OpenCloudOS-Kernel/drivers/accel/habanalabs/common/habanalabs.h

4042 lines
151 KiB
C

/* SPDX-License-Identifier: GPL-2.0
*
* Copyright 2016-2022 HabanaLabs, Ltd.
* All Rights Reserved.
*
*/
#ifndef HABANALABSP_H_
#define HABANALABSP_H_
#include "../include/common/cpucp_if.h"
#include "../include/common/qman_if.h"
#include "../include/hw_ip/mmu/mmu_general.h"
#include <uapi/drm/habanalabs_accel.h>
#include <linux/cdev.h>
#include <linux/iopoll.h>
#include <linux/irqreturn.h>
#include <linux/dma-direction.h>
#include <linux/scatterlist.h>
#include <linux/hashtable.h>
#include <linux/debugfs.h>
#include <linux/rwsem.h>
#include <linux/eventfd.h>
#include <linux/bitfield.h>
#include <linux/genalloc.h>
#include <linux/sched/signal.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/coresight.h>
#include <linux/dma-buf.h>
#include "security.h"
#define HL_NAME "habanalabs"
struct hl_device;
struct hl_fpriv;
/* Use upper bits of mmap offset to store habana driver specific information.
* bits[63:59] - Encode mmap type
* bits[45:0] - mmap offset value
*
* NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
* defines are w.r.t to PAGE_SIZE
*/
#define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT)
#define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT)
#define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK)
#define HL_PENDING_RESET_PER_SEC 10
#define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */
#define HL_PENDING_RESET_LONG_SEC 60
/*
* In device fini, wait 10 minutes for user processes to be terminated after we kill them.
* This is needed to prevent situation of clearing resources while user processes are still alive.
*/
#define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600
#define HL_HARD_RESET_MAX_TIMEOUT 120
#define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3)
#define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */
#define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */
#define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */
#define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */
#define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */
#define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */
#define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */
#define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */
#define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */
#define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */
#define HL_SIM_MAX_TIMEOUT_US 100000000 /* 100s */
#define HL_INVALID_QUEUE UINT_MAX
#define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF
#define HL_COMMON_DEC_INTERRUPT_ID 0xFFE
#define HL_STATE_DUMP_HIST_LEN 5
/* Default value for device reset trigger , an invalid value */
#define HL_RESET_TRIGGER_DEFAULT 0xFF
#define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
#define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
/* Memory */
#define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
/* MMU */
#define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
/**
* enum hl_mmu_page_table_location - mmu page table location
* @MMU_DR_PGT: page-table is located on device DRAM.
* @MMU_HR_PGT: page-table is located on host memory.
* @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
*/
enum hl_mmu_page_table_location {
MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */
MMU_HR_PGT, /* host resident MMU PGT */
MMU_NUM_PGT_LOCATIONS /* num of PGT locations */
};
/**
* enum hl_mmu_enablement - what mmu modules to enable
* @MMU_EN_NONE: mmu disabled.
* @MMU_EN_ALL: enable all.
* @MMU_EN_PMMU_ONLY: Enable only the PMMU leaving the DMMU disabled.
*/
enum hl_mmu_enablement {
MMU_EN_NONE = 0,
MMU_EN_ALL = 1,
MMU_EN_PMMU_ONLY = 3, /* N/A for Goya/Gaudi */
};
/*
* HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
* HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
*/
#define HL_RSVD_SOBS 2
#define HL_RSVD_MONS 1
/*
* HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
*/
#define HL_COLLECTIVE_RSVD_MSTR_MONS 2
#define HL_MAX_SOB_VAL (1 << 15)
#define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0))
#define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1))
#define HL_PCI_NUM_BARS 6
/* Completion queue entry relates to completed job */
#define HL_COMPLETION_MODE_JOB 0
/* Completion queue entry relates to completed command submission */
#define HL_COMPLETION_MODE_CS 1
#define HL_MAX_DCORES 8
/* DMA alloc/free wrappers */
#define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \
hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__)
#define hl_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle) \
hl_cpu_accessible_dma_pool_alloc_caller(hdev, size, dma_handle, __func__)
#define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \
hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__)
#define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \
hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__)
#define hl_cpu_accessible_dma_pool_free(hdev, size, vaddr) \
hl_cpu_accessible_dma_pool_free_caller(hdev, size, vaddr, __func__)
#define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \
hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__)
/*
* Reset Flags
*
* - HL_DRV_RESET_HARD
* If set do hard reset to all engines. If not set reset just
* compute/DMA engines.
*
* - HL_DRV_RESET_FROM_RESET_THR
* Set if the caller is the hard-reset thread
*
* - HL_DRV_RESET_HEARTBEAT
* Set if reset is due to heartbeat
*
* - HL_DRV_RESET_TDR
* Set if reset is due to TDR
*
* - HL_DRV_RESET_DEV_RELEASE
* Set if reset is due to device release
*
* - HL_DRV_RESET_BYPASS_REQ_TO_FW
* F/W will perform the reset. No need to ask it to reset the device. This is relevant
* only when running with secured f/w
*
* - HL_DRV_RESET_FW_FATAL_ERR
* Set if reset is due to a fatal error from FW
*
* - HL_DRV_RESET_DELAY
* Set if a delay should be added before the reset
*
* - HL_DRV_RESET_FROM_WD_THR
* Set if the caller is the device release watchdog thread
*/
#define HL_DRV_RESET_HARD (1 << 0)
#define HL_DRV_RESET_FROM_RESET_THR (1 << 1)
#define HL_DRV_RESET_HEARTBEAT (1 << 2)
#define HL_DRV_RESET_TDR (1 << 3)
#define HL_DRV_RESET_DEV_RELEASE (1 << 4)
#define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5)
#define HL_DRV_RESET_FW_FATAL_ERR (1 << 6)
#define HL_DRV_RESET_DELAY (1 << 7)
#define HL_DRV_RESET_FROM_WD_THR (1 << 8)
/*
* Security
*/
#define HL_PB_SHARED 1
#define HL_PB_NA 0
#define HL_PB_SINGLE_INSTANCE 1
#define HL_BLOCK_SIZE 0x1000
#define HL_BLOCK_GLBL_ERR_MASK 0xF40
#define HL_BLOCK_GLBL_ERR_ADDR 0xF44
#define HL_BLOCK_GLBL_ERR_CAUSE 0xF48
#define HL_BLOCK_GLBL_SEC_OFFS 0xF80
#define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS)
#define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32))
#define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32)))
enum hl_protection_levels {
SECURED_LVL,
PRIVILEGED_LVL,
NON_SECURED_LVL
};
/**
* struct iterate_module_ctx - HW module iterator
* @fn: function to apply to each HW module instance
* @data: optional internal data to the function iterator
* @rc: return code for optional use of iterator/iterator-caller
*/
struct iterate_module_ctx {
/*
* callback for the HW module iterator
* @hdev: pointer to the habanalabs device structure
* @block: block (ASIC specific definition can be dcore/hdcore)
* @inst: HW module instance within the block
* @offset: current HW module instance offset from the 1-st HW module instance
* in the 1-st block
* @ctx: the iterator context.
*/
void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset,
struct iterate_module_ctx *ctx);
void *data;
int rc;
};
struct hl_block_glbl_sec {
u32 sec_array[HL_BLOCK_GLBL_SEC_LEN];
};
#define HL_MAX_SOBS_PER_MONITOR 8
/**
* struct hl_gen_wait_properties - properties for generating a wait CB
* @data: command buffer
* @q_idx: queue id is used to extract fence register address
* @size: offset in command buffer
* @sob_base: SOB base to use in this wait CB
* @sob_val: SOB value to wait for
* @mon_id: monitor to use in this wait CB
* @sob_mask: each bit represents a SOB offset from sob_base to be used
*/
struct hl_gen_wait_properties {
void *data;
u32 q_idx;
u32 size;
u16 sob_base;
u16 sob_val;
u16 mon_id;
u8 sob_mask;
};
/**
* struct pgt_info - MMU hop page info.
* @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and
* actual pgts for host resident MMU).
* @phys_addr: physical address of the pgt.
* @virt_addr: host virtual address of the pgt (see above device/host resident).
* @shadow_addr: shadow hop in the host for device resident MMU.
* @ctx: pointer to the owner ctx.
* @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically
* allocated HOPs (all HOPs but HOP0)
*
* The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow
* pgts will be stored on host memory) or on host memory (in which case no shadow is required).
*
* When a new level (hop) is needed during mapping this structure will be used to describe
* the newly allocated hop as well as to track number of PTEs in it.
* During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is
* freed with its pgt_info structure.
*/
struct pgt_info {
struct hlist_node node;
u64 phys_addr;
u64 virt_addr;
u64 shadow_addr;
struct hl_ctx *ctx;
int num_of_ptes;
};
/**
* enum hl_pci_match_mode - pci match mode per region
* @PCI_ADDRESS_MATCH_MODE: address match mode
* @PCI_BAR_MATCH_MODE: bar match mode
*/
enum hl_pci_match_mode {
PCI_ADDRESS_MATCH_MODE,
PCI_BAR_MATCH_MODE
};
/**
* enum hl_fw_component - F/W components to read version through registers.
* @FW_COMP_BOOT_FIT: boot fit.
* @FW_COMP_PREBOOT: preboot.
* @FW_COMP_LINUX: linux.
*/
enum hl_fw_component {
FW_COMP_BOOT_FIT,
FW_COMP_PREBOOT,
FW_COMP_LINUX,
};
/**
* enum hl_fw_types - F/W types present in the system
* @FW_TYPE_NONE: no FW component indication
* @FW_TYPE_LINUX: Linux image for device CPU
* @FW_TYPE_BOOT_CPU: Boot image for device CPU
* @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
* (preboot, ppboot etc...)
* @FW_TYPE_ALL_TYPES: Mask for all types
*/
enum hl_fw_types {
FW_TYPE_NONE = 0x0,
FW_TYPE_LINUX = 0x1,
FW_TYPE_BOOT_CPU = 0x2,
FW_TYPE_PREBOOT_CPU = 0x4,
FW_TYPE_ALL_TYPES =
(FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
};
/**
* enum hl_queue_type - Supported QUEUE types.
* @QUEUE_TYPE_NA: queue is not available.
* @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
* host.
* @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
* memories and/or operates the compute engines.
* @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
* @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
* notifications are sent by H/W.
*/
enum hl_queue_type {
QUEUE_TYPE_NA,
QUEUE_TYPE_EXT,
QUEUE_TYPE_INT,
QUEUE_TYPE_CPU,
QUEUE_TYPE_HW
};
enum hl_cs_type {
CS_TYPE_DEFAULT,
CS_TYPE_SIGNAL,
CS_TYPE_WAIT,
CS_TYPE_COLLECTIVE_WAIT,
CS_RESERVE_SIGNALS,
CS_UNRESERVE_SIGNALS,
CS_TYPE_ENGINE_CORE,
CS_TYPE_FLUSH_PCI_HBW_WRITES,
};
/*
* struct hl_inbound_pci_region - inbound region descriptor
* @mode: pci match mode for this region
* @addr: region target address
* @size: region size in bytes
* @offset_in_bar: offset within bar (address match mode)
* @bar: bar id
*/
struct hl_inbound_pci_region {
enum hl_pci_match_mode mode;
u64 addr;
u64 size;
u64 offset_in_bar;
u8 bar;
};
/*
* struct hl_outbound_pci_region - outbound region descriptor
* @addr: region target address
* @size: region size in bytes
*/
struct hl_outbound_pci_region {
u64 addr;
u64 size;
};
/*
* enum queue_cb_alloc_flags - Indicates queue support for CBs that
* allocated by Kernel or by User
* @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
* @CB_ALLOC_USER: support only CBs that allocated by User
*/
enum queue_cb_alloc_flags {
CB_ALLOC_KERNEL = 0x1,
CB_ALLOC_USER = 0x2
};
/*
* struct hl_hw_sob - H/W SOB info.
* @hdev: habanalabs device structure.
* @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
* @sob_id: id of this SOB.
* @sob_addr: the sob offset from the base address.
* @q_idx: the H/W queue that uses this SOB.
* @need_reset: reset indication set when switching to the other sob.
*/
struct hl_hw_sob {
struct hl_device *hdev;
struct kref kref;
u32 sob_id;
u32 sob_addr;
u32 q_idx;
bool need_reset;
};
enum hl_collective_mode {
HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
HL_COLLECTIVE_MASTER = 0x1,
HL_COLLECTIVE_SLAVE = 0x2
};
/**
* struct hw_queue_properties - queue information.
* @type: queue type.
* @cb_alloc_flags: bitmap which indicates if the hw queue supports CB
* that allocated by the Kernel driver and therefore,
* a CB handle can be provided for jobs on this queue.
* Otherwise, a CB address must be provided.
* @collective_mode: collective mode of current queue
* @driver_only: true if only the driver is allowed to send a job to this queue,
* false otherwise.
* @binned: True if the queue is binned out and should not be used
* @supports_sync_stream: True if queue supports sync stream
*/
struct hw_queue_properties {
enum hl_queue_type type;
enum queue_cb_alloc_flags cb_alloc_flags;
enum hl_collective_mode collective_mode;
u8 driver_only;
u8 binned;
u8 supports_sync_stream;
};
/**
* enum vm_type - virtual memory mapping request information.
* @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
* @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
*/
enum vm_type {
VM_TYPE_USERPTR = 0x1,
VM_TYPE_PHYS_PACK = 0x2
};
/**
* enum mmu_op_flags - mmu operation relevant information.
* @MMU_OP_USERPTR: operation on user memory (host resident).
* @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
* @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
* @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
*/
enum mmu_op_flags {
MMU_OP_USERPTR = 0x1,
MMU_OP_PHYS_PACK = 0x2,
MMU_OP_CLEAR_MEMCACHE = 0x4,
MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
};
/**
* enum hl_device_hw_state - H/W device state. use this to understand whether
* to do reset before hw_init or not
* @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
* @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
* hw_init
*/
enum hl_device_hw_state {
HL_DEVICE_HW_STATE_CLEAN = 0,
HL_DEVICE_HW_STATE_DIRTY
};
#define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
/**
* struct hl_mmu_properties - ASIC specific MMU address translation properties.
* @start_addr: virtual start address of the memory region.
* @end_addr: virtual end address of the memory region.
* @hop_shifts: array holds HOPs shifts.
* @hop_masks: array holds HOPs masks.
* @last_mask: mask to get the bit indicating this is the last hop.
* @pgt_size: size for page tables.
* @supported_pages_mask: bitmask for supported page size (relevant only for MMUs
* supporting multiple page size).
* @page_size: default page size used to allocate memory.
* @num_hops: The amount of hops supported by the translation table.
* @hop_table_size: HOP table size.
* @hop0_tables_total_size: total size for all HOP0 tables.
* @host_resident: Should the MMU page table reside in host memory or in the
* device DRAM.
*/
struct hl_mmu_properties {
u64 start_addr;
u64 end_addr;
u64 hop_shifts[MMU_HOP_MAX];
u64 hop_masks[MMU_HOP_MAX];
u64 last_mask;
u64 pgt_size;
u64 supported_pages_mask;
u32 page_size;
u32 num_hops;
u32 hop_table_size;
u32 hop0_tables_total_size;
u8 host_resident;
};
/**
* struct hl_hints_range - hint addresses reserved va range.
* @start_addr: start address of the va range.
* @end_addr: end address of the va range.
*/
struct hl_hints_range {
u64 start_addr;
u64 end_addr;
};
/**
* struct asic_fixed_properties - ASIC specific immutable properties.
* @hw_queues_props: H/W queues properties.
* @special_blocks: points to an array containing special blocks info.
* @skip_special_blocks_cfg: special blocks skip configs.
* @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
* available sensors.
* @uboot_ver: F/W U-boot version.
* @preboot_ver: F/W Preboot version.
* @dmmu: DRAM MMU address translation properties.
* @pmmu: PCI (host) MMU address translation properties.
* @pmmu_huge: PCI (host) MMU address translation properties for memory
* allocated with huge pages.
* @hints_dram_reserved_va_range: dram hint addresses reserved range.
* @hints_host_reserved_va_range: host hint addresses reserved range.
* @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved
* range.
* @sram_base_address: SRAM physical start address.
* @sram_end_address: SRAM physical end address.
* @sram_user_base_address - SRAM physical start address for user access.
* @dram_base_address: DRAM physical start address.
* @dram_end_address: DRAM physical end address.
* @dram_user_base_address: DRAM physical start address for user access.
* @dram_size: DRAM total size.
* @dram_pci_bar_size: size of PCI bar towards DRAM.
* @max_power_default: max power of the device after reset.
* @dc_power_default: power consumed by the device in mode idle.
* @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
* fault.
* @pcie_dbi_base_address: Base address of the PCIE_DBI block.
* @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
* @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
* @mmu_dram_default_page_addr: DRAM default page physical address.
* @tpc_enabled_mask: which TPCs are enabled.
* @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned.
* @dram_enabled_mask: which DRAMs are enabled.
* @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned.
* @dram_hints_align_mask: dram va hint addresses alignment mask which is used
* for hints validity check.
* @cfg_base_address: config space base address.
* @mmu_cache_mng_addr: address of the MMU cache.
* @mmu_cache_mng_size: size of the MMU cache.
* @device_dma_offset_for_host_access: the offset to add to host DMA addresses
* to enable the device to access them.
* @host_base_address: host physical start address for host DMA from device
* @host_end_address: host physical end address for host DMA from device
* @max_freq_value: current max clk frequency.
* @clk_pll_index: clock PLL index that specify which PLL determines the clock
* we display to the user
* @mmu_pgt_size: MMU page tables total size.
* @mmu_pte_size: PTE size in MMU page tables.
* @mmu_hop_table_size: MMU hop table size.
* @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
* @dram_page_size: page size for MMU DRAM allocation.
* @cfg_size: configuration space size on SRAM.
* @sram_size: total size of SRAM.
* @max_asid: maximum number of open contexts (ASIDs).
* @num_of_events: number of possible internal H/W IRQs.
* @psoc_pci_pll_nr: PCI PLL NR value.
* @psoc_pci_pll_nf: PCI PLL NF value.
* @psoc_pci_pll_od: PCI PLL OD value.
* @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
* @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
* @high_pll: high PLL frequency used by the device.
* @cb_pool_cb_cnt: number of CBs in the CB pool.
* @cb_pool_cb_size: size of each CB in the CB pool.
* @decoder_enabled_mask: which decoders are enabled.
* @decoder_binning_mask: which decoders are binned, 0 means usable and 1
* means binned (at most one binned decoder per dcore).
* @edma_enabled_mask: which EDMAs are enabled.
* @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means
* binned (at most one binned DMA).
* @max_pending_cs: maximum of concurrent pending command submissions
* @max_queues: maximum amount of queues in the system
* @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
* capabilities reported by FW, bit description
* can be found in CPU_BOOT_DEV_STS0
* @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
* capabilities reported by FW, bit description
* can be found in CPU_BOOT_DEV_STS1
* @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
* status reported by FW, bit description can be
* found in CPU_BOOT_DEV_STS0
* @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
* status reported by FW, bit description can be
* found in CPU_BOOT_DEV_STS1
* @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
* status reported by FW, bit description can be
* found in CPU_BOOT_DEV_STS0
* @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
* status reported by FW, bit description can be
* found in CPU_BOOT_DEV_STS1
* @max_dec: maximum number of decoders
* @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled)
* 1- enabled, 0- isolated.
* @faulty_dram_cluster_map: mask of faulty DRAM cluster.
* 1- faulty cluster, 0- good cluster.
* @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled)
* 1- enabled, 0- isolated.
* @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
* which the property supports_user_set_page_size is true
* (i.e. the DRAM supports multiple page sizes), otherwise
* it will shall be equal to dram_page_size.
* @num_engine_cores: number of engine cpu cores
* @num_of_special_blocks: special_blocks array size.
* @glbl_err_cause_num: global err cause number.
* @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is
* not supported.
* @collective_first_sob: first sync object available for collective use
* @collective_first_mon: first monitor available for collective use
* @sync_stream_first_sob: first sync object available for sync stream use
* @sync_stream_first_mon: first monitor available for sync stream use
* @first_available_user_sob: first sob available for the user
* @first_available_user_mon: first monitor available for the user
* @first_available_user_interrupt: first available interrupt reserved for the user
* @first_available_cq: first available CQ for the user.
* @user_interrupt_count: number of user interrupts.
* @user_dec_intr_count: number of decoder interrupts exposed to user.
* @cache_line_size: device cache line size.
* @server_type: Server type that the ASIC is currently installed in.
* The value is according to enum hl_server_type in uapi file.
* @completion_queues_count: number of completion queues.
* @completion_mode: 0 - job based completion, 1 - cs based completion
* @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works
* in Master/Slave mode
* @fw_security_enabled: true if security measures are enabled in firmware,
* false otherwise
* @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
* BOOT_DEV_STS0
* @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
* BOOT_DEV_STS1
* @dram_supports_virtual_memory: is there an MMU towards the DRAM
* @hard_reset_done_by_fw: true if firmware is handling hard reset flow
* @num_functional_hbms: number of functional HBMs in each DCORE.
* @hints_range_reservation: device support hint addresses range reservation.
* @iatu_done_by_fw: true if iATU configuration is being done by FW.
* @dynamic_fw_load: is dynamic FW load is supported.
* @gic_interrupts_enable: true if FW is not blocking GIC controller,
* false otherwise.
* @use_get_power_for_reset_history: To support backward compatibility for Goya
* and Gaudi
* @supports_compute_reset: is a reset which is not a hard-reset supported by this asic.
* @allow_inference_soft_reset: true if the ASIC supports soft reset that is
* initiated by user or TDR. This is only true
* in inference ASICs, as there is no real-world
* use-case of doing soft-reset in training (due
* to the fact that training runs on multiple
* devices)
* @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
* @set_max_power_on_device_init: true if need to set max power in F/W on device init.
* @supports_user_set_page_size: true if user can set the allocation page size.
* @dma_mask: the dma mask to be set for this device
* @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported.
*/
struct asic_fixed_properties {
struct hw_queue_properties *hw_queues_props;
struct hl_special_block_info *special_blocks;
struct hl_skip_blocks_cfg skip_special_blocks_cfg;
struct cpucp_info cpucp_info;
char uboot_ver[VERSION_MAX_LEN];
char preboot_ver[VERSION_MAX_LEN];
struct hl_mmu_properties dmmu;
struct hl_mmu_properties pmmu;
struct hl_mmu_properties pmmu_huge;
struct hl_hints_range hints_dram_reserved_va_range;
struct hl_hints_range hints_host_reserved_va_range;
struct hl_hints_range hints_host_hpage_reserved_va_range;
u64 sram_base_address;
u64 sram_end_address;
u64 sram_user_base_address;
u64 dram_base_address;
u64 dram_end_address;
u64 dram_user_base_address;
u64 dram_size;
u64 dram_pci_bar_size;
u64 max_power_default;
u64 dc_power_default;
u64 dram_size_for_default_page_mapping;
u64 pcie_dbi_base_address;
u64 pcie_aux_dbi_reg_addr;
u64 mmu_pgt_addr;
u64 mmu_dram_default_page_addr;
u64 tpc_enabled_mask;
u64 tpc_binning_mask;
u64 dram_enabled_mask;
u64 dram_binning_mask;
u64 dram_hints_align_mask;
u64 cfg_base_address;
u64 mmu_cache_mng_addr;
u64 mmu_cache_mng_size;
u64 device_dma_offset_for_host_access;
u64 host_base_address;
u64 host_end_address;
u64 max_freq_value;
u32 clk_pll_index;
u32 mmu_pgt_size;
u32 mmu_pte_size;
u32 mmu_hop_table_size;
u32 mmu_hop0_tables_total_size;
u32 dram_page_size;
u32 cfg_size;
u32 sram_size;
u32 max_asid;
u32 num_of_events;
u32 psoc_pci_pll_nr;
u32 psoc_pci_pll_nf;
u32 psoc_pci_pll_od;
u32 psoc_pci_pll_div_factor;
u32 psoc_timestamp_frequency;
u32 high_pll;
u32 cb_pool_cb_cnt;
u32 cb_pool_cb_size;
u32 decoder_enabled_mask;
u32 decoder_binning_mask;
u32 edma_enabled_mask;
u32 edma_binning_mask;
u32 max_pending_cs;
u32 max_queues;
u32 fw_preboot_cpu_boot_dev_sts0;
u32 fw_preboot_cpu_boot_dev_sts1;
u32 fw_bootfit_cpu_boot_dev_sts0;
u32 fw_bootfit_cpu_boot_dev_sts1;
u32 fw_app_cpu_boot_dev_sts0;
u32 fw_app_cpu_boot_dev_sts1;
u32 max_dec;
u32 hmmu_hif_enabled_mask;
u32 faulty_dram_cluster_map;
u32 xbar_edge_enabled_mask;
u32 device_mem_alloc_default_page_size;
u32 num_engine_cores;
u32 num_of_special_blocks;
u32 glbl_err_cause_num;
u32 hbw_flush_reg;
u16 collective_first_sob;
u16 collective_first_mon;
u16 sync_stream_first_sob;
u16 sync_stream_first_mon;
u16 first_available_user_sob[HL_MAX_DCORES];
u16 first_available_user_mon[HL_MAX_DCORES];
u16 first_available_user_interrupt;
u16 first_available_cq[HL_MAX_DCORES];
u16 user_interrupt_count;
u16 user_dec_intr_count;
u16 cache_line_size;
u16 server_type;
u8 completion_queues_count;
u8 completion_mode;
u8 mme_master_slave_mode;
u8 fw_security_enabled;
u8 fw_cpu_boot_dev_sts0_valid;
u8 fw_cpu_boot_dev_sts1_valid;
u8 dram_supports_virtual_memory;
u8 hard_reset_done_by_fw;
u8 num_functional_hbms;
u8 hints_range_reservation;
u8 iatu_done_by_fw;
u8 dynamic_fw_load;
u8 gic_interrupts_enable;
u8 use_get_power_for_reset_history;
u8 supports_compute_reset;
u8 allow_inference_soft_reset;
u8 configurable_stop_on_err;
u8 set_max_power_on_device_init;
u8 supports_user_set_page_size;
u8 dma_mask;
u8 supports_advanced_cpucp_rc;
};
/**
* struct hl_fence - software synchronization primitive
* @completion: fence is implemented using completion
* @refcount: refcount for this fence
* @cs_sequence: sequence of the corresponding command submission
* @stream_master_qid_map: streams masters QID bitmap to represent all streams
* masters QIDs that multi cs is waiting on
* @error: mark this fence with error
* @timestamp: timestamp upon completion
* @mcs_handling_done: indicates that corresponding command submission has
* finished msc handling, this does not mean it was part
* of the mcs
*/
struct hl_fence {
struct completion completion;
struct kref refcount;
u64 cs_sequence;
u32 stream_master_qid_map;
int error;
ktime_t timestamp;
u8 mcs_handling_done;
};
/**
* struct hl_cs_compl - command submission completion object.
* @base_fence: hl fence object.
* @lock: spinlock to protect fence.
* @hdev: habanalabs device structure.
* @hw_sob: the H/W SOB used in this signal/wait CS.
* @encaps_sig_hdl: encaps signals handler.
* @cs_seq: command submission sequence number.
* @type: type of the CS - signal/wait.
* @sob_val: the SOB value that is used in this signal/wait CS.
* @sob_group: the SOB group that is used in this collective wait CS.
* @encaps_signals: indication whether it's a completion object of cs with
* encaps signals or not.
*/
struct hl_cs_compl {
struct hl_fence base_fence;
spinlock_t lock;
struct hl_device *hdev;
struct hl_hw_sob *hw_sob;
struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
u64 cs_seq;
enum hl_cs_type type;
u16 sob_val;
u16 sob_group;
bool encaps_signals;
};
/*
* Command Buffers
*/
/**
* struct hl_ts_buff - describes a timestamp buffer.
* @kernel_buff_address: Holds the internal buffer's kernel virtual address.
* @user_buff_address: Holds the user buffer's kernel virtual address.
* @kernel_buff_size: Holds the internal kernel buffer size.
*/
struct hl_ts_buff {
void *kernel_buff_address;
void *user_buff_address;
u32 kernel_buff_size;
};
struct hl_mmap_mem_buf;
/**
* struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
* @dev: back pointer to the owning device
* @lock: protects handles
* @handles: an idr holding all active handles to the memory buffers in the system.
*/
struct hl_mem_mgr {
struct device *dev;
spinlock_t lock;
struct idr handles;
};
/**
* struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
* @topic: string identifier used for logging
* @mem_id: memory type identifier, embedded in the handle and used to identify
* the memory type by handle.
* @alloc: callback executed on buffer allocation, shall allocate the memory,
* set it under buffer private, and set mappable size.
* @mmap: callback executed on mmap, must map the buffer to vma
* @release: callback executed on release, must free the resources used by the buffer
*/
struct hl_mmap_mem_buf_behavior {
const char *topic;
u64 mem_id;
int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
void (*release)(struct hl_mmap_mem_buf *buf);
};
/**
* struct hl_mmap_mem_buf - describes a single unified memory buffer
* @behavior: buffer behavior
* @mmg: back pointer to the unified memory manager
* @refcount: reference counter for buffer users
* @private: pointer to buffer behavior private data
* @mmap: atomic boolean indicating whether or not the buffer is mapped right now
* @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
* may change at runtime.
* @mappable_size: the original mappable size of the buffer, does not change after
* the allocation.
* @handle: the buffer id in mmg handles store
*/
struct hl_mmap_mem_buf {
struct hl_mmap_mem_buf_behavior *behavior;
struct hl_mem_mgr *mmg;
struct kref refcount;
void *private;
atomic_t mmap;
u64 real_mapped_size;
u64 mappable_size;
u64 handle;
};
/**
* struct hl_cb - describes a Command Buffer.
* @hdev: pointer to device this CB belongs to.
* @ctx: pointer to the CB owner's context.
* @buf: back pointer to the parent mappable memory buffer
* @debugfs_list: node in debugfs list of command buffers.
* @pool_list: node in pool list of command buffers.
* @kernel_address: Holds the CB's kernel virtual address.
* @virtual_addr: Holds the CB's virtual address.
* @bus_address: Holds the CB's DMA address.
* @size: holds the CB's size.
* @roundup_size: holds the cb size after roundup to page size.
* @cs_cnt: holds number of CS that this CB participates in.
* @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed.
* @is_pool: true if CB was acquired from the pool, false otherwise.
* @is_internal: internally allocated
* @is_mmu_mapped: true if the CB is mapped to the device's MMU.
*/
struct hl_cb {
struct hl_device *hdev;
struct hl_ctx *ctx;
struct hl_mmap_mem_buf *buf;
struct list_head debugfs_list;
struct list_head pool_list;
void *kernel_address;
u64 virtual_addr;
dma_addr_t bus_address;
u32 size;
u32 roundup_size;
atomic_t cs_cnt;
atomic_t is_handle_destroyed;
u8 is_pool;
u8 is_internal;
u8 is_mmu_mapped;
};
/*
* QUEUES
*/
struct hl_cs_job;
/* Queue length of external and HW queues */
#define HL_QUEUE_LENGTH 4096
#define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE)
#if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
#error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
#endif
/* HL_CQ_LENGTH is in units of struct hl_cq_entry */
#define HL_CQ_LENGTH HL_QUEUE_LENGTH
#define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
/* Must be power of 2 */
#define HL_EQ_LENGTH 64
#define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
/* Host <-> CPU-CP shared memory size */
#define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M
/**
* struct hl_sync_stream_properties -
* describes a H/W queue sync stream properties
* @hw_sob: array of the used H/W SOBs by this H/W queue.
* @next_sob_val: the next value to use for the currently used SOB.
* @base_sob_id: the base SOB id of the SOBs used by this queue.
* @base_mon_id: the base MON id of the MONs used by this queue.
* @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
* in order to sync with all slave queues.
* @collective_slave_mon_id: the MON id used by this slave queue in order to
* sync with its master queue.
* @collective_sob_id: current SOB id used by this collective slave queue
* to signal its collective master queue upon completion.
* @curr_sob_offset: the id offset to the currently used SOB from the
* HL_RSVD_SOBS that are being used by this queue.
*/
struct hl_sync_stream_properties {
struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
u16 next_sob_val;
u16 base_sob_id;
u16 base_mon_id;
u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
u16 collective_slave_mon_id;
u16 collective_sob_id;
u8 curr_sob_offset;
};
/**
* struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
* handlers manager
* @lock: protects handles.
* @handles: an idr to hold all encapsulated signals handles.
*/
struct hl_encaps_signals_mgr {
spinlock_t lock;
struct idr handles;
};
/**
* struct hl_hw_queue - describes a H/W transport queue.
* @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
* @sync_stream_prop: sync stream queue properties
* @queue_type: type of queue.
* @collective_mode: collective mode of current queue
* @kernel_address: holds the queue's kernel virtual address.
* @bus_address: holds the queue's DMA address.
* @pi: holds the queue's pi value.
* @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
* @hw_queue_id: the id of the H/W queue.
* @cq_id: the id for the corresponding CQ for this H/W queue.
* @msi_vec: the IRQ number of the H/W queue.
* @int_queue_len: length of internal queue (number of entries).
* @valid: is the queue valid (we have array of 32 queues, not all of them
* exist).
* @supports_sync_stream: True if queue supports sync stream
*/
struct hl_hw_queue {
struct hl_cs_job **shadow_queue;
struct hl_sync_stream_properties sync_stream_prop;
enum hl_queue_type queue_type;
enum hl_collective_mode collective_mode;
void *kernel_address;
dma_addr_t bus_address;
u32 pi;
atomic_t ci;
u32 hw_queue_id;
u32 cq_id;
u32 msi_vec;
u16 int_queue_len;
u8 valid;
u8 supports_sync_stream;
};
/**
* struct hl_cq - describes a completion queue
* @hdev: pointer to the device structure
* @kernel_address: holds the queue's kernel virtual address
* @bus_address: holds the queue's DMA address
* @cq_idx: completion queue index in array
* @hw_queue_id: the id of the matching H/W queue
* @ci: ci inside the queue
* @pi: pi inside the queue
* @free_slots_cnt: counter of free slots in queue
*/
struct hl_cq {
struct hl_device *hdev;
void *kernel_address;
dma_addr_t bus_address;
u32 cq_idx;
u32 hw_queue_id;
u32 ci;
u32 pi;
atomic_t free_slots_cnt;
};
enum hl_user_interrupt_type {
HL_USR_INTERRUPT_CQ = 0,
HL_USR_INTERRUPT_DECODER,
};
/**
* struct hl_user_interrupt - holds user interrupt information
* @hdev: pointer to the device structure
* @type: user interrupt type
* @wait_list_head: head to the list of user threads pending on this interrupt
* @wait_list_lock: protects wait_list_head
* @interrupt_id: msix interrupt id
*/
struct hl_user_interrupt {
struct hl_device *hdev;
enum hl_user_interrupt_type type;
struct list_head wait_list_head;
spinlock_t wait_list_lock;
u32 interrupt_id;
};
/**
* struct timestamp_reg_free_node - holds the timestamp registration free objects node
* @free_objects_node: node in the list free_obj_jobs
* @cq_cb: pointer to cq command buffer to be freed
* @buf: pointer to timestamp buffer to be freed
*/
struct timestamp_reg_free_node {
struct list_head free_objects_node;
struct hl_cb *cq_cb;
struct hl_mmap_mem_buf *buf;
};
/* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
* the job will be to pass over the free_obj_jobs list and put refcount to objects
* in each node of the list
* @free_obj: workqueue object to free timestamp registration node objects
* @hdev: pointer to the device structure
* @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
*/
struct timestamp_reg_work_obj {
struct work_struct free_obj;
struct hl_device *hdev;
struct list_head *free_obj_head;
};
/* struct timestamp_reg_info - holds the timestamp registration related data.
* @buf: pointer to the timestamp buffer which include both user/kernel buffers.
* relevant only when doing timestamps records registration.
* @cq_cb: pointer to CQ counter CB.
* @timestamp_kernel_addr: timestamp handle address, where to set timestamp
* relevant only when doing timestamps records
* registration.
* @in_use: indicates if the node already in use. relevant only when doing
* timestamps records registration, since in this case the driver
* will have it's own buffer which serve as a records pool instead of
* allocating records dynamically.
*/
struct timestamp_reg_info {
struct hl_mmap_mem_buf *buf;
struct hl_cb *cq_cb;
u64 *timestamp_kernel_addr;
u8 in_use;
};
/**
* struct hl_user_pending_interrupt - holds a context to a user thread
* pending on an interrupt
* @ts_reg_info: holds the timestamps registration nodes info
* @wait_list_node: node in the list of user threads pending on an interrupt
* @fence: hl fence object for interrupt completion
* @cq_target_value: CQ target value
* @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
* handler for target value comparison
*/
struct hl_user_pending_interrupt {
struct timestamp_reg_info ts_reg_info;
struct list_head wait_list_node;
struct hl_fence fence;
u64 cq_target_value;
u64 *cq_kernel_addr;
};
/**
* struct hl_eq - describes the event queue (single one per device)
* @hdev: pointer to the device structure
* @kernel_address: holds the queue's kernel virtual address
* @bus_address: holds the queue's DMA address
* @ci: ci inside the queue
* @prev_eqe_index: the index of the previous event queue entry. The index of
* the current entry's index must be +1 of the previous one.
* @check_eqe_index: do we need to check the index of the current entry vs. the
* previous one. This is for backward compatibility with older
* firmwares
*/
struct hl_eq {
struct hl_device *hdev;
void *kernel_address;
dma_addr_t bus_address;
u32 ci;
u32 prev_eqe_index;
bool check_eqe_index;
};
/**
* struct hl_dec - describes a decoder sw instance.
* @hdev: pointer to the device structure.
* @completion_abnrm_work: workqueue object to run when decoder generates an error interrupt
* @core_id: ID of the decoder.
* @base_addr: base address of the decoder.
*/
struct hl_dec {
struct hl_device *hdev;
struct work_struct completion_abnrm_work;
u32 core_id;
u32 base_addr;
};
/**
* enum hl_asic_type - supported ASIC types.
* @ASIC_INVALID: Invalid ASIC type.
* @ASIC_GOYA: Goya device (HL-1000).
* @ASIC_GAUDI: Gaudi device (HL-2000).
* @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
* @ASIC_GAUDI2: Gaudi2 device.
* @ASIC_GAUDI2B: Gaudi2B device.
*/
enum hl_asic_type {
ASIC_INVALID,
ASIC_GOYA,
ASIC_GAUDI,
ASIC_GAUDI_SEC,
ASIC_GAUDI2,
ASIC_GAUDI2B,
};
struct hl_cs_parser;
/**
* enum hl_pm_mng_profile - power management profile.
* @PM_AUTO: internal clock is set by the Linux driver.
* @PM_MANUAL: internal clock is set by the user.
* @PM_LAST: last power management type.
*/
enum hl_pm_mng_profile {
PM_AUTO = 1,
PM_MANUAL,
PM_LAST
};
/**
* enum hl_pll_frequency - PLL frequency.
* @PLL_HIGH: high frequency.
* @PLL_LOW: low frequency.
* @PLL_LAST: last frequency values that were configured by the user.
*/
enum hl_pll_frequency {
PLL_HIGH = 1,
PLL_LOW,
PLL_LAST
};
#define PLL_REF_CLK 50
enum div_select_defs {
DIV_SEL_REF_CLK = 0,
DIV_SEL_PLL_CLK = 1,
DIV_SEL_DIVIDED_REF = 2,
DIV_SEL_DIVIDED_PLL = 3,
};
enum debugfs_access_type {
DEBUGFS_READ8,
DEBUGFS_WRITE8,
DEBUGFS_READ32,
DEBUGFS_WRITE32,
DEBUGFS_READ64,
DEBUGFS_WRITE64,
};
enum pci_region {
PCI_REGION_CFG,
PCI_REGION_SRAM,
PCI_REGION_DRAM,
PCI_REGION_SP_SRAM,
PCI_REGION_NUMBER,
};
/**
* struct pci_mem_region - describe memory region in a PCI bar
* @region_base: region base address
* @region_size: region size
* @bar_size: size of the BAR
* @offset_in_bar: region offset into the bar
* @bar_id: bar ID of the region
* @used: if used 1, otherwise 0
*/
struct pci_mem_region {
u64 region_base;
u64 region_size;
u64 bar_size;
u64 offset_in_bar;
u8 bar_id;
u8 used;
};
/**
* struct static_fw_load_mgr - static FW load manager
* @preboot_version_max_off: max offset to preboot version
* @boot_fit_version_max_off: max offset to boot fit version
* @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
* @cpu_cmd_status_to_host_reg: register address for CPU command status response
* @cpu_boot_status_reg: boot status register
* @cpu_boot_dev_status0_reg: boot device status register 0
* @cpu_boot_dev_status1_reg: boot device status register 1
* @boot_err0_reg: boot error register 0
* @boot_err1_reg: boot error register 1
* @preboot_version_offset_reg: SRAM offset to preboot version register
* @boot_fit_version_offset_reg: SRAM offset to boot fit version register
* @sram_offset_mask: mask for getting offset into the SRAM
* @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
*/
struct static_fw_load_mgr {
u64 preboot_version_max_off;
u64 boot_fit_version_max_off;
u32 kmd_msg_to_cpu_reg;
u32 cpu_cmd_status_to_host_reg;
u32 cpu_boot_status_reg;
u32 cpu_boot_dev_status0_reg;
u32 cpu_boot_dev_status1_reg;
u32 boot_err0_reg;
u32 boot_err1_reg;
u32 preboot_version_offset_reg;
u32 boot_fit_version_offset_reg;
u32 sram_offset_mask;
u32 cpu_reset_wait_msec;
};
/**
* struct fw_response - FW response to LKD command
* @ram_offset: descriptor offset into the RAM
* @ram_type: RAM type containing the descriptor (SRAM/DRAM)
* @status: command status
*/
struct fw_response {
u32 ram_offset;
u8 ram_type;
u8 status;
};
/**
* struct dynamic_fw_load_mgr - dynamic FW load manager
* @response: FW to LKD response
* @comm_desc: the communication descriptor with FW
* @image_region: region to copy the FW image to
* @fw_image_size: size of FW image to load
* @wait_for_bl_timeout: timeout for waiting for boot loader to respond
* @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
*/
struct dynamic_fw_load_mgr {
struct fw_response response;
struct lkd_fw_comms_desc comm_desc;
struct pci_mem_region *image_region;
size_t fw_image_size;
u32 wait_for_bl_timeout;
bool fw_desc_valid;
};
/**
* struct pre_fw_load_props - needed properties for pre-FW load
* @cpu_boot_status_reg: cpu_boot_status register address
* @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address
* @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address
* @boot_err0_reg: boot_err0 register address
* @boot_err1_reg: boot_err1 register address
* @wait_for_preboot_timeout: timeout to poll for preboot ready
*/
struct pre_fw_load_props {
u32 cpu_boot_status_reg;
u32 sts_boot_dev_sts0_reg;
u32 sts_boot_dev_sts1_reg;
u32 boot_err0_reg;
u32 boot_err1_reg;
u32 wait_for_preboot_timeout;
};
/**
* struct fw_image_props - properties of FW image
* @image_name: name of the image
* @src_off: offset in src FW to copy from
* @copy_size: amount of bytes to copy (0 to copy the whole binary)
*/
struct fw_image_props {
char *image_name;
u32 src_off;
u32 copy_size;
};
/**
* struct fw_load_mgr - manager FW loading process
* @dynamic_loader: specific structure for dynamic load
* @static_loader: specific structure for static load
* @pre_fw_load_props: parameter for pre FW load
* @boot_fit_img: boot fit image properties
* @linux_img: linux image properties
* @cpu_timeout: CPU response timeout in usec
* @boot_fit_timeout: Boot fit load timeout in usec
* @skip_bmc: should BMC be skipped
* @sram_bar_id: SRAM bar ID
* @dram_bar_id: DRAM bar ID
* @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
* component. values are set according to enum hl_fw_types.
*/
struct fw_load_mgr {
union {
struct dynamic_fw_load_mgr dynamic_loader;
struct static_fw_load_mgr static_loader;
};
struct pre_fw_load_props pre_fw_load;
struct fw_image_props boot_fit_img;
struct fw_image_props linux_img;
u32 cpu_timeout;
u32 boot_fit_timeout;
u8 skip_bmc;
u8 sram_bar_id;
u8 dram_bar_id;
u8 fw_comp_loaded;
};
struct hl_cs;
/**
* struct engines_data - asic engines data
* @buf: buffer for engines data in ascii
* @actual_size: actual size of data that was written by the driver to the allocated buffer
* @allocated_buf_size: total size of allocated buffer
*/
struct engines_data {
char *buf;
int actual_size;
u32 allocated_buf_size;
};
/**
* struct hl_asic_funcs - ASIC specific functions that are can be called from
* common code.
* @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
* @early_fini: tears down what was done in early_init.
* @late_init: sets up late driver/hw state (post hw_init) - Optional.
* @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
* @sw_init: sets up driver state, does not configure H/W.
* @sw_fini: tears down driver state, does not configure H/W.
* @hw_init: sets up the H/W state.
* @hw_fini: tears down the H/W state.
* @halt_engines: halt engines, needed for reset sequence. This also disables
* interrupts from the device. Should be called before
* hw_fini and before CS rollback.
* @suspend: handles IP specific H/W or SW changes for suspend.
* @resume: handles IP specific H/W or SW changes for resume.
* @mmap: maps a memory.
* @ring_doorbell: increment PI on a given QMAN.
* @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
* function because the PQs are located in different memory areas
* per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
* writing the PQE must match the destination memory area
* properties.
* @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
* dma_alloc_coherent(). This is ASIC function because
* its implementation is not trivial when the driver
* is loaded in simulation mode (not upstreamed).
* @asic_dma_free_coherent: Free coherent DMA memory by calling
* dma_free_coherent(). This is ASIC function because
* its implementation is not trivial when the driver
* is loaded in simulation mode (not upstreamed).
* @scrub_device_mem: Scrub the entire SRAM and DRAM.
* @scrub_device_dram: Scrub the dram memory of the device.
* @get_int_queue_base: get the internal queue base address.
* @test_queues: run simple test on all queues for sanity check.
* @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
* size of allocation is HL_DMA_POOL_BLK_SIZE.
* @asic_dma_pool_free: free small DMA allocation from pool.
* @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
* @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
* @asic_dma_unmap_single: unmap a single DMA buffer
* @asic_dma_map_single: map a single buffer to a DMA
* @hl_dma_unmap_sgtable: DMA unmap scatter-gather table.
* @cs_parser: parse Command Submission.
* @asic_dma_map_sgtable: DMA map scatter-gather table.
* @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
* @update_eq_ci: update event queue CI.
* @context_switch: called upon ASID context switch.
* @restore_phase_topology: clear all SOBs amd MONs.
* @debugfs_read_dma: debug interface for reading up to 2MB from the device's
* internal memory via DMA engine.
* @add_device_attr: add ASIC specific device attributes.
* @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
* @get_events_stat: retrieve event queue entries histogram.
* @read_pte: read MMU page table entry from DRAM.
* @write_pte: write MMU page table entry to DRAM.
* @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
* (L1 only) or hard (L0 & L1) flush.
* @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
* @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
* @send_heartbeat: send is-alive packet to CPU-CP and verify response.
* @debug_coresight: perform certain actions on Coresight for debugging.
* @is_device_idle: return true if device is idle, false otherwise.
* @compute_reset_late_init: perform certain actions needed after a compute reset
* @hw_queues_lock: acquire H/W queues lock.
* @hw_queues_unlock: release H/W queues lock.
* @get_pci_id: retrieve PCI ID.
* @get_eeprom_data: retrieve EEPROM data from F/W.
* @get_monitor_dump: retrieve monitor registers dump from F/W.
* @send_cpu_message: send message to F/W. If the message is timedout, the
* driver will eventually reset the device. The timeout can
* be determined by the calling function or it can be 0 and
* then the timeout is the default timeout for the specific
* ASIC
* @get_hw_state: retrieve the H/W state
* @pci_bars_map: Map PCI BARs.
* @init_iatu: Initialize the iATU unit inside the PCI controller.
* @rreg: Read a register. Needed for simulator support.
* @wreg: Write a register. Needed for simulator support.
* @halt_coresight: stop the ETF and ETR traces.
* @ctx_init: context dependent initialization.
* @ctx_fini: context dependent cleanup.
* @pre_schedule_cs: Perform pre-CS-scheduling operations.
* @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
* @load_firmware_to_device: load the firmware to the device's memory
* @load_boot_fit_to_device: load boot fit to device's memory
* @get_signal_cb_size: Get signal CB size.
* @get_wait_cb_size: Get wait CB size.
* @gen_signal_cb: Generate a signal CB.
* @gen_wait_cb: Generate a wait CB.
* @reset_sob: Reset a SOB.
* @reset_sob_group: Reset SOB group
* @get_device_time: Get the device time.
* @pb_print_security_errors: print security errors according block and cause
* @collective_wait_init_cs: Generate collective master/slave packets
* and place them in the relevant cs jobs
* @collective_wait_create_jobs: allocate collective wait cs jobs
* @get_dec_base_addr: get the base address of a given decoder.
* @scramble_addr: Routine to scramble the address prior of mapping it
* in the MMU.
* @descramble_addr: Routine to de-scramble the address prior of
* showing it to users.
* @ack_protection_bits_errors: ack and dump all security violations
* @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
* also returns the size of the block if caller supplies
* a valid pointer for it
* @hw_block_mmap: mmap a HW block with a given id.
* @enable_events_from_fw: send interrupt to firmware to notify them the
* driver is ready to receive asynchronous events. This
* function should be called during the first init and
* after every hard-reset of the device
* @ack_mmu_errors: check and ack mmu errors, page fault, access violation.
* @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
* @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
* generic f/w compatible PLL Indexes
* @init_firmware_preload_params: initialize pre FW-load parameters.
* @init_firmware_loader: initialize data for FW loader.
* @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
* @state_dump_init: initialize constants required for state dump
* @get_sob_addr: get SOB base address offset.
* @set_pci_memory_regions: setting properties of PCI memory regions
* @get_stream_master_qid_arr: get pointer to stream masters QID array
* @check_if_razwi_happened: check if there was a razwi due to RR violation.
* @access_dev_mem: access device memory
* @set_dram_bar_base: set the base of the DRAM BAR
* @set_engine_cores: set a config command to engine cores
* @send_device_activity: indication to FW about device availability
* @set_dram_properties: set DRAM related properties.
* @set_binning_masks: set binning/enable masks for all relevant components.
*/
struct hl_asic_funcs {
int (*early_init)(struct hl_device *hdev);
int (*early_fini)(struct hl_device *hdev);
int (*late_init)(struct hl_device *hdev);
void (*late_fini)(struct hl_device *hdev);
int (*sw_init)(struct hl_device *hdev);
int (*sw_fini)(struct hl_device *hdev);
int (*hw_init)(struct hl_device *hdev);
void (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
int (*suspend)(struct hl_device *hdev);
int (*resume)(struct hl_device *hdev);
int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size);
void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
struct hl_bd *bd);
void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle, gfp_t flag);
void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
void *cpu_addr, dma_addr_t dma_handle);
int (*scrub_device_mem)(struct hl_device *hdev);
int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
dma_addr_t *dma_handle, u16 *queue_len);
int (*test_queues)(struct hl_device *hdev);
void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
gfp_t mem_flags, dma_addr_t *dma_handle);
void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
dma_addr_t dma_addr);
void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
size_t size, dma_addr_t *dma_handle);
void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
size_t size, void *vaddr);
void (*asic_dma_unmap_single)(struct hl_device *hdev,
dma_addr_t dma_addr, int len,
enum dma_data_direction dir);
dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev,
void *addr, int len,
enum dma_data_direction dir);
void (*hl_dma_unmap_sgtable)(struct hl_device *hdev,
struct sg_table *sgt,
enum dma_data_direction dir);
int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
enum dma_data_direction dir);
void (*add_end_of_cb_packets)(struct hl_device *hdev,
void *kernel_address, u32 len,
u32 original_len,
u64 cq_addr, u32 cq_val, u32 msix_num,
bool eb);
void (*update_eq_ci)(struct hl_device *hdev, u32 val);
int (*context_switch)(struct hl_device *hdev, u32 asid);
void (*restore_phase_topology)(struct hl_device *hdev);
int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
void *blob_addr);
void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
struct attribute_group *dev_vrm_attr_grp);
void (*handle_eqe)(struct hl_device *hdev,
struct hl_eq_entry *eq_entry);
void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
u32 *size);
u64 (*read_pte)(struct hl_device *hdev, u64 addr);
void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
u32 flags);
int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
u32 flags, u32 asid, u64 va, u64 size);
int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
int (*send_heartbeat)(struct hl_device *hdev);
int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
struct engines_data *e);
int (*compute_reset_late_init)(struct hl_device *hdev);
void (*hw_queues_lock)(struct hl_device *hdev);
void (*hw_queues_unlock)(struct hl_device *hdev);
u32 (*get_pci_id)(struct hl_device *hdev);
int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
int (*get_monitor_dump)(struct hl_device *hdev, void *data);
int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
u16 len, u32 timeout, u64 *result);
int (*pci_bars_map)(struct hl_device *hdev);
int (*init_iatu)(struct hl_device *hdev);
u32 (*rreg)(struct hl_device *hdev, u32 reg);
void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
int (*ctx_init)(struct hl_ctx *ctx);
void (*ctx_fini)(struct hl_ctx *ctx);
int (*pre_schedule_cs)(struct hl_cs *cs);
u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
int (*load_firmware_to_device)(struct hl_device *hdev);
int (*load_boot_fit_to_device)(struct hl_device *hdev);
u32 (*get_signal_cb_size)(struct hl_device *hdev);
u32 (*get_wait_cb_size)(struct hl_device *hdev);
u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
u32 size, bool eb);
u32 (*gen_wait_cb)(struct hl_device *hdev,
struct hl_gen_wait_properties *prop);
void (*reset_sob)(struct hl_device *hdev, void *data);
void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
u64 (*get_device_time)(struct hl_device *hdev);
void (*pb_print_security_errors)(struct hl_device *hdev,
u32 block_addr, u32 cause, u32 offended_addr);
int (*collective_wait_init_cs)(struct hl_cs *cs);
int (*collective_wait_create_jobs)(struct hl_device *hdev,
struct hl_ctx *ctx, struct hl_cs *cs,
u32 wait_queue_id, u32 collective_engine_id,
u32 encaps_signal_offset);
u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id);
u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
void (*ack_protection_bits_errors)(struct hl_device *hdev);
int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
u32 *block_size, u32 *block_id);
int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
u32 block_id, u32 block_size);
void (*enable_events_from_fw)(struct hl_device *hdev);
int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask);
void (*get_msi_info)(__le32 *table);
int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
void (*init_firmware_preload_params)(struct hl_device *hdev);
void (*init_firmware_loader)(struct hl_device *hdev);
void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
void (*state_dump_init)(struct hl_device *hdev);
u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
void (*set_pci_memory_regions)(struct hl_device *hdev);
u32* (*get_stream_master_qid_arr)(void);
void (*check_if_razwi_happened)(struct hl_device *hdev);
int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
u32 page_size, u32 *real_page_size, bool is_dram_addr);
int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type,
u64 addr, u64 *val, enum debugfs_access_type acc_type);
u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids,
u32 num_cores, u32 core_command);
int (*send_device_activity)(struct hl_device *hdev, bool open);
int (*set_dram_properties)(struct hl_device *hdev);
int (*set_binning_masks)(struct hl_device *hdev);
};
/*
* CONTEXTS
*/
#define HL_KERNEL_ASID_ID 0
/**
* enum hl_va_range_type - virtual address range type.
* @HL_VA_RANGE_TYPE_HOST: range type of host pages
* @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
* @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
*/
enum hl_va_range_type {
HL_VA_RANGE_TYPE_HOST,
HL_VA_RANGE_TYPE_HOST_HUGE,
HL_VA_RANGE_TYPE_DRAM,
HL_VA_RANGE_TYPE_MAX
};
/**
* struct hl_va_range - virtual addresses range.
* @lock: protects the virtual addresses list.
* @list: list of virtual addresses blocks available for mappings.
* @start_addr: range start address.
* @end_addr: range end address.
* @page_size: page size of this va range.
*/
struct hl_va_range {
struct mutex lock;
struct list_head list;
u64 start_addr;
u64 end_addr;
u32 page_size;
};
/**
* struct hl_cs_counters_atomic - command submission counters
* @out_of_mem_drop_cnt: dropped due to memory allocation issue
* @parsing_drop_cnt: dropped due to error in packet parsing
* @queue_full_drop_cnt: dropped due to queue full
* @device_in_reset_drop_cnt: dropped due to device in reset
* @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
* @validation_drop_cnt: dropped due to error in validation
*/
struct hl_cs_counters_atomic {
atomic64_t out_of_mem_drop_cnt;
atomic64_t parsing_drop_cnt;
atomic64_t queue_full_drop_cnt;
atomic64_t device_in_reset_drop_cnt;
atomic64_t max_cs_in_flight_drop_cnt;
atomic64_t validation_drop_cnt;
};
/**
* struct hl_dmabuf_priv - a dma-buf private object.
* @dmabuf: pointer to dma-buf object.
* @ctx: pointer to the dma-buf owner's context.
* @phys_pg_pack: pointer to physical page pack if the dma-buf was exported
* where virtual memory is supported.
* @memhash_hnode: pointer to the memhash node. this object holds the export count.
* @device_address: physical address of the device's memory. Relevant only
* if phys_pg_pack is NULL (dma-buf was exported from address).
* The total size can be taken from the dmabuf object.
*/
struct hl_dmabuf_priv {
struct dma_buf *dmabuf;
struct hl_ctx *ctx;
struct hl_vm_phys_pg_pack *phys_pg_pack;
struct hl_vm_hash_node *memhash_hnode;
uint64_t device_address;
};
#define HL_CS_OUTCOME_HISTORY_LEN 256
/**
* struct hl_cs_outcome - represents a single completed CS outcome
* @list_link: link to either container's used list or free list
* @map_link: list to the container hash map
* @ts: completion ts
* @seq: the original cs sequence
* @error: error code cs completed with, if any
*/
struct hl_cs_outcome {
struct list_head list_link;
struct hlist_node map_link;
ktime_t ts;
u64 seq;
int error;
};
/**
* struct hl_cs_outcome_store - represents a limited store of completed CS outcomes
* @outcome_map: index of completed CS searchable by sequence number
* @used_list: list of outcome objects currently in use
* @free_list: list of outcome objects currently not in use
* @nodes_pool: a static pool of pre-allocated outcome objects
* @db_lock: any operation on the store must take this lock
*/
struct hl_cs_outcome_store {
DECLARE_HASHTABLE(outcome_map, 8);
struct list_head used_list;
struct list_head free_list;
struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN];
spinlock_t db_lock;
};
/**
* struct hl_ctx - user/kernel context.
* @mem_hash: holds mapping from virtual address to virtual memory area
* descriptor (hl_vm_phys_pg_list or hl_userptr).
* @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
* @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from
* MMU-hop-page physical address to its host-resident
* pgt_info structure.
* @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
* @hdev: pointer to the device structure.
* @refcount: reference counter for the context. Context is released only when
* this hits 0l. It is incremented on CS and CS_WAIT.
* @cs_pending: array of hl fence objects representing pending CS.
* @outcome_store: storage data structure used to remember outcomes of completed
* command submissions for a long time after CS id wraparound.
* @va_range: holds available virtual addresses for host and dram mappings.
* @mem_hash_lock: protects the mem_hash.
* @hw_block_list_lock: protects the HW block memory list.
* @debugfs_list: node in debugfs list of contexts.
* @hw_block_mem_list: list of HW block virtual mapped addresses.
* @cs_counters: context command submission counters.
* @cb_va_pool: device VA pool for command buffers which are mapped to the
* device's MMU.
* @sig_mgr: encaps signals handle manager.
* @cb_va_pool_base: the base address for the device VA pool
* @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
* to user so user could inquire about CS. It is used as
* index to cs_pending array.
* @dram_default_hops: array that holds all hops addresses needed for default
* DRAM mapping.
* @cs_lock: spinlock to protect cs_sequence.
* @dram_phys_mem: amount of used physical DRAM memory by this context.
* @thread_ctx_switch_token: token to prevent multiple threads of the same
* context from running the context switch phase.
* Only a single thread should run it.
* @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
* the context switch phase from moving to their
* execution phase before the context switch phase
* has finished.
* @asid: context's unique address space ID in the device's MMU.
* @handle: context's opaque handle for user
*/
struct hl_ctx {
DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS);
struct hl_fpriv *hpriv;
struct hl_device *hdev;
struct kref refcount;
struct hl_fence **cs_pending;
struct hl_cs_outcome_store outcome_store;
struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX];
struct mutex mem_hash_lock;
struct mutex hw_block_list_lock;
struct list_head debugfs_list;
struct list_head hw_block_mem_list;
struct hl_cs_counters_atomic cs_counters;
struct gen_pool *cb_va_pool;
struct hl_encaps_signals_mgr sig_mgr;
u64 cb_va_pool_base;
u64 cs_sequence;
u64 *dram_default_hops;
spinlock_t cs_lock;
atomic64_t dram_phys_mem;
atomic_t thread_ctx_switch_token;
u32 thread_ctx_switch_wait_token;
u32 asid;
u32 handle;
};
/**
* struct hl_ctx_mgr - for handling multiple contexts.
* @lock: protects ctx_handles.
* @handles: idr to hold all ctx handles.
*/
struct hl_ctx_mgr {
struct mutex lock;
struct idr handles;
};
/*
* COMMAND SUBMISSIONS
*/
/**
* struct hl_userptr - memory mapping chunk information
* @vm_type: type of the VM.
* @job_node: linked-list node for hanging the object on the Job's list.
* @pages: pointer to struct page array
* @npages: size of @pages array
* @sgt: pointer to the scatter-gather table that holds the pages.
* @dir: for DMA unmapping, the direction must be supplied, so save it.
* @debugfs_list: node in debugfs list of command submissions.
* @pid: the pid of the user process owning the memory
* @addr: user-space virtual address of the start of the memory area.
* @size: size of the memory area to pin & map.
* @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
*/
struct hl_userptr {
enum vm_type vm_type; /* must be first */
struct list_head job_node;
struct page **pages;
unsigned int npages;
struct sg_table *sgt;
enum dma_data_direction dir;
struct list_head debugfs_list;
pid_t pid;
u64 addr;
u64 size;
u8 dma_mapped;
};
/**
* struct hl_cs - command submission.
* @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
* @ctx: the context this CS belongs to.
* @job_list: list of the CS's jobs in the various queues.
* @job_lock: spinlock for the CS's jobs list. Needed for free_job.
* @refcount: reference counter for usage of the CS.
* @fence: pointer to the fence object of this CS.
* @signal_fence: pointer to the fence object of the signal CS (used by wait
* CS only).
* @finish_work: workqueue object to run when CS is completed by H/W.
* @work_tdr: delayed work node for TDR.
* @mirror_node : node in device mirror list of command submissions.
* @staged_cs_node: node in the staged cs list.
* @debugfs_list: node in debugfs list of command submissions.
* @encaps_sig_hdl: holds the encaps signals handle.
* @sequence: the sequence number of this CS.
* @staged_sequence: the sequence of the staged submission this CS is part of,
* relevant only if staged_cs is set.
* @timeout_jiffies: cs timeout in jiffies.
* @submission_time_jiffies: submission time of the cs
* @type: CS_TYPE_*.
* @jobs_cnt: counter of submitted jobs on all queues.
* @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
* @completion_timestamp: timestamp of the last completed cs job.
* @sob_addr_offset: sob offset from the configuration base address.
* @initial_sob_count: count of completed signals in SOB before current submission of signal or
* cs with encaps signals.
* @submitted: true if CS was submitted to H/W.
* @completed: true if CS was completed by device.
* @timedout : true if CS was timedout.
* @tdr_active: true if TDR was activated for this CS (to prevent
* double TDR activation).
* @aborted: true if CS was aborted due to some device error.
* @timestamp: true if a timestamp must be captured upon completion.
* @staged_last: true if this is the last staged CS and needs completion.
* @staged_first: true if this is the first staged CS and we need to receive
* timeout for this CS.
* @staged_cs: true if this CS is part of a staged submission.
* @skip_reset_on_timeout: true if we shall not reset the device in case
* timeout occurs (debug scenario).
* @encaps_signals: true if this CS has encaps reserved signals.
*/
struct hl_cs {
u16 *jobs_in_queue_cnt;
struct hl_ctx *ctx;
struct list_head job_list;
spinlock_t job_lock;
struct kref refcount;
struct hl_fence *fence;
struct hl_fence *signal_fence;
struct work_struct finish_work;
struct delayed_work work_tdr;
struct list_head mirror_node;
struct list_head staged_cs_node;
struct list_head debugfs_list;
struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
ktime_t completion_timestamp;
u64 sequence;
u64 staged_sequence;
u64 timeout_jiffies;
u64 submission_time_jiffies;
enum hl_cs_type type;
u32 jobs_cnt;
u32 encaps_sig_hdl_id;
u32 sob_addr_offset;
u16 initial_sob_count;
u8 submitted;
u8 completed;
u8 timedout;
u8 tdr_active;
u8 aborted;
u8 timestamp;
u8 staged_last;
u8 staged_first;
u8 staged_cs;
u8 skip_reset_on_timeout;
u8 encaps_signals;
};
/**
* struct hl_cs_job - command submission job.
* @cs_node: the node to hang on the CS jobs list.
* @cs: the CS this job belongs to.
* @user_cb: the CB we got from the user.
* @patched_cb: in case of patching, this is internal CB which is submitted on
* the queue instead of the CB we got from the IOCTL.
* @finish_work: workqueue object to run when job is completed.
* @userptr_list: linked-list of userptr mappings that belong to this job and
* wait for completion.
* @debugfs_list: node in debugfs list of command submission jobs.
* @refcount: reference counter for usage of the CS job.
* @queue_type: the type of the H/W queue this job is submitted to.
* @timestamp: timestamp upon job completion
* @id: the id of this job inside a CS.
* @hw_queue_id: the id of the H/W queue this job is submitted to.
* @user_cb_size: the actual size of the CB we got from the user.
* @job_cb_size: the actual size of the CB that we put on the queue.
* @encaps_sig_wait_offset: encapsulated signals offset, which allow user
* to wait on part of the reserved signals.
* @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
* handle to a kernel-allocated CB object, false
* otherwise (SRAM/DRAM/host address).
* @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
* info is needed later, when adding the 2xMSG_PROT at the
* end of the JOB, to know which barriers to put in the
* MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
* have streams so the engine can't be busy by another
* stream.
*/
struct hl_cs_job {
struct list_head cs_node;
struct hl_cs *cs;
struct hl_cb *user_cb;
struct hl_cb *patched_cb;
struct work_struct finish_work;
struct list_head userptr_list;
struct list_head debugfs_list;
struct kref refcount;
enum hl_queue_type queue_type;
ktime_t timestamp;
u32 id;
u32 hw_queue_id;
u32 user_cb_size;
u32 job_cb_size;
u32 encaps_sig_wait_offset;
u8 is_kernel_allocated_cb;
u8 contains_dma_pkt;
};
/**
* struct hl_cs_parser - command submission parser properties.
* @user_cb: the CB we got from the user.
* @patched_cb: in case of patching, this is internal CB which is submitted on
* the queue instead of the CB we got from the IOCTL.
* @job_userptr_list: linked-list of userptr mappings that belong to the related
* job and wait for completion.
* @cs_sequence: the sequence number of the related CS.
* @queue_type: the type of the H/W queue this job is submitted to.
* @ctx_id: the ID of the context the related CS belongs to.
* @hw_queue_id: the id of the H/W queue this job is submitted to.
* @user_cb_size: the actual size of the CB we got from the user.
* @patched_cb_size: the size of the CB after parsing.
* @job_id: the id of the related job inside the related CS.
* @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
* handle to a kernel-allocated CB object, false
* otherwise (SRAM/DRAM/host address).
* @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
* info is needed later, when adding the 2xMSG_PROT at the
* end of the JOB, to know which barriers to put in the
* MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
* have streams so the engine can't be busy by another
* stream.
* @completion: true if we need completion for this CS.
*/
struct hl_cs_parser {
struct hl_cb *user_cb;
struct hl_cb *patched_cb;
struct list_head *job_userptr_list;
u64 cs_sequence;
enum hl_queue_type queue_type;
u32 ctx_id;
u32 hw_queue_id;
u32 user_cb_size;
u32 patched_cb_size;
u8 job_id;
u8 is_kernel_allocated_cb;
u8 contains_dma_pkt;
u8 completion;
};
/*
* MEMORY STRUCTURE
*/
/**
* struct hl_vm_hash_node - hash element from virtual address to virtual
* memory area descriptor (hl_vm_phys_pg_list or
* hl_userptr).
* @node: node to hang on the hash table in context object.
* @vaddr: key virtual address.
* @handle: memory handle for device memory allocation.
* @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
* @export_cnt: number of exports from within the VA block.
*/
struct hl_vm_hash_node {
struct hlist_node node;
u64 vaddr;
u64 handle;
void *ptr;
int export_cnt;
};
/**
* struct hl_vm_hw_block_list_node - list element from user virtual address to
* HW block id.
* @node: node to hang on the list in context object.
* @ctx: the context this node belongs to.
* @vaddr: virtual address of the HW block.
* @block_size: size of the block.
* @mapped_size: size of the block which is mapped. May change if partial un-mappings are done.
* @id: HW block id (handle).
*/
struct hl_vm_hw_block_list_node {
struct list_head node;
struct hl_ctx *ctx;
unsigned long vaddr;
u32 block_size;
u32 mapped_size;
u32 id;
};
/**
* struct hl_vm_phys_pg_pack - physical page pack.
* @vm_type: describes the type of the virtual area descriptor.
* @pages: the physical page array.
* @npages: num physical pages in the pack.
* @total_size: total size of all the pages in this list.
* @exported_size: buffer exported size.
* @node: used to attach to deletion list that is used when all the allocations are cleared
* at the teardown of the context.
* @mapping_cnt: number of shared mappings.
* @asid: the context related to this list.
* @page_size: size of each page in the pack.
* @flags: HL_MEM_* flags related to this list.
* @handle: the provided handle related to this list.
* @offset: offset from the first page.
* @contiguous: is contiguous physical memory.
* @created_from_userptr: is product of host virtual address.
*/
struct hl_vm_phys_pg_pack {
enum vm_type vm_type; /* must be first */
u64 *pages;
u64 npages;
u64 total_size;
u64 exported_size;
struct list_head node;
atomic_t mapping_cnt;
u32 asid;
u32 page_size;
u32 flags;
u32 handle;
u32 offset;
u8 contiguous;
u8 created_from_userptr;
};
/**
* struct hl_vm_va_block - virtual range block information.
* @node: node to hang on the virtual range list in context object.
* @start: virtual range start address.
* @end: virtual range end address.
* @size: virtual range size.
*/
struct hl_vm_va_block {
struct list_head node;
u64 start;
u64 end;
u64 size;
};
/**
* struct hl_vm - virtual memory manager for MMU.
* @dram_pg_pool: pool for DRAM physical pages of 2MB.
* @dram_pg_pool_refcount: reference counter for the pool usage.
* @idr_lock: protects the phys_pg_list_handles.
* @phys_pg_pack_handles: idr to hold all device allocations handles.
* @init_done: whether initialization was done. We need this because VM
* initialization might be skipped during device initialization.
*/
struct hl_vm {
struct gen_pool *dram_pg_pool;
struct kref dram_pg_pool_refcount;
spinlock_t idr_lock;
struct idr phys_pg_pack_handles;
u8 init_done;
};
/*
* DEBUG, PROFILING STRUCTURE
*/
/**
* struct hl_debug_params - Coresight debug parameters.
* @input: pointer to component specific input parameters.
* @output: pointer to component specific output parameters.
* @output_size: size of output buffer.
* @reg_idx: relevant register ID.
* @op: component operation to execute.
* @enable: true if to enable component debugging, false otherwise.
*/
struct hl_debug_params {
void *input;
void *output;
u32 output_size;
u32 reg_idx;
u32 op;
bool enable;
};
/**
* struct hl_notifier_event - holds the notifier data structure
* @eventfd: the event file descriptor to raise the notifications
* @lock: mutex lock to protect the notifier data flows
* @events_mask: indicates the bitmap events
*/
struct hl_notifier_event {
struct eventfd_ctx *eventfd;
struct mutex lock;
u64 events_mask;
};
/*
* FILE PRIVATE STRUCTURE
*/
/**
* struct hl_fpriv - process information stored in FD private data.
* @hdev: habanalabs device structure.
* @filp: pointer to the given file structure.
* @taskpid: current process ID.
* @ctx: current executing context. TODO: remove for multiple ctx per process
* @ctx_mgr: context manager to handle multiple context for this FD.
* @mem_mgr: manager descriptor for memory exportable via mmap
* @notifier_event: notifier eventfd towards user process
* @debugfs_list: list of relevant ASIC debugfs.
* @dev_node: node in the device list of file private data
* @refcount: number of related contexts.
* @restore_phase_mutex: lock for context switch and restore phase.
* @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple
* ctx per process.
*/
struct hl_fpriv {
struct hl_device *hdev;
struct file *filp;
struct pid *taskpid;
struct hl_ctx *ctx;
struct hl_ctx_mgr ctx_mgr;
struct hl_mem_mgr mem_mgr;
struct hl_notifier_event notifier_event;
struct list_head debugfs_list;
struct list_head dev_node;
struct kref refcount;
struct mutex restore_phase_mutex;
struct mutex ctx_lock;
};
/*
* DebugFS
*/
/**
* struct hl_info_list - debugfs file ops.
* @name: file name.
* @show: function to output information.
* @write: function to write to the file.
*/
struct hl_info_list {
const char *name;
int (*show)(struct seq_file *s, void *data);
ssize_t (*write)(struct file *file, const char __user *buf,
size_t count, loff_t *f_pos);
};
/**
* struct hl_debugfs_entry - debugfs dentry wrapper.
* @info_ent: dentry related ops.
* @dev_entry: ASIC specific debugfs manager.
*/
struct hl_debugfs_entry {
const struct hl_info_list *info_ent;
struct hl_dbg_device_entry *dev_entry;
};
/**
* struct hl_dbg_device_entry - ASIC specific debugfs manager.
* @root: root dentry.
* @hdev: habanalabs device structure.
* @entry_arr: array of available hl_debugfs_entry.
* @file_list: list of available debugfs files.
* @file_mutex: protects file_list.
* @cb_list: list of available CBs.
* @cb_spinlock: protects cb_list.
* @cs_list: list of available CSs.
* @cs_spinlock: protects cs_list.
* @cs_job_list: list of available CB jobs.
* @cs_job_spinlock: protects cs_job_list.
* @userptr_list: list of available userptrs (virtual memory chunk descriptor).
* @userptr_spinlock: protects userptr_list.
* @ctx_mem_hash_list: list of available contexts with MMU mappings.
* @ctx_mem_hash_spinlock: protects cb_list.
* @data_dma_blob_desc: data DMA descriptor of blob.
* @mon_dump_blob_desc: monitor dump descriptor of blob.
* @state_dump: data of the system states in case of a bad cs.
* @state_dump_sem: protects state_dump.
* @addr: next address to read/write from/to in read/write32.
* @mmu_addr: next virtual address to translate to physical address in mmu_show.
* @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error.
* @userptr_lookup: the target user ptr to look up for on demand.
* @mmu_asid: ASID to use while translating in mmu_show.
* @state_dump_head: index of the latest state dump
* @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
* @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
* @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
* @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
*/
struct hl_dbg_device_entry {
struct dentry *root;
struct hl_device *hdev;
struct hl_debugfs_entry *entry_arr;
struct list_head file_list;
struct mutex file_mutex;
struct list_head cb_list;
spinlock_t cb_spinlock;
struct list_head cs_list;
spinlock_t cs_spinlock;
struct list_head cs_job_list;
spinlock_t cs_job_spinlock;
struct list_head userptr_list;
spinlock_t userptr_spinlock;
struct list_head ctx_mem_hash_list;
spinlock_t ctx_mem_hash_spinlock;
struct debugfs_blob_wrapper data_dma_blob_desc;
struct debugfs_blob_wrapper mon_dump_blob_desc;
char *state_dump[HL_STATE_DUMP_HIST_LEN];
struct rw_semaphore state_dump_sem;
u64 addr;
u64 mmu_addr;
u64 mmu_cap_mask;
u64 userptr_lookup;
u32 mmu_asid;
u32 state_dump_head;
u8 i2c_bus;
u8 i2c_addr;
u8 i2c_reg;
u8 i2c_len;
};
/**
* struct hl_hw_obj_name_entry - single hw object name, member of
* hl_state_dump_specs
* @node: link to the containing hash table
* @name: hw object name
* @id: object identifier
*/
struct hl_hw_obj_name_entry {
struct hlist_node node;
const char *name;
u32 id;
};
enum hl_state_dump_specs_props {
SP_SYNC_OBJ_BASE_ADDR,
SP_NEXT_SYNC_OBJ_ADDR,
SP_SYNC_OBJ_AMOUNT,
SP_MON_OBJ_WR_ADDR_LOW,
SP_MON_OBJ_WR_ADDR_HIGH,
SP_MON_OBJ_WR_DATA,
SP_MON_OBJ_ARM_DATA,
SP_MON_OBJ_STATUS,
SP_MONITORS_AMOUNT,
SP_TPC0_CMDQ,
SP_TPC0_CFG_SO,
SP_NEXT_TPC,
SP_MME_CMDQ,
SP_MME_CFG_SO,
SP_NEXT_MME,
SP_DMA_CMDQ,
SP_DMA_CFG_SO,
SP_DMA_QUEUES_OFFSET,
SP_NUM_OF_MME_ENGINES,
SP_SUB_MME_ENG_NUM,
SP_NUM_OF_DMA_ENGINES,
SP_NUM_OF_TPC_ENGINES,
SP_ENGINE_NUM_OF_QUEUES,
SP_ENGINE_NUM_OF_STREAMS,
SP_ENGINE_NUM_OF_FENCES,
SP_FENCE0_CNT_OFFSET,
SP_FENCE0_RDATA_OFFSET,
SP_CP_STS_OFFSET,
SP_NUM_CORES,
SP_MAX
};
enum hl_sync_engine_type {
ENGINE_TPC,
ENGINE_DMA,
ENGINE_MME,
};
/**
* struct hl_mon_state_dump - represents a state dump of a single monitor
* @id: monitor id
* @wr_addr_low: address monitor will write to, low bits
* @wr_addr_high: address monitor will write to, high bits
* @wr_data: data monitor will write
* @arm_data: register value containing monitor configuration
* @status: monitor status
*/
struct hl_mon_state_dump {
u32 id;
u32 wr_addr_low;
u32 wr_addr_high;
u32 wr_data;
u32 arm_data;
u32 status;
};
/**
* struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
* @engine_type: type of the engine
* @engine_id: id of the engine
* @sync_id: id of the sync object
*/
struct hl_sync_to_engine_map_entry {
struct hlist_node node;
enum hl_sync_engine_type engine_type;
u32 engine_id;
u32 sync_id;
};
/**
* struct hl_sync_to_engine_map - maps sync object id to associated engine id
* @tb: hash table containing the mapping, each element is of type
* struct hl_sync_to_engine_map_entry
*/
struct hl_sync_to_engine_map {
DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
};
/**
* struct hl_state_dump_specs_funcs - virtual functions used by the state dump
* @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
* @print_single_monitor: format monitor data as string
* @monitor_valid: return true if given monitor dump is valid
* @print_fences_single_engine: format fences data as string
*/
struct hl_state_dump_specs_funcs {
int (*gen_sync_to_engine_map)(struct hl_device *hdev,
struct hl_sync_to_engine_map *map);
int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
struct hl_device *hdev,
struct hl_mon_state_dump *mon);
int (*monitor_valid)(struct hl_mon_state_dump *mon);
int (*print_fences_single_engine)(struct hl_device *hdev,
u64 base_offset,
u64 status_base_offset,
enum hl_sync_engine_type engine_type,
u32 engine_id, char **buf,
size_t *size, size_t *offset);
};
/**
* struct hl_state_dump_specs - defines ASIC known hw objects names
* @so_id_to_str_tb: sync objects names index table
* @monitor_id_to_str_tb: monitors names index table
* @funcs: virtual functions used for state dump
* @sync_namager_names: readable names for sync manager if available (ex: N_E)
* @props: pointer to a per asic const props array required for state dump
*/
struct hl_state_dump_specs {
DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
struct hl_state_dump_specs_funcs funcs;
const char * const *sync_namager_names;
s64 *props;
};
/*
* DEVICES
*/
#define HL_STR_MAX 32
#define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
/* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
* x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
*/
#define HL_MAX_MINORS 256
/*
* Registers read & write functions.
*/
u32 hl_rreg(struct hl_device *hdev, u32 reg);
void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
#define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
#define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
#define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \
hdev->asic_funcs->rreg(hdev, (reg)))
#define WREG32_P(reg, val, mask) \
do { \
u32 tmp_ = RREG32(reg); \
tmp_ &= (mask); \
tmp_ |= ((val) & ~(mask)); \
WREG32(reg, tmp_); \
} while (0)
#define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
#define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
#define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask))
#define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask)
#define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
#define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
#define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
#define WREG32_FIELD(reg, offset, field, val) \
WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
~REG_FIELD_MASK(reg, field)) | \
(val) << REG_FIELD_SHIFT(reg, field))
/* Timeout should be longer when working with simulator but cap the
* increased timeout to some maximum
*/
#define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \
({ \
ktime_t __timeout; \
u32 __elbi_read; \
int __rc = 0; \
if (hdev->pdev) \
__timeout = ktime_add_us(ktime_get(), timeout_us); \
else \
__timeout = ktime_add_us(ktime_get(),\
min((u64)(timeout_us * 10), \
(u64) HL_SIM_MAX_TIMEOUT_US)); \
might_sleep_if(sleep_us); \
for (;;) { \
if (elbi) { \
__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
if (__rc) \
break; \
(val) = __elbi_read; \
} else {\
(val) = RREG32(lower_32_bits(addr)); \
} \
if (cond) \
break; \
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
if (elbi) { \
__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
if (__rc) \
break; \
(val) = __elbi_read; \
} else {\
(val) = RREG32(lower_32_bits(addr)); \
} \
break; \
} \
if (sleep_us) \
usleep_range((sleep_us >> 2) + 1, sleep_us); \
} \
__rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \
})
#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false)
#define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \
hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true)
/*
* poll array of register addresses.
* condition is satisfied if all registers values match the expected value.
* once some register in the array satisfies the condition it will not be polled again,
* this is done both for efficiency and due to some registers are "clear on read".
* TODO: use read from PCI bar in other places in the code (SW-91406)
*/
#define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
timeout_us, elbi) \
({ \
ktime_t __timeout; \
u64 __elem_bitmask; \
u32 __read_val; \
u8 __arr_idx; \
int __rc = 0; \
\
if (hdev->pdev) \
__timeout = ktime_add_us(ktime_get(), timeout_us); \
else \
__timeout = ktime_add_us(ktime_get(),\
min(((u64)timeout_us * 10), \
(u64) HL_SIM_MAX_TIMEOUT_US)); \
\
might_sleep_if(sleep_us); \
if (arr_size >= 64) \
__rc = -EINVAL; \
else \
__elem_bitmask = BIT_ULL(arr_size) - 1; \
for (;;) { \
if (__rc) \
break; \
for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \
if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \
continue; \
if (elbi) { \
__rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \
if (__rc) \
break; \
} else { \
__read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \
} \
if (__read_val == (expected_val)) \
__elem_bitmask &= ~BIT_ULL(__arr_idx); \
} \
if (__rc || (__elem_bitmask == 0)) \
break; \
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \
break; \
if (sleep_us) \
usleep_range((sleep_us >> 2) + 1, sleep_us); \
} \
__rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \
})
#define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \
timeout_us) \
hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
timeout_us, false)
#define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \
timeout_us) \
hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
timeout_us, true)
/*
* address in this macro points always to a memory location in the
* host's (server's) memory. That location is updated asynchronously
* either by the direct access of the device or by another core.
*
* To work both in LE and BE architectures, we need to distinguish between the
* two states (device or another core updates the memory location). Therefore,
* if mem_written_by_device is true, the host memory being polled will be
* updated directly by the device. If false, the host memory being polled will
* be updated by host CPU. Required so host knows whether or not the memory
* might need to be byte-swapped before returning value to caller.
*/
#define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
mem_written_by_device) \
({ \
ktime_t __timeout; \
if (hdev->pdev) \
__timeout = ktime_add_us(ktime_get(), timeout_us); \
else \
__timeout = ktime_add_us(ktime_get(),\
min((u64)(timeout_us * 100), \
(u64) HL_SIM_MAX_TIMEOUT_US)); \
might_sleep_if(sleep_us); \
for (;;) { \
/* Verify we read updates done by other cores or by device */ \
mb(); \
(val) = *((u32 *)(addr)); \
if (mem_written_by_device) \
(val) = le32_to_cpu(*(__le32 *) &(val)); \
if (cond) \
break; \
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
(val) = *((u32 *)(addr)); \
if (mem_written_by_device) \
(val) = le32_to_cpu(*(__le32 *) &(val)); \
break; \
} \
if (sleep_us) \
usleep_range((sleep_us >> 2) + 1, sleep_us); \
} \
(cond) ? 0 : -ETIMEDOUT; \
})
#define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \
({ \
struct user_mapped_block *p = blk; \
\
p->address = base; \
p->size = sz; \
})
#define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \
({ \
usr_intr.hdev = hdev; \
usr_intr.interrupt_id = intr_id; \
usr_intr.type = intr_type; \
INIT_LIST_HEAD(&usr_intr.wait_list_head); \
spin_lock_init(&usr_intr.wait_list_lock); \
})
struct hwmon_chip_info;
/**
* struct hl_device_reset_work - reset work wrapper.
* @reset_work: reset work to be done.
* @hdev: habanalabs device structure.
* @flags: reset flags.
*/
struct hl_device_reset_work {
struct delayed_work reset_work;
struct hl_device *hdev;
u32 flags;
};
/**
* struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
* page-table internal information.
* @mmu_pgt_pool: pool of page tables used by a host-resident MMU for
* allocating hops.
* @mmu_asid_hop0: per-ASID array of host-resident hop0 tables.
*/
struct hl_mmu_hr_priv {
struct gen_pool *mmu_pgt_pool;
struct pgt_info *mmu_asid_hop0;
};
/**
* struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
* page-table internal information.
* @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
* @mmu_shadow_hop0: shadow array of hop0 tables.
*/
struct hl_mmu_dr_priv {
struct gen_pool *mmu_pgt_pool;
void *mmu_shadow_hop0;
};
/**
* struct hl_mmu_priv - used for holding per-device mmu internal information.
* @dr: information on the device-resident MMU, when exists.
* @hr: information on the host-resident MMU, when exists.
*/
struct hl_mmu_priv {
struct hl_mmu_dr_priv dr;
struct hl_mmu_hr_priv hr;
};
/**
* struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
* that was created in order to translate a virtual address to a
* physical one.
* @hop_addr: The address of the hop.
* @hop_pte_addr: The address of the hop entry.
* @hop_pte_val: The value in the hop entry.
*/
struct hl_mmu_per_hop_info {
u64 hop_addr;
u64 hop_pte_addr;
u64 hop_pte_val;
};
/**
* struct hl_mmu_hop_info - A structure describing the TLB hops and their
* hop-entries that were created in order to translate a virtual address to a
* physical one.
* @scrambled_vaddr: The value of the virtual address after scrambling. This
* address replaces the original virtual-address when mapped
* in the MMU tables.
* @unscrambled_paddr: The un-scrambled physical address.
* @hop_info: Array holding the per-hop information used for the translation.
* @used_hops: The number of hops used for the translation.
* @range_type: virtual address range type.
*/
struct hl_mmu_hop_info {
u64 scrambled_vaddr;
u64 unscrambled_paddr;
struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS];
u32 used_hops;
enum hl_va_range_type range_type;
};
/**
* struct hl_hr_mmu_funcs - Device related host resident MMU functions.
* @get_hop0_pgt_info: get page table info structure for HOP0.
* @get_pgt_info: get page table info structure for HOP other than HOP0.
* @add_pgt_info: add page table info structure to hash.
* @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping.
*/
struct hl_hr_mmu_funcs {
struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx);
struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr);
void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr);
int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop,
struct hl_mmu_hop_info *hops,
u64 virt_addr, bool *is_huge);
};
/**
* struct hl_mmu_funcs - Device related MMU functions.
* @init: initialize the MMU module.
* @fini: release the MMU module.
* @ctx_init: Initialize a context for using the MMU module.
* @ctx_fini: disable a ctx from using the mmu module.
* @map: maps a virtual address to physical address for a context.
* @unmap: unmap a virtual address of a context.
* @flush: flush all writes from all cores to reach device MMU.
* @swap_out: marks all mapping of the given context as swapped out.
* @swap_in: marks all mapping of the given context as swapped in.
* @get_tlb_info: returns the list of hops and hop-entries used that were
* created in order to translate the giver virtual address to a
* physical one.
* @hr_funcs: functions specific to host resident MMU.
*/
struct hl_mmu_funcs {
int (*init)(struct hl_device *hdev);
void (*fini)(struct hl_device *hdev);
int (*ctx_init)(struct hl_ctx *ctx);
void (*ctx_fini)(struct hl_ctx *ctx);
int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
bool is_dram_addr);
int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr);
void (*flush)(struct hl_ctx *ctx);
void (*swap_out)(struct hl_ctx *ctx);
void (*swap_in)(struct hl_ctx *ctx);
int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops);
struct hl_hr_mmu_funcs hr_funcs;
};
/**
* struct hl_prefetch_work - prefetch work structure handler
* @prefetch_work: actual work struct.
* @ctx: compute context.
* @va: virtual address to pre-fetch.
* @size: pre-fetch size.
* @flags: operation flags.
* @asid: ASID for maintenance operation.
*/
struct hl_prefetch_work {
struct work_struct prefetch_work;
struct hl_ctx *ctx;
u64 va;
u64 size;
u32 flags;
u32 asid;
};
/*
* number of user contexts allowed to call wait_for_multi_cs ioctl in
* parallel
*/
#define MULTI_CS_MAX_USER_CTX 2
/**
* struct multi_cs_completion - multi CS wait completion.
* @completion: completion of any of the CS in the list
* @lock: spinlock for the completion structure
* @timestamp: timestamp for the multi-CS completion
* @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
* is waiting
* @used: 1 if in use, otherwise 0
*/
struct multi_cs_completion {
struct completion completion;
spinlock_t lock;
s64 timestamp;
u32 stream_master_qid_map;
u8 used;
};
/**
* struct multi_cs_data - internal data for multi CS call
* @ctx: pointer to the context structure
* @fence_arr: array of fences of all CSs
* @seq_arr: array of CS sequence numbers
* @timeout_jiffies: timeout in jiffies for waiting for CS to complete
* @timestamp: timestamp of first completed CS
* @wait_status: wait for CS status
* @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
* @arr_len: fence_arr and seq_arr array length
* @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
* @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
*/
struct multi_cs_data {
struct hl_ctx *ctx;
struct hl_fence **fence_arr;
u64 *seq_arr;
s64 timeout_jiffies;
s64 timestamp;
long wait_status;
u32 completion_bitmap;
u8 arr_len;
u8 gone_cs;
u8 update_ts;
};
/**
* struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
* @start: timestamp taken when 'start' event is received in driver
* @end: timestamp taken when 'end' event is received in driver
*/
struct hl_clk_throttle_timestamp {
ktime_t start;
ktime_t end;
};
/**
* struct hl_clk_throttle - keeps current/last clock throttling timestamps
* @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
* index 1 refers to THERMAL
* @lock: protects this structure as it can be accessed from both event queue
* context and info_ioctl context
* @current_reason: bitmask represents the current clk throttling reasons
* @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
*/
struct hl_clk_throttle {
struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
struct mutex lock;
u32 current_reason;
u32 aggregated_reason;
};
/**
* struct user_mapped_block - describes a hw block allowed to be mmapped by user
* @address: physical HW block address
* @size: allowed size for mmap
*/
struct user_mapped_block {
u32 address;
u32 size;
};
/**
* struct cs_timeout_info - info of last CS timeout occurred.
* @timestamp: CS timeout timestamp.
* @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled,
* so the first (root cause) CS timeout will not be overwritten.
* @seq: CS timeout sequence number.
*/
struct cs_timeout_info {
ktime_t timestamp;
atomic_t write_enable;
u64 seq;
};
#define MAX_QMAN_STREAMS_INFO 4
#define OPCODE_INFO_MAX_ADDR_SIZE 8
/**
* struct undefined_opcode_info - info about last undefined opcode error
* @timestamp: timestamp of the undefined opcode error
* @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
* entries. In case all streams array entries are
* filled with values, it means the execution was in Lower-CP.
* @cq_addr: the address of the current handled command buffer
* @cq_size: the size of the current handled command buffer
* @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
* should be equal to 1 incase of undefined opcode
* in Upper-CP (specific stream) and equal to 4 incase
* of undefined opcode in Lower-CP.
* @engine_id: engine-id that the error occurred on
* @stream_id: the stream id the error occurred on. In case the stream equals to
* MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
* @write_enable: if set, writing to undefined opcode parameters in the structure
* is enable so the first (root cause) undefined opcode will not be
* overwritten.
*/
struct undefined_opcode_info {
ktime_t timestamp;
u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
u64 cq_addr;
u32 cq_size;
u32 cb_addr_streams_len;
u32 engine_id;
u32 stream_id;
bool write_enable;
};
/**
* struct page_fault_info - page fault information.
* @page_fault: holds information collected during a page fault.
* @user_mappings: buffer containing user mappings.
* @num_of_user_mappings: number of user mappings.
* @page_fault_detected: if set as 1, then a page-fault was discovered for the
* first time after the driver has finished booting-up.
* Since we're looking for the page-fault's root cause,
* we don't care of the others that might follow it-
* so once changed to 1, it will remain that way.
* @page_fault_info_available: indicates that a page fault info is now available.
*/
struct page_fault_info {
struct hl_page_fault_info page_fault;
struct hl_user_mapping *user_mappings;
u64 num_of_user_mappings;
atomic_t page_fault_detected;
bool page_fault_info_available;
};
/**
* struct razwi_info - RAZWI information.
* @razwi: holds information collected during a RAZWI
* @razwi_detected: if set as 1, then a RAZWI was discovered for the
* first time after the driver has finished booting-up.
* Since we're looking for the RAZWI's root cause,
* we don't care of the others that might follow it-
* so once changed to 1, it will remain that way.
* @razwi_info_available: indicates that a RAZWI info is now available.
*/
struct razwi_info {
struct hl_info_razwi_event razwi;
atomic_t razwi_detected;
bool razwi_info_available;
};
/**
* struct hl_error_info - holds information collected during an error.
* @cs_timeout: CS timeout error information.
* @razwi_info: RAZWI information.
* @undef_opcode: undefined opcode information.
* @page_fault_info: page fault information.
*/
struct hl_error_info {
struct cs_timeout_info cs_timeout;
struct razwi_info razwi_info;
struct undefined_opcode_info undef_opcode;
struct page_fault_info page_fault_info;
};
/**
* struct hl_reset_info - holds current device reset information.
* @lock: lock to protect critical reset flows.
* @compute_reset_cnt: number of compute resets since the driver was loaded.
* @hard_reset_cnt: number of hard resets since the driver was loaded.
* @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset,
* here we hold the hard reset flags.
* @in_reset: is device in reset flow.
* @in_compute_reset: Device is currently in reset but not in hard-reset.
* @needs_reset: true if reset_on_lockup is false and device should be reset
* due to lockup.
* @hard_reset_pending: is there a hard reset work pending.
* @curr_reset_cause: saves an enumerated reset cause when a hard reset is
* triggered, and cleared after it is shared with preboot.
* @prev_reset_trigger: saves the previous trigger which caused a reset, overridden
* with a new value on next reset
* @reset_trigger_repeated: set if device reset is triggered more than once with
* same cause.
* @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
* complete instead.
* @watchdog_active: true if a device release watchdog work is scheduled.
*/
struct hl_reset_info {
spinlock_t lock;
u32 compute_reset_cnt;
u32 hard_reset_cnt;
u32 hard_reset_schedule_flags;
u8 in_reset;
u8 in_compute_reset;
u8 needs_reset;
u8 hard_reset_pending;
u8 curr_reset_cause;
u8 prev_reset_trigger;
u8 reset_trigger_repeated;
u8 skip_reset_on_timeout;
u8 watchdog_active;
};
/**
* struct hl_device - habanalabs device structure.
* @pdev: pointer to PCI device, can be NULL in case of simulator device.
* @pcie_bar_phys: array of available PCIe bars physical addresses.
* (required only for PCI address match mode)
* @pcie_bar: array of available PCIe bars virtual addresses.
* @rmmio: configuration area address on SRAM.
* @cdev: related char device.
* @cdev_ctrl: char device for control operations only (INFO IOCTL)
* @dev: related kernel basic device structure.
* @dev_ctrl: related kernel device structure for the control device
* @work_heartbeat: delayed work for CPU-CP is-alive check.
* @device_reset_work: delayed work which performs hard reset
* @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release
* device upon certain error cases.
* @asic_name: ASIC specific name.
* @asic_type: ASIC specific type.
* @completion_queue: array of hl_cq.
* @user_interrupt: array of hl_user_interrupt. upon the corresponding user
* interrupt, driver will monitor the list of fences
* registered to this interrupt.
* @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts.
* upon any user CQ interrupt, driver will monitor the
* list of fences registered to this common structure.
* @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts.
* @shadow_cs_queue: pointer to a shadow queue that holds pointers to
* outstanding command submissions.
* @cq_wq: work queues of completion queues for executing work in process
* context.
* @eq_wq: work queue of event queue for executing work in process context.
* @cs_cmplt_wq: work queue of CS completions for executing work in process
* context.
* @ts_free_obj_wq: work queue for timestamp registration objects release.
* @prefetch_wq: work queue for MMU pre-fetch operations.
* @reset_wq: work queue for device reset procedure.
* @kernel_ctx: Kernel driver context structure.
* @kernel_queues: array of hl_hw_queue.
* @cs_mirror_list: CS mirror list for TDR.
* @cs_mirror_lock: protects cs_mirror_list.
* @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
* @event_queue: event queue for IRQ from CPU-CP.
* @dma_pool: DMA pool for small allocations.
* @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
* @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
* @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
* @asid_bitmap: holds used/available ASIDs.
* @asid_mutex: protects asid_bitmap.
* @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
* @debug_lock: protects critical section of setting debug mode for device
* @mmu_lock: protects the MMU page tables and invalidation h/w. Although the
* page tables are per context, the invalidation h/w is per MMU.
* Therefore, we can't allow multiple contexts (we only have two,
* user and kernel) to access the invalidation h/w at the same time.
* In addition, any change to the PGT, modifying the MMU hash or
* walking the PGT requires talking this lock.
* @asic_prop: ASIC specific immutable properties.
* @asic_funcs: ASIC specific functions.
* @asic_specific: ASIC specific information to use only from ASIC files.
* @vm: virtual memory manager for MMU.
* @hwmon_dev: H/W monitor device.
* @hl_chip_info: ASIC's sensors information.
* @device_status_description: device status description.
* @hl_debugfs: device's debugfs manager.
* @cb_pool: list of pre allocated CBs.
* @cb_pool_lock: protects the CB pool.
* @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
* @internal_cb_pool_dma_addr: internal command buffer pool dma address.
* @internal_cb_pool: internal command buffer memory pool.
* @internal_cb_va_base: internal cb pool mmu virtual address base
* @fpriv_list: list of file private data structures. Each structure is created
* when a user opens the device
* @fpriv_ctrl_list: list of file private data structures. Each structure is created
* when a user opens the control device
* @fpriv_list_lock: protects the fpriv_list
* @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
* @aggregated_cs_counters: aggregated cs counters among all contexts
* @mmu_priv: device-specific MMU data.
* @mmu_func: device-related MMU functions.
* @dec: list of decoder sw instance
* @fw_loader: FW loader manager.
* @pci_mem_region: array of memory regions in the PCI
* @state_dump_specs: constants and dictionaries needed to dump system state.
* @multi_cs_completion: array of multi-CS completion.
* @clk_throttling: holds information about current/previous clock throttling events
* @captured_err_info: holds information about errors.
* @reset_info: holds current device reset information.
* @stream_master_qid_arr: pointer to array with QIDs of master streams.
* @fw_major_version: major version of current loaded preboot.
* @fw_minor_version: minor version of current loaded preboot.
* @dram_used_mem: current DRAM memory consumption.
* @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
* @timeout_jiffies: device CS timeout value.
* @max_power: the max power of the device, as configured by the sysadmin. This
* value is saved so in case of hard-reset, the driver will restore
* this value and update the F/W after the re-initialization
* @boot_error_status_mask: contains a mask of the device boot error status.
* Each bit represents a different error, according to
* the defines in hl_boot_if.h. If the bit is cleared,
* the error will be ignored by the driver during
* device initialization. Mainly used to debug and
* workaround firmware bugs
* @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
* @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
* @last_successful_open_jif: timestamp (jiffies) of the last successful
* device open.
* @last_open_session_duration_jif: duration (jiffies) of the last device open
* session.
* @open_counter: number of successful device open operations.
* @fw_poll_interval_usec: FW status poll interval in usec.
* used for CPU boot status
* @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
* used for COMMs protocols cmds(COMMS_STS_*)
* @dram_binning: contains mask of drams that is received from the f/w which indicates which
* drams are binned-out
* @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which
* tpc engines are binned-out
* @card_type: Various ASICs have several card types. This indicates the card
* type of the current device.
* @major: habanalabs kernel driver major.
* @high_pll: high PLL profile frequency.
* @decoder_binning: contains mask of decoder engines that is received from the f/w which
* indicates which decoder engines are binned-out
* @edma_binning: contains mask of edma engines that is received from the f/w which
* indicates which edma engines are binned-out
* @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds.
* @rotator_binning: contains mask of rotators engines that is received from the f/w
* which indicates which rotator engines are binned-out(Gaudi3 and above).
* @id: device minor.
* @id_control: minor of the control device.
* @cdev_idx: char device index. Used for setting its name.
* @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
* addresses.
* @is_in_dram_scrub: true if dram scrub operation is on going.
* @disabled: is device disabled.
* @late_init_done: is late init stage was done during initialization.
* @hwmon_initialized: is H/W monitor sensors was initialized.
* @reset_on_lockup: true if a reset should be done in case of stuck CS, false
* otherwise.
* @dram_default_page_mapping: is DRAM default page mapping enabled.
* @memory_scrub: true to perform device memory scrub in various locations,
* such as context-switch, context close, page free, etc.
* @pmmu_huge_range: is a different virtual addresses range used for PMMU with
* huge pages.
* @init_done: is the initialization of the device done.
* @device_cpu_disabled: is the device CPU disabled (due to timeouts)
* @in_debug: whether the device is in a state where the profiling/tracing infrastructure
* can be used. This indication is needed because in some ASICs we need to do
* specific operations to enable that infrastructure.
* @cdev_sysfs_created: were char devices and sysfs nodes created.
* @stop_on_err: true if engines should stop on error.
* @supports_sync_stream: is sync stream supported.
* @sync_stream_queue_idx: helper index for sync stream queues initialization.
* @collective_mon_idx: helper index for collective initialization
* @supports_coresight: is CoreSight supported.
* @supports_cb_mapping: is mapping a CB to the device's MMU supported.
* @process_kill_trial_cnt: number of trials reset thread tried killing
* user processes
* @device_fini_pending: true if device_fini was called and might be
* waiting for the reset thread to finish
* @supports_staged_submission: true if staged submissions are supported
* @device_cpu_is_halted: Flag to indicate whether the device CPU was already
* halted. We can't halt it again because the COMMS
* protocol will throw an error. Relevant only for
* cases where Linux was not loaded to device CPU
* @supports_wait_for_multi_cs: true if wait for multi CS is supported
* @is_compute_ctx_active: Whether there is an active compute context executing.
* @compute_ctx_in_release: true if the current compute context is being released.
* @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
* @reset_upon_device_release: reset the device when the user closes the file descriptor of the
* device.
* @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing.
* @fw_components: Controls which f/w components to load to the device. There are multiple f/w
* stages and sometimes we want to stop at a certain stage. Used only for testing.
* @mmu_enable: Whether to enable or disable the device MMU(s). Used only for testing.
* @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing.
* @pldm: Whether we are running in Palladium environment. Used only for testing.
* @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from
* the f/w. Used only for testing.
* @bmc_enable: Whether we are running in a box with BMC. Used only for testing.
* @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load.
* Used only for testing.
* @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies
* that the f/w is always alive. Used only for testing.
* @supports_ctx_switch: true if a ctx switch is required upon first submission.
* @support_preboot_binning: true if we support read binning info from preboot.
*/
struct hl_device {
struct pci_dev *pdev;
u64 pcie_bar_phys[HL_PCI_NUM_BARS];
void __iomem *pcie_bar[HL_PCI_NUM_BARS];
void __iomem *rmmio;
struct cdev cdev;
struct cdev cdev_ctrl;
struct device *dev;
struct device *dev_ctrl;
struct delayed_work work_heartbeat;
struct hl_device_reset_work device_reset_work;
struct hl_device_reset_work device_release_watchdog_work;
char asic_name[HL_STR_MAX];
char status[HL_DEV_STS_MAX][HL_STR_MAX];
enum hl_asic_type asic_type;
struct hl_cq *completion_queue;
struct hl_user_interrupt *user_interrupt;
struct hl_user_interrupt common_user_cq_interrupt;
struct hl_user_interrupt common_decoder_interrupt;
struct hl_cs **shadow_cs_queue;
struct workqueue_struct **cq_wq;
struct workqueue_struct *eq_wq;
struct workqueue_struct *cs_cmplt_wq;
struct workqueue_struct *ts_free_obj_wq;
struct workqueue_struct *prefetch_wq;
struct workqueue_struct *reset_wq;
struct hl_ctx *kernel_ctx;
struct hl_hw_queue *kernel_queues;
struct list_head cs_mirror_list;
spinlock_t cs_mirror_lock;
struct hl_mem_mgr kernel_mem_mgr;
struct hl_eq event_queue;
struct dma_pool *dma_pool;
void *cpu_accessible_dma_mem;
dma_addr_t cpu_accessible_dma_address;
struct gen_pool *cpu_accessible_dma_pool;
unsigned long *asid_bitmap;
struct mutex asid_mutex;
struct mutex send_cpu_message_lock;
struct mutex debug_lock;
struct mutex mmu_lock;
struct asic_fixed_properties asic_prop;
const struct hl_asic_funcs *asic_funcs;
void *asic_specific;
struct hl_vm vm;
struct device *hwmon_dev;
struct hwmon_chip_info *hl_chip_info;
struct hl_dbg_device_entry hl_debugfs;
struct list_head cb_pool;
spinlock_t cb_pool_lock;
void *internal_cb_pool_virt_addr;
dma_addr_t internal_cb_pool_dma_addr;
struct gen_pool *internal_cb_pool;
u64 internal_cb_va_base;
struct list_head fpriv_list;
struct list_head fpriv_ctrl_list;
struct mutex fpriv_list_lock;
struct mutex fpriv_ctrl_list_lock;
struct hl_cs_counters_atomic aggregated_cs_counters;
struct hl_mmu_priv mmu_priv;
struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS];
struct hl_dec *dec;
struct fw_load_mgr fw_loader;
struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER];
struct hl_state_dump_specs state_dump_specs;
struct multi_cs_completion multi_cs_completion[
MULTI_CS_MAX_USER_CTX];
struct hl_clk_throttle clk_throttling;
struct hl_error_info captured_err_info;
struct hl_reset_info reset_info;
u32 *stream_master_qid_arr;
u32 fw_major_version;
u32 fw_minor_version;
atomic64_t dram_used_mem;
u64 memory_scrub_val;
u64 timeout_jiffies;
u64 max_power;
u64 boot_error_status_mask;
u64 dram_pci_bar_start;
u64 last_successful_open_jif;
u64 last_open_session_duration_jif;
u64 open_counter;
u64 fw_poll_interval_usec;
ktime_t last_successful_open_ktime;
u64 fw_comms_poll_interval_usec;
u64 dram_binning;
u64 tpc_binning;
enum cpucp_card_types card_type;
u32 major;
u32 high_pll;
u32 decoder_binning;
u32 edma_binning;
u32 device_release_watchdog_timeout_sec;
u32 rotator_binning;
u16 id;
u16 id_control;
u16 cdev_idx;
u16 cpu_pci_msb_addr;
u8 is_in_dram_scrub;
u8 disabled;
u8 late_init_done;
u8 hwmon_initialized;
u8 reset_on_lockup;
u8 dram_default_page_mapping;
u8 memory_scrub;
u8 pmmu_huge_range;
u8 init_done;
u8 device_cpu_disabled;
u8 in_debug;
u8 cdev_sysfs_created;
u8 stop_on_err;
u8 supports_sync_stream;
u8 sync_stream_queue_idx;
u8 collective_mon_idx;
u8 supports_coresight;
u8 supports_cb_mapping;
u8 process_kill_trial_cnt;
u8 device_fini_pending;
u8 supports_staged_submission;
u8 device_cpu_is_halted;
u8 supports_wait_for_multi_cs;
u8 stream_master_qid_arr_size;
u8 is_compute_ctx_active;
u8 compute_ctx_in_release;
u8 supports_mmu_prefetch;
u8 reset_upon_device_release;
u8 supports_ctx_switch;
u8 support_preboot_binning;
/* Parameters for bring-up */
u64 nic_ports_mask;
u64 fw_components;
u8 mmu_enable;
u8 cpu_queues_enable;
u8 pldm;
u8 hard_reset_on_fw_events;
u8 bmc_enable;
u8 reset_on_preboot_fail;
u8 heartbeat;
};
/**
* struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
* @refcount: refcount used to protect removing this id when several
* wait cs are used to wait of the reserved encaps signals.
* @hdev: pointer to habanalabs device structure.
* @hw_sob: pointer to H/W SOB used in the reservation.
* @ctx: pointer to the user's context data structure
* @cs_seq: staged cs sequence which contains encapsulated signals
* @id: idr handler id to be used to fetch the handler info
* @q_idx: stream queue index
* @pre_sob_val: current SOB value before reservation
* @count: signals number
*/
struct hl_cs_encaps_sig_handle {
struct kref refcount;
struct hl_device *hdev;
struct hl_hw_sob *hw_sob;
struct hl_ctx *ctx;
u64 cs_seq;
u32 id;
u32 q_idx;
u32 pre_sob_val;
u32 count;
};
/*
* IOCTLs
*/
/**
* typedef hl_ioctl_t - typedef for ioctl function in the driver
* @hpriv: pointer to the FD's private data, which contains state of
* user process
* @data: pointer to the input/output arguments structure of the IOCTL
*
* Return: 0 for success, negative value for error
*/
typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
/**
* struct hl_ioctl_desc - describes an IOCTL entry of the driver.
* @cmd: the IOCTL code as created by the kernel macros.
* @func: pointer to the driver's function that should be called for this IOCTL.
*/
struct hl_ioctl_desc {
unsigned int cmd;
hl_ioctl_t *func;
};
/*
* Kernel module functions that can be accessed by entire module
*/
/**
* hl_get_sg_info() - get number of pages and the DMA address from SG list.
* @sg: the SG list.
* @dma_addr: pointer to DMA address to return.
*
* Calculate the number of consecutive pages described by the SG list. Take the
* offset of the address in the first page, add to it the length and round it up
* to the number of needed pages.
*/
static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
{
*dma_addr = sg_dma_address(sg);
return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
(PAGE_SIZE - 1)) >> PAGE_SHIFT;
}
/**
* hl_mem_area_inside_range() - Checks whether address+size are inside a range.
* @address: The start address of the area we want to validate.
* @size: The size in bytes of the area we want to validate.
* @range_start_address: The start address of the valid range.
* @range_end_address: The end address of the valid range.
*
* Return: true if the area is inside the valid range, false otherwise.
*/
static inline bool hl_mem_area_inside_range(u64 address, u64 size,
u64 range_start_address, u64 range_end_address)
{
u64 end_address = address + size;
if ((address >= range_start_address) &&
(end_address <= range_end_address) &&
(end_address > address))
return true;
return false;
}
/**
* hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
* @address: The start address of the area we want to validate.
* @size: The size in bytes of the area we want to validate.
* @range_start_address: The start address of the valid range.
* @range_end_address: The end address of the valid range.
*
* Return: true if the area overlaps part or all of the valid range,
* false otherwise.
*/
static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
u64 range_start_address, u64 range_end_address)
{
u64 end_address = address + size - 1;
return ((address <= range_end_address) && (range_start_address <= end_address));
}
uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
gfp_t flag, const char *caller);
void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
dma_addr_t dma_handle, const char *caller);
void *hl_cpu_accessible_dma_pool_alloc_caller(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle, const char *caller);
void hl_cpu_accessible_dma_pool_free_caller(struct hl_device *hdev, size_t size, void *vaddr,
const char *caller);
void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
dma_addr_t *dma_handle, const char *caller);
void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
const char *caller);
int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir);
void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
enum dma_data_direction dir);
int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar);
int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
enum debugfs_access_type acc_type);
int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
u64 addr, u64 *val, enum debugfs_access_type acc_type);
int hl_device_open(struct inode *inode, struct file *filp);
int hl_device_open_ctrl(struct inode *inode, struct file *filp);
bool hl_device_operational(struct hl_device *hdev,
enum hl_device_status *status);
bool hl_ctrl_device_operational(struct hl_device *hdev,
enum hl_device_status *status);
enum hl_device_status hl_device_status(struct hl_device *hdev);
int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
int hl_hw_queues_create(struct hl_device *hdev);
void hl_hw_queues_destroy(struct hl_device *hdev);
int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
u32 cb_size, u64 cb_ptr);
void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
u32 ctl, u32 len, u64 ptr);
int hl_hw_queue_schedule_cs(struct hl_cs *cs);
u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
void hl_hw_queue_update_ci(struct hl_cs *cs);
void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
#define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1)
#define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1))
int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
irqreturn_t hl_irq_handler_cq(int irq, void *arg);
irqreturn_t hl_irq_handler_eq(int irq, void *arg);
irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg);
irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg);
irqreturn_t hl_irq_handler_default(int irq, void *arg);
u32 hl_cq_inc_ptr(u32 ptr);
int hl_asid_init(struct hl_device *hdev);
void hl_asid_fini(struct hl_device *hdev);
unsigned long hl_asid_alloc(struct hl_device *hdev);
void hl_asid_free(struct hl_device *hdev, unsigned long asid);
int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
void hl_ctx_do_release(struct kref *ref);
void hl_ctx_get(struct hl_ctx *ctx);
int hl_ctx_put(struct hl_ctx *ctx);
struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
struct hl_fence **fence, u32 arr_len);
void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
int hl_device_init(struct hl_device *hdev, struct class *hclass);
void hl_device_fini(struct hl_device *hdev);
int hl_device_suspend(struct hl_device *hdev);
int hl_device_resume(struct hl_device *hdev);
int hl_device_reset(struct hl_device *hdev, u32 flags);
int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask);
void hl_hpriv_get(struct hl_fpriv *hpriv);
int hl_hpriv_put(struct hl_fpriv *hpriv);
int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
int hl_build_hwmon_channel_info(struct hl_device *hdev,
struct cpucp_sensor *sensors_arr);
void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask);
int hl_sysfs_init(struct hl_device *hdev);
void hl_sysfs_fini(struct hl_device *hdev);
int hl_hwmon_init(struct hl_device *hdev);
void hl_hwmon_fini(struct hl_device *hdev);
void hl_hwmon_release_resources(struct hl_device *hdev);
int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
bool map_cb, u64 *handle);
int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
void hl_cb_put(struct hl_cb *cb);
struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
bool internal_cb);
int hl_cb_pool_init(struct hl_device *hdev);
int hl_cb_pool_fini(struct hl_device *hdev);
int hl_cb_va_pool_init(struct hl_ctx *ctx);
void hl_cb_va_pool_fini(struct hl_ctx *ctx);
void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
void hl_sob_reset_error(struct kref *ref);
int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
void hl_fence_put(struct hl_fence *fence);
void hl_fences_put(struct hl_fence **fence, int len);
void hl_fence_get(struct hl_fence *fence);
void cs_get(struct hl_cs *cs);
bool cs_needs_completion(struct hl_cs *cs);
bool cs_needs_timeout(struct hl_cs *cs);
bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
void hl_multi_cs_completion_init(struct hl_device *hdev);
void goya_set_asic_funcs(struct hl_device *hdev);
void gaudi_set_asic_funcs(struct hl_device *hdev);
void gaudi2_set_asic_funcs(struct hl_device *hdev);
int hl_vm_ctx_init(struct hl_ctx *ctx);
void hl_vm_ctx_fini(struct hl_ctx *ctx);
int hl_vm_init(struct hl_device *hdev);
void hl_vm_fini(struct hl_device *hdev);
void hl_hw_block_mem_init(struct hl_ctx *ctx);
void hl_hw_block_mem_fini(struct hl_ctx *ctx);
u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
enum hl_va_range_type type, u64 size, u32 alignment);
int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
u64 start_addr, u64 size);
int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
struct hl_userptr *userptr);
void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
void hl_userptr_delete_list(struct hl_device *hdev,
struct list_head *userptr_list);
bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
struct list_head *userptr_list,
struct hl_userptr **userptr);
int hl_mmu_init(struct hl_device *hdev);
void hl_mmu_fini(struct hl_device *hdev);
int hl_mmu_ctx_init(struct hl_ctx *ctx);
void hl_mmu_ctx_fini(struct hl_ctx *ctx);
int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
u32 page_size, bool flush_pte);
int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
u32 page_size, u32 *real_page_size, bool is_dram_addr);
int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
bool flush_pte);
int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
u64 phys_addr, u32 size);
int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
u32 flags, u32 asid, u64 va, u64 size);
int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
u8 hop_idx, u64 hop_addr, u64 virt_addr);
void hl_mmu_hr_flush(struct hl_ctx *ctx);
int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
u64 pgt_size);
void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size);
void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
u32 hop_table_size);
u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr,
u32 hop_table_size);
void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
u64 val, u32 hop_table_size);
void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
u32 hop_table_size);
int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
u32 hop_table_size);
void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr);
struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
struct hl_hr_mmu_funcs *hr_func,
u64 curr_pte);
struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
struct hl_hr_mmu_funcs *hr_func,
struct hl_mmu_properties *mmu_prop);
struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
struct hl_mmu_hr_priv *hr_priv,
struct hl_hr_mmu_funcs *hr_func,
struct hl_mmu_properties *mmu_prop,
u64 curr_pte, bool *is_new_hop);
int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
struct hl_hr_mmu_funcs *hr_func);
void hl_mmu_swap_out(struct hl_ctx *ctx);
void hl_mmu_swap_in(struct hl_ctx *ctx);
int hl_mmu_if_set_funcs(struct hl_device *hdev);
void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
struct hl_mmu_hop_info *hops);
u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
void __iomem *dst, u32 src_offset, u32 size);
int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value);
int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
u16 len, u32 timeout, u64 *result);
int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
size_t irq_arr_size);
int hl_fw_test_cpu_queue(struct hl_device *hdev);
void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle);
void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
void *vaddr);
int hl_fw_send_heartbeat(struct hl_device *hdev);
int hl_fw_cpucp_info_get(struct hl_device *hdev,
u32 sts_boot_dev_sts0_reg,
u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
u32 boot_err1_reg);
int hl_fw_cpucp_handshake(struct hl_device *hdev,
u32 sts_boot_dev_sts0_reg,
u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
u32 boot_err1_reg);
int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
struct hl_info_pci_counters *counters);
int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
u64 *total_energy);
int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
enum pll_index *pll_index);
int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
u16 *pll_freq_arr);
int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
int hl_fw_init_cpu(struct hl_device *hdev);
int hl_fw_wait_preboot_ready(struct hl_device *hdev);
int hl_fw_read_preboot_status(struct hl_device *hdev);
int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
enum comms_cmd cmd, unsigned int size,
bool wait_ok, u32 timeout);
int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
struct cpucp_hbm_row_info *info);
int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
int hl_fw_send_device_activity(struct hl_device *hdev, bool open);
int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
bool is_wc[3]);
int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
struct hl_inbound_pci_region *pci_region);
int hl_pci_set_outbound_region(struct hl_device *hdev,
struct hl_outbound_pci_region *pci_region);
enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
int hl_pci_init(struct hl_device *hdev);
void hl_pci_fini(struct hl_device *hdev);
long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
long hl_fw_get_max_power(struct hl_device *hdev);
void hl_fw_set_max_power(struct hl_device *hdev);
int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
u32 nonce);
int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
void hl_fw_set_pll_profile(struct hl_device *hdev);
void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);
int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode,
dma_addr_t buff, u32 *size);
void hw_sob_get(struct hl_hw_sob *hw_sob);
void hw_sob_put(struct hl_hw_sob *hw_sob);
void hl_encaps_release_handle_and_put_ctx(struct kref *ref);
void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref);
void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
struct hl_cs *cs, struct hl_cs_job *job,
struct hl_cs_compl *cs_cmpl);
int hl_dec_init(struct hl_device *hdev);
void hl_dec_fini(struct hl_device *hdev);
void hl_dec_ctx_fini(struct hl_ctx *ctx);
void hl_release_pending_user_interrupts(struct hl_device *hdev);
void hl_abort_waitings_for_completion(struct hl_device *hdev);
int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
int hl_state_dump(struct hl_device *hdev);
const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
struct hl_mon_state_dump *mon);
void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
__printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
const char *format, ...);
char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg);
void hl_mem_mgr_fini(struct hl_mem_mgr *mmg);
int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
void *args);
struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
u64 handle);
int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
struct hl_mmap_mem_buf *
hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
void *args);
__printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...);
void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
u8 flags);
void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
u8 flags, u64 *event_mask);
void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu);
void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
u64 *event_mask);
#ifdef CONFIG_DEBUG_FS
void hl_debugfs_init(void);
void hl_debugfs_fini(void);
void hl_debugfs_add_device(struct hl_device *hdev);
void hl_debugfs_remove_device(struct hl_device *hdev);
void hl_debugfs_add_file(struct hl_fpriv *hpriv);
void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
void hl_debugfs_add_cb(struct hl_cb *cb);
void hl_debugfs_remove_cb(struct hl_cb *cb);
void hl_debugfs_add_cs(struct hl_cs *cs);
void hl_debugfs_remove_cs(struct hl_cs *cs);
void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
void hl_debugfs_remove_userptr(struct hl_device *hdev,
struct hl_userptr *userptr);
void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
unsigned long length);
#else
static inline void __init hl_debugfs_init(void)
{
}
static inline void hl_debugfs_fini(void)
{
}
static inline void hl_debugfs_add_device(struct hl_device *hdev)
{
}
static inline void hl_debugfs_remove_device(struct hl_device *hdev)
{
}
static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
{
}
static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
{
}
static inline void hl_debugfs_add_cb(struct hl_cb *cb)
{
}
static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
{
}
static inline void hl_debugfs_add_cs(struct hl_cs *cs)
{
}
static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
{
}
static inline void hl_debugfs_add_job(struct hl_device *hdev,
struct hl_cs_job *job)
{
}
static inline void hl_debugfs_remove_job(struct hl_device *hdev,
struct hl_cs_job *job)
{
}
static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
struct hl_userptr *userptr)
{
}
static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
struct hl_userptr *userptr)
{
}
static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
struct hl_ctx *ctx)
{
}
static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
struct hl_ctx *ctx)
{
}
static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
char *data, unsigned long length)
{
}
#endif
/* Security */
int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset,
const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[],
int array_size);
int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[],
int mm_array_size, int offset, const u32 pb_blocks[],
struct hl_block_glbl_sec sgs_array[], int blocks_array_size);
void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[],
struct hl_block_glbl_sec sgs_array[], u32 block_offset,
int array_size);
void hl_secure_block(struct hl_device *hdev,
struct hl_block_glbl_sec sgs_array[], int array_size);
int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
u32 dcore_offset, u32 num_instances, u32 instance_offset,
const u32 pb_blocks[], u32 blocks_array_size,
const u32 *regs_array, u32 regs_array_size, u64 mask);
int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
u32 num_instances, u32 instance_offset,
const u32 pb_blocks[], u32 blocks_array_size,
const u32 *regs_array, u32 regs_array_size);
int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores,
u32 dcore_offset, u32 num_instances, u32 instance_offset,
const u32 pb_blocks[], u32 blocks_array_size,
const struct range *regs_range_array, u32 regs_range_array_size,
u64 mask);
int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores,
u32 dcore_offset, u32 num_instances, u32 instance_offset,
const u32 pb_blocks[], u32 blocks_array_size,
const struct range *regs_range_array,
u32 regs_range_array_size);
int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
u32 num_instances, u32 instance_offset,
const u32 pb_blocks[], u32 blocks_array_size,
const u32 *regs_array, u32 regs_array_size);
int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset,
u32 num_instances, u32 instance_offset,
const u32 pb_blocks[], u32 blocks_array_size,
const struct range *regs_range_array,
u32 regs_range_array_size);
void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
u32 num_instances, u32 instance_offset,
const u32 pb_blocks[], u32 blocks_array_size);
void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
u32 dcore_offset, u32 num_instances, u32 instance_offset,
const u32 pb_blocks[], u32 blocks_array_size, u64 mask);
void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
u32 num_instances, u32 instance_offset,
const u32 pb_blocks[], u32 blocks_array_size);
/* IOCTLs */
long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
#endif /* HABANALABSP_H_ */