OpenCloudOS-Kernel/drivers/net/wireless/ath/ath9k/ar9003_eeprom.c

2230 lines
63 KiB
C

/*
* Copyright (c) 2010 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "hw.h"
#include "ar9003_phy.h"
#include "ar9003_eeprom.h"
#define COMP_HDR_LEN 4
#define COMP_CKSUM_LEN 2
#define AR_CH0_TOP (0x00016288)
#define AR_CH0_TOP_XPABIASLVL (0x3)
#define AR_CH0_TOP_XPABIASLVL_S (8)
#define AR_CH0_THERM (0x00016290)
#define AR_CH0_THERM_SPARE (0x3f)
#define AR_CH0_THERM_SPARE_S (0)
#define AR_SWITCH_TABLE_COM_ALL (0xffff)
#define AR_SWITCH_TABLE_COM_ALL_S (0)
#define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
#define AR_SWITCH_TABLE_COM2_ALL_S (0)
#define AR_SWITCH_TABLE_ALL (0xfff)
#define AR_SWITCH_TABLE_ALL_S (0)
#define LE16(x) __constant_cpu_to_le16(x)
#define LE32(x) __constant_cpu_to_le32(x)
/* Local defines to distinguish between extension and control CTL's */
#define EXT_ADDITIVE (0x8000)
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
#define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
#define PWRINCR_3_TO_1_CHAIN 9 /* 10*log(3)*2 */
#define PWRINCR_3_TO_2_CHAIN 3 /* floor(10*log(3/2)*2) */
#define PWRINCR_2_TO_1_CHAIN 6 /* 10*log(2)*2 */
#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
static const struct ar9300_eeprom ar9300_default = {
.eepromVersion = 2,
.templateVersion = 2,
.macAddr = {1, 2, 3, 4, 5, 6},
.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.baseEepHeader = {
.regDmn = { LE16(0), LE16(0x1f) },
.txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
.opCapFlags = {
.opFlags = AR9300_OPFLAGS_11G | AR9300_OPFLAGS_11A,
.eepMisc = 0,
},
.rfSilent = 0,
.blueToothOptions = 0,
.deviceCap = 0,
.deviceType = 5, /* takes lower byte in eeprom location */
.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
.params_for_tuning_caps = {0, 0},
.featureEnable = 0x0c,
/*
* bit0 - enable tx temp comp - disabled
* bit1 - enable tx volt comp - disabled
* bit2 - enable fastClock - enabled
* bit3 - enable doubling - enabled
* bit4 - enable internal regulator - disabled
* bit5 - enable pa predistortion - disabled
*/
.miscConfiguration = 0, /* bit0 - turn down drivestrength */
.eepromWriteEnableGpio = 3,
.wlanDisableGpio = 0,
.wlanLedGpio = 8,
.rxBandSelectGpio = 0xff,
.txrxgain = 0,
.swreg = 0,
},
.modalHeader2G = {
/* ar9300_modal_eep_header 2g */
/* 4 idle,t1,t2,b(4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
.antCtrlCommon2 = LE32(0x22222),
/*
* antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
* rx1, rx12, b (2 bits each)
*/
.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
/*
* xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
* for ar9280 (0xa20c/b20c 5:0)
*/
.xatten1DB = {0, 0, 0},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for ar9280 (0xa20c/b20c 16:12
*/
.xatten1Margin = {0, 0, 0},
.tempSlope = 36,
.voltSlope = 0,
/*
* spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
* channels in usual fbin coding format
*/
.spurChans = {0, 0, 0, 0, 0},
/*
* noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
* if the register is per chain
*/
.noiseFloorThreshCh = {-1, 0, 0},
.ob = {1, 1, 1},/* 3 chain */
.db_stage2 = {1, 1, 1}, /* 3 chain */
.db_stage3 = {0, 0, 0},
.db_stage4 = {0, 0, 0},
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2c,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x80c080),
.papdRateMaskHt40 = LE32(0x80c080),
.futureModal = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
},
},
.calFreqPier2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1),
},
/* ar9300_cal_data_per_freq_op_loop 2g */
.calPierData2G = {
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
},
.calTarget_freqbin_Cck = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2484, 1),
},
.calTarget_freqbin_2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT20 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT40 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTargetPowerCck = {
/* 1L-5L,5S,11L,11S */
{ {36, 36, 36, 36} },
{ {36, 36, 36, 36} },
},
.calTargetPower2G = {
/* 6-24,36,48,54 */
{ {32, 32, 28, 24} },
{ {32, 32, 28, 24} },
{ {32, 32, 28, 24} },
},
.calTargetPower2GHT20 = {
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
},
.calTargetPower2GHT40 = {
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
},
.ctlIndex_2G = {
0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
},
.ctl_freqbin_2G = {
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2457, 1),
FREQ2FBIN(2462, 1)
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2422, 1),
FREQ2FBIN(2427, 1),
FREQ2FBIN(2447, 1),
FREQ2FBIN(2452, 1)
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0,
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
FREQ2FBIN(2472, 1),
0,
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
},
{
/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[11].ctlEdges[3].bChannel */
FREQ2FBIN(2462, 1),
}
},
.ctlPowerData_2G = {
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
{ { {60, 1}, {60, 0}, {60, 0}, {60, 1} } },
{ { {60, 1}, {60, 0}, {0, 0}, {0, 0} } },
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
{ { {60, 0}, {60, 1}, {60, 1}, {60, 0} } },
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
{ { {60, 0}, {60, 1}, {60, 1}, {60, 1} } },
},
.modalHeader5G = {
/* 4 idle,t1,t2,b (4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
.antCtrlCommon2 = LE32(0x22222),
/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
.antCtrlChain = {
LE16(0x000), LE16(0x000), LE16(0x000),
},
/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
.xatten1DB = {0, 0, 0},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for merlin (0xa20c/b20c 16:12
*/
.xatten1Margin = {0, 0, 0},
.tempSlope = 68,
.voltSlope = 0,
/* spurChans spur channels in usual fbin coding format */
.spurChans = {0, 0, 0, 0, 0},
/* noiseFloorThreshCh Check if the register is per chain */
.noiseFloorThreshCh = {-1, 0, 0},
.ob = {3, 3, 3}, /* 3 chain */
.db_stage2 = {3, 3, 3}, /* 3 chain */
.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
.db_stage4 = {3, 3, 3}, /* don't exist for 2G */
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2d,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0xf0e0e0),
.papdRateMaskHt40 = LE32(0xf0e0e0),
.futureModal = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
},
},
.calFreqPier5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calPierData5G = {
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
},
.calTarget_freqbin_5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT20 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT40 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTargetPower5G = {
/* 6-24,36,48,54 */
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
},
.calTargetPower5GHT20 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
},
.calTargetPower5GHT40 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
},
.ctlIndex_5G = {
0x10, 0x16, 0x18, 0x40, 0x46,
0x48, 0x30, 0x36, 0x38
},
.ctl_freqbin_5G = {
{
/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
},
{
/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[3].ctlEdges[6].bChannel */ 0xFF,
/* Data[3].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
/* Data[4].ctlEdges[4].bChannel */ 0xFF,
/* Data[4].ctlEdges[5].bChannel */ 0xFF,
/* Data[4].ctlEdges[6].bChannel */ 0xFF,
/* Data[4].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[5].ctlEdges[6].bChannel */ 0xFF,
/* Data[5].ctlEdges[7].bChannel */ 0xFF
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
}
},
.ctlPowerData_5G = {
{
{
{60, 1}, {60, 1}, {60, 1}, {60, 1},
{60, 1}, {60, 1}, {60, 1}, {60, 0},
}
},
{
{
{60, 1}, {60, 1}, {60, 1}, {60, 1},
{60, 1}, {60, 1}, {60, 1}, {60, 0},
}
},
{
{
{60, 0}, {60, 1}, {60, 0}, {60, 1},
{60, 1}, {60, 1}, {60, 1}, {60, 1},
}
},
{
{
{60, 0}, {60, 1}, {60, 1}, {60, 0},
{60, 1}, {60, 0}, {60, 0}, {60, 0},
}
},
{
{
{60, 1}, {60, 1}, {60, 1}, {60, 0},
{60, 0}, {60, 0}, {60, 0}, {60, 0},
}
},
{
{
{60, 1}, {60, 1}, {60, 1}, {60, 1},
{60, 1}, {60, 0}, {60, 0}, {60, 0},
}
},
{
{
{60, 1}, {60, 1}, {60, 1}, {60, 1},
{60, 1}, {60, 1}, {60, 1}, {60, 1},
}
},
{
{
{60, 1}, {60, 1}, {60, 0}, {60, 1},
{60, 1}, {60, 1}, {60, 1}, {60, 0},
}
},
{
{
{60, 1}, {60, 0}, {60, 1}, {60, 1},
{60, 1}, {60, 1}, {60, 0}, {60, 1},
}
},
}
};
static u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
{
if (fbin == AR9300_BCHAN_UNUSED)
return fbin;
return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
}
static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
{
return 0;
}
static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
enum eeprom_param param)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
switch (param) {
case EEP_MAC_LSW:
return eep->macAddr[0] << 8 | eep->macAddr[1];
case EEP_MAC_MID:
return eep->macAddr[2] << 8 | eep->macAddr[3];
case EEP_MAC_MSW:
return eep->macAddr[4] << 8 | eep->macAddr[5];
case EEP_REG_0:
return le16_to_cpu(pBase->regDmn[0]);
case EEP_REG_1:
return le16_to_cpu(pBase->regDmn[1]);
case EEP_OP_CAP:
return pBase->deviceCap;
case EEP_OP_MODE:
return pBase->opCapFlags.opFlags;
case EEP_RF_SILENT:
return pBase->rfSilent;
case EEP_TX_MASK:
return (pBase->txrxMask >> 4) & 0xf;
case EEP_RX_MASK:
return pBase->txrxMask & 0xf;
case EEP_DRIVE_STRENGTH:
#define AR9300_EEP_BASE_DRIV_STRENGTH 0x1
return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
case EEP_INTERNAL_REGULATOR:
/* Bit 4 is internal regulator flag */
return (pBase->featureEnable & 0x10) >> 4;
case EEP_SWREG:
return le32_to_cpu(pBase->swreg);
case EEP_PAPRD:
return !!(pBase->featureEnable & BIT(5));
default:
return 0;
}
}
static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
u8 *buffer)
{
u16 val;
if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
return false;
*buffer = (val >> (8 * (address % 2))) & 0xff;
return true;
}
static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
u8 *buffer)
{
u16 val;
if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
return false;
buffer[0] = val >> 8;
buffer[1] = val & 0xff;
return true;
}
static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
int count)
{
struct ath_common *common = ath9k_hw_common(ah);
int i;
if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
ath_print(common, ATH_DBG_EEPROM,
"eeprom address not in range\n");
return false;
}
/*
* Since we're reading the bytes in reverse order from a little-endian
* word stream, an even address means we only use the lower half of
* the 16-bit word at that address
*/
if (address % 2 == 0) {
if (!ar9300_eeprom_read_byte(common, address--, buffer++))
goto error;
count--;
}
for (i = 0; i < count / 2; i++) {
if (!ar9300_eeprom_read_word(common, address, buffer))
goto error;
address -= 2;
buffer += 2;
}
if (count % 2)
if (!ar9300_eeprom_read_byte(common, address, buffer))
goto error;
return true;
error:
ath_print(common, ATH_DBG_EEPROM,
"unable to read eeprom region at offset %d\n", address);
return false;
}
static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
int *length, int *major, int *minor)
{
unsigned long value[4];
value[0] = best[0];
value[1] = best[1];
value[2] = best[2];
value[3] = best[3];
*code = ((value[0] >> 5) & 0x0007);
*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
*major = (value[2] & 0x000f);
*minor = (value[3] & 0x00ff);
}
static u16 ar9300_comp_cksum(u8 *data, int dsize)
{
int it, checksum = 0;
for (it = 0; it < dsize; it++) {
checksum += data[it];
checksum &= 0xffff;
}
return checksum;
}
static bool ar9300_uncompress_block(struct ath_hw *ah,
u8 *mptr,
int mdataSize,
u8 *block,
int size)
{
int it;
int spot;
int offset;
int length;
struct ath_common *common = ath9k_hw_common(ah);
spot = 0;
for (it = 0; it < size; it += (length+2)) {
offset = block[it];
offset &= 0xff;
spot += offset;
length = block[it+1];
length &= 0xff;
if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
ath_print(common, ATH_DBG_EEPROM,
"Restore at %d: spot=%d "
"offset=%d length=%d\n",
it, spot, offset, length);
memcpy(&mptr[spot], &block[it+2], length);
spot += length;
} else if (length > 0) {
ath_print(common, ATH_DBG_EEPROM,
"Bad restore at %d: spot=%d "
"offset=%d length=%d\n",
it, spot, offset, length);
return false;
}
}
return true;
}
static int ar9300_compress_decision(struct ath_hw *ah,
int it,
int code,
int reference,
u8 *mptr,
u8 *word, int length, int mdata_size)
{
struct ath_common *common = ath9k_hw_common(ah);
u8 *dptr;
switch (code) {
case _CompressNone:
if (length != mdata_size) {
ath_print(common, ATH_DBG_EEPROM,
"EEPROM structure size mismatch"
"memory=%d eeprom=%d\n", mdata_size, length);
return -1;
}
memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
ath_print(common, ATH_DBG_EEPROM, "restored eeprom %d:"
" uncompressed, length %d\n", it, length);
break;
case _CompressBlock:
if (reference == 0) {
dptr = mptr;
} else {
if (reference != 2) {
ath_print(common, ATH_DBG_EEPROM,
"cant find reference eeprom"
"struct %d\n", reference);
return -1;
}
memcpy(mptr, &ar9300_default, mdata_size);
}
ath_print(common, ATH_DBG_EEPROM,
"restore eeprom %d: block, reference %d,"
" length %d\n", it, reference, length);
ar9300_uncompress_block(ah, mptr, mdata_size,
(u8 *) (word + COMP_HDR_LEN), length);
break;
default:
ath_print(common, ATH_DBG_EEPROM, "unknown compression"
" code %d\n", code);
return -1;
}
return 0;
}
/*
* Read the configuration data from the eeprom.
* The data can be put in any specified memory buffer.
*
* Returns -1 on error.
* Returns address of next memory location on success.
*/
static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
u8 *mptr, int mdata_size)
{
#define MDEFAULT 15
#define MSTATE 100
int cptr;
u8 *word;
int code;
int reference, length, major, minor;
int osize;
int it;
u16 checksum, mchecksum;
struct ath_common *common = ath9k_hw_common(ah);
word = kzalloc(2048, GFP_KERNEL);
if (!word)
return -1;
memcpy(mptr, &ar9300_default, mdata_size);
cptr = AR9300_BASE_ADDR;
for (it = 0; it < MSTATE; it++) {
if (!ar9300_read_eeprom(ah, cptr, word, COMP_HDR_LEN))
goto fail;
if ((word[0] == 0 && word[1] == 0 && word[2] == 0 &&
word[3] == 0) || (word[0] == 0xff && word[1] == 0xff
&& word[2] == 0xff && word[3] == 0xff))
break;
ar9300_comp_hdr_unpack(word, &code, &reference,
&length, &major, &minor);
ath_print(common, ATH_DBG_EEPROM,
"Found block at %x: code=%d ref=%d"
"length=%d major=%d minor=%d\n", cptr, code,
reference, length, major, minor);
if (length >= 1024) {
ath_print(common, ATH_DBG_EEPROM,
"Skipping bad header\n");
cptr -= COMP_HDR_LEN;
continue;
}
osize = length;
ar9300_read_eeprom(ah, cptr, word,
COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
mchecksum = word[COMP_HDR_LEN + osize] |
(word[COMP_HDR_LEN + osize + 1] << 8);
ath_print(common, ATH_DBG_EEPROM,
"checksum %x %x\n", checksum, mchecksum);
if (checksum == mchecksum) {
ar9300_compress_decision(ah, it, code, reference, mptr,
word, length, mdata_size);
} else {
ath_print(common, ATH_DBG_EEPROM,
"skipping block with bad checksum\n");
}
cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
}
kfree(word);
return cptr;
fail:
kfree(word);
return -1;
}
/*
* Restore the configuration structure by reading the eeprom.
* This function destroys any existing in-memory structure
* content.
*/
static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
{
u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
if (ar9300_eeprom_restore_internal(ah, mptr,
sizeof(struct ar9300_eeprom)) < 0)
return false;
return true;
}
/* XXX: review hardware docs */
static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
{
return ah->eeprom.ar9300_eep.eepromVersion;
}
/* XXX: could be read from the eepromVersion, not sure yet */
static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
{
return 0;
}
static u8 ath9k_hw_ar9300_get_num_ant_config(struct ath_hw *ah,
enum ath9k_hal_freq_band freq_band)
{
return 1;
}
static u32 ath9k_hw_ar9300_get_eeprom_antenna_cfg(struct ath_hw *ah,
struct ath9k_channel *chan)
{
return -EINVAL;
}
static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
if (is2ghz)
return eep->modalHeader2G.xpaBiasLvl;
else
return eep->modalHeader5G.xpaBiasLvl;
}
static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
{
int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, (bias & 0x3));
REG_RMW_FIELD(ah, AR_CH0_THERM, AR_CH0_THERM_SPARE,
((bias >> 2) & 0x3));
}
static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
__le32 val;
if (is2ghz)
val = eep->modalHeader2G.antCtrlCommon;
else
val = eep->modalHeader5G.antCtrlCommon;
return le32_to_cpu(val);
}
static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
__le32 val;
if (is2ghz)
val = eep->modalHeader2G.antCtrlCommon2;
else
val = eep->modalHeader5G.antCtrlCommon2;
return le32_to_cpu(val);
}
static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
int chain,
bool is2ghz)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
__le16 val = 0;
if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
if (is2ghz)
val = eep->modalHeader2G.antCtrlChain[chain];
else
val = eep->modalHeader5G.antCtrlChain[chain];
}
return le16_to_cpu(val);
}
static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
{
u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_ALL, value);
value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
value = ar9003_hw_ant_ctrl_chain_get(ah, 0, is2ghz);
REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_0, AR_SWITCH_TABLE_ALL, value);
value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_1, AR_SWITCH_TABLE_ALL, value);
value = ar9003_hw_ant_ctrl_chain_get(ah, 2, is2ghz);
REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_2, AR_SWITCH_TABLE_ALL, value);
}
static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
{
int drive_strength;
unsigned long reg;
drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
if (!drive_strength)
return;
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
reg &= ~0x00ffffc0;
reg |= 0x5 << 21;
reg |= 0x5 << 18;
reg |= 0x5 << 15;
reg |= 0x5 << 12;
reg |= 0x5 << 9;
reg |= 0x5 << 6;
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
reg &= ~0xffffffe0;
reg |= 0x5 << 29;
reg |= 0x5 << 26;
reg |= 0x5 << 23;
reg |= 0x5 << 20;
reg |= 0x5 << 17;
reg |= 0x5 << 14;
reg |= 0x5 << 11;
reg |= 0x5 << 8;
reg |= 0x5 << 5;
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
reg &= ~0xff800000;
reg |= 0x5 << 29;
reg |= 0x5 << 26;
reg |= 0x5 << 23;
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
}
static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
{
int internal_regulator =
ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
if (internal_regulator) {
/* Internal regulator is ON. Write swreg register. */
int swreg = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
REG_WRITE(ah, AR_RTC_REG_CONTROL1,
REG_READ(ah, AR_RTC_REG_CONTROL1) &
(~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
/* Set REG_CONTROL1.SWREG_PROGRAM */
REG_WRITE(ah, AR_RTC_REG_CONTROL1,
REG_READ(ah,
AR_RTC_REG_CONTROL1) |
AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
} else {
REG_WRITE(ah, AR_RTC_SLEEP_CLK,
(REG_READ(ah,
AR_RTC_SLEEP_CLK) |
AR_RTC_FORCE_SWREG_PRD));
}
}
static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
struct ath9k_channel *chan)
{
ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
ar9003_hw_drive_strength_apply(ah);
ar9003_hw_internal_regulator_apply(ah);
}
static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
struct ath9k_channel *chan)
{
}
/*
* Returns the interpolated y value corresponding to the specified x value
* from the np ordered pairs of data (px,py).
* The pairs do not have to be in any order.
* If the specified x value is less than any of the px,
* the returned y value is equal to the py for the lowest px.
* If the specified x value is greater than any of the px,
* the returned y value is equal to the py for the highest px.
*/
static int ar9003_hw_power_interpolate(int32_t x,
int32_t *px, int32_t *py, u_int16_t np)
{
int ip = 0;
int lx = 0, ly = 0, lhave = 0;
int hx = 0, hy = 0, hhave = 0;
int dx = 0;
int y = 0;
lhave = 0;
hhave = 0;
/* identify best lower and higher x calibration measurement */
for (ip = 0; ip < np; ip++) {
dx = x - px[ip];
/* this measurement is higher than our desired x */
if (dx <= 0) {
if (!hhave || dx > (x - hx)) {
/* new best higher x measurement */
hx = px[ip];
hy = py[ip];
hhave = 1;
}
}
/* this measurement is lower than our desired x */
if (dx >= 0) {
if (!lhave || dx < (x - lx)) {
/* new best lower x measurement */
lx = px[ip];
ly = py[ip];
lhave = 1;
}
}
}
/* the low x is good */
if (lhave) {
/* so is the high x */
if (hhave) {
/* they're the same, so just pick one */
if (hx == lx)
y = ly;
else /* interpolate */
y = ly + (((x - lx) * (hy - ly)) / (hx - lx));
} else /* only low is good, use it */
y = ly;
} else if (hhave) /* only high is good, use it */
y = hy;
else /* nothing is good,this should never happen unless np=0, ???? */
y = -(1 << 30);
return y;
}
static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
u16 rateIndex, u16 freq, bool is2GHz)
{
u16 numPiers, i;
s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct cal_tgt_pow_legacy *pEepromTargetPwr;
u8 *pFreqBin;
if (is2GHz) {
numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower2G;
pFreqBin = eep->calTarget_freqbin_2G;
} else {
numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower5G;
pFreqBin = eep->calTarget_freqbin_5G;
}
/*
* create array of channels and targetpower from
* targetpower piers stored on eeprom
*/
for (i = 0; i < numPiers; i++) {
freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
}
/* interpolate to get target power for given frequency */
return (u8) ar9003_hw_power_interpolate((s32) freq,
freqArray,
targetPowerArray, numPiers);
}
static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
u16 rateIndex,
u16 freq, bool is2GHz)
{
u16 numPiers, i;
s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct cal_tgt_pow_ht *pEepromTargetPwr;
u8 *pFreqBin;
if (is2GHz) {
numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower2GHT20;
pFreqBin = eep->calTarget_freqbin_2GHT20;
} else {
numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower5GHT20;
pFreqBin = eep->calTarget_freqbin_5GHT20;
}
/*
* create array of channels and targetpower
* from targetpower piers stored on eeprom
*/
for (i = 0; i < numPiers; i++) {
freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
}
/* interpolate to get target power for given frequency */
return (u8) ar9003_hw_power_interpolate((s32) freq,
freqArray,
targetPowerArray, numPiers);
}
static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
u16 rateIndex,
u16 freq, bool is2GHz)
{
u16 numPiers, i;
s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct cal_tgt_pow_ht *pEepromTargetPwr;
u8 *pFreqBin;
if (is2GHz) {
numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower2GHT40;
pFreqBin = eep->calTarget_freqbin_2GHT40;
} else {
numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower5GHT40;
pFreqBin = eep->calTarget_freqbin_5GHT40;
}
/*
* create array of channels and targetpower from
* targetpower piers stored on eeprom
*/
for (i = 0; i < numPiers; i++) {
freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
}
/* interpolate to get target power for given frequency */
return (u8) ar9003_hw_power_interpolate((s32) freq,
freqArray,
targetPowerArray, numPiers);
}
static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
u16 rateIndex, u16 freq)
{
u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
u8 *pFreqBin = eep->calTarget_freqbin_Cck;
/*
* create array of channels and targetpower from
* targetpower piers stored on eeprom
*/
for (i = 0; i < numPiers; i++) {
freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
}
/* interpolate to get target power for given frequency */
return (u8) ar9003_hw_power_interpolate((s32) freq,
freqArray,
targetPowerArray, numPiers);
}
/* Set tx power registers to array of values passed in */
static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
{
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
/* make sure forced gain is not set */
REG_WRITE(ah, 0xa458, 0);
/* Write the OFDM power per rate set */
/* 6 (LSB), 9, 12, 18 (MSB) */
REG_WRITE(ah, 0xa3c0,
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
/* 24 (LSB), 36, 48, 54 (MSB) */
REG_WRITE(ah, 0xa3c4,
POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
/* Write the CCK power per rate set */
/* 1L (LSB), reserved, 2L, 2S (MSB) */
REG_WRITE(ah, 0xa3c8,
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
/* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
REG_WRITE(ah, 0xa3cc,
POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
);
/* Write the HT20 power per rate set */
/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
REG_WRITE(ah, 0xa3d0,
POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
);
/* 6 (LSB), 7, 12, 13 (MSB) */
REG_WRITE(ah, 0xa3d4,
POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
);
/* 14 (LSB), 15, 20, 21 */
REG_WRITE(ah, 0xa3e4,
POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
);
/* Mixed HT20 and HT40 rates */
/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
REG_WRITE(ah, 0xa3e8,
POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
);
/*
* Write the HT40 power per rate set
* correct PAR difference between HT40 and HT20/LEGACY
* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
*/
REG_WRITE(ah, 0xa3d8,
POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
);
/* 6 (LSB), 7, 12, 13 (MSB) */
REG_WRITE(ah, 0xa3dc,
POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
);
/* 14 (LSB), 15, 20, 21 */
REG_WRITE(ah, 0xa3ec,
POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
);
return 0;
#undef POW_SM
}
static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq,
u8 *targetPowerValT2)
{
/* XXX: hard code for now, need to get from eeprom struct */
u8 ht40PowerIncForPdadc = 0;
bool is2GHz = false;
unsigned int i = 0;
struct ath_common *common = ath9k_hw_common(ah);
if (freq < 4000)
is2GHz = true;
targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_LEGACY_36] =
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_LEGACY_48] =
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_LEGACY_54] =
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
freq);
targetPowerValT2[ALL_TARGET_LEGACY_5S] =
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
targetPowerValT2[ALL_TARGET_LEGACY_11L] =
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
targetPowerValT2[ALL_TARGET_LEGACY_11S] =
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
freq, is2GHz);
targetPowerValT2[ALL_TARGET_HT20_4] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_5] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_6] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_7] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_12] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_13] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_14] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_15] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_20] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_21] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_22] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_23] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_4] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_5] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_6] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_7] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_12] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_13] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_14] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_15] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_20] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_21] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_22] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_23] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
is2GHz) + ht40PowerIncForPdadc;
while (i < ar9300RateSize) {
ath_print(common, ATH_DBG_EEPROM,
"TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
i++;
ath_print(common, ATH_DBG_EEPROM,
"TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
i++;
ath_print(common, ATH_DBG_EEPROM,
"TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
i++;
ath_print(common, ATH_DBG_EEPROM,
"TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
i++;
}
}
static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
int mode,
int ipier,
int ichain,
int *pfrequency,
int *pcorrection,
int *ptemperature, int *pvoltage)
{
u8 *pCalPier;
struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
int is2GHz;
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ath_common *common = ath9k_hw_common(ah);
if (ichain >= AR9300_MAX_CHAINS) {
ath_print(common, ATH_DBG_EEPROM,
"Invalid chain index, must be less than %d\n",
AR9300_MAX_CHAINS);
return -1;
}
if (mode) { /* 5GHz */
if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
ath_print(common, ATH_DBG_EEPROM,
"Invalid 5GHz cal pier index, must "
"be less than %d\n",
AR9300_NUM_5G_CAL_PIERS);
return -1;
}
pCalPier = &(eep->calFreqPier5G[ipier]);
pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
is2GHz = 0;
} else {
if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
ath_print(common, ATH_DBG_EEPROM,
"Invalid 2GHz cal pier index, must "
"be less than %d\n", AR9300_NUM_2G_CAL_PIERS);
return -1;
}
pCalPier = &(eep->calFreqPier2G[ipier]);
pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
is2GHz = 1;
}
*pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
*pcorrection = pCalPierStruct->refPower;
*ptemperature = pCalPierStruct->tempMeas;
*pvoltage = pCalPierStruct->voltMeas;
return 0;
}
static int ar9003_hw_power_control_override(struct ath_hw *ah,
int frequency,
int *correction,
int *voltage, int *temperature)
{
int tempSlope = 0;
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
REG_RMW(ah, AR_PHY_TPC_11_B0,
(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
AR_PHY_TPC_OLPC_GAIN_DELTA);
REG_RMW(ah, AR_PHY_TPC_11_B1,
(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
AR_PHY_TPC_OLPC_GAIN_DELTA);
REG_RMW(ah, AR_PHY_TPC_11_B2,
(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
AR_PHY_TPC_OLPC_GAIN_DELTA);
/* enable open loop power control on chip */
REG_RMW(ah, AR_PHY_TPC_6_B0,
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
AR_PHY_TPC_6_ERROR_EST_MODE);
REG_RMW(ah, AR_PHY_TPC_6_B1,
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
AR_PHY_TPC_6_ERROR_EST_MODE);
REG_RMW(ah, AR_PHY_TPC_6_B2,
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
AR_PHY_TPC_6_ERROR_EST_MODE);
/*
* enable temperature compensation
* Need to use register names
*/
if (frequency < 4000)
tempSlope = eep->modalHeader2G.tempSlope;
else
tempSlope = eep->modalHeader5G.tempSlope;
REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
temperature[0]);
return 0;
}
/* Apply the recorded correction values. */
static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
{
int ichain, ipier, npier;
int mode;
int lfrequency[AR9300_MAX_CHAINS],
lcorrection[AR9300_MAX_CHAINS],
ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
int hfrequency[AR9300_MAX_CHAINS],
hcorrection[AR9300_MAX_CHAINS],
htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
int fdiff;
int correction[AR9300_MAX_CHAINS],
voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
int pfrequency, pcorrection, ptemperature, pvoltage;
struct ath_common *common = ath9k_hw_common(ah);
mode = (frequency >= 4000);
if (mode)
npier = AR9300_NUM_5G_CAL_PIERS;
else
npier = AR9300_NUM_2G_CAL_PIERS;
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
lfrequency[ichain] = 0;
hfrequency[ichain] = 100000;
}
/* identify best lower and higher frequency calibration measurement */
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
for (ipier = 0; ipier < npier; ipier++) {
if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
&pfrequency, &pcorrection,
&ptemperature, &pvoltage)) {
fdiff = frequency - pfrequency;
/*
* this measurement is higher than
* our desired frequency
*/
if (fdiff <= 0) {
if (hfrequency[ichain] <= 0 ||
hfrequency[ichain] >= 100000 ||
fdiff >
(frequency - hfrequency[ichain])) {
/*
* new best higher
* frequency measurement
*/
hfrequency[ichain] = pfrequency;
hcorrection[ichain] =
pcorrection;
htemperature[ichain] =
ptemperature;
hvoltage[ichain] = pvoltage;
}
}
if (fdiff >= 0) {
if (lfrequency[ichain] <= 0
|| fdiff <
(frequency - lfrequency[ichain])) {
/*
* new best lower
* frequency measurement
*/
lfrequency[ichain] = pfrequency;
lcorrection[ichain] =
pcorrection;
ltemperature[ichain] =
ptemperature;
lvoltage[ichain] = pvoltage;
}
}
}
}
}
/* interpolate */
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
ath_print(common, ATH_DBG_EEPROM,
"ch=%d f=%d low=%d %d h=%d %d\n",
ichain, frequency, lfrequency[ichain],
lcorrection[ichain], hfrequency[ichain],
hcorrection[ichain]);
/* they're the same, so just pick one */
if (hfrequency[ichain] == lfrequency[ichain]) {
correction[ichain] = lcorrection[ichain];
voltage[ichain] = lvoltage[ichain];
temperature[ichain] = ltemperature[ichain];
}
/* the low frequency is good */
else if (frequency - lfrequency[ichain] < 1000) {
/* so is the high frequency, interpolate */
if (hfrequency[ichain] - frequency < 1000) {
correction[ichain] = lcorrection[ichain] +
(((frequency - lfrequency[ichain]) *
(hcorrection[ichain] -
lcorrection[ichain])) /
(hfrequency[ichain] - lfrequency[ichain]));
temperature[ichain] = ltemperature[ichain] +
(((frequency - lfrequency[ichain]) *
(htemperature[ichain] -
ltemperature[ichain])) /
(hfrequency[ichain] - lfrequency[ichain]));
voltage[ichain] =
lvoltage[ichain] +
(((frequency -
lfrequency[ichain]) * (hvoltage[ichain] -
lvoltage[ichain]))
/ (hfrequency[ichain] -
lfrequency[ichain]));
}
/* only low is good, use it */
else {
correction[ichain] = lcorrection[ichain];
temperature[ichain] = ltemperature[ichain];
voltage[ichain] = lvoltage[ichain];
}
}
/* only high is good, use it */
else if (hfrequency[ichain] - frequency < 1000) {
correction[ichain] = hcorrection[ichain];
temperature[ichain] = htemperature[ichain];
voltage[ichain] = hvoltage[ichain];
} else { /* nothing is good, presume 0???? */
correction[ichain] = 0;
temperature[ichain] = 0;
voltage[ichain] = 0;
}
}
ar9003_hw_power_control_override(ah, frequency, correction, voltage,
temperature);
ath_print(common, ATH_DBG_EEPROM,
"for frequency=%d, calibration correction = %d %d %d\n",
frequency, correction[0], correction[1], correction[2]);
return 0;
}
static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
int idx,
int edge,
bool is2GHz)
{
struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
if (is2GHz)
return ctl_2g[idx].ctlEdges[edge].tPower;
else
return ctl_5g[idx].ctlEdges[edge].tPower;
}
static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
int idx,
unsigned int edge,
u16 freq,
bool is2GHz)
{
struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
u8 *ctl_freqbin = is2GHz ?
&eep->ctl_freqbin_2G[idx][0] :
&eep->ctl_freqbin_5G[idx][0];
if (is2GHz) {
if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
ctl_2g[idx].ctlEdges[edge - 1].flag)
return ctl_2g[idx].ctlEdges[edge - 1].tPower;
} else {
if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
ctl_5g[idx].ctlEdges[edge - 1].flag)
return ctl_5g[idx].ctlEdges[edge - 1].tPower;
}
return AR9300_MAX_RATE_POWER;
}
/*
* Find the maximum conformance test limit for the given channel and CTL info
*/
static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
u16 freq, int idx, bool is2GHz)
{
u16 twiceMaxEdgePower = AR9300_MAX_RATE_POWER;
u8 *ctl_freqbin = is2GHz ?
&eep->ctl_freqbin_2G[idx][0] :
&eep->ctl_freqbin_5G[idx][0];
u16 num_edges = is2GHz ?
AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
unsigned int edge;
/* Get the edge power */
for (edge = 0;
(edge < num_edges) && (ctl_freqbin[edge] != AR9300_BCHAN_UNUSED);
edge++) {
/*
* If there's an exact channel match or an inband flag set
* on the lower channel use the given rdEdgePower
*/
if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
twiceMaxEdgePower =
ar9003_hw_get_direct_edge_power(eep, idx,
edge, is2GHz);
break;
} else if ((edge > 0) &&
(freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
is2GHz))) {
twiceMaxEdgePower =
ar9003_hw_get_indirect_edge_power(eep, idx,
edge, freq,
is2GHz);
/*
* Leave loop - no more affecting edges possible in
* this monotonic increasing list
*/
break;
}
}
return twiceMaxEdgePower;
}
static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
struct ath9k_channel *chan,
u8 *pPwrArray, u16 cfgCtl,
u8 twiceAntennaReduction,
u8 twiceMaxRegulatoryPower,
u16 powerLimit)
{
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
struct ath_common *common = ath9k_hw_common(ah);
struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
u16 twiceMaxEdgePower = AR9300_MAX_RATE_POWER;
static const u16 tpScaleReductionTable[5] = {
0, 3, 6, 9, AR9300_MAX_RATE_POWER
};
int i;
int16_t twiceLargestAntenna;
u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
u16 ctlModesFor11a[] = {
CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
};
u16 ctlModesFor11g[] = {
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
CTL_11G_EXT, CTL_2GHT40
};
u16 numCtlModes, *pCtlMode, ctlMode, freq;
struct chan_centers centers;
u8 *ctlIndex;
u8 ctlNum;
u16 twiceMinEdgePower;
bool is2ghz = IS_CHAN_2GHZ(chan);
ath9k_hw_get_channel_centers(ah, chan, &centers);
/* Compute TxPower reduction due to Antenna Gain */
if (is2ghz)
twiceLargestAntenna = pEepData->modalHeader2G.antennaGain;
else
twiceLargestAntenna = pEepData->modalHeader5G.antennaGain;
twiceLargestAntenna = (int16_t)min((twiceAntennaReduction) -
twiceLargestAntenna, 0);
/*
* scaledPower is the minimum of the user input power level
* and the regulatory allowed power level
*/
maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
maxRegAllowedPower -=
(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
}
scaledPower = min(powerLimit, maxRegAllowedPower);
/*
* Reduce scaled Power by number of chains active to get
* to per chain tx power level
*/
switch (ar5416_get_ntxchains(ah->txchainmask)) {
case 1:
break;
case 2:
scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
break;
case 3:
scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
break;
}
scaledPower = max((u16)0, scaledPower);
/*
* Get target powers from EEPROM - our baseline for TX Power
*/
if (is2ghz) {
/* Setup for CTL modes */
/* CTL_11B, CTL_11G, CTL_2GHT20 */
numCtlModes =
ARRAY_SIZE(ctlModesFor11g) -
SUB_NUM_CTL_MODES_AT_2G_40;
pCtlMode = ctlModesFor11g;
if (IS_CHAN_HT40(chan))
/* All 2G CTL's */
numCtlModes = ARRAY_SIZE(ctlModesFor11g);
} else {
/* Setup for CTL modes */
/* CTL_11A, CTL_5GHT20 */
numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
SUB_NUM_CTL_MODES_AT_5G_40;
pCtlMode = ctlModesFor11a;
if (IS_CHAN_HT40(chan))
/* All 5G CTL's */
numCtlModes = ARRAY_SIZE(ctlModesFor11a);
}
/*
* For MIMO, need to apply regulatory caps individually across
* dynamically running modes: CCK, OFDM, HT20, HT40
*
* The outer loop walks through each possible applicable runtime mode.
* The inner loop walks through each ctlIndex entry in EEPROM.
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
*/
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
(pCtlMode[ctlMode] == CTL_2GHT40);
if (isHt40CtlMode)
freq = centers.synth_center;
else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
freq = centers.ext_center;
else
freq = centers.ctl_center;
ath_print(common, ATH_DBG_REGULATORY,
"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
"EXT_ADDITIVE %d\n",
ctlMode, numCtlModes, isHt40CtlMode,
(pCtlMode[ctlMode] & EXT_ADDITIVE));
/* walk through each CTL index stored in EEPROM */
if (is2ghz) {
ctlIndex = pEepData->ctlIndex_2G;
ctlNum = AR9300_NUM_CTLS_2G;
} else {
ctlIndex = pEepData->ctlIndex_5G;
ctlNum = AR9300_NUM_CTLS_5G;
}
for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
ath_print(common, ATH_DBG_REGULATORY,
"LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
"pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
"chan %dn",
i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
chan->channel);
/*
* compare test group from regulatory
* channel list with test mode from pCtlMode
* list
*/
if ((((cfgCtl & ~CTL_MODE_M) |
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
ctlIndex[i]) ||
(((cfgCtl & ~CTL_MODE_M) |
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
((ctlIndex[i] & CTL_MODE_M) |
SD_NO_CTL))) {
twiceMinEdgePower =
ar9003_hw_get_max_edge_power(pEepData,
freq, i,
is2ghz);
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
/*
* Find the minimum of all CTL
* edge powers that apply to
* this channel
*/
twiceMaxEdgePower =
min(twiceMaxEdgePower,
twiceMinEdgePower);
else {
/* specific */
twiceMaxEdgePower =
twiceMinEdgePower;
break;
}
}
}
minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
ath_print(common, ATH_DBG_REGULATORY,
"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d "
"sP %d minCtlPwr %d\n",
ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
scaledPower, minCtlPower);
/* Apply ctl mode to correct target power set */
switch (pCtlMode[ctlMode]) {
case CTL_11B:
for (i = ALL_TARGET_LEGACY_1L_5L;
i <= ALL_TARGET_LEGACY_11S; i++)
pPwrArray[i] =
(u8)min((u16)pPwrArray[i],
minCtlPower);
break;
case CTL_11A:
case CTL_11G:
for (i = ALL_TARGET_LEGACY_6_24;
i <= ALL_TARGET_LEGACY_54; i++)
pPwrArray[i] =
(u8)min((u16)pPwrArray[i],
minCtlPower);
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = ALL_TARGET_HT20_0_8_16;
i <= ALL_TARGET_HT20_21; i++)
pPwrArray[i] =
(u8)min((u16)pPwrArray[i],
minCtlPower);
pPwrArray[ALL_TARGET_HT20_22] =
(u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
minCtlPower);
pPwrArray[ALL_TARGET_HT20_23] =
(u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
minCtlPower);
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = ALL_TARGET_HT40_0_8_16;
i <= ALL_TARGET_HT40_23; i++)
pPwrArray[i] =
(u8)min((u16)pPwrArray[i],
minCtlPower);
break;
default:
break;
}
} /* end ctl mode checking */
}
static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
struct ath9k_channel *chan, u16 cfgCtl,
u8 twiceAntennaReduction,
u8 twiceMaxRegulatoryPower,
u8 powerLimit, bool test)
{
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
struct ath_common *common = ath9k_hw_common(ah);
u8 targetPowerValT2[ar9300RateSize];
unsigned int i = 0;
ar9003_hw_set_target_power_eeprom(ah, chan->channel, targetPowerValT2);
ar9003_hw_set_power_per_rate_table(ah, chan,
targetPowerValT2, cfgCtl,
twiceAntennaReduction,
twiceMaxRegulatoryPower,
powerLimit);
regulatory->max_power_level = 0;
for (i = 0; i < ar9300RateSize; i++) {
if (targetPowerValT2[i] > regulatory->max_power_level)
regulatory->max_power_level = targetPowerValT2[i];
}
if (test)
return;
for (i = 0; i < ar9300RateSize; i++) {
ath_print(common, ATH_DBG_EEPROM,
"TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
i++;
ath_print(common, ATH_DBG_EEPROM,
"TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
i++;
ath_print(common, ATH_DBG_EEPROM,
"TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
i++;
ath_print(common, ATH_DBG_EEPROM,
"TPC[%02d] 0x%08x\n\n", i, targetPowerValT2[i]);
i++;
}
/*
* This is the TX power we send back to driver core,
* and it can use to pass to userspace to display our
* currently configured TX power setting.
*
* Since power is rate dependent, use one of the indices
* from the AR9300_Rates enum to select an entry from
* targetPowerValT2[] to report. Currently returns the
* power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps
* as CCK power is less interesting (?).
*/
i = ALL_TARGET_LEGACY_6_24; /* legacy */
if (IS_CHAN_HT40(chan))
i = ALL_TARGET_HT40_0_8_16; /* ht40 */
else if (IS_CHAN_HT20(chan))
i = ALL_TARGET_HT20_0_8_16; /* ht20 */
ah->txpower_limit = targetPowerValT2[i];
regulatory->max_power_level = targetPowerValT2[i];
/* Write target power array to registers */
ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
ar9003_hw_calibration_apply(ah, chan->channel);
}
static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
u16 i, bool is2GHz)
{
return AR_NO_SPUR;
}
s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
}
s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
}
const struct eeprom_ops eep_ar9300_ops = {
.check_eeprom = ath9k_hw_ar9300_check_eeprom,
.get_eeprom = ath9k_hw_ar9300_get_eeprom,
.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
.get_num_ant_config = ath9k_hw_ar9300_get_num_ant_config,
.get_eeprom_antenna_cfg = ath9k_hw_ar9300_get_eeprom_antenna_cfg,
.set_board_values = ath9k_hw_ar9300_set_board_values,
.set_addac = ath9k_hw_ar9300_set_addac,
.set_txpower = ath9k_hw_ar9300_set_txpower,
.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
};