
goto eshdma;
/* platform data */
shdev->pdata = pdata;
if (pdata->chcr_offset)
shdev->chcr_offset = pdata->chcr_offset;
else
shdev->chcr_offset = CHCR;
if (pdata->chcr_ie_bit)
shdev->chcr_ie_bit = pdata->chcr_ie_bit;
else
shdev->chcr_ie_bit = CHCR_IE;
platform_set_drvdata(pdev, shdev);
pm_runtime_enable(&pdev->dev);
err = pm_runtime_get_sync(&pdev->dev);
if (err < 0)
dev_err(&pdev->dev, "%s(): GET = %d\n", __func__, err);
spin_lock_irq(&sh_dmae_lock);
list_add_tail_rcu(&shdev->node, &sh_dmae_devices);
spin_unlock_irq(&sh_dmae_lock);
/* reset dma controller - only needed as a test */
err = sh_dmae_rst(shdev);
if (err)
goto rst_err;
if (IS_ENABLED(CONFIG_CPU_SH4) || IS_ENABLED(CONFIG_ARCH_RENESAS)) {
chanirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
if (!chanirq_res)
chanirq_res = errirq_res;
else
irqres++;
if (chanirq_res == errirq_res ||
(errirq_res->flags & IORESOURCE_BITS) == IORESOURCE_IRQ_SHAREABLE)
irqflags = IRQF_SHARED;
errirq = errirq_res->start;
err = devm_request_irq(&pdev->dev, errirq, sh_dmae_err,
irqflags, "DMAC Address Error", shdev);
if (err) {
dev_err(&pdev->dev,
"DMA failed requesting irq #%d, error %d\n",
errirq, err);
goto eirq_err;
}
} else {
chanirq_res = errirq_res;
}
if (chanirq_res->start == chanirq_res->end &&
!platform_get_resource(pdev, IORESOURCE_IRQ, 1)) {
/* Special case - all multiplexed */
for (; irq_cnt < pdata->channel_num; irq_cnt++) {
if (irq_cnt < SH_DMAE_MAX_CHANNELS) {
chan_irq[irq_cnt] = chanirq_res->start;
chan_flag[irq_cnt] = IRQF_SHARED;
} else {
irq_cap = 1;
break;
}
}
} else {
do {
for (i = chanirq_res->start; i <= chanirq_res->end; i++) {
if (irq_cnt >= SH_DMAE_MAX_CHANNELS) {
irq_cap = 1;
break;
}
if ((errirq_res->flags & IORESOURCE_BITS) ==
IORESOURCE_IRQ_SHAREABLE)
chan_flag[irq_cnt] = IRQF_SHARED;
else
chan_flag[irq_cnt] = 0;
dev_dbg(&pdev->dev,
"Found IRQ %d for channel %d\n",
i, irq_cnt);
chan_irq[irq_cnt++] = i;
}
if (irq_cnt >= SH_DMAE_MAX_CHANNELS)
break;
chanirq_res = platform_get_resource(pdev,
IORESOURCE_IRQ, ++irqres);
} while (irq_cnt < pdata->channel_num && chanirq_res);
}
/* Create DMA Channel */
for (i = 0; i < irq_cnt; i++) {
err = sh_dmae_chan_probe(shdev, i, chan_irq[i], chan_flag[i]);
if (err)
goto chan_probe_err;
}
if (irq_cap)
dev_notice(&pdev->dev, "Attempting to register %d DMA "
"channels when a maximum of %d are supported.\n",
pdata->channel_num, SH_DMAE_MAX_CHANNELS);
pm_runtime_put(&pdev->dev);
err = dma_async_device_register(&shdev->shdma_dev.dma_dev);
if (err < 0)
goto edmadevreg;
return err;
edmadevreg:
pm_runtime_get(&pdev->dev);
chan_probe_err:
sh_dmae_chan_remove(shdev);
eirq_err:
rst_err:
spin_lock_irq(&sh_dmae_lock);
list_del_rcu(&shdev->node);
spin_unlock_irq(&sh_dmae_lock);
pm_runtime_put(&pdev->dev);
pm_runtime_disable(&pdev->dev);
shdma_cleanup(&shdev->shdma_dev);
eshdma:
synchronize_rcu();
return err;
}
static int sh_dmae_remove(struct platform_device *pdev)
{
struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
struct dma_device *dma_dev = &shdev->shdma_dev.dma_dev;
dma_async_device_unregister(dma_dev);
spin_lock_irq(&sh_dmae_lock);
list_del_rcu(&shdev->node);
spin_unlock_irq(&sh_dmae_lock);
pm_runtime_disable(&pdev->dev);
sh_dmae_chan_remove(shdev);
shdma_cleanup(&shdev->shdma_dev);
synchronize_rcu();
return 0;
}
static struct platform_driver sh_dmae_driver = {
.driver = {
.pm = &sh_dmae_pm,
.name = SH_DMAE_DRV_NAME,
},
.remove = sh_dmae_remove,
};
static int __init sh_dmae_init(void)
{
/* Wire up NMI handling */
int err = register_die_notifier(&sh_dmae_nmi_notifier);
if (err)
return err;
return platform_driver_probe(&sh_dmae_driver, sh_dmae_probe);
}
module_init(sh_dmae_init);
static void __exit sh_dmae_exit(void)
{
platform_driver_unregister(&sh_dmae_driver);
unregister_die_notifier(&sh_dmae_nmi_notifier);
}
module_exit(sh_dmae_exit);
MODULE_AUTHOR("Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>");
MODULE_DESCRIPTION("Renesas SH DMA Engine driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" SH_DMAE_DRV_NAME);