OpenCloudOS-Kernel/arch/powerpc/platforms/pseries/setup.c

608 lines
15 KiB
C

/*
* 64-bit pSeries and RS/6000 setup code.
*
* Copyright (C) 1995 Linus Torvalds
* Adapted from 'alpha' version by Gary Thomas
* Modified by Cort Dougan (cort@cs.nmt.edu)
* Modified by PPC64 Team, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* bootup setup stuff..
*/
#undef DEBUG
#include <linux/config.h>
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/tty.h>
#include <linux/major.h>
#include <linux/interrupt.h>
#include <linux/reboot.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/pci.h>
#include <linux/utsname.h>
#include <linux/adb.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/seq_file.h>
#include <linux/root_dev.h>
#include <asm/mmu.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/pci-bridge.h>
#include <asm/iommu.h>
#include <asm/dma.h>
#include <asm/machdep.h>
#include <asm/irq.h>
#include <asm/time.h>
#include <asm/nvram.h>
#include <asm/plpar_wrappers.h>
#include <asm/xics.h>
#include <asm/firmware.h>
#include <asm/pmc.h>
#include <asm/mpic.h>
#include <asm/ppc-pci.h>
#include <asm/i8259.h>
#include <asm/udbg.h>
#include "rtas-fw.h"
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
extern void find_udbg_vterm(void);
extern void system_reset_fwnmi(void); /* from head.S */
extern void machine_check_fwnmi(void); /* from head.S */
extern void generic_find_legacy_serial_ports(u64 *physport,
unsigned int *default_speed);
int fwnmi_active; /* TRUE if an FWNMI handler is present */
extern void pSeries_system_reset_exception(struct pt_regs *regs);
extern int pSeries_machine_check_exception(struct pt_regs *regs);
static void pseries_shared_idle(void);
static void pseries_dedicated_idle(void);
struct mpic *pSeries_mpic;
void pSeries_show_cpuinfo(struct seq_file *m)
{
struct device_node *root;
const char *model = "";
root = of_find_node_by_path("/");
if (root)
model = get_property(root, "model", NULL);
seq_printf(m, "machine\t\t: CHRP %s\n", model);
of_node_put(root);
}
/* Initialize firmware assisted non-maskable interrupts if
* the firmware supports this feature.
*
*/
static void __init fwnmi_init(void)
{
int ret;
int ibm_nmi_register = rtas_token("ibm,nmi-register");
if (ibm_nmi_register == RTAS_UNKNOWN_SERVICE)
return;
ret = rtas_call(ibm_nmi_register, 2, 1, NULL,
__pa((unsigned long)system_reset_fwnmi),
__pa((unsigned long)machine_check_fwnmi));
if (ret == 0)
fwnmi_active = 1;
}
static void __init pSeries_init_mpic(void)
{
unsigned int *addrp;
struct device_node *np;
unsigned long intack = 0;
/* All ISUs are setup, complete initialization */
mpic_init(pSeries_mpic);
/* Check what kind of cascade ACK we have */
if (!(np = of_find_node_by_name(NULL, "pci"))
|| !(addrp = (unsigned int *)
get_property(np, "8259-interrupt-acknowledge", NULL)))
printk(KERN_ERR "Cannot find pci to get ack address\n");
else
intack = addrp[prom_n_addr_cells(np)-1];
of_node_put(np);
/* Setup the legacy interrupts & controller */
i8259_init(intack, 0);
/* Hook cascade to mpic */
mpic_setup_cascade(NUM_ISA_INTERRUPTS, i8259_irq_cascade, NULL);
}
static void __init pSeries_setup_mpic(void)
{
unsigned int *opprop;
unsigned long openpic_addr = 0;
unsigned char senses[NR_IRQS - NUM_ISA_INTERRUPTS];
struct device_node *root;
int irq_count;
/* Find the Open PIC if present */
root = of_find_node_by_path("/");
opprop = (unsigned int *) get_property(root, "platform-open-pic", NULL);
if (opprop != 0) {
int n = prom_n_addr_cells(root);
for (openpic_addr = 0; n > 0; --n)
openpic_addr = (openpic_addr << 32) + *opprop++;
printk(KERN_DEBUG "OpenPIC addr: %lx\n", openpic_addr);
}
of_node_put(root);
BUG_ON(openpic_addr == 0);
/* Get the sense values from OF */
prom_get_irq_senses(senses, NUM_ISA_INTERRUPTS, NR_IRQS);
/* Setup the openpic driver */
irq_count = NR_IRQS - NUM_ISA_INTERRUPTS - 4; /* leave room for IPIs */
pSeries_mpic = mpic_alloc(openpic_addr, MPIC_PRIMARY,
16, 16, irq_count, /* isu size, irq offset, irq count */
NR_IRQS - 4, /* ipi offset */
senses, irq_count, /* sense & sense size */
" MPIC ");
}
static void pseries_lpar_enable_pmcs(void)
{
unsigned long set, reset;
power4_enable_pmcs();
set = 1UL << 63;
reset = 0;
plpar_hcall_norets(H_PERFMON, set, reset);
/* instruct hypervisor to maintain PMCs */
if (firmware_has_feature(FW_FEATURE_SPLPAR))
get_paca()->lppaca.pmcregs_in_use = 1;
}
static void __init pSeries_setup_arch(void)
{
/* Fixup ppc_md depending on the type of interrupt controller */
if (ppc64_interrupt_controller == IC_OPEN_PIC) {
ppc_md.init_IRQ = pSeries_init_mpic;
ppc_md.get_irq = mpic_get_irq;
ppc_md.cpu_irq_down = mpic_teardown_this_cpu;
/* Allocate the mpic now, so that find_and_init_phbs() can
* fill the ISUs */
pSeries_setup_mpic();
} else {
ppc_md.init_IRQ = xics_init_IRQ;
ppc_md.get_irq = xics_get_irq;
ppc_md.cpu_irq_down = xics_teardown_cpu;
}
#ifdef CONFIG_SMP
smp_init_pSeries();
#endif
/* openpic global configuration register (64-bit format). */
/* openpic Interrupt Source Unit pointer (64-bit format). */
/* python0 facility area (mmio) (64-bit format) REAL address. */
/* init to some ~sane value until calibrate_delay() runs */
loops_per_jiffy = 50000000;
if (ROOT_DEV == 0) {
printk("No ramdisk, default root is /dev/sda2\n");
ROOT_DEV = Root_SDA2;
}
fwnmi_init();
/* Find and initialize PCI host bridges */
init_pci_config_tokens();
find_and_init_phbs();
eeh_init();
pSeries_nvram_init();
/* Choose an idle loop */
if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
vpa_init(boot_cpuid);
if (get_paca()->lppaca.shared_proc) {
printk(KERN_INFO "Using shared processor idle loop\n");
ppc_md.idle_loop = pseries_shared_idle;
} else {
printk(KERN_INFO "Using dedicated idle loop\n");
ppc_md.idle_loop = pseries_dedicated_idle;
}
} else {
printk(KERN_INFO "Using default idle loop\n");
ppc_md.idle_loop = default_idle;
}
if (systemcfg->platform & PLATFORM_LPAR)
ppc_md.enable_pmcs = pseries_lpar_enable_pmcs;
else
ppc_md.enable_pmcs = power4_enable_pmcs;
}
static int __init pSeries_init_panel(void)
{
/* Manually leave the kernel version on the panel. */
ppc_md.progress("Linux ppc64\n", 0);
ppc_md.progress(system_utsname.version, 0);
return 0;
}
arch_initcall(pSeries_init_panel);
/* Build up the ppc64_firmware_features bitmask field
* using contents of device-tree/ibm,hypertas-functions.
* Ultimately this functionality may be moved into prom.c prom_init().
*/
static void __init fw_feature_init(void)
{
struct device_node * dn;
char * hypertas;
unsigned int len;
DBG(" -> fw_feature_init()\n");
ppc64_firmware_features = 0;
dn = of_find_node_by_path("/rtas");
if (dn == NULL) {
printk(KERN_ERR "WARNING ! Cannot find RTAS in device-tree !\n");
goto no_rtas;
}
hypertas = get_property(dn, "ibm,hypertas-functions", &len);
if (hypertas) {
while (len > 0){
int i, hypertas_len;
/* check value against table of strings */
for(i=0; i < FIRMWARE_MAX_FEATURES ;i++) {
if ((firmware_features_table[i].name) &&
(strcmp(firmware_features_table[i].name,hypertas))==0) {
/* we have a match */
ppc64_firmware_features |=
(firmware_features_table[i].val);
break;
}
}
hypertas_len = strlen(hypertas);
len -= hypertas_len +1;
hypertas+= hypertas_len +1;
}
}
of_node_put(dn);
no_rtas:
printk(KERN_INFO "firmware_features = 0x%lx\n",
ppc64_firmware_features);
DBG(" <- fw_feature_init()\n");
}
static void __init pSeries_discover_pic(void)
{
struct device_node *np;
char *typep;
/*
* Setup interrupt mapping options that are needed for finish_device_tree
* to properly parse the OF interrupt tree & do the virtual irq mapping
*/
__irq_offset_value = NUM_ISA_INTERRUPTS;
ppc64_interrupt_controller = IC_INVALID;
for (np = NULL; (np = of_find_node_by_name(np, "interrupt-controller"));) {
typep = (char *)get_property(np, "compatible", NULL);
if (strstr(typep, "open-pic"))
ppc64_interrupt_controller = IC_OPEN_PIC;
else if (strstr(typep, "ppc-xicp"))
ppc64_interrupt_controller = IC_PPC_XIC;
else
printk("pSeries_discover_pic: failed to recognize"
" interrupt-controller\n");
break;
}
}
static void pSeries_mach_cpu_die(void)
{
local_irq_disable();
idle_task_exit();
/* Some hardware requires clearing the CPPR, while other hardware does not
* it is safe either way
*/
pSeriesLP_cppr_info(0, 0);
rtas_stop_self();
/* Should never get here... */
BUG();
for(;;);
}
/*
* Early initialization. Relocation is on but do not reference unbolted pages
*/
static void __init pSeries_init_early(void)
{
void *comport;
int iommu_off = 0;
unsigned int default_speed;
u64 physport;
DBG(" -> pSeries_init_early()\n");
fw_feature_init();
if (systemcfg->platform & PLATFORM_LPAR)
hpte_init_lpar();
else {
hpte_init_native();
iommu_off = (of_chosen &&
get_property(of_chosen, "linux,iommu-off", NULL));
}
generic_find_legacy_serial_ports(&physport, &default_speed);
if (systemcfg->platform & PLATFORM_LPAR)
find_udbg_vterm();
else if (physport) {
/* Map the uart for udbg. */
comport = (void *)ioremap(physport, 16);
udbg_init_uart(comport, default_speed);
DBG("Hello World !\n");
}
iommu_init_early_pSeries();
pSeries_discover_pic();
DBG(" <- pSeries_init_early()\n");
}
static int pSeries_check_legacy_ioport(unsigned int baseport)
{
struct device_node *np;
#define I8042_DATA_REG 0x60
#define FDC_BASE 0x3f0
switch(baseport) {
case I8042_DATA_REG:
np = of_find_node_by_type(NULL, "8042");
if (np == NULL)
return -ENODEV;
of_node_put(np);
break;
case FDC_BASE:
np = of_find_node_by_type(NULL, "fdc");
if (np == NULL)
return -ENODEV;
of_node_put(np);
break;
}
return 0;
}
/*
* Called very early, MMU is off, device-tree isn't unflattened
*/
extern struct machdep_calls pSeries_md;
static int __init pSeries_probe(int platform)
{
if (platform != PLATFORM_PSERIES &&
platform != PLATFORM_PSERIES_LPAR)
return 0;
/* if we have some ppc_md fixups for LPAR to do, do
* it here ...
*/
return 1;
}
DECLARE_PER_CPU(unsigned long, smt_snooze_delay);
static inline void dedicated_idle_sleep(unsigned int cpu)
{
struct paca_struct *ppaca = &paca[cpu ^ 1];
/* Only sleep if the other thread is not idle */
if (!(ppaca->lppaca.idle)) {
local_irq_disable();
/*
* We are about to sleep the thread and so wont be polling any
* more.
*/
clear_thread_flag(TIF_POLLING_NRFLAG);
/*
* SMT dynamic mode. Cede will result in this thread going
* dormant, if the partner thread is still doing work. Thread
* wakes up if partner goes idle, an interrupt is presented, or
* a prod occurs. Returning from the cede enables external
* interrupts.
*/
if (!need_resched())
cede_processor();
else
local_irq_enable();
} else {
/*
* Give the HV an opportunity at the processor, since we are
* not doing any work.
*/
poll_pending();
}
}
static void pseries_dedicated_idle(void)
{
long oldval;
struct paca_struct *lpaca = get_paca();
unsigned int cpu = smp_processor_id();
unsigned long start_snooze;
unsigned long *smt_snooze_delay = &__get_cpu_var(smt_snooze_delay);
while (1) {
/*
* Indicate to the HV that we are idle. Now would be
* a good time to find other work to dispatch.
*/
lpaca->lppaca.idle = 1;
oldval = test_and_clear_thread_flag(TIF_NEED_RESCHED);
if (!oldval) {
set_thread_flag(TIF_POLLING_NRFLAG);
start_snooze = __get_tb() +
*smt_snooze_delay * tb_ticks_per_usec;
while (!need_resched() && !cpu_is_offline(cpu)) {
ppc64_runlatch_off();
/*
* Go into low thread priority and possibly
* low power mode.
*/
HMT_low();
HMT_very_low();
if (*smt_snooze_delay != 0 &&
__get_tb() > start_snooze) {
HMT_medium();
dedicated_idle_sleep(cpu);
}
}
HMT_medium();
clear_thread_flag(TIF_POLLING_NRFLAG);
} else {
set_need_resched();
}
lpaca->lppaca.idle = 0;
ppc64_runlatch_on();
schedule();
if (cpu_is_offline(cpu) && system_state == SYSTEM_RUNNING)
cpu_die();
}
}
static void pseries_shared_idle(void)
{
struct paca_struct *lpaca = get_paca();
unsigned int cpu = smp_processor_id();
while (1) {
/*
* Indicate to the HV that we are idle. Now would be
* a good time to find other work to dispatch.
*/
lpaca->lppaca.idle = 1;
while (!need_resched() && !cpu_is_offline(cpu)) {
local_irq_disable();
ppc64_runlatch_off();
/*
* Yield the processor to the hypervisor. We return if
* an external interrupt occurs (which are driven prior
* to returning here) or if a prod occurs from another
* processor. When returning here, external interrupts
* are enabled.
*
* Check need_resched() again with interrupts disabled
* to avoid a race.
*/
if (!need_resched())
cede_processor();
else
local_irq_enable();
HMT_medium();
}
lpaca->lppaca.idle = 0;
ppc64_runlatch_on();
schedule();
if (cpu_is_offline(cpu) && system_state == SYSTEM_RUNNING)
cpu_die();
}
}
static int pSeries_pci_probe_mode(struct pci_bus *bus)
{
if (systemcfg->platform & PLATFORM_LPAR)
return PCI_PROBE_DEVTREE;
return PCI_PROBE_NORMAL;
}
struct machdep_calls __initdata pSeries_md = {
.probe = pSeries_probe,
.setup_arch = pSeries_setup_arch,
.init_early = pSeries_init_early,
.show_cpuinfo = pSeries_show_cpuinfo,
.log_error = pSeries_log_error,
.pcibios_fixup = pSeries_final_fixup,
.pci_probe_mode = pSeries_pci_probe_mode,
.irq_bus_setup = pSeries_irq_bus_setup,
.restart = rtas_fw_restart,
.power_off = rtas_fw_power_off,
.halt = rtas_fw_halt,
.panic = rtas_os_term,
.cpu_die = pSeries_mach_cpu_die,
.get_boot_time = rtas_get_boot_time,
.get_rtc_time = rtas_get_rtc_time,
.set_rtc_time = rtas_set_rtc_time,
.calibrate_decr = generic_calibrate_decr,
.progress = rtas_progress,
.check_legacy_ioport = pSeries_check_legacy_ioport,
.system_reset_exception = pSeries_system_reset_exception,
.machine_check_exception = pSeries_machine_check_exception,
};