OpenCloudOS-Kernel/tools/testing/selftests/net/srv6_hl2encap_red_l2vpn_tes...

822 lines
20 KiB
Bash
Executable File

#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
#
# author: Andrea Mayer <andrea.mayer@uniroma2.it>
#
# This script is designed for testing the SRv6 H.L2Encaps.Red behavior.
#
# Below is depicted the IPv6 network of an operator which offers L2 VPN
# services to hosts, enabling them to communicate with each other.
# In this example, hosts hs-1 and hs-2 are connected through an L2 VPN service.
# Currently, the SRv6 subsystem in Linux allows hosts hs-1 and hs-2 to exchange
# full L2 frames as long as they carry IPv4/IPv6.
#
# Routers rt-1,rt-2,rt-3 and rt-4 implement L2 VPN services
# leveraging the SRv6 architecture. The key components for such VPNs are:
#
# i) The SRv6 H.L2Encaps.Red behavior applies SRv6 Policies on traffic
# received by connected hosts, initiating the VPN tunnel. Such a behavior
# is an optimization of the SRv6 H.L2Encap aiming to reduce the
# length of the SID List carried in the pushed SRH. Specifically, the
# H.L2Encaps.Red removes the first SID contained in the SID List (i.e. SRv6
# Policy) by storing it into the IPv6 Destination Address. When a SRv6
# Policy is made of only one SID, the SRv6 H.L2Encaps.Red behavior omits
# the SRH at all and pushes that SID directly into the IPv6 DA;
#
# ii) The SRv6 End behavior advances the active SID in the SID List
# carried by the SRH;
#
# iii) The SRv6 End.DX2 behavior is used for removing the SRv6 Policy
# and, thus, it terminates the VPN tunnel. The decapsulated L2 frame is
# sent over the interface connected with the destination host.
#
# cafe::1 cafe::2
# 10.0.0.1 10.0.0.2
# +--------+ +--------+
# | | | |
# | hs-1 | | hs-2 |
# | | | |
# +---+----+ +--- +---+
# cafe::/64 | | cafe::/64
# 10.0.0.0/24 | | 10.0.0.0/24
# +---+----+ +----+---+
# | | fcf0:0:1:2::/64 | |
# | rt-1 +-------------------+ rt-2 |
# | | | |
# +---+----+ +----+---+
# | . . |
# | fcf0:0:1:3::/64 . |
# | . . |
# | . . |
# fcf0:0:1:4::/64 | . | fcf0:0:2:3::/64
# | . . |
# | . . |
# | fcf0:0:2:4::/64 . |
# | . . |
# +---+----+ +----+---+
# | | | |
# | rt-4 +-------------------+ rt-3 |
# | | fcf0:0:3:4::/64 | |
# +---+----+ +----+---+
#
#
# Every fcf0:0:x:y::/64 network interconnects the SRv6 routers rt-x with rt-y
# in the IPv6 operator network.
#
# Local SID table
# ===============
#
# Each SRv6 router is configured with a Local SID table in which SIDs are
# stored. Considering the given SRv6 router rt-x, at least two SIDs are
# configured in the Local SID table:
#
# Local SID table for SRv6 router rt-x
# +----------------------------------------------------------+
# |fcff:x::e is associated with the SRv6 End behavior |
# |fcff:x::d2 is associated with the SRv6 End.DX2 behavior |
# +----------------------------------------------------------+
#
# The fcff::/16 prefix is reserved by the operator for implementing SRv6 VPN
# services. Reachability of SIDs is ensured by proper configuration of the IPv6
# operator's network and SRv6 routers.
#
# SRv6 Policies
# =============
#
# An SRv6 ingress router applies SRv6 policies to the traffic received from a
# connected host. SRv6 policy enforcement consists of encapsulating the
# received traffic into a new IPv6 packet with a given SID List contained in
# the SRH.
#
# L2 VPN between hs-1 and hs-2
# ----------------------------
#
# Hosts hs-1 and hs-2 are connected using a dedicated L2 VPN.
# Specifically, packets generated from hs-1 and directed towards hs-2 are
# handled by rt-1 which applies the following SRv6 Policies:
#
# i.a) L2 traffic, SID List=fcff:2::d2
#
# Policy (i.a) steers tunneled L2 traffic through SRv6 router rt-2.
# The H.L2Encaps.Red omits the presence of SRH at all, since the SID List
# consists of only one SID (fcff:2::d2) that can be stored directly in the IPv6
# DA.
#
# On the reverse path (i.e. from hs-2 to hs-1), rt-2 applies the following
# policies:
#
# i.b) L2 traffic, SID List=fcff:4::e,fcff:3::e,fcff:1::d2
#
# Policy (i.b) steers tunneled L2 traffic through the SRv6 routers
# rt-4,rt-3,rt2. The H.L2Encaps.Red reduces the SID List in the SRH by removing
# the first SID (fcff:4::e) and pushing it into the IPv6 DA.
#
# In summary:
# hs-1->hs-2 |IPv6 DA=fcff:2::d2|eth|...| (i.a)
# hs-2->hs-1 |IPv6 DA=fcff:4::e|SRH SIDs=fcff:3::e,fcff:1::d2|eth|...| (i.b)
#
# Kselftest framework requirement - SKIP code is 4.
readonly ksft_skip=4
readonly RDMSUFF="$(mktemp -u XXXXXXXX)"
readonly DUMMY_DEVNAME="dum0"
readonly RT2HS_DEVNAME="veth-hs"
readonly HS_VETH_NAME="veth0"
readonly LOCALSID_TABLE_ID=90
readonly IPv6_RT_NETWORK=fcf0:0
readonly IPv6_HS_NETWORK=cafe
readonly IPv4_HS_NETWORK=10.0.0
readonly VPN_LOCATOR_SERVICE=fcff
readonly MAC_PREFIX=00:00:00:c0:01
readonly END_FUNC=000e
readonly DX2_FUNC=00d2
PING_TIMEOUT_SEC=4
PAUSE_ON_FAIL=${PAUSE_ON_FAIL:=no}
# IDs of routers and hosts are initialized during the setup of the testing
# network
ROUTERS=''
HOSTS=''
SETUP_ERR=1
ret=${ksft_skip}
nsuccess=0
nfail=0
log_test()
{
local rc="$1"
local expected="$2"
local msg="$3"
if [ "${rc}" -eq "${expected}" ]; then
nsuccess=$((nsuccess+1))
printf "\n TEST: %-60s [ OK ]\n" "${msg}"
else
ret=1
nfail=$((nfail+1))
printf "\n TEST: %-60s [FAIL]\n" "${msg}"
if [ "${PAUSE_ON_FAIL}" = "yes" ]; then
echo
echo "hit enter to continue, 'q' to quit"
read a
[ "$a" = "q" ] && exit 1
fi
fi
}
print_log_test_results()
{
printf "\nTests passed: %3d\n" "${nsuccess}"
printf "Tests failed: %3d\n" "${nfail}"
# when a test fails, the value of 'ret' is set to 1 (error code).
# Conversely, when all tests are passed successfully, the 'ret' value
# is set to 0 (success code).
if [ "${ret}" -ne 1 ]; then
ret=0
fi
}
log_section()
{
echo
echo "################################################################################"
echo "TEST SECTION: $*"
echo "################################################################################"
}
test_command_or_ksft_skip()
{
local cmd="$1"
if [ ! -x "$(command -v "${cmd}")" ]; then
echo "SKIP: Could not run test without \"${cmd}\" tool";
exit "${ksft_skip}"
fi
}
get_nodename()
{
local name="$1"
echo "${name}-${RDMSUFF}"
}
get_rtname()
{
local rtid="$1"
get_nodename "rt-${rtid}"
}
get_hsname()
{
local hsid="$1"
get_nodename "hs-${hsid}"
}
__create_namespace()
{
local name="$1"
ip netns add "${name}"
}
create_router()
{
local rtid="$1"
local nsname
nsname="$(get_rtname "${rtid}")"
__create_namespace "${nsname}"
}
create_host()
{
local hsid="$1"
local nsname
nsname="$(get_hsname "${hsid}")"
__create_namespace "${nsname}"
}
cleanup()
{
local nsname
local i
# destroy routers
for i in ${ROUTERS}; do
nsname="$(get_rtname "${i}")"
ip netns del "${nsname}" &>/dev/null || true
done
# destroy hosts
for i in ${HOSTS}; do
nsname="$(get_hsname "${i}")"
ip netns del "${nsname}" &>/dev/null || true
done
# check whether the setup phase was completed successfully or not. In
# case of an error during the setup phase of the testing environment,
# the selftest is considered as "skipped".
if [ "${SETUP_ERR}" -ne 0 ]; then
echo "SKIP: Setting up the testing environment failed"
exit "${ksft_skip}"
fi
exit "${ret}"
}
add_link_rt_pairs()
{
local rt="$1"
local rt_neighs="$2"
local neigh
local nsname
local neigh_nsname
nsname="$(get_rtname "${rt}")"
for neigh in ${rt_neighs}; do
neigh_nsname="$(get_rtname "${neigh}")"
ip link add "veth-rt-${rt}-${neigh}" netns "${nsname}" \
type veth peer name "veth-rt-${neigh}-${rt}" \
netns "${neigh_nsname}"
done
}
get_network_prefix()
{
local rt="$1"
local neigh="$2"
local p="${rt}"
local q="${neigh}"
if [ "${p}" -gt "${q}" ]; then
p="${q}"; q="${rt}"
fi
echo "${IPv6_RT_NETWORK}:${p}:${q}"
}
# Setup the basic networking for the routers
setup_rt_networking()
{
local rt="$1"
local rt_neighs="$2"
local nsname
local net_prefix
local devname
local neigh
nsname="$(get_rtname "${rt}")"
for neigh in ${rt_neighs}; do
devname="veth-rt-${rt}-${neigh}"
net_prefix="$(get_network_prefix "${rt}" "${neigh}")"
ip -netns "${nsname}" addr \
add "${net_prefix}::${rt}/64" dev "${devname}" nodad
ip -netns "${nsname}" link set "${devname}" up
done
ip -netns "${nsname}" link add "${DUMMY_DEVNAME}" type dummy
ip -netns "${nsname}" link set "${DUMMY_DEVNAME}" up
ip -netns "${nsname}" link set lo up
ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.all.accept_dad=0
ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.default.accept_dad=0
ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.all.forwarding=1
ip netns exec "${nsname}" sysctl -wq net.ipv4.conf.all.rp_filter=0
ip netns exec "${nsname}" sysctl -wq net.ipv4.conf.default.rp_filter=0
ip netns exec "${nsname}" sysctl -wq net.ipv4.ip_forward=1
}
# Setup local SIDs for an SRv6 router
setup_rt_local_sids()
{
local rt="$1"
local rt_neighs="$2"
local net_prefix
local devname
local nsname
local neigh
nsname="$(get_rtname "${rt}")"
for neigh in ${rt_neighs}; do
devname="veth-rt-${rt}-${neigh}"
net_prefix="$(get_network_prefix "${rt}" "${neigh}")"
# set underlay network routes for SIDs reachability
ip -netns "${nsname}" -6 route \
add "${VPN_LOCATOR_SERVICE}:${neigh}::/32" \
table "${LOCALSID_TABLE_ID}" \
via "${net_prefix}::${neigh}" dev "${devname}"
done
# Local End behavior (note that dev "${DUMMY_DEVNAME}" is a dummy
# interface)
ip -netns "${nsname}" -6 route \
add "${VPN_LOCATOR_SERVICE}:${rt}::${END_FUNC}" \
table "${LOCALSID_TABLE_ID}" \
encap seg6local action End dev "${DUMMY_DEVNAME}"
# all SIDs for VPNs start with a common locator. Routes and SRv6
# Endpoint behaviors instaces are grouped together in the 'localsid'
# table.
ip -netns "${nsname}" -6 rule add \
to "${VPN_LOCATOR_SERVICE}::/16" \
lookup "${LOCALSID_TABLE_ID}" prio 999
}
# build and install the SRv6 policy into the ingress SRv6 router.
# args:
# $1 - destination host (i.e. cafe::x host)
# $2 - SRv6 router configured for enforcing the SRv6 Policy
# $3 - SRv6 routers configured for steering traffic (End behaviors)
# $4 - SRv6 router configured for removing the SRv6 Policy (router connected
# to the destination host)
# $5 - encap mode (full or red)
# $6 - traffic type (IPv6 or IPv4)
__setup_rt_policy()
{
local dst="$1"
local encap_rt="$2"
local end_rts="$3"
local dec_rt="$4"
local mode="$5"
local traffic="$6"
local nsname
local policy=''
local n
nsname="$(get_rtname "${encap_rt}")"
for n in ${end_rts}; do
policy="${policy}${VPN_LOCATOR_SERVICE}:${n}::${END_FUNC},"
done
policy="${policy}${VPN_LOCATOR_SERVICE}:${dec_rt}::${DX2_FUNC}"
# add SRv6 policy to incoming traffic sent by connected hosts
if [ "${traffic}" -eq 6 ]; then
ip -netns "${nsname}" -6 route \
add "${IPv6_HS_NETWORK}::${dst}" \
encap seg6 mode "${mode}" segs "${policy}" \
dev dum0
else
ip -netns "${nsname}" -4 route \
add "${IPv4_HS_NETWORK}.${dst}" \
encap seg6 mode "${mode}" segs "${policy}" \
dev dum0
fi
}
# see __setup_rt_policy
setup_rt_policy_ipv6()
{
__setup_rt_policy "$1" "$2" "$3" "$4" "$5" 6
}
#see __setup_rt_policy
setup_rt_policy_ipv4()
{
__setup_rt_policy "$1" "$2" "$3" "$4" "$5" 4
}
setup_decap()
{
local rt="$1"
local nsname
nsname="$(get_rtname "${rt}")"
# Local End.DX2 behavior
ip -netns "${nsname}" -6 route \
add "${VPN_LOCATOR_SERVICE}:${rt}::${DX2_FUNC}" \
table "${LOCALSID_TABLE_ID}" \
encap seg6local action End.DX2 oif "${RT2HS_DEVNAME}" \
dev "${RT2HS_DEVNAME}"
}
setup_hs()
{
local hs="$1"
local rt="$2"
local hsname
local rtname
hsname="$(get_hsname "${hs}")"
rtname="$(get_rtname "${rt}")"
ip netns exec "${hsname}" sysctl -wq net.ipv6.conf.all.accept_dad=0
ip netns exec "${hsname}" sysctl -wq net.ipv6.conf.default.accept_dad=0
ip -netns "${hsname}" link add "${HS_VETH_NAME}" type veth \
peer name "${RT2HS_DEVNAME}" netns "${rtname}"
ip -netns "${hsname}" addr add "${IPv6_HS_NETWORK}::${hs}/64" \
dev "${HS_VETH_NAME}" nodad
ip -netns "${hsname}" addr add "${IPv4_HS_NETWORK}.${hs}/24" \
dev "${HS_VETH_NAME}"
ip -netns "${hsname}" link set "${HS_VETH_NAME}" up
ip -netns "${hsname}" link set lo up
ip -netns "${rtname}" addr add "${IPv6_HS_NETWORK}::254/64" \
dev "${RT2HS_DEVNAME}" nodad
ip -netns "${rtname}" addr \
add "${IPv4_HS_NETWORK}.254/24" dev "${RT2HS_DEVNAME}"
ip -netns "${rtname}" link set "${RT2HS_DEVNAME}" up
# disable the rp_filter otherwise the kernel gets confused about how
# to route decap ipv4 packets.
ip netns exec "${rtname}" \
sysctl -wq net.ipv4.conf."${RT2HS_DEVNAME}".rp_filter=0
}
# set an auto-generated mac address
# args:
# $1 - name of the node (e.g.: hs-1, rt-3, etc)
# $2 - id of the node (e.g.: 1 for hs-1, 3 for rt-3, etc)
# $3 - host part of the IPv6 network address
# $4 - name of the network interface to which the generated mac address must
# be set.
set_mac_address()
{
local nodename="$1"
local nodeid="$2"
local host="$3"
local ifname="$4"
local nsname
nsname=$(get_nodename "${nodename}")
ip -netns "${nsname}" link set dev "${ifname}" down
ip -netns "${nsname}" link set address "${MAC_PREFIX}:${nodeid}" \
dev "${ifname}"
# the IPv6 address must be set once again after the MAC address has
# been changed.
ip -netns "${nsname}" addr add "${IPv6_HS_NETWORK}::${host}/64" \
dev "${ifname}" nodad
ip -netns "${nsname}" link set dev "${ifname}" up
}
set_host_l2peer()
{
local hssrc="$1"
local hsdst="$2"
local ipprefix="$3"
local proto="$4"
local hssrc_name
local ipaddr
hssrc_name="$(get_hsname "${hssrc}")"
if [ "${proto}" -eq 6 ]; then
ipaddr="${ipprefix}::${hsdst}"
else
ipaddr="${ipprefix}.${hsdst}"
fi
ip -netns "${hssrc_name}" route add "${ipaddr}" dev "${HS_VETH_NAME}"
ip -netns "${hssrc_name}" neigh \
add "${ipaddr}" lladdr "${MAC_PREFIX}:${hsdst}" \
dev "${HS_VETH_NAME}"
}
# setup an SRv6 L2 VPN between host hs-x and hs-y (currently, the SRv6
# subsystem only supports L2 frames whose layer-3 is IPv4/IPv6).
# args:
# $1 - source host
# $2 - SRv6 routers configured for steering tunneled traffic
# $3 - destination host
setup_l2vpn()
{
local hssrc="$1"
local end_rts="$2"
local hsdst="$3"
local rtsrc="${hssrc}"
local rtdst="${hsdst}"
# set fixed mac for source node and the neigh MAC address
set_mac_address "hs-${hssrc}" "${hssrc}" "${hssrc}" "${HS_VETH_NAME}"
set_host_l2peer "${hssrc}" "${hsdst}" "${IPv6_HS_NETWORK}" 6
set_host_l2peer "${hssrc}" "${hsdst}" "${IPv4_HS_NETWORK}" 4
# we have to set the mac address of the veth-host (on ingress router)
# to the mac address of the remote peer (L2 VPN destination host).
# Otherwise, traffic coming from the source host is dropped at the
# ingress router.
set_mac_address "rt-${rtsrc}" "${hsdst}" 254 "${RT2HS_DEVNAME}"
# set the SRv6 Policies at the ingress router
setup_rt_policy_ipv6 "${hsdst}" "${rtsrc}" "${end_rts}" "${rtdst}" \
l2encap.red 6
setup_rt_policy_ipv4 "${hsdst}" "${rtsrc}" "${end_rts}" "${rtdst}" \
l2encap.red 4
# set the decap behavior
setup_decap "${rtsrc}"
}
setup()
{
local i
# create routers
ROUTERS="1 2 3 4"; readonly ROUTERS
for i in ${ROUTERS}; do
create_router "${i}"
done
# create hosts
HOSTS="1 2"; readonly HOSTS
for i in ${HOSTS}; do
create_host "${i}"
done
# set up the links for connecting routers
add_link_rt_pairs 1 "2 3 4"
add_link_rt_pairs 2 "3 4"
add_link_rt_pairs 3 "4"
# set up the basic connectivity of routers and routes required for
# reachability of SIDs.
setup_rt_networking 1 "2 3 4"
setup_rt_networking 2 "1 3 4"
setup_rt_networking 3 "1 2 4"
setup_rt_networking 4 "1 2 3"
# set up the hosts connected to routers
setup_hs 1 1
setup_hs 2 2
# set up default SRv6 Endpoints (i.e. SRv6 End and SRv6 End.DX2)
setup_rt_local_sids 1 "2 3 4"
setup_rt_local_sids 2 "1 3 4"
setup_rt_local_sids 3 "1 2 4"
setup_rt_local_sids 4 "1 2 3"
# create a L2 VPN between hs-1 and hs-2.
# NB: currently, H.L2Encap* enables tunneling of L2 frames whose
# layer-3 is IPv4/IPv6.
#
# the network path between hs-1 and hs-2 traverses several routers
# depending on the direction of traffic.
#
# Direction hs-1 -> hs-2 (H.L2Encaps.Red)
# - rt-2 (SRv6 End.DX2 behavior)
#
# Direction hs-2 -> hs-1 (H.L2Encaps.Red)
# - rt-4,rt-3 (SRv6 End behaviors)
# - rt-1 (SRv6 End.DX2 behavior)
setup_l2vpn 1 "" 2
setup_l2vpn 2 "4 3" 1
# testing environment was set up successfully
SETUP_ERR=0
}
check_rt_connectivity()
{
local rtsrc="$1"
local rtdst="$2"
local prefix
local rtsrc_nsname
rtsrc_nsname="$(get_rtname "${rtsrc}")"
prefix="$(get_network_prefix "${rtsrc}" "${rtdst}")"
ip netns exec "${rtsrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \
"${prefix}::${rtdst}" >/dev/null 2>&1
}
check_and_log_rt_connectivity()
{
local rtsrc="$1"
local rtdst="$2"
check_rt_connectivity "${rtsrc}" "${rtdst}"
log_test $? 0 "Routers connectivity: rt-${rtsrc} -> rt-${rtdst}"
}
check_hs_ipv6_connectivity()
{
local hssrc="$1"
local hsdst="$2"
local hssrc_nsname
hssrc_nsname="$(get_hsname "${hssrc}")"
ip netns exec "${hssrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \
"${IPv6_HS_NETWORK}::${hsdst}" >/dev/null 2>&1
}
check_hs_ipv4_connectivity()
{
local hssrc="$1"
local hsdst="$2"
local hssrc_nsname
hssrc_nsname="$(get_hsname "${hssrc}")"
ip netns exec "${hssrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \
"${IPv4_HS_NETWORK}.${hsdst}" >/dev/null 2>&1
}
check_and_log_hs2gw_connectivity()
{
local hssrc="$1"
check_hs_ipv6_connectivity "${hssrc}" 254
log_test $? 0 "IPv6 Hosts connectivity: hs-${hssrc} -> gw"
check_hs_ipv4_connectivity "${hssrc}" 254
log_test $? 0 "IPv4 Hosts connectivity: hs-${hssrc} -> gw"
}
check_and_log_hs_ipv6_connectivity()
{
local hssrc="$1"
local hsdst="$2"
check_hs_ipv6_connectivity "${hssrc}" "${hsdst}"
log_test $? 0 "IPv6 Hosts connectivity: hs-${hssrc} -> hs-${hsdst}"
}
check_and_log_hs_ipv4_connectivity()
{
local hssrc="$1"
local hsdst="$2"
check_hs_ipv4_connectivity "${hssrc}" "${hsdst}"
log_test $? 0 "IPv4 Hosts connectivity: hs-${hssrc} -> hs-${hsdst}"
}
check_and_log_hs_connectivity()
{
local hssrc="$1"
local hsdst="$2"
check_and_log_hs_ipv4_connectivity "${hssrc}" "${hsdst}"
check_and_log_hs_ipv6_connectivity "${hssrc}" "${hsdst}"
}
router_tests()
{
local i
local j
log_section "IPv6 routers connectivity test"
for i in ${ROUTERS}; do
for j in ${ROUTERS}; do
if [ "${i}" -eq "${j}" ]; then
continue
fi
check_and_log_rt_connectivity "${i}" "${j}"
done
done
}
host2gateway_tests()
{
local hs
log_section "IPv4/IPv6 connectivity test among hosts and gateways"
for hs in ${HOSTS}; do
check_and_log_hs2gw_connectivity "${hs}"
done
}
host_vpn_tests()
{
log_section "SRv6 L2 VPN connectivity test hosts (h1 <-> h2)"
check_and_log_hs_connectivity 1 2
check_and_log_hs_connectivity 2 1
}
test_dummy_dev_or_ksft_skip()
{
local test_netns
test_netns="dummy-$(mktemp -u XXXXXXXX)"
if ! ip netns add "${test_netns}"; then
echo "SKIP: Cannot set up netns for testing dummy dev support"
exit "${ksft_skip}"
fi
modprobe dummy &>/dev/null || true
if ! ip -netns "${test_netns}" link \
add "${DUMMY_DEVNAME}" type dummy; then
echo "SKIP: dummy dev not supported"
ip netns del "${test_netns}"
exit "${ksft_skip}"
fi
ip netns del "${test_netns}"
}
test_iproute2_supp_or_ksft_skip()
{
if ! ip route help 2>&1 | grep -qo "l2encap.red"; then
echo "SKIP: Missing SRv6 l2encap.red support in iproute2"
exit "${ksft_skip}"
fi
}
if [ "$(id -u)" -ne 0 ]; then
echo "SKIP: Need root privileges"
exit "${ksft_skip}"
fi
# required programs to carry out this selftest
test_command_or_ksft_skip ip
test_command_or_ksft_skip ping
test_command_or_ksft_skip sysctl
test_command_or_ksft_skip grep
test_iproute2_supp_or_ksft_skip
test_dummy_dev_or_ksft_skip
set -e
trap cleanup EXIT
setup
set +e
router_tests
host2gateway_tests
host_vpn_tests
print_log_test_results