330 lines
8.4 KiB
C
330 lines
8.4 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* MMU context allocation for 64-bit kernels.
|
|
*
|
|
* Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org>
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pkeys.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/export.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cpu.h>
|
|
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
#include "internal.h"
|
|
|
|
static DEFINE_IDA(mmu_context_ida);
|
|
|
|
static int alloc_context_id(int min_id, int max_id)
|
|
{
|
|
return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL);
|
|
}
|
|
|
|
void hash__reserve_context_id(int id)
|
|
{
|
|
int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL);
|
|
|
|
WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result);
|
|
}
|
|
|
|
int hash__alloc_context_id(void)
|
|
{
|
|
unsigned long max;
|
|
|
|
if (mmu_has_feature(MMU_FTR_68_BIT_VA))
|
|
max = MAX_USER_CONTEXT;
|
|
else
|
|
max = MAX_USER_CONTEXT_65BIT_VA;
|
|
|
|
return alloc_context_id(MIN_USER_CONTEXT, max);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hash__alloc_context_id);
|
|
|
|
static int realloc_context_ids(mm_context_t *ctx)
|
|
{
|
|
int i, id;
|
|
|
|
/*
|
|
* id 0 (aka. ctx->id) is special, we always allocate a new one, even if
|
|
* there wasn't one allocated previously (which happens in the exec
|
|
* case where ctx is newly allocated).
|
|
*
|
|
* We have to be a bit careful here. We must keep the existing ids in
|
|
* the array, so that we can test if they're non-zero to decide if we
|
|
* need to allocate a new one. However in case of error we must free the
|
|
* ids we've allocated but *not* any of the existing ones (or risk a
|
|
* UAF). That's why we decrement i at the start of the error handling
|
|
* loop, to skip the id that we just tested but couldn't reallocate.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(ctx->extended_id); i++) {
|
|
if (i == 0 || ctx->extended_id[i]) {
|
|
id = hash__alloc_context_id();
|
|
if (id < 0)
|
|
goto error;
|
|
|
|
ctx->extended_id[i] = id;
|
|
}
|
|
}
|
|
|
|
/* The caller expects us to return id */
|
|
return ctx->id;
|
|
|
|
error:
|
|
for (i--; i >= 0; i--) {
|
|
if (ctx->extended_id[i])
|
|
ida_free(&mmu_context_ida, ctx->extended_id[i]);
|
|
}
|
|
|
|
return id;
|
|
}
|
|
|
|
static int hash__init_new_context(struct mm_struct *mm)
|
|
{
|
|
int index;
|
|
|
|
mm->context.hash_context = kmalloc(sizeof(struct hash_mm_context),
|
|
GFP_KERNEL);
|
|
if (!mm->context.hash_context)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* The old code would re-promote on fork, we don't do that when using
|
|
* slices as it could cause problem promoting slices that have been
|
|
* forced down to 4K.
|
|
*
|
|
* For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
|
|
* explicitly against context.id == 0. This ensures that we properly
|
|
* initialize context slice details for newly allocated mm's (which will
|
|
* have id == 0) and don't alter context slice inherited via fork (which
|
|
* will have id != 0).
|
|
*
|
|
* We should not be calling init_new_context() on init_mm. Hence a
|
|
* check against 0 is OK.
|
|
*/
|
|
if (mm->context.id == 0) {
|
|
memset(mm->context.hash_context, 0, sizeof(struct hash_mm_context));
|
|
slice_init_new_context_exec(mm);
|
|
} else {
|
|
/* This is fork. Copy hash_context details from current->mm */
|
|
memcpy(mm->context.hash_context, current->mm->context.hash_context, sizeof(struct hash_mm_context));
|
|
#ifdef CONFIG_PPC_SUBPAGE_PROT
|
|
/* inherit subpage prot detalis if we have one. */
|
|
if (current->mm->context.hash_context->spt) {
|
|
mm->context.hash_context->spt = kmalloc(sizeof(struct subpage_prot_table),
|
|
GFP_KERNEL);
|
|
if (!mm->context.hash_context->spt) {
|
|
kfree(mm->context.hash_context);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
index = realloc_context_ids(&mm->context);
|
|
if (index < 0) {
|
|
#ifdef CONFIG_PPC_SUBPAGE_PROT
|
|
kfree(mm->context.hash_context->spt);
|
|
#endif
|
|
kfree(mm->context.hash_context);
|
|
return index;
|
|
}
|
|
|
|
pkey_mm_init(mm);
|
|
return index;
|
|
}
|
|
|
|
void hash__setup_new_exec(void)
|
|
{
|
|
slice_setup_new_exec();
|
|
|
|
slb_setup_new_exec();
|
|
}
|
|
|
|
static int radix__init_new_context(struct mm_struct *mm)
|
|
{
|
|
unsigned long rts_field;
|
|
int index, max_id;
|
|
|
|
max_id = (1 << mmu_pid_bits) - 1;
|
|
index = alloc_context_id(mmu_base_pid, max_id);
|
|
if (index < 0)
|
|
return index;
|
|
|
|
/*
|
|
* set the process table entry,
|
|
*/
|
|
rts_field = radix__get_tree_size();
|
|
process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
|
|
|
|
/*
|
|
* Order the above store with subsequent update of the PID
|
|
* register (at which point HW can start loading/caching
|
|
* the entry) and the corresponding load by the MMU from
|
|
* the L2 cache.
|
|
*/
|
|
asm volatile("ptesync;isync" : : : "memory");
|
|
|
|
mm->context.hash_context = NULL;
|
|
|
|
return index;
|
|
}
|
|
|
|
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
|
|
{
|
|
int index;
|
|
|
|
if (radix_enabled())
|
|
index = radix__init_new_context(mm);
|
|
else
|
|
index = hash__init_new_context(mm);
|
|
|
|
if (index < 0)
|
|
return index;
|
|
|
|
mm->context.id = index;
|
|
|
|
mm->context.pte_frag = NULL;
|
|
mm->context.pmd_frag = NULL;
|
|
#ifdef CONFIG_SPAPR_TCE_IOMMU
|
|
mm_iommu_init(mm);
|
|
#endif
|
|
atomic_set(&mm->context.active_cpus, 0);
|
|
atomic_set(&mm->context.copros, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __destroy_context(int context_id)
|
|
{
|
|
ida_free(&mmu_context_ida, context_id);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__destroy_context);
|
|
|
|
static void destroy_contexts(mm_context_t *ctx)
|
|
{
|
|
int index, context_id;
|
|
|
|
for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) {
|
|
context_id = ctx->extended_id[index];
|
|
if (context_id)
|
|
ida_free(&mmu_context_ida, context_id);
|
|
}
|
|
kfree(ctx->hash_context);
|
|
}
|
|
|
|
static void pmd_frag_destroy(void *pmd_frag)
|
|
{
|
|
int count;
|
|
struct page *page;
|
|
|
|
page = virt_to_page(pmd_frag);
|
|
/* drop all the pending references */
|
|
count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT;
|
|
/* We allow PTE_FRAG_NR fragments from a PTE page */
|
|
if (atomic_sub_and_test(PMD_FRAG_NR - count, &page->pt_frag_refcount)) {
|
|
pgtable_pmd_page_dtor(page);
|
|
__free_page(page);
|
|
}
|
|
}
|
|
|
|
static void destroy_pagetable_cache(struct mm_struct *mm)
|
|
{
|
|
void *frag;
|
|
|
|
frag = mm->context.pte_frag;
|
|
if (frag)
|
|
pte_frag_destroy(frag);
|
|
|
|
frag = mm->context.pmd_frag;
|
|
if (frag)
|
|
pmd_frag_destroy(frag);
|
|
return;
|
|
}
|
|
|
|
void destroy_context(struct mm_struct *mm)
|
|
{
|
|
#ifdef CONFIG_SPAPR_TCE_IOMMU
|
|
WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list));
|
|
#endif
|
|
/*
|
|
* For tasks which were successfully initialized we end up calling
|
|
* arch_exit_mmap() which clears the process table entry. And
|
|
* arch_exit_mmap() is called before the required fullmm TLB flush
|
|
* which does a RIC=2 flush. Hence for an initialized task, we do clear
|
|
* any cached process table entries.
|
|
*
|
|
* The condition below handles the error case during task init. We have
|
|
* set the process table entry early and if we fail a task
|
|
* initialization, we need to ensure the process table entry is zeroed.
|
|
* We need not worry about process table entry caches because the task
|
|
* never ran with the PID value.
|
|
*/
|
|
if (radix_enabled())
|
|
process_tb[mm->context.id].prtb0 = 0;
|
|
else
|
|
subpage_prot_free(mm);
|
|
destroy_contexts(&mm->context);
|
|
mm->context.id = MMU_NO_CONTEXT;
|
|
}
|
|
|
|
void arch_exit_mmap(struct mm_struct *mm)
|
|
{
|
|
destroy_pagetable_cache(mm);
|
|
|
|
if (radix_enabled()) {
|
|
/*
|
|
* Radix doesn't have a valid bit in the process table
|
|
* entries. However we know that at least P9 implementation
|
|
* will avoid caching an entry with an invalid RTS field,
|
|
* and 0 is invalid. So this will do.
|
|
*
|
|
* This runs before the "fullmm" tlb flush in exit_mmap,
|
|
* which does a RIC=2 tlbie to clear the process table
|
|
* entry. See the "fullmm" comments in tlb-radix.c.
|
|
*
|
|
* No barrier required here after the store because
|
|
* this process will do the invalidate, which starts with
|
|
* ptesync.
|
|
*/
|
|
process_tb[mm->context.id].prtb0 = 0;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_RADIX_MMU
|
|
void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
|
|
{
|
|
mtspr(SPRN_PID, next->context.id);
|
|
isync();
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* cleanup_cpu_mmu_context - Clean up MMU details for this CPU (newly offlined)
|
|
*
|
|
* This clears the CPU from mm_cpumask for all processes, and then flushes the
|
|
* local TLB to ensure TLB coherency in case the CPU is onlined again.
|
|
*
|
|
* KVM guest translations are not necessarily flushed here. If KVM started
|
|
* using mm_cpumask or the Linux APIs which do, this would have to be resolved.
|
|
*/
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
void cleanup_cpu_mmu_context(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
clear_tasks_mm_cpumask(cpu);
|
|
tlbiel_all();
|
|
}
|
|
#endif
|