4519 lines
106 KiB
C
4519 lines
106 KiB
C
/*
|
|
BlueZ - Bluetooth protocol stack for Linux
|
|
Copyright (C) 2000-2001 Qualcomm Incorporated
|
|
Copyright (C) 2011 ProFUSION Embedded Systems
|
|
|
|
Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License version 2 as
|
|
published by the Free Software Foundation;
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
|
|
IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
|
|
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
|
|
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
|
|
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
|
|
SOFTWARE IS DISCLAIMED.
|
|
*/
|
|
|
|
/* Bluetooth HCI core. */
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/rfkill.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/crypto.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include <net/bluetooth/bluetooth.h>
|
|
#include <net/bluetooth/hci_core.h>
|
|
#include <net/bluetooth/l2cap.h>
|
|
#include <net/bluetooth/mgmt.h>
|
|
|
|
#include "hci_request.h"
|
|
#include "hci_debugfs.h"
|
|
#include "smp.h"
|
|
|
|
static void hci_rx_work(struct work_struct *work);
|
|
static void hci_cmd_work(struct work_struct *work);
|
|
static void hci_tx_work(struct work_struct *work);
|
|
|
|
/* HCI device list */
|
|
LIST_HEAD(hci_dev_list);
|
|
DEFINE_RWLOCK(hci_dev_list_lock);
|
|
|
|
/* HCI callback list */
|
|
LIST_HEAD(hci_cb_list);
|
|
DEFINE_MUTEX(hci_cb_list_lock);
|
|
|
|
/* HCI ID Numbering */
|
|
static DEFINE_IDA(hci_index_ida);
|
|
|
|
/* ----- HCI requests ----- */
|
|
|
|
#define HCI_REQ_DONE 0
|
|
#define HCI_REQ_PEND 1
|
|
#define HCI_REQ_CANCELED 2
|
|
|
|
#define hci_req_lock(d) mutex_lock(&d->req_lock)
|
|
#define hci_req_unlock(d) mutex_unlock(&d->req_lock)
|
|
|
|
/* ---- HCI debugfs entries ---- */
|
|
|
|
static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct hci_dev *hdev = file->private_data;
|
|
char buf[3];
|
|
|
|
buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y': 'N';
|
|
buf[1] = '\n';
|
|
buf[2] = '\0';
|
|
return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
|
|
}
|
|
|
|
static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct hci_dev *hdev = file->private_data;
|
|
struct sk_buff *skb;
|
|
char buf[32];
|
|
size_t buf_size = min(count, (sizeof(buf)-1));
|
|
bool enable;
|
|
|
|
if (!test_bit(HCI_UP, &hdev->flags))
|
|
return -ENETDOWN;
|
|
|
|
if (copy_from_user(buf, user_buf, buf_size))
|
|
return -EFAULT;
|
|
|
|
buf[buf_size] = '\0';
|
|
if (strtobool(buf, &enable))
|
|
return -EINVAL;
|
|
|
|
if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
|
|
return -EALREADY;
|
|
|
|
hci_req_lock(hdev);
|
|
if (enable)
|
|
skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
|
|
HCI_CMD_TIMEOUT);
|
|
else
|
|
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
|
|
HCI_CMD_TIMEOUT);
|
|
hci_req_unlock(hdev);
|
|
|
|
if (IS_ERR(skb))
|
|
return PTR_ERR(skb);
|
|
|
|
kfree_skb(skb);
|
|
|
|
hci_dev_change_flag(hdev, HCI_DUT_MODE);
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations dut_mode_fops = {
|
|
.open = simple_open,
|
|
.read = dut_mode_read,
|
|
.write = dut_mode_write,
|
|
.llseek = default_llseek,
|
|
};
|
|
|
|
static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct hci_dev *hdev = file->private_data;
|
|
char buf[3];
|
|
|
|
buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y': 'N';
|
|
buf[1] = '\n';
|
|
buf[2] = '\0';
|
|
return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
|
|
}
|
|
|
|
static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct hci_dev *hdev = file->private_data;
|
|
char buf[32];
|
|
size_t buf_size = min(count, (sizeof(buf)-1));
|
|
bool enable;
|
|
int err;
|
|
|
|
if (copy_from_user(buf, user_buf, buf_size))
|
|
return -EFAULT;
|
|
|
|
buf[buf_size] = '\0';
|
|
if (strtobool(buf, &enable))
|
|
return -EINVAL;
|
|
|
|
/* When the diagnostic flags are not persistent and the transport
|
|
* is not active, then there is no need for the vendor callback.
|
|
*
|
|
* Instead just store the desired value. If needed the setting
|
|
* will be programmed when the controller gets powered on.
|
|
*/
|
|
if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
|
|
!test_bit(HCI_RUNNING, &hdev->flags))
|
|
goto done;
|
|
|
|
hci_req_lock(hdev);
|
|
err = hdev->set_diag(hdev, enable);
|
|
hci_req_unlock(hdev);
|
|
|
|
if (err < 0)
|
|
return err;
|
|
|
|
done:
|
|
if (enable)
|
|
hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
|
|
else
|
|
hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations vendor_diag_fops = {
|
|
.open = simple_open,
|
|
.read = vendor_diag_read,
|
|
.write = vendor_diag_write,
|
|
.llseek = default_llseek,
|
|
};
|
|
|
|
static void hci_debugfs_create_basic(struct hci_dev *hdev)
|
|
{
|
|
debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
|
|
&dut_mode_fops);
|
|
|
|
if (hdev->set_diag)
|
|
debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
|
|
&vendor_diag_fops);
|
|
}
|
|
|
|
/* ---- HCI requests ---- */
|
|
|
|
static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
|
|
struct sk_buff *skb)
|
|
{
|
|
BT_DBG("%s result 0x%2.2x", hdev->name, result);
|
|
|
|
if (hdev->req_status == HCI_REQ_PEND) {
|
|
hdev->req_result = result;
|
|
hdev->req_status = HCI_REQ_DONE;
|
|
if (skb)
|
|
hdev->req_skb = skb_get(skb);
|
|
wake_up_interruptible(&hdev->req_wait_q);
|
|
}
|
|
}
|
|
|
|
static void hci_req_cancel(struct hci_dev *hdev, int err)
|
|
{
|
|
BT_DBG("%s err 0x%2.2x", hdev->name, err);
|
|
|
|
if (hdev->req_status == HCI_REQ_PEND) {
|
|
hdev->req_result = err;
|
|
hdev->req_status = HCI_REQ_CANCELED;
|
|
wake_up_interruptible(&hdev->req_wait_q);
|
|
}
|
|
}
|
|
|
|
struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
|
|
const void *param, u8 event, u32 timeout)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
struct hci_request req;
|
|
struct sk_buff *skb;
|
|
int err = 0;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
hci_req_init(&req, hdev);
|
|
|
|
hci_req_add_ev(&req, opcode, plen, param, event);
|
|
|
|
hdev->req_status = HCI_REQ_PEND;
|
|
|
|
add_wait_queue(&hdev->req_wait_q, &wait);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
err = hci_req_run_skb(&req, hci_req_sync_complete);
|
|
if (err < 0) {
|
|
remove_wait_queue(&hdev->req_wait_q, &wait);
|
|
set_current_state(TASK_RUNNING);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
schedule_timeout(timeout);
|
|
|
|
remove_wait_queue(&hdev->req_wait_q, &wait);
|
|
|
|
if (signal_pending(current))
|
|
return ERR_PTR(-EINTR);
|
|
|
|
switch (hdev->req_status) {
|
|
case HCI_REQ_DONE:
|
|
err = -bt_to_errno(hdev->req_result);
|
|
break;
|
|
|
|
case HCI_REQ_CANCELED:
|
|
err = -hdev->req_result;
|
|
break;
|
|
|
|
default:
|
|
err = -ETIMEDOUT;
|
|
break;
|
|
}
|
|
|
|
hdev->req_status = hdev->req_result = 0;
|
|
skb = hdev->req_skb;
|
|
hdev->req_skb = NULL;
|
|
|
|
BT_DBG("%s end: err %d", hdev->name, err);
|
|
|
|
if (err < 0) {
|
|
kfree_skb(skb);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
if (!skb)
|
|
return ERR_PTR(-ENODATA);
|
|
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL(__hci_cmd_sync_ev);
|
|
|
|
struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
|
|
const void *param, u32 timeout)
|
|
{
|
|
return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
|
|
}
|
|
EXPORT_SYMBOL(__hci_cmd_sync);
|
|
|
|
/* Execute request and wait for completion. */
|
|
static int __hci_req_sync(struct hci_dev *hdev,
|
|
void (*func)(struct hci_request *req,
|
|
unsigned long opt),
|
|
unsigned long opt, __u32 timeout)
|
|
{
|
|
struct hci_request req;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
int err = 0;
|
|
|
|
BT_DBG("%s start", hdev->name);
|
|
|
|
hci_req_init(&req, hdev);
|
|
|
|
hdev->req_status = HCI_REQ_PEND;
|
|
|
|
func(&req, opt);
|
|
|
|
add_wait_queue(&hdev->req_wait_q, &wait);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
err = hci_req_run_skb(&req, hci_req_sync_complete);
|
|
if (err < 0) {
|
|
hdev->req_status = 0;
|
|
|
|
remove_wait_queue(&hdev->req_wait_q, &wait);
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
/* ENODATA means the HCI request command queue is empty.
|
|
* This can happen when a request with conditionals doesn't
|
|
* trigger any commands to be sent. This is normal behavior
|
|
* and should not trigger an error return.
|
|
*/
|
|
if (err == -ENODATA)
|
|
return 0;
|
|
|
|
return err;
|
|
}
|
|
|
|
schedule_timeout(timeout);
|
|
|
|
remove_wait_queue(&hdev->req_wait_q, &wait);
|
|
|
|
if (signal_pending(current))
|
|
return -EINTR;
|
|
|
|
switch (hdev->req_status) {
|
|
case HCI_REQ_DONE:
|
|
err = -bt_to_errno(hdev->req_result);
|
|
break;
|
|
|
|
case HCI_REQ_CANCELED:
|
|
err = -hdev->req_result;
|
|
break;
|
|
|
|
default:
|
|
err = -ETIMEDOUT;
|
|
break;
|
|
}
|
|
|
|
hdev->req_status = hdev->req_result = 0;
|
|
|
|
BT_DBG("%s end: err %d", hdev->name, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int hci_req_sync(struct hci_dev *hdev,
|
|
void (*req)(struct hci_request *req,
|
|
unsigned long opt),
|
|
unsigned long opt, __u32 timeout)
|
|
{
|
|
int ret;
|
|
|
|
if (!test_bit(HCI_UP, &hdev->flags))
|
|
return -ENETDOWN;
|
|
|
|
/* Serialize all requests */
|
|
hci_req_lock(hdev);
|
|
ret = __hci_req_sync(hdev, req, opt, timeout);
|
|
hci_req_unlock(hdev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void hci_reset_req(struct hci_request *req, unsigned long opt)
|
|
{
|
|
BT_DBG("%s %ld", req->hdev->name, opt);
|
|
|
|
/* Reset device */
|
|
set_bit(HCI_RESET, &req->hdev->flags);
|
|
hci_req_add(req, HCI_OP_RESET, 0, NULL);
|
|
}
|
|
|
|
static void bredr_init(struct hci_request *req)
|
|
{
|
|
req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
|
|
|
|
/* Read Local Supported Features */
|
|
hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
|
|
|
|
/* Read Local Version */
|
|
hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
|
|
|
|
/* Read BD Address */
|
|
hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
|
|
}
|
|
|
|
static void amp_init1(struct hci_request *req)
|
|
{
|
|
req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
|
|
|
|
/* Read Local Version */
|
|
hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
|
|
|
|
/* Read Local Supported Commands */
|
|
hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
|
|
|
|
/* Read Local AMP Info */
|
|
hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
|
|
|
|
/* Read Data Blk size */
|
|
hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
|
|
|
|
/* Read Flow Control Mode */
|
|
hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
|
|
|
|
/* Read Location Data */
|
|
hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
|
|
}
|
|
|
|
static void amp_init2(struct hci_request *req)
|
|
{
|
|
/* Read Local Supported Features. Not all AMP controllers
|
|
* support this so it's placed conditionally in the second
|
|
* stage init.
|
|
*/
|
|
if (req->hdev->commands[14] & 0x20)
|
|
hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
|
|
}
|
|
|
|
static void hci_init1_req(struct hci_request *req, unsigned long opt)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
|
|
BT_DBG("%s %ld", hdev->name, opt);
|
|
|
|
/* Reset */
|
|
if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
|
|
hci_reset_req(req, 0);
|
|
|
|
switch (hdev->dev_type) {
|
|
case HCI_BREDR:
|
|
bredr_init(req);
|
|
break;
|
|
|
|
case HCI_AMP:
|
|
amp_init1(req);
|
|
break;
|
|
|
|
default:
|
|
BT_ERR("Unknown device type %d", hdev->dev_type);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void bredr_setup(struct hci_request *req)
|
|
{
|
|
__le16 param;
|
|
__u8 flt_type;
|
|
|
|
/* Read Buffer Size (ACL mtu, max pkt, etc.) */
|
|
hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
|
|
|
|
/* Read Class of Device */
|
|
hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
|
|
|
|
/* Read Local Name */
|
|
hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
|
|
|
|
/* Read Voice Setting */
|
|
hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
|
|
|
|
/* Read Number of Supported IAC */
|
|
hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
|
|
|
|
/* Read Current IAC LAP */
|
|
hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
|
|
|
|
/* Clear Event Filters */
|
|
flt_type = HCI_FLT_CLEAR_ALL;
|
|
hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
|
|
|
|
/* Connection accept timeout ~20 secs */
|
|
param = cpu_to_le16(0x7d00);
|
|
hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m);
|
|
}
|
|
|
|
static void le_setup(struct hci_request *req)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
|
|
/* Read LE Buffer Size */
|
|
hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
|
|
|
|
/* Read LE Local Supported Features */
|
|
hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
|
|
|
|
/* Read LE Supported States */
|
|
hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
|
|
|
|
/* LE-only controllers have LE implicitly enabled */
|
|
if (!lmp_bredr_capable(hdev))
|
|
hci_dev_set_flag(hdev, HCI_LE_ENABLED);
|
|
}
|
|
|
|
static void hci_setup_event_mask(struct hci_request *req)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
|
|
/* The second byte is 0xff instead of 0x9f (two reserved bits
|
|
* disabled) since a Broadcom 1.2 dongle doesn't respond to the
|
|
* command otherwise.
|
|
*/
|
|
u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
|
|
|
|
/* CSR 1.1 dongles does not accept any bitfield so don't try to set
|
|
* any event mask for pre 1.2 devices.
|
|
*/
|
|
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
|
|
return;
|
|
|
|
if (lmp_bredr_capable(hdev)) {
|
|
events[4] |= 0x01; /* Flow Specification Complete */
|
|
events[4] |= 0x02; /* Inquiry Result with RSSI */
|
|
events[4] |= 0x04; /* Read Remote Extended Features Complete */
|
|
events[5] |= 0x08; /* Synchronous Connection Complete */
|
|
events[5] |= 0x10; /* Synchronous Connection Changed */
|
|
} else {
|
|
/* Use a different default for LE-only devices */
|
|
memset(events, 0, sizeof(events));
|
|
events[0] |= 0x10; /* Disconnection Complete */
|
|
events[1] |= 0x08; /* Read Remote Version Information Complete */
|
|
events[1] |= 0x20; /* Command Complete */
|
|
events[1] |= 0x40; /* Command Status */
|
|
events[1] |= 0x80; /* Hardware Error */
|
|
events[2] |= 0x04; /* Number of Completed Packets */
|
|
events[3] |= 0x02; /* Data Buffer Overflow */
|
|
|
|
if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
|
|
events[0] |= 0x80; /* Encryption Change */
|
|
events[5] |= 0x80; /* Encryption Key Refresh Complete */
|
|
}
|
|
}
|
|
|
|
if (lmp_inq_rssi_capable(hdev))
|
|
events[4] |= 0x02; /* Inquiry Result with RSSI */
|
|
|
|
if (lmp_sniffsubr_capable(hdev))
|
|
events[5] |= 0x20; /* Sniff Subrating */
|
|
|
|
if (lmp_pause_enc_capable(hdev))
|
|
events[5] |= 0x80; /* Encryption Key Refresh Complete */
|
|
|
|
if (lmp_ext_inq_capable(hdev))
|
|
events[5] |= 0x40; /* Extended Inquiry Result */
|
|
|
|
if (lmp_no_flush_capable(hdev))
|
|
events[7] |= 0x01; /* Enhanced Flush Complete */
|
|
|
|
if (lmp_lsto_capable(hdev))
|
|
events[6] |= 0x80; /* Link Supervision Timeout Changed */
|
|
|
|
if (lmp_ssp_capable(hdev)) {
|
|
events[6] |= 0x01; /* IO Capability Request */
|
|
events[6] |= 0x02; /* IO Capability Response */
|
|
events[6] |= 0x04; /* User Confirmation Request */
|
|
events[6] |= 0x08; /* User Passkey Request */
|
|
events[6] |= 0x10; /* Remote OOB Data Request */
|
|
events[6] |= 0x20; /* Simple Pairing Complete */
|
|
events[7] |= 0x04; /* User Passkey Notification */
|
|
events[7] |= 0x08; /* Keypress Notification */
|
|
events[7] |= 0x10; /* Remote Host Supported
|
|
* Features Notification
|
|
*/
|
|
}
|
|
|
|
if (lmp_le_capable(hdev))
|
|
events[7] |= 0x20; /* LE Meta-Event */
|
|
|
|
hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
|
|
}
|
|
|
|
static void hci_init2_req(struct hci_request *req, unsigned long opt)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
|
|
if (hdev->dev_type == HCI_AMP)
|
|
return amp_init2(req);
|
|
|
|
if (lmp_bredr_capable(hdev))
|
|
bredr_setup(req);
|
|
else
|
|
hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
|
|
|
|
if (lmp_le_capable(hdev))
|
|
le_setup(req);
|
|
|
|
/* All Bluetooth 1.2 and later controllers should support the
|
|
* HCI command for reading the local supported commands.
|
|
*
|
|
* Unfortunately some controllers indicate Bluetooth 1.2 support,
|
|
* but do not have support for this command. If that is the case,
|
|
* the driver can quirk the behavior and skip reading the local
|
|
* supported commands.
|
|
*/
|
|
if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
|
|
!test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
|
|
hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
|
|
|
|
if (lmp_ssp_capable(hdev)) {
|
|
/* When SSP is available, then the host features page
|
|
* should also be available as well. However some
|
|
* controllers list the max_page as 0 as long as SSP
|
|
* has not been enabled. To achieve proper debugging
|
|
* output, force the minimum max_page to 1 at least.
|
|
*/
|
|
hdev->max_page = 0x01;
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
|
|
u8 mode = 0x01;
|
|
|
|
hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
|
|
sizeof(mode), &mode);
|
|
} else {
|
|
struct hci_cp_write_eir cp;
|
|
|
|
memset(hdev->eir, 0, sizeof(hdev->eir));
|
|
memset(&cp, 0, sizeof(cp));
|
|
|
|
hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
|
|
}
|
|
}
|
|
|
|
if (lmp_inq_rssi_capable(hdev) ||
|
|
test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
|
|
u8 mode;
|
|
|
|
/* If Extended Inquiry Result events are supported, then
|
|
* they are clearly preferred over Inquiry Result with RSSI
|
|
* events.
|
|
*/
|
|
mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
|
|
|
|
hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
|
|
}
|
|
|
|
if (lmp_inq_tx_pwr_capable(hdev))
|
|
hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
|
|
|
|
if (lmp_ext_feat_capable(hdev)) {
|
|
struct hci_cp_read_local_ext_features cp;
|
|
|
|
cp.page = 0x01;
|
|
hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
|
|
sizeof(cp), &cp);
|
|
}
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
|
|
u8 enable = 1;
|
|
hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
|
|
&enable);
|
|
}
|
|
}
|
|
|
|
static void hci_setup_link_policy(struct hci_request *req)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct hci_cp_write_def_link_policy cp;
|
|
u16 link_policy = 0;
|
|
|
|
if (lmp_rswitch_capable(hdev))
|
|
link_policy |= HCI_LP_RSWITCH;
|
|
if (lmp_hold_capable(hdev))
|
|
link_policy |= HCI_LP_HOLD;
|
|
if (lmp_sniff_capable(hdev))
|
|
link_policy |= HCI_LP_SNIFF;
|
|
if (lmp_park_capable(hdev))
|
|
link_policy |= HCI_LP_PARK;
|
|
|
|
cp.policy = cpu_to_le16(link_policy);
|
|
hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
|
|
}
|
|
|
|
static void hci_set_le_support(struct hci_request *req)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct hci_cp_write_le_host_supported cp;
|
|
|
|
/* LE-only devices do not support explicit enablement */
|
|
if (!lmp_bredr_capable(hdev))
|
|
return;
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
|
|
cp.le = 0x01;
|
|
cp.simul = 0x00;
|
|
}
|
|
|
|
if (cp.le != lmp_host_le_capable(hdev))
|
|
hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
|
|
&cp);
|
|
}
|
|
|
|
static void hci_set_event_mask_page_2(struct hci_request *req)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
|
|
/* If Connectionless Slave Broadcast master role is supported
|
|
* enable all necessary events for it.
|
|
*/
|
|
if (lmp_csb_master_capable(hdev)) {
|
|
events[1] |= 0x40; /* Triggered Clock Capture */
|
|
events[1] |= 0x80; /* Synchronization Train Complete */
|
|
events[2] |= 0x10; /* Slave Page Response Timeout */
|
|
events[2] |= 0x20; /* CSB Channel Map Change */
|
|
}
|
|
|
|
/* If Connectionless Slave Broadcast slave role is supported
|
|
* enable all necessary events for it.
|
|
*/
|
|
if (lmp_csb_slave_capable(hdev)) {
|
|
events[2] |= 0x01; /* Synchronization Train Received */
|
|
events[2] |= 0x02; /* CSB Receive */
|
|
events[2] |= 0x04; /* CSB Timeout */
|
|
events[2] |= 0x08; /* Truncated Page Complete */
|
|
}
|
|
|
|
/* Enable Authenticated Payload Timeout Expired event if supported */
|
|
if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
|
|
events[2] |= 0x80;
|
|
|
|
hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
|
|
}
|
|
|
|
static void hci_init3_req(struct hci_request *req, unsigned long opt)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
u8 p;
|
|
|
|
hci_setup_event_mask(req);
|
|
|
|
if (hdev->commands[6] & 0x20 &&
|
|
!test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
|
|
struct hci_cp_read_stored_link_key cp;
|
|
|
|
bacpy(&cp.bdaddr, BDADDR_ANY);
|
|
cp.read_all = 0x01;
|
|
hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
|
|
}
|
|
|
|
if (hdev->commands[5] & 0x10)
|
|
hci_setup_link_policy(req);
|
|
|
|
if (hdev->commands[8] & 0x01)
|
|
hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
|
|
|
|
/* Some older Broadcom based Bluetooth 1.2 controllers do not
|
|
* support the Read Page Scan Type command. Check support for
|
|
* this command in the bit mask of supported commands.
|
|
*/
|
|
if (hdev->commands[13] & 0x01)
|
|
hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
|
|
|
|
if (lmp_le_capable(hdev)) {
|
|
u8 events[8];
|
|
|
|
memset(events, 0, sizeof(events));
|
|
events[0] = 0x0f;
|
|
|
|
if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
|
|
events[0] |= 0x10; /* LE Long Term Key Request */
|
|
|
|
/* If controller supports the Connection Parameters Request
|
|
* Link Layer Procedure, enable the corresponding event.
|
|
*/
|
|
if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
|
|
events[0] |= 0x20; /* LE Remote Connection
|
|
* Parameter Request
|
|
*/
|
|
|
|
/* If the controller supports the Data Length Extension
|
|
* feature, enable the corresponding event.
|
|
*/
|
|
if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
|
|
events[0] |= 0x40; /* LE Data Length Change */
|
|
|
|
/* If the controller supports Extended Scanner Filter
|
|
* Policies, enable the correspondig event.
|
|
*/
|
|
if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
|
|
events[1] |= 0x04; /* LE Direct Advertising
|
|
* Report
|
|
*/
|
|
|
|
/* If the controller supports the LE Read Local P-256
|
|
* Public Key command, enable the corresponding event.
|
|
*/
|
|
if (hdev->commands[34] & 0x02)
|
|
events[0] |= 0x80; /* LE Read Local P-256
|
|
* Public Key Complete
|
|
*/
|
|
|
|
/* If the controller supports the LE Generate DHKey
|
|
* command, enable the corresponding event.
|
|
*/
|
|
if (hdev->commands[34] & 0x04)
|
|
events[1] |= 0x01; /* LE Generate DHKey Complete */
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
|
|
events);
|
|
|
|
if (hdev->commands[25] & 0x40) {
|
|
/* Read LE Advertising Channel TX Power */
|
|
hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
|
|
}
|
|
|
|
if (hdev->commands[26] & 0x40) {
|
|
/* Read LE White List Size */
|
|
hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
|
|
0, NULL);
|
|
}
|
|
|
|
if (hdev->commands[26] & 0x80) {
|
|
/* Clear LE White List */
|
|
hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
|
|
}
|
|
|
|
if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
|
|
/* Read LE Maximum Data Length */
|
|
hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
|
|
|
|
/* Read LE Suggested Default Data Length */
|
|
hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
|
|
}
|
|
|
|
hci_set_le_support(req);
|
|
}
|
|
|
|
/* Read features beyond page 1 if available */
|
|
for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
|
|
struct hci_cp_read_local_ext_features cp;
|
|
|
|
cp.page = p;
|
|
hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
|
|
sizeof(cp), &cp);
|
|
}
|
|
}
|
|
|
|
static void hci_init4_req(struct hci_request *req, unsigned long opt)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
|
|
/* Some Broadcom based Bluetooth controllers do not support the
|
|
* Delete Stored Link Key command. They are clearly indicating its
|
|
* absence in the bit mask of supported commands.
|
|
*
|
|
* Check the supported commands and only if the the command is marked
|
|
* as supported send it. If not supported assume that the controller
|
|
* does not have actual support for stored link keys which makes this
|
|
* command redundant anyway.
|
|
*
|
|
* Some controllers indicate that they support handling deleting
|
|
* stored link keys, but they don't. The quirk lets a driver
|
|
* just disable this command.
|
|
*/
|
|
if (hdev->commands[6] & 0x80 &&
|
|
!test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
|
|
struct hci_cp_delete_stored_link_key cp;
|
|
|
|
bacpy(&cp.bdaddr, BDADDR_ANY);
|
|
cp.delete_all = 0x01;
|
|
hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
|
|
sizeof(cp), &cp);
|
|
}
|
|
|
|
/* Set event mask page 2 if the HCI command for it is supported */
|
|
if (hdev->commands[22] & 0x04)
|
|
hci_set_event_mask_page_2(req);
|
|
|
|
/* Read local codec list if the HCI command is supported */
|
|
if (hdev->commands[29] & 0x20)
|
|
hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
|
|
|
|
/* Get MWS transport configuration if the HCI command is supported */
|
|
if (hdev->commands[30] & 0x08)
|
|
hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
|
|
|
|
/* Check for Synchronization Train support */
|
|
if (lmp_sync_train_capable(hdev))
|
|
hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
|
|
|
|
/* Enable Secure Connections if supported and configured */
|
|
if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
|
|
bredr_sc_enabled(hdev)) {
|
|
u8 support = 0x01;
|
|
|
|
hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
|
|
sizeof(support), &support);
|
|
}
|
|
}
|
|
|
|
static int __hci_init(struct hci_dev *hdev)
|
|
{
|
|
int err;
|
|
|
|
err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_SETUP))
|
|
hci_debugfs_create_basic(hdev);
|
|
|
|
err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
|
|
* BR/EDR/LE type controllers. AMP controllers only need the
|
|
* first two stages of init.
|
|
*/
|
|
if (hdev->dev_type != HCI_BREDR)
|
|
return 0;
|
|
|
|
err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* This function is only called when the controller is actually in
|
|
* configured state. When the controller is marked as unconfigured,
|
|
* this initialization procedure is not run.
|
|
*
|
|
* It means that it is possible that a controller runs through its
|
|
* setup phase and then discovers missing settings. If that is the
|
|
* case, then this function will not be called. It then will only
|
|
* be called during the config phase.
|
|
*
|
|
* So only when in setup phase or config phase, create the debugfs
|
|
* entries and register the SMP channels.
|
|
*/
|
|
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
|
|
!hci_dev_test_flag(hdev, HCI_CONFIG))
|
|
return 0;
|
|
|
|
hci_debugfs_create_common(hdev);
|
|
|
|
if (lmp_bredr_capable(hdev))
|
|
hci_debugfs_create_bredr(hdev);
|
|
|
|
if (lmp_le_capable(hdev))
|
|
hci_debugfs_create_le(hdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hci_init0_req(struct hci_request *req, unsigned long opt)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
|
|
BT_DBG("%s %ld", hdev->name, opt);
|
|
|
|
/* Reset */
|
|
if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
|
|
hci_reset_req(req, 0);
|
|
|
|
/* Read Local Version */
|
|
hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
|
|
|
|
/* Read BD Address */
|
|
if (hdev->set_bdaddr)
|
|
hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
|
|
}
|
|
|
|
static int __hci_unconf_init(struct hci_dev *hdev)
|
|
{
|
|
int err;
|
|
|
|
if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
|
|
return 0;
|
|
|
|
err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_SETUP))
|
|
hci_debugfs_create_basic(hdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hci_scan_req(struct hci_request *req, unsigned long opt)
|
|
{
|
|
__u8 scan = opt;
|
|
|
|
BT_DBG("%s %x", req->hdev->name, scan);
|
|
|
|
/* Inquiry and Page scans */
|
|
hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
|
|
}
|
|
|
|
static void hci_auth_req(struct hci_request *req, unsigned long opt)
|
|
{
|
|
__u8 auth = opt;
|
|
|
|
BT_DBG("%s %x", req->hdev->name, auth);
|
|
|
|
/* Authentication */
|
|
hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
|
|
}
|
|
|
|
static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
|
|
{
|
|
__u8 encrypt = opt;
|
|
|
|
BT_DBG("%s %x", req->hdev->name, encrypt);
|
|
|
|
/* Encryption */
|
|
hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
|
|
}
|
|
|
|
static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
|
|
{
|
|
__le16 policy = cpu_to_le16(opt);
|
|
|
|
BT_DBG("%s %x", req->hdev->name, policy);
|
|
|
|
/* Default link policy */
|
|
hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
|
|
}
|
|
|
|
/* Get HCI device by index.
|
|
* Device is held on return. */
|
|
struct hci_dev *hci_dev_get(int index)
|
|
{
|
|
struct hci_dev *hdev = NULL, *d;
|
|
|
|
BT_DBG("%d", index);
|
|
|
|
if (index < 0)
|
|
return NULL;
|
|
|
|
read_lock(&hci_dev_list_lock);
|
|
list_for_each_entry(d, &hci_dev_list, list) {
|
|
if (d->id == index) {
|
|
hdev = hci_dev_hold(d);
|
|
break;
|
|
}
|
|
}
|
|
read_unlock(&hci_dev_list_lock);
|
|
return hdev;
|
|
}
|
|
|
|
/* ---- Inquiry support ---- */
|
|
|
|
bool hci_discovery_active(struct hci_dev *hdev)
|
|
{
|
|
struct discovery_state *discov = &hdev->discovery;
|
|
|
|
switch (discov->state) {
|
|
case DISCOVERY_FINDING:
|
|
case DISCOVERY_RESOLVING:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void hci_discovery_set_state(struct hci_dev *hdev, int state)
|
|
{
|
|
int old_state = hdev->discovery.state;
|
|
|
|
BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
|
|
|
|
if (old_state == state)
|
|
return;
|
|
|
|
hdev->discovery.state = state;
|
|
|
|
switch (state) {
|
|
case DISCOVERY_STOPPED:
|
|
hci_update_background_scan(hdev);
|
|
|
|
if (old_state != DISCOVERY_STARTING)
|
|
mgmt_discovering(hdev, 0);
|
|
break;
|
|
case DISCOVERY_STARTING:
|
|
break;
|
|
case DISCOVERY_FINDING:
|
|
mgmt_discovering(hdev, 1);
|
|
break;
|
|
case DISCOVERY_RESOLVING:
|
|
break;
|
|
case DISCOVERY_STOPPING:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void hci_inquiry_cache_flush(struct hci_dev *hdev)
|
|
{
|
|
struct discovery_state *cache = &hdev->discovery;
|
|
struct inquiry_entry *p, *n;
|
|
|
|
list_for_each_entry_safe(p, n, &cache->all, all) {
|
|
list_del(&p->all);
|
|
kfree(p);
|
|
}
|
|
|
|
INIT_LIST_HEAD(&cache->unknown);
|
|
INIT_LIST_HEAD(&cache->resolve);
|
|
}
|
|
|
|
struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
|
|
bdaddr_t *bdaddr)
|
|
{
|
|
struct discovery_state *cache = &hdev->discovery;
|
|
struct inquiry_entry *e;
|
|
|
|
BT_DBG("cache %p, %pMR", cache, bdaddr);
|
|
|
|
list_for_each_entry(e, &cache->all, all) {
|
|
if (!bacmp(&e->data.bdaddr, bdaddr))
|
|
return e;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
|
|
bdaddr_t *bdaddr)
|
|
{
|
|
struct discovery_state *cache = &hdev->discovery;
|
|
struct inquiry_entry *e;
|
|
|
|
BT_DBG("cache %p, %pMR", cache, bdaddr);
|
|
|
|
list_for_each_entry(e, &cache->unknown, list) {
|
|
if (!bacmp(&e->data.bdaddr, bdaddr))
|
|
return e;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
|
|
bdaddr_t *bdaddr,
|
|
int state)
|
|
{
|
|
struct discovery_state *cache = &hdev->discovery;
|
|
struct inquiry_entry *e;
|
|
|
|
BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
|
|
|
|
list_for_each_entry(e, &cache->resolve, list) {
|
|
if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
|
|
return e;
|
|
if (!bacmp(&e->data.bdaddr, bdaddr))
|
|
return e;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
|
|
struct inquiry_entry *ie)
|
|
{
|
|
struct discovery_state *cache = &hdev->discovery;
|
|
struct list_head *pos = &cache->resolve;
|
|
struct inquiry_entry *p;
|
|
|
|
list_del(&ie->list);
|
|
|
|
list_for_each_entry(p, &cache->resolve, list) {
|
|
if (p->name_state != NAME_PENDING &&
|
|
abs(p->data.rssi) >= abs(ie->data.rssi))
|
|
break;
|
|
pos = &p->list;
|
|
}
|
|
|
|
list_add(&ie->list, pos);
|
|
}
|
|
|
|
u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
|
|
bool name_known)
|
|
{
|
|
struct discovery_state *cache = &hdev->discovery;
|
|
struct inquiry_entry *ie;
|
|
u32 flags = 0;
|
|
|
|
BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
|
|
|
|
hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
|
|
|
|
if (!data->ssp_mode)
|
|
flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
|
|
|
|
ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
|
|
if (ie) {
|
|
if (!ie->data.ssp_mode)
|
|
flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
|
|
|
|
if (ie->name_state == NAME_NEEDED &&
|
|
data->rssi != ie->data.rssi) {
|
|
ie->data.rssi = data->rssi;
|
|
hci_inquiry_cache_update_resolve(hdev, ie);
|
|
}
|
|
|
|
goto update;
|
|
}
|
|
|
|
/* Entry not in the cache. Add new one. */
|
|
ie = kzalloc(sizeof(*ie), GFP_KERNEL);
|
|
if (!ie) {
|
|
flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
|
|
goto done;
|
|
}
|
|
|
|
list_add(&ie->all, &cache->all);
|
|
|
|
if (name_known) {
|
|
ie->name_state = NAME_KNOWN;
|
|
} else {
|
|
ie->name_state = NAME_NOT_KNOWN;
|
|
list_add(&ie->list, &cache->unknown);
|
|
}
|
|
|
|
update:
|
|
if (name_known && ie->name_state != NAME_KNOWN &&
|
|
ie->name_state != NAME_PENDING) {
|
|
ie->name_state = NAME_KNOWN;
|
|
list_del(&ie->list);
|
|
}
|
|
|
|
memcpy(&ie->data, data, sizeof(*data));
|
|
ie->timestamp = jiffies;
|
|
cache->timestamp = jiffies;
|
|
|
|
if (ie->name_state == NAME_NOT_KNOWN)
|
|
flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
|
|
|
|
done:
|
|
return flags;
|
|
}
|
|
|
|
static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
|
|
{
|
|
struct discovery_state *cache = &hdev->discovery;
|
|
struct inquiry_info *info = (struct inquiry_info *) buf;
|
|
struct inquiry_entry *e;
|
|
int copied = 0;
|
|
|
|
list_for_each_entry(e, &cache->all, all) {
|
|
struct inquiry_data *data = &e->data;
|
|
|
|
if (copied >= num)
|
|
break;
|
|
|
|
bacpy(&info->bdaddr, &data->bdaddr);
|
|
info->pscan_rep_mode = data->pscan_rep_mode;
|
|
info->pscan_period_mode = data->pscan_period_mode;
|
|
info->pscan_mode = data->pscan_mode;
|
|
memcpy(info->dev_class, data->dev_class, 3);
|
|
info->clock_offset = data->clock_offset;
|
|
|
|
info++;
|
|
copied++;
|
|
}
|
|
|
|
BT_DBG("cache %p, copied %d", cache, copied);
|
|
return copied;
|
|
}
|
|
|
|
static void hci_inq_req(struct hci_request *req, unsigned long opt)
|
|
{
|
|
struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct hci_cp_inquiry cp;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
if (test_bit(HCI_INQUIRY, &hdev->flags))
|
|
return;
|
|
|
|
/* Start Inquiry */
|
|
memcpy(&cp.lap, &ir->lap, 3);
|
|
cp.length = ir->length;
|
|
cp.num_rsp = ir->num_rsp;
|
|
hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
|
|
}
|
|
|
|
int hci_inquiry(void __user *arg)
|
|
{
|
|
__u8 __user *ptr = arg;
|
|
struct hci_inquiry_req ir;
|
|
struct hci_dev *hdev;
|
|
int err = 0, do_inquiry = 0, max_rsp;
|
|
long timeo;
|
|
__u8 *buf;
|
|
|
|
if (copy_from_user(&ir, ptr, sizeof(ir)))
|
|
return -EFAULT;
|
|
|
|
hdev = hci_dev_get(ir.dev_id);
|
|
if (!hdev)
|
|
return -ENODEV;
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
|
|
err = -EBUSY;
|
|
goto done;
|
|
}
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
|
|
err = -EOPNOTSUPP;
|
|
goto done;
|
|
}
|
|
|
|
if (hdev->dev_type != HCI_BREDR) {
|
|
err = -EOPNOTSUPP;
|
|
goto done;
|
|
}
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
|
|
err = -EOPNOTSUPP;
|
|
goto done;
|
|
}
|
|
|
|
hci_dev_lock(hdev);
|
|
if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
|
|
inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
|
|
hci_inquiry_cache_flush(hdev);
|
|
do_inquiry = 1;
|
|
}
|
|
hci_dev_unlock(hdev);
|
|
|
|
timeo = ir.length * msecs_to_jiffies(2000);
|
|
|
|
if (do_inquiry) {
|
|
err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
|
|
timeo);
|
|
if (err < 0)
|
|
goto done;
|
|
|
|
/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
|
|
* cleared). If it is interrupted by a signal, return -EINTR.
|
|
*/
|
|
if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
|
|
TASK_INTERRUPTIBLE))
|
|
return -EINTR;
|
|
}
|
|
|
|
/* for unlimited number of responses we will use buffer with
|
|
* 255 entries
|
|
*/
|
|
max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
|
|
|
|
/* cache_dump can't sleep. Therefore we allocate temp buffer and then
|
|
* copy it to the user space.
|
|
*/
|
|
buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
|
|
if (!buf) {
|
|
err = -ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
hci_dev_lock(hdev);
|
|
ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
|
|
hci_dev_unlock(hdev);
|
|
|
|
BT_DBG("num_rsp %d", ir.num_rsp);
|
|
|
|
if (!copy_to_user(ptr, &ir, sizeof(ir))) {
|
|
ptr += sizeof(ir);
|
|
if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
|
|
ir.num_rsp))
|
|
err = -EFAULT;
|
|
} else
|
|
err = -EFAULT;
|
|
|
|
kfree(buf);
|
|
|
|
done:
|
|
hci_dev_put(hdev);
|
|
return err;
|
|
}
|
|
|
|
static int hci_dev_do_open(struct hci_dev *hdev)
|
|
{
|
|
int ret = 0;
|
|
|
|
BT_DBG("%s %p", hdev->name, hdev);
|
|
|
|
hci_req_lock(hdev);
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
|
|
ret = -ENODEV;
|
|
goto done;
|
|
}
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
|
|
!hci_dev_test_flag(hdev, HCI_CONFIG)) {
|
|
/* Check for rfkill but allow the HCI setup stage to
|
|
* proceed (which in itself doesn't cause any RF activity).
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
|
|
ret = -ERFKILL;
|
|
goto done;
|
|
}
|
|
|
|
/* Check for valid public address or a configured static
|
|
* random adddress, but let the HCI setup proceed to
|
|
* be able to determine if there is a public address
|
|
* or not.
|
|
*
|
|
* In case of user channel usage, it is not important
|
|
* if a public address or static random address is
|
|
* available.
|
|
*
|
|
* This check is only valid for BR/EDR controllers
|
|
* since AMP controllers do not have an address.
|
|
*/
|
|
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
|
|
hdev->dev_type == HCI_BREDR &&
|
|
!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
|
|
!bacmp(&hdev->static_addr, BDADDR_ANY)) {
|
|
ret = -EADDRNOTAVAIL;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (test_bit(HCI_UP, &hdev->flags)) {
|
|
ret = -EALREADY;
|
|
goto done;
|
|
}
|
|
|
|
if (hdev->open(hdev)) {
|
|
ret = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
set_bit(HCI_RUNNING, &hdev->flags);
|
|
hci_sock_dev_event(hdev, HCI_DEV_OPEN);
|
|
|
|
atomic_set(&hdev->cmd_cnt, 1);
|
|
set_bit(HCI_INIT, &hdev->flags);
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_SETUP)) {
|
|
hci_sock_dev_event(hdev, HCI_DEV_SETUP);
|
|
|
|
if (hdev->setup)
|
|
ret = hdev->setup(hdev);
|
|
|
|
/* The transport driver can set these quirks before
|
|
* creating the HCI device or in its setup callback.
|
|
*
|
|
* In case any of them is set, the controller has to
|
|
* start up as unconfigured.
|
|
*/
|
|
if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
|
|
test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
|
|
hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
|
|
|
|
/* For an unconfigured controller it is required to
|
|
* read at least the version information provided by
|
|
* the Read Local Version Information command.
|
|
*
|
|
* If the set_bdaddr driver callback is provided, then
|
|
* also the original Bluetooth public device address
|
|
* will be read using the Read BD Address command.
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
|
|
ret = __hci_unconf_init(hdev);
|
|
}
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
|
|
/* If public address change is configured, ensure that
|
|
* the address gets programmed. If the driver does not
|
|
* support changing the public address, fail the power
|
|
* on procedure.
|
|
*/
|
|
if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
|
|
hdev->set_bdaddr)
|
|
ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
|
|
else
|
|
ret = -EADDRNOTAVAIL;
|
|
}
|
|
|
|
if (!ret) {
|
|
if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
|
|
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
|
|
ret = __hci_init(hdev);
|
|
if (!ret && hdev->post_init)
|
|
ret = hdev->post_init(hdev);
|
|
}
|
|
}
|
|
|
|
/* If the HCI Reset command is clearing all diagnostic settings,
|
|
* then they need to be reprogrammed after the init procedure
|
|
* completed.
|
|
*/
|
|
if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
|
|
hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
|
|
ret = hdev->set_diag(hdev, true);
|
|
|
|
clear_bit(HCI_INIT, &hdev->flags);
|
|
|
|
if (!ret) {
|
|
hci_dev_hold(hdev);
|
|
hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
|
|
set_bit(HCI_UP, &hdev->flags);
|
|
hci_sock_dev_event(hdev, HCI_DEV_UP);
|
|
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
|
|
!hci_dev_test_flag(hdev, HCI_CONFIG) &&
|
|
!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
|
|
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
|
|
hdev->dev_type == HCI_BREDR) {
|
|
hci_dev_lock(hdev);
|
|
mgmt_powered(hdev, 1);
|
|
hci_dev_unlock(hdev);
|
|
}
|
|
} else {
|
|
/* Init failed, cleanup */
|
|
flush_work(&hdev->tx_work);
|
|
flush_work(&hdev->cmd_work);
|
|
flush_work(&hdev->rx_work);
|
|
|
|
skb_queue_purge(&hdev->cmd_q);
|
|
skb_queue_purge(&hdev->rx_q);
|
|
|
|
if (hdev->flush)
|
|
hdev->flush(hdev);
|
|
|
|
if (hdev->sent_cmd) {
|
|
kfree_skb(hdev->sent_cmd);
|
|
hdev->sent_cmd = NULL;
|
|
}
|
|
|
|
clear_bit(HCI_RUNNING, &hdev->flags);
|
|
hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
|
|
|
|
hdev->close(hdev);
|
|
hdev->flags &= BIT(HCI_RAW);
|
|
}
|
|
|
|
done:
|
|
hci_req_unlock(hdev);
|
|
return ret;
|
|
}
|
|
|
|
/* ---- HCI ioctl helpers ---- */
|
|
|
|
int hci_dev_open(__u16 dev)
|
|
{
|
|
struct hci_dev *hdev;
|
|
int err;
|
|
|
|
hdev = hci_dev_get(dev);
|
|
if (!hdev)
|
|
return -ENODEV;
|
|
|
|
/* Devices that are marked as unconfigured can only be powered
|
|
* up as user channel. Trying to bring them up as normal devices
|
|
* will result into a failure. Only user channel operation is
|
|
* possible.
|
|
*
|
|
* When this function is called for a user channel, the flag
|
|
* HCI_USER_CHANNEL will be set first before attempting to
|
|
* open the device.
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
|
|
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
|
|
err = -EOPNOTSUPP;
|
|
goto done;
|
|
}
|
|
|
|
/* We need to ensure that no other power on/off work is pending
|
|
* before proceeding to call hci_dev_do_open. This is
|
|
* particularly important if the setup procedure has not yet
|
|
* completed.
|
|
*/
|
|
if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
|
|
cancel_delayed_work(&hdev->power_off);
|
|
|
|
/* After this call it is guaranteed that the setup procedure
|
|
* has finished. This means that error conditions like RFKILL
|
|
* or no valid public or static random address apply.
|
|
*/
|
|
flush_workqueue(hdev->req_workqueue);
|
|
|
|
/* For controllers not using the management interface and that
|
|
* are brought up using legacy ioctl, set the HCI_BONDABLE bit
|
|
* so that pairing works for them. Once the management interface
|
|
* is in use this bit will be cleared again and userspace has
|
|
* to explicitly enable it.
|
|
*/
|
|
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
|
|
!hci_dev_test_flag(hdev, HCI_MGMT))
|
|
hci_dev_set_flag(hdev, HCI_BONDABLE);
|
|
|
|
err = hci_dev_do_open(hdev);
|
|
|
|
done:
|
|
hci_dev_put(hdev);
|
|
return err;
|
|
}
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
static void hci_pend_le_actions_clear(struct hci_dev *hdev)
|
|
{
|
|
struct hci_conn_params *p;
|
|
|
|
list_for_each_entry(p, &hdev->le_conn_params, list) {
|
|
if (p->conn) {
|
|
hci_conn_drop(p->conn);
|
|
hci_conn_put(p->conn);
|
|
p->conn = NULL;
|
|
}
|
|
list_del_init(&p->action);
|
|
}
|
|
|
|
BT_DBG("All LE pending actions cleared");
|
|
}
|
|
|
|
int hci_dev_do_close(struct hci_dev *hdev)
|
|
{
|
|
bool auto_off;
|
|
|
|
BT_DBG("%s %p", hdev->name, hdev);
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
|
|
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
|
|
test_bit(HCI_UP, &hdev->flags)) {
|
|
/* Execute vendor specific shutdown routine */
|
|
if (hdev->shutdown)
|
|
hdev->shutdown(hdev);
|
|
}
|
|
|
|
cancel_delayed_work(&hdev->power_off);
|
|
|
|
hci_req_cancel(hdev, ENODEV);
|
|
hci_req_lock(hdev);
|
|
|
|
if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
|
|
cancel_delayed_work_sync(&hdev->cmd_timer);
|
|
hci_req_unlock(hdev);
|
|
return 0;
|
|
}
|
|
|
|
/* Flush RX and TX works */
|
|
flush_work(&hdev->tx_work);
|
|
flush_work(&hdev->rx_work);
|
|
|
|
if (hdev->discov_timeout > 0) {
|
|
cancel_delayed_work(&hdev->discov_off);
|
|
hdev->discov_timeout = 0;
|
|
hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
|
|
hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
|
|
}
|
|
|
|
if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
|
|
cancel_delayed_work(&hdev->service_cache);
|
|
|
|
cancel_delayed_work_sync(&hdev->le_scan_disable);
|
|
cancel_delayed_work_sync(&hdev->le_scan_restart);
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_MGMT))
|
|
cancel_delayed_work_sync(&hdev->rpa_expired);
|
|
|
|
if (hdev->adv_instance_timeout) {
|
|
cancel_delayed_work_sync(&hdev->adv_instance_expire);
|
|
hdev->adv_instance_timeout = 0;
|
|
}
|
|
|
|
/* Avoid potential lockdep warnings from the *_flush() calls by
|
|
* ensuring the workqueue is empty up front.
|
|
*/
|
|
drain_workqueue(hdev->workqueue);
|
|
|
|
hci_dev_lock(hdev);
|
|
|
|
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
|
|
|
|
auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
|
|
|
|
if (!auto_off && hdev->dev_type == HCI_BREDR)
|
|
mgmt_powered(hdev, 0);
|
|
|
|
hci_inquiry_cache_flush(hdev);
|
|
hci_pend_le_actions_clear(hdev);
|
|
hci_conn_hash_flush(hdev);
|
|
hci_dev_unlock(hdev);
|
|
|
|
smp_unregister(hdev);
|
|
|
|
hci_sock_dev_event(hdev, HCI_DEV_DOWN);
|
|
|
|
if (hdev->flush)
|
|
hdev->flush(hdev);
|
|
|
|
/* Reset device */
|
|
skb_queue_purge(&hdev->cmd_q);
|
|
atomic_set(&hdev->cmd_cnt, 1);
|
|
if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
|
|
!auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
|
|
set_bit(HCI_INIT, &hdev->flags);
|
|
__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
|
|
clear_bit(HCI_INIT, &hdev->flags);
|
|
}
|
|
|
|
/* flush cmd work */
|
|
flush_work(&hdev->cmd_work);
|
|
|
|
/* Drop queues */
|
|
skb_queue_purge(&hdev->rx_q);
|
|
skb_queue_purge(&hdev->cmd_q);
|
|
skb_queue_purge(&hdev->raw_q);
|
|
|
|
/* Drop last sent command */
|
|
if (hdev->sent_cmd) {
|
|
cancel_delayed_work_sync(&hdev->cmd_timer);
|
|
kfree_skb(hdev->sent_cmd);
|
|
hdev->sent_cmd = NULL;
|
|
}
|
|
|
|
clear_bit(HCI_RUNNING, &hdev->flags);
|
|
hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
|
|
|
|
/* After this point our queues are empty
|
|
* and no tasks are scheduled. */
|
|
hdev->close(hdev);
|
|
|
|
/* Clear flags */
|
|
hdev->flags &= BIT(HCI_RAW);
|
|
hci_dev_clear_volatile_flags(hdev);
|
|
|
|
/* Controller radio is available but is currently powered down */
|
|
hdev->amp_status = AMP_STATUS_POWERED_DOWN;
|
|
|
|
memset(hdev->eir, 0, sizeof(hdev->eir));
|
|
memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
|
|
bacpy(&hdev->random_addr, BDADDR_ANY);
|
|
|
|
hci_req_unlock(hdev);
|
|
|
|
hci_dev_put(hdev);
|
|
return 0;
|
|
}
|
|
|
|
int hci_dev_close(__u16 dev)
|
|
{
|
|
struct hci_dev *hdev;
|
|
int err;
|
|
|
|
hdev = hci_dev_get(dev);
|
|
if (!hdev)
|
|
return -ENODEV;
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
|
|
err = -EBUSY;
|
|
goto done;
|
|
}
|
|
|
|
if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
|
|
cancel_delayed_work(&hdev->power_off);
|
|
|
|
err = hci_dev_do_close(hdev);
|
|
|
|
done:
|
|
hci_dev_put(hdev);
|
|
return err;
|
|
}
|
|
|
|
static int hci_dev_do_reset(struct hci_dev *hdev)
|
|
{
|
|
int ret;
|
|
|
|
BT_DBG("%s %p", hdev->name, hdev);
|
|
|
|
hci_req_lock(hdev);
|
|
|
|
/* Drop queues */
|
|
skb_queue_purge(&hdev->rx_q);
|
|
skb_queue_purge(&hdev->cmd_q);
|
|
|
|
/* Avoid potential lockdep warnings from the *_flush() calls by
|
|
* ensuring the workqueue is empty up front.
|
|
*/
|
|
drain_workqueue(hdev->workqueue);
|
|
|
|
hci_dev_lock(hdev);
|
|
hci_inquiry_cache_flush(hdev);
|
|
hci_conn_hash_flush(hdev);
|
|
hci_dev_unlock(hdev);
|
|
|
|
if (hdev->flush)
|
|
hdev->flush(hdev);
|
|
|
|
atomic_set(&hdev->cmd_cnt, 1);
|
|
hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
|
|
|
|
ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
|
|
|
|
hci_req_unlock(hdev);
|
|
return ret;
|
|
}
|
|
|
|
int hci_dev_reset(__u16 dev)
|
|
{
|
|
struct hci_dev *hdev;
|
|
int err;
|
|
|
|
hdev = hci_dev_get(dev);
|
|
if (!hdev)
|
|
return -ENODEV;
|
|
|
|
if (!test_bit(HCI_UP, &hdev->flags)) {
|
|
err = -ENETDOWN;
|
|
goto done;
|
|
}
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
|
|
err = -EBUSY;
|
|
goto done;
|
|
}
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
|
|
err = -EOPNOTSUPP;
|
|
goto done;
|
|
}
|
|
|
|
err = hci_dev_do_reset(hdev);
|
|
|
|
done:
|
|
hci_dev_put(hdev);
|
|
return err;
|
|
}
|
|
|
|
int hci_dev_reset_stat(__u16 dev)
|
|
{
|
|
struct hci_dev *hdev;
|
|
int ret = 0;
|
|
|
|
hdev = hci_dev_get(dev);
|
|
if (!hdev)
|
|
return -ENODEV;
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
|
|
ret = -EBUSY;
|
|
goto done;
|
|
}
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
|
|
ret = -EOPNOTSUPP;
|
|
goto done;
|
|
}
|
|
|
|
memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
|
|
|
|
done:
|
|
hci_dev_put(hdev);
|
|
return ret;
|
|
}
|
|
|
|
static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
|
|
{
|
|
bool conn_changed, discov_changed;
|
|
|
|
BT_DBG("%s scan 0x%02x", hdev->name, scan);
|
|
|
|
if ((scan & SCAN_PAGE))
|
|
conn_changed = !hci_dev_test_and_set_flag(hdev,
|
|
HCI_CONNECTABLE);
|
|
else
|
|
conn_changed = hci_dev_test_and_clear_flag(hdev,
|
|
HCI_CONNECTABLE);
|
|
|
|
if ((scan & SCAN_INQUIRY)) {
|
|
discov_changed = !hci_dev_test_and_set_flag(hdev,
|
|
HCI_DISCOVERABLE);
|
|
} else {
|
|
hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
|
|
discov_changed = hci_dev_test_and_clear_flag(hdev,
|
|
HCI_DISCOVERABLE);
|
|
}
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_MGMT))
|
|
return;
|
|
|
|
if (conn_changed || discov_changed) {
|
|
/* In case this was disabled through mgmt */
|
|
hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
|
|
mgmt_update_adv_data(hdev);
|
|
|
|
mgmt_new_settings(hdev);
|
|
}
|
|
}
|
|
|
|
int hci_dev_cmd(unsigned int cmd, void __user *arg)
|
|
{
|
|
struct hci_dev *hdev;
|
|
struct hci_dev_req dr;
|
|
int err = 0;
|
|
|
|
if (copy_from_user(&dr, arg, sizeof(dr)))
|
|
return -EFAULT;
|
|
|
|
hdev = hci_dev_get(dr.dev_id);
|
|
if (!hdev)
|
|
return -ENODEV;
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
|
|
err = -EBUSY;
|
|
goto done;
|
|
}
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
|
|
err = -EOPNOTSUPP;
|
|
goto done;
|
|
}
|
|
|
|
if (hdev->dev_type != HCI_BREDR) {
|
|
err = -EOPNOTSUPP;
|
|
goto done;
|
|
}
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
|
|
err = -EOPNOTSUPP;
|
|
goto done;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case HCISETAUTH:
|
|
err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
|
|
HCI_INIT_TIMEOUT);
|
|
break;
|
|
|
|
case HCISETENCRYPT:
|
|
if (!lmp_encrypt_capable(hdev)) {
|
|
err = -EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
if (!test_bit(HCI_AUTH, &hdev->flags)) {
|
|
/* Auth must be enabled first */
|
|
err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
|
|
HCI_INIT_TIMEOUT);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
|
|
HCI_INIT_TIMEOUT);
|
|
break;
|
|
|
|
case HCISETSCAN:
|
|
err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
|
|
HCI_INIT_TIMEOUT);
|
|
|
|
/* Ensure that the connectable and discoverable states
|
|
* get correctly modified as this was a non-mgmt change.
|
|
*/
|
|
if (!err)
|
|
hci_update_scan_state(hdev, dr.dev_opt);
|
|
break;
|
|
|
|
case HCISETLINKPOL:
|
|
err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
|
|
HCI_INIT_TIMEOUT);
|
|
break;
|
|
|
|
case HCISETLINKMODE:
|
|
hdev->link_mode = ((__u16) dr.dev_opt) &
|
|
(HCI_LM_MASTER | HCI_LM_ACCEPT);
|
|
break;
|
|
|
|
case HCISETPTYPE:
|
|
hdev->pkt_type = (__u16) dr.dev_opt;
|
|
break;
|
|
|
|
case HCISETACLMTU:
|
|
hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
|
|
hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
|
|
break;
|
|
|
|
case HCISETSCOMTU:
|
|
hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
|
|
hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
|
|
break;
|
|
|
|
default:
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
done:
|
|
hci_dev_put(hdev);
|
|
return err;
|
|
}
|
|
|
|
int hci_get_dev_list(void __user *arg)
|
|
{
|
|
struct hci_dev *hdev;
|
|
struct hci_dev_list_req *dl;
|
|
struct hci_dev_req *dr;
|
|
int n = 0, size, err;
|
|
__u16 dev_num;
|
|
|
|
if (get_user(dev_num, (__u16 __user *) arg))
|
|
return -EFAULT;
|
|
|
|
if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
|
|
return -EINVAL;
|
|
|
|
size = sizeof(*dl) + dev_num * sizeof(*dr);
|
|
|
|
dl = kzalloc(size, GFP_KERNEL);
|
|
if (!dl)
|
|
return -ENOMEM;
|
|
|
|
dr = dl->dev_req;
|
|
|
|
read_lock(&hci_dev_list_lock);
|
|
list_for_each_entry(hdev, &hci_dev_list, list) {
|
|
unsigned long flags = hdev->flags;
|
|
|
|
/* When the auto-off is configured it means the transport
|
|
* is running, but in that case still indicate that the
|
|
* device is actually down.
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
|
|
flags &= ~BIT(HCI_UP);
|
|
|
|
(dr + n)->dev_id = hdev->id;
|
|
(dr + n)->dev_opt = flags;
|
|
|
|
if (++n >= dev_num)
|
|
break;
|
|
}
|
|
read_unlock(&hci_dev_list_lock);
|
|
|
|
dl->dev_num = n;
|
|
size = sizeof(*dl) + n * sizeof(*dr);
|
|
|
|
err = copy_to_user(arg, dl, size);
|
|
kfree(dl);
|
|
|
|
return err ? -EFAULT : 0;
|
|
}
|
|
|
|
int hci_get_dev_info(void __user *arg)
|
|
{
|
|
struct hci_dev *hdev;
|
|
struct hci_dev_info di;
|
|
unsigned long flags;
|
|
int err = 0;
|
|
|
|
if (copy_from_user(&di, arg, sizeof(di)))
|
|
return -EFAULT;
|
|
|
|
hdev = hci_dev_get(di.dev_id);
|
|
if (!hdev)
|
|
return -ENODEV;
|
|
|
|
/* When the auto-off is configured it means the transport
|
|
* is running, but in that case still indicate that the
|
|
* device is actually down.
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
|
|
flags = hdev->flags & ~BIT(HCI_UP);
|
|
else
|
|
flags = hdev->flags;
|
|
|
|
strcpy(di.name, hdev->name);
|
|
di.bdaddr = hdev->bdaddr;
|
|
di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
|
|
di.flags = flags;
|
|
di.pkt_type = hdev->pkt_type;
|
|
if (lmp_bredr_capable(hdev)) {
|
|
di.acl_mtu = hdev->acl_mtu;
|
|
di.acl_pkts = hdev->acl_pkts;
|
|
di.sco_mtu = hdev->sco_mtu;
|
|
di.sco_pkts = hdev->sco_pkts;
|
|
} else {
|
|
di.acl_mtu = hdev->le_mtu;
|
|
di.acl_pkts = hdev->le_pkts;
|
|
di.sco_mtu = 0;
|
|
di.sco_pkts = 0;
|
|
}
|
|
di.link_policy = hdev->link_policy;
|
|
di.link_mode = hdev->link_mode;
|
|
|
|
memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
|
|
memcpy(&di.features, &hdev->features, sizeof(di.features));
|
|
|
|
if (copy_to_user(arg, &di, sizeof(di)))
|
|
err = -EFAULT;
|
|
|
|
hci_dev_put(hdev);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* ---- Interface to HCI drivers ---- */
|
|
|
|
static int hci_rfkill_set_block(void *data, bool blocked)
|
|
{
|
|
struct hci_dev *hdev = data;
|
|
|
|
BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
|
|
return -EBUSY;
|
|
|
|
if (blocked) {
|
|
hci_dev_set_flag(hdev, HCI_RFKILLED);
|
|
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
|
|
!hci_dev_test_flag(hdev, HCI_CONFIG))
|
|
hci_dev_do_close(hdev);
|
|
} else {
|
|
hci_dev_clear_flag(hdev, HCI_RFKILLED);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct rfkill_ops hci_rfkill_ops = {
|
|
.set_block = hci_rfkill_set_block,
|
|
};
|
|
|
|
static void hci_power_on(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
|
|
int err;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
err = hci_dev_do_open(hdev);
|
|
if (err < 0) {
|
|
hci_dev_lock(hdev);
|
|
mgmt_set_powered_failed(hdev, err);
|
|
hci_dev_unlock(hdev);
|
|
return;
|
|
}
|
|
|
|
/* During the HCI setup phase, a few error conditions are
|
|
* ignored and they need to be checked now. If they are still
|
|
* valid, it is important to turn the device back off.
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
|
|
hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
|
|
(hdev->dev_type == HCI_BREDR &&
|
|
!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
|
|
!bacmp(&hdev->static_addr, BDADDR_ANY))) {
|
|
hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
|
|
hci_dev_do_close(hdev);
|
|
} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
|
|
queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
|
|
HCI_AUTO_OFF_TIMEOUT);
|
|
}
|
|
|
|
if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
|
|
/* For unconfigured devices, set the HCI_RAW flag
|
|
* so that userspace can easily identify them.
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
|
|
set_bit(HCI_RAW, &hdev->flags);
|
|
|
|
/* For fully configured devices, this will send
|
|
* the Index Added event. For unconfigured devices,
|
|
* it will send Unconfigued Index Added event.
|
|
*
|
|
* Devices with HCI_QUIRK_RAW_DEVICE are ignored
|
|
* and no event will be send.
|
|
*/
|
|
mgmt_index_added(hdev);
|
|
} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
|
|
/* When the controller is now configured, then it
|
|
* is important to clear the HCI_RAW flag.
|
|
*/
|
|
if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
|
|
clear_bit(HCI_RAW, &hdev->flags);
|
|
|
|
/* Powering on the controller with HCI_CONFIG set only
|
|
* happens with the transition from unconfigured to
|
|
* configured. This will send the Index Added event.
|
|
*/
|
|
mgmt_index_added(hdev);
|
|
}
|
|
}
|
|
|
|
static void hci_power_off(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev = container_of(work, struct hci_dev,
|
|
power_off.work);
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
hci_dev_do_close(hdev);
|
|
}
|
|
|
|
static void hci_error_reset(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
if (hdev->hw_error)
|
|
hdev->hw_error(hdev, hdev->hw_error_code);
|
|
else
|
|
BT_ERR("%s hardware error 0x%2.2x", hdev->name,
|
|
hdev->hw_error_code);
|
|
|
|
if (hci_dev_do_close(hdev))
|
|
return;
|
|
|
|
hci_dev_do_open(hdev);
|
|
}
|
|
|
|
static void hci_discov_off(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev;
|
|
|
|
hdev = container_of(work, struct hci_dev, discov_off.work);
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
mgmt_discoverable_timeout(hdev);
|
|
}
|
|
|
|
static void hci_adv_timeout_expire(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev;
|
|
|
|
hdev = container_of(work, struct hci_dev, adv_instance_expire.work);
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
mgmt_adv_timeout_expired(hdev);
|
|
}
|
|
|
|
void hci_uuids_clear(struct hci_dev *hdev)
|
|
{
|
|
struct bt_uuid *uuid, *tmp;
|
|
|
|
list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
|
|
list_del(&uuid->list);
|
|
kfree(uuid);
|
|
}
|
|
}
|
|
|
|
void hci_link_keys_clear(struct hci_dev *hdev)
|
|
{
|
|
struct link_key *key;
|
|
|
|
list_for_each_entry_rcu(key, &hdev->link_keys, list) {
|
|
list_del_rcu(&key->list);
|
|
kfree_rcu(key, rcu);
|
|
}
|
|
}
|
|
|
|
void hci_smp_ltks_clear(struct hci_dev *hdev)
|
|
{
|
|
struct smp_ltk *k;
|
|
|
|
list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
|
|
list_del_rcu(&k->list);
|
|
kfree_rcu(k, rcu);
|
|
}
|
|
}
|
|
|
|
void hci_smp_irks_clear(struct hci_dev *hdev)
|
|
{
|
|
struct smp_irk *k;
|
|
|
|
list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
|
|
list_del_rcu(&k->list);
|
|
kfree_rcu(k, rcu);
|
|
}
|
|
}
|
|
|
|
struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
|
|
{
|
|
struct link_key *k;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(k, &hdev->link_keys, list) {
|
|
if (bacmp(bdaddr, &k->bdaddr) == 0) {
|
|
rcu_read_unlock();
|
|
return k;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
|
|
u8 key_type, u8 old_key_type)
|
|
{
|
|
/* Legacy key */
|
|
if (key_type < 0x03)
|
|
return true;
|
|
|
|
/* Debug keys are insecure so don't store them persistently */
|
|
if (key_type == HCI_LK_DEBUG_COMBINATION)
|
|
return false;
|
|
|
|
/* Changed combination key and there's no previous one */
|
|
if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
|
|
return false;
|
|
|
|
/* Security mode 3 case */
|
|
if (!conn)
|
|
return true;
|
|
|
|
/* BR/EDR key derived using SC from an LE link */
|
|
if (conn->type == LE_LINK)
|
|
return true;
|
|
|
|
/* Neither local nor remote side had no-bonding as requirement */
|
|
if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
|
|
return true;
|
|
|
|
/* Local side had dedicated bonding as requirement */
|
|
if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
|
|
return true;
|
|
|
|
/* Remote side had dedicated bonding as requirement */
|
|
if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
|
|
return true;
|
|
|
|
/* If none of the above criteria match, then don't store the key
|
|
* persistently */
|
|
return false;
|
|
}
|
|
|
|
static u8 ltk_role(u8 type)
|
|
{
|
|
if (type == SMP_LTK)
|
|
return HCI_ROLE_MASTER;
|
|
|
|
return HCI_ROLE_SLAVE;
|
|
}
|
|
|
|
struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
|
|
u8 addr_type, u8 role)
|
|
{
|
|
struct smp_ltk *k;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
|
|
if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
|
|
continue;
|
|
|
|
if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
|
|
rcu_read_unlock();
|
|
return k;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
|
|
{
|
|
struct smp_irk *irk;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
|
|
if (!bacmp(&irk->rpa, rpa)) {
|
|
rcu_read_unlock();
|
|
return irk;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
|
|
if (smp_irk_matches(hdev, irk->val, rpa)) {
|
|
bacpy(&irk->rpa, rpa);
|
|
rcu_read_unlock();
|
|
return irk;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
|
|
u8 addr_type)
|
|
{
|
|
struct smp_irk *irk;
|
|
|
|
/* Identity Address must be public or static random */
|
|
if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
|
|
return NULL;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
|
|
if (addr_type == irk->addr_type &&
|
|
bacmp(bdaddr, &irk->bdaddr) == 0) {
|
|
rcu_read_unlock();
|
|
return irk;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
|
|
bdaddr_t *bdaddr, u8 *val, u8 type,
|
|
u8 pin_len, bool *persistent)
|
|
{
|
|
struct link_key *key, *old_key;
|
|
u8 old_key_type;
|
|
|
|
old_key = hci_find_link_key(hdev, bdaddr);
|
|
if (old_key) {
|
|
old_key_type = old_key->type;
|
|
key = old_key;
|
|
} else {
|
|
old_key_type = conn ? conn->key_type : 0xff;
|
|
key = kzalloc(sizeof(*key), GFP_KERNEL);
|
|
if (!key)
|
|
return NULL;
|
|
list_add_rcu(&key->list, &hdev->link_keys);
|
|
}
|
|
|
|
BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
|
|
|
|
/* Some buggy controller combinations generate a changed
|
|
* combination key for legacy pairing even when there's no
|
|
* previous key */
|
|
if (type == HCI_LK_CHANGED_COMBINATION &&
|
|
(!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
|
|
type = HCI_LK_COMBINATION;
|
|
if (conn)
|
|
conn->key_type = type;
|
|
}
|
|
|
|
bacpy(&key->bdaddr, bdaddr);
|
|
memcpy(key->val, val, HCI_LINK_KEY_SIZE);
|
|
key->pin_len = pin_len;
|
|
|
|
if (type == HCI_LK_CHANGED_COMBINATION)
|
|
key->type = old_key_type;
|
|
else
|
|
key->type = type;
|
|
|
|
if (persistent)
|
|
*persistent = hci_persistent_key(hdev, conn, type,
|
|
old_key_type);
|
|
|
|
return key;
|
|
}
|
|
|
|
struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
|
|
u8 addr_type, u8 type, u8 authenticated,
|
|
u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
|
|
{
|
|
struct smp_ltk *key, *old_key;
|
|
u8 role = ltk_role(type);
|
|
|
|
old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
|
|
if (old_key)
|
|
key = old_key;
|
|
else {
|
|
key = kzalloc(sizeof(*key), GFP_KERNEL);
|
|
if (!key)
|
|
return NULL;
|
|
list_add_rcu(&key->list, &hdev->long_term_keys);
|
|
}
|
|
|
|
bacpy(&key->bdaddr, bdaddr);
|
|
key->bdaddr_type = addr_type;
|
|
memcpy(key->val, tk, sizeof(key->val));
|
|
key->authenticated = authenticated;
|
|
key->ediv = ediv;
|
|
key->rand = rand;
|
|
key->enc_size = enc_size;
|
|
key->type = type;
|
|
|
|
return key;
|
|
}
|
|
|
|
struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
|
|
u8 addr_type, u8 val[16], bdaddr_t *rpa)
|
|
{
|
|
struct smp_irk *irk;
|
|
|
|
irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
|
|
if (!irk) {
|
|
irk = kzalloc(sizeof(*irk), GFP_KERNEL);
|
|
if (!irk)
|
|
return NULL;
|
|
|
|
bacpy(&irk->bdaddr, bdaddr);
|
|
irk->addr_type = addr_type;
|
|
|
|
list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
|
|
}
|
|
|
|
memcpy(irk->val, val, 16);
|
|
bacpy(&irk->rpa, rpa);
|
|
|
|
return irk;
|
|
}
|
|
|
|
int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
|
|
{
|
|
struct link_key *key;
|
|
|
|
key = hci_find_link_key(hdev, bdaddr);
|
|
if (!key)
|
|
return -ENOENT;
|
|
|
|
BT_DBG("%s removing %pMR", hdev->name, bdaddr);
|
|
|
|
list_del_rcu(&key->list);
|
|
kfree_rcu(key, rcu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
|
|
{
|
|
struct smp_ltk *k;
|
|
int removed = 0;
|
|
|
|
list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
|
|
if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
|
|
continue;
|
|
|
|
BT_DBG("%s removing %pMR", hdev->name, bdaddr);
|
|
|
|
list_del_rcu(&k->list);
|
|
kfree_rcu(k, rcu);
|
|
removed++;
|
|
}
|
|
|
|
return removed ? 0 : -ENOENT;
|
|
}
|
|
|
|
void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
|
|
{
|
|
struct smp_irk *k;
|
|
|
|
list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
|
|
if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
|
|
continue;
|
|
|
|
BT_DBG("%s removing %pMR", hdev->name, bdaddr);
|
|
|
|
list_del_rcu(&k->list);
|
|
kfree_rcu(k, rcu);
|
|
}
|
|
}
|
|
|
|
bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
|
|
{
|
|
struct smp_ltk *k;
|
|
struct smp_irk *irk;
|
|
u8 addr_type;
|
|
|
|
if (type == BDADDR_BREDR) {
|
|
if (hci_find_link_key(hdev, bdaddr))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Convert to HCI addr type which struct smp_ltk uses */
|
|
if (type == BDADDR_LE_PUBLIC)
|
|
addr_type = ADDR_LE_DEV_PUBLIC;
|
|
else
|
|
addr_type = ADDR_LE_DEV_RANDOM;
|
|
|
|
irk = hci_get_irk(hdev, bdaddr, addr_type);
|
|
if (irk) {
|
|
bdaddr = &irk->bdaddr;
|
|
addr_type = irk->addr_type;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
|
|
if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
|
|
rcu_read_unlock();
|
|
return true;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return false;
|
|
}
|
|
|
|
/* HCI command timer function */
|
|
static void hci_cmd_timeout(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev = container_of(work, struct hci_dev,
|
|
cmd_timer.work);
|
|
|
|
if (hdev->sent_cmd) {
|
|
struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
|
|
u16 opcode = __le16_to_cpu(sent->opcode);
|
|
|
|
BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
|
|
} else {
|
|
BT_ERR("%s command tx timeout", hdev->name);
|
|
}
|
|
|
|
atomic_set(&hdev->cmd_cnt, 1);
|
|
queue_work(hdev->workqueue, &hdev->cmd_work);
|
|
}
|
|
|
|
struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
|
|
bdaddr_t *bdaddr, u8 bdaddr_type)
|
|
{
|
|
struct oob_data *data;
|
|
|
|
list_for_each_entry(data, &hdev->remote_oob_data, list) {
|
|
if (bacmp(bdaddr, &data->bdaddr) != 0)
|
|
continue;
|
|
if (data->bdaddr_type != bdaddr_type)
|
|
continue;
|
|
return data;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
|
|
u8 bdaddr_type)
|
|
{
|
|
struct oob_data *data;
|
|
|
|
data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
|
|
if (!data)
|
|
return -ENOENT;
|
|
|
|
BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
|
|
|
|
list_del(&data->list);
|
|
kfree(data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void hci_remote_oob_data_clear(struct hci_dev *hdev)
|
|
{
|
|
struct oob_data *data, *n;
|
|
|
|
list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
|
|
list_del(&data->list);
|
|
kfree(data);
|
|
}
|
|
}
|
|
|
|
int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
|
|
u8 bdaddr_type, u8 *hash192, u8 *rand192,
|
|
u8 *hash256, u8 *rand256)
|
|
{
|
|
struct oob_data *data;
|
|
|
|
data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
|
|
if (!data) {
|
|
data = kmalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
bacpy(&data->bdaddr, bdaddr);
|
|
data->bdaddr_type = bdaddr_type;
|
|
list_add(&data->list, &hdev->remote_oob_data);
|
|
}
|
|
|
|
if (hash192 && rand192) {
|
|
memcpy(data->hash192, hash192, sizeof(data->hash192));
|
|
memcpy(data->rand192, rand192, sizeof(data->rand192));
|
|
if (hash256 && rand256)
|
|
data->present = 0x03;
|
|
} else {
|
|
memset(data->hash192, 0, sizeof(data->hash192));
|
|
memset(data->rand192, 0, sizeof(data->rand192));
|
|
if (hash256 && rand256)
|
|
data->present = 0x02;
|
|
else
|
|
data->present = 0x00;
|
|
}
|
|
|
|
if (hash256 && rand256) {
|
|
memcpy(data->hash256, hash256, sizeof(data->hash256));
|
|
memcpy(data->rand256, rand256, sizeof(data->rand256));
|
|
} else {
|
|
memset(data->hash256, 0, sizeof(data->hash256));
|
|
memset(data->rand256, 0, sizeof(data->rand256));
|
|
if (hash192 && rand192)
|
|
data->present = 0x01;
|
|
}
|
|
|
|
BT_DBG("%s for %pMR", hdev->name, bdaddr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
|
|
{
|
|
struct adv_info *adv_instance;
|
|
|
|
list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
|
|
if (adv_instance->instance == instance)
|
|
return adv_instance;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) {
|
|
struct adv_info *cur_instance;
|
|
|
|
cur_instance = hci_find_adv_instance(hdev, instance);
|
|
if (!cur_instance)
|
|
return NULL;
|
|
|
|
if (cur_instance == list_last_entry(&hdev->adv_instances,
|
|
struct adv_info, list))
|
|
return list_first_entry(&hdev->adv_instances,
|
|
struct adv_info, list);
|
|
else
|
|
return list_next_entry(cur_instance, list);
|
|
}
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
|
|
{
|
|
struct adv_info *adv_instance;
|
|
|
|
adv_instance = hci_find_adv_instance(hdev, instance);
|
|
if (!adv_instance)
|
|
return -ENOENT;
|
|
|
|
BT_DBG("%s removing %dMR", hdev->name, instance);
|
|
|
|
if (hdev->cur_adv_instance == instance && hdev->adv_instance_timeout) {
|
|
cancel_delayed_work(&hdev->adv_instance_expire);
|
|
hdev->adv_instance_timeout = 0;
|
|
}
|
|
|
|
list_del(&adv_instance->list);
|
|
kfree(adv_instance);
|
|
|
|
hdev->adv_instance_cnt--;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
void hci_adv_instances_clear(struct hci_dev *hdev)
|
|
{
|
|
struct adv_info *adv_instance, *n;
|
|
|
|
if (hdev->adv_instance_timeout) {
|
|
cancel_delayed_work(&hdev->adv_instance_expire);
|
|
hdev->adv_instance_timeout = 0;
|
|
}
|
|
|
|
list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
|
|
list_del(&adv_instance->list);
|
|
kfree(adv_instance);
|
|
}
|
|
|
|
hdev->adv_instance_cnt = 0;
|
|
}
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
|
|
u16 adv_data_len, u8 *adv_data,
|
|
u16 scan_rsp_len, u8 *scan_rsp_data,
|
|
u16 timeout, u16 duration)
|
|
{
|
|
struct adv_info *adv_instance;
|
|
|
|
adv_instance = hci_find_adv_instance(hdev, instance);
|
|
if (adv_instance) {
|
|
memset(adv_instance->adv_data, 0,
|
|
sizeof(adv_instance->adv_data));
|
|
memset(adv_instance->scan_rsp_data, 0,
|
|
sizeof(adv_instance->scan_rsp_data));
|
|
} else {
|
|
if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
|
|
instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
|
|
return -EOVERFLOW;
|
|
|
|
adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
|
|
if (!adv_instance)
|
|
return -ENOMEM;
|
|
|
|
adv_instance->pending = true;
|
|
adv_instance->instance = instance;
|
|
list_add(&adv_instance->list, &hdev->adv_instances);
|
|
hdev->adv_instance_cnt++;
|
|
}
|
|
|
|
adv_instance->flags = flags;
|
|
adv_instance->adv_data_len = adv_data_len;
|
|
adv_instance->scan_rsp_len = scan_rsp_len;
|
|
|
|
if (adv_data_len)
|
|
memcpy(adv_instance->adv_data, adv_data, adv_data_len);
|
|
|
|
if (scan_rsp_len)
|
|
memcpy(adv_instance->scan_rsp_data,
|
|
scan_rsp_data, scan_rsp_len);
|
|
|
|
adv_instance->timeout = timeout;
|
|
adv_instance->remaining_time = timeout;
|
|
|
|
if (duration == 0)
|
|
adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
|
|
else
|
|
adv_instance->duration = duration;
|
|
|
|
BT_DBG("%s for %dMR", hdev->name, instance);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
|
|
bdaddr_t *bdaddr, u8 type)
|
|
{
|
|
struct bdaddr_list *b;
|
|
|
|
list_for_each_entry(b, bdaddr_list, list) {
|
|
if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
|
|
return b;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
|
|
{
|
|
struct list_head *p, *n;
|
|
|
|
list_for_each_safe(p, n, bdaddr_list) {
|
|
struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list);
|
|
|
|
list_del(p);
|
|
kfree(b);
|
|
}
|
|
}
|
|
|
|
int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
|
|
{
|
|
struct bdaddr_list *entry;
|
|
|
|
if (!bacmp(bdaddr, BDADDR_ANY))
|
|
return -EBADF;
|
|
|
|
if (hci_bdaddr_list_lookup(list, bdaddr, type))
|
|
return -EEXIST;
|
|
|
|
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
|
|
if (!entry)
|
|
return -ENOMEM;
|
|
|
|
bacpy(&entry->bdaddr, bdaddr);
|
|
entry->bdaddr_type = type;
|
|
|
|
list_add(&entry->list, list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
|
|
{
|
|
struct bdaddr_list *entry;
|
|
|
|
if (!bacmp(bdaddr, BDADDR_ANY)) {
|
|
hci_bdaddr_list_clear(list);
|
|
return 0;
|
|
}
|
|
|
|
entry = hci_bdaddr_list_lookup(list, bdaddr, type);
|
|
if (!entry)
|
|
return -ENOENT;
|
|
|
|
list_del(&entry->list);
|
|
kfree(entry);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
|
|
bdaddr_t *addr, u8 addr_type)
|
|
{
|
|
struct hci_conn_params *params;
|
|
|
|
list_for_each_entry(params, &hdev->le_conn_params, list) {
|
|
if (bacmp(¶ms->addr, addr) == 0 &&
|
|
params->addr_type == addr_type) {
|
|
return params;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
|
|
bdaddr_t *addr, u8 addr_type)
|
|
{
|
|
struct hci_conn_params *param;
|
|
|
|
list_for_each_entry(param, list, action) {
|
|
if (bacmp(¶m->addr, addr) == 0 &&
|
|
param->addr_type == addr_type)
|
|
return param;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
|
|
bdaddr_t *addr, u8 addr_type)
|
|
{
|
|
struct hci_conn_params *params;
|
|
|
|
params = hci_conn_params_lookup(hdev, addr, addr_type);
|
|
if (params)
|
|
return params;
|
|
|
|
params = kzalloc(sizeof(*params), GFP_KERNEL);
|
|
if (!params) {
|
|
BT_ERR("Out of memory");
|
|
return NULL;
|
|
}
|
|
|
|
bacpy(¶ms->addr, addr);
|
|
params->addr_type = addr_type;
|
|
|
|
list_add(¶ms->list, &hdev->le_conn_params);
|
|
INIT_LIST_HEAD(¶ms->action);
|
|
|
|
params->conn_min_interval = hdev->le_conn_min_interval;
|
|
params->conn_max_interval = hdev->le_conn_max_interval;
|
|
params->conn_latency = hdev->le_conn_latency;
|
|
params->supervision_timeout = hdev->le_supv_timeout;
|
|
params->auto_connect = HCI_AUTO_CONN_DISABLED;
|
|
|
|
BT_DBG("addr %pMR (type %u)", addr, addr_type);
|
|
|
|
return params;
|
|
}
|
|
|
|
static void hci_conn_params_free(struct hci_conn_params *params)
|
|
{
|
|
if (params->conn) {
|
|
hci_conn_drop(params->conn);
|
|
hci_conn_put(params->conn);
|
|
}
|
|
|
|
list_del(¶ms->action);
|
|
list_del(¶ms->list);
|
|
kfree(params);
|
|
}
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
|
|
{
|
|
struct hci_conn_params *params;
|
|
|
|
params = hci_conn_params_lookup(hdev, addr, addr_type);
|
|
if (!params)
|
|
return;
|
|
|
|
hci_conn_params_free(params);
|
|
|
|
hci_update_background_scan(hdev);
|
|
|
|
BT_DBG("addr %pMR (type %u)", addr, addr_type);
|
|
}
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
void hci_conn_params_clear_disabled(struct hci_dev *hdev)
|
|
{
|
|
struct hci_conn_params *params, *tmp;
|
|
|
|
list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
|
|
if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
|
|
continue;
|
|
|
|
/* If trying to estabilish one time connection to disabled
|
|
* device, leave the params, but mark them as just once.
|
|
*/
|
|
if (params->explicit_connect) {
|
|
params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
|
|
continue;
|
|
}
|
|
|
|
list_del(¶ms->list);
|
|
kfree(params);
|
|
}
|
|
|
|
BT_DBG("All LE disabled connection parameters were removed");
|
|
}
|
|
|
|
/* This function requires the caller holds hdev->lock */
|
|
void hci_conn_params_clear_all(struct hci_dev *hdev)
|
|
{
|
|
struct hci_conn_params *params, *tmp;
|
|
|
|
list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
|
|
hci_conn_params_free(params);
|
|
|
|
hci_update_background_scan(hdev);
|
|
|
|
BT_DBG("All LE connection parameters were removed");
|
|
}
|
|
|
|
static void inquiry_complete(struct hci_dev *hdev, u8 status, u16 opcode)
|
|
{
|
|
if (status) {
|
|
BT_ERR("Failed to start inquiry: status %d", status);
|
|
|
|
hci_dev_lock(hdev);
|
|
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
|
|
hci_dev_unlock(hdev);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void le_scan_disable_work_complete(struct hci_dev *hdev, u8 status,
|
|
u16 opcode)
|
|
{
|
|
/* General inquiry access code (GIAC) */
|
|
u8 lap[3] = { 0x33, 0x8b, 0x9e };
|
|
struct hci_cp_inquiry cp;
|
|
int err;
|
|
|
|
if (status) {
|
|
BT_ERR("Failed to disable LE scanning: status %d", status);
|
|
return;
|
|
}
|
|
|
|
hdev->discovery.scan_start = 0;
|
|
|
|
switch (hdev->discovery.type) {
|
|
case DISCOV_TYPE_LE:
|
|
hci_dev_lock(hdev);
|
|
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
|
|
hci_dev_unlock(hdev);
|
|
break;
|
|
|
|
case DISCOV_TYPE_INTERLEAVED:
|
|
hci_dev_lock(hdev);
|
|
|
|
if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
|
|
&hdev->quirks)) {
|
|
/* If we were running LE only scan, change discovery
|
|
* state. If we were running both LE and BR/EDR inquiry
|
|
* simultaneously, and BR/EDR inquiry is already
|
|
* finished, stop discovery, otherwise BR/EDR inquiry
|
|
* will stop discovery when finished. If we will resolve
|
|
* remote device name, do not change discovery state.
|
|
*/
|
|
if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
|
|
hdev->discovery.state != DISCOVERY_RESOLVING)
|
|
hci_discovery_set_state(hdev,
|
|
DISCOVERY_STOPPED);
|
|
} else {
|
|
struct hci_request req;
|
|
|
|
hci_inquiry_cache_flush(hdev);
|
|
|
|
hci_req_init(&req, hdev);
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
memcpy(&cp.lap, lap, sizeof(cp.lap));
|
|
cp.length = DISCOV_INTERLEAVED_INQUIRY_LEN;
|
|
hci_req_add(&req, HCI_OP_INQUIRY, sizeof(cp), &cp);
|
|
|
|
err = hci_req_run(&req, inquiry_complete);
|
|
if (err) {
|
|
BT_ERR("Inquiry request failed: err %d", err);
|
|
hci_discovery_set_state(hdev,
|
|
DISCOVERY_STOPPED);
|
|
}
|
|
}
|
|
|
|
hci_dev_unlock(hdev);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void le_scan_disable_work(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev = container_of(work, struct hci_dev,
|
|
le_scan_disable.work);
|
|
struct hci_request req;
|
|
int err;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
cancel_delayed_work_sync(&hdev->le_scan_restart);
|
|
|
|
hci_req_init(&req, hdev);
|
|
|
|
hci_req_add_le_scan_disable(&req);
|
|
|
|
err = hci_req_run(&req, le_scan_disable_work_complete);
|
|
if (err)
|
|
BT_ERR("Disable LE scanning request failed: err %d", err);
|
|
}
|
|
|
|
static void le_scan_restart_work_complete(struct hci_dev *hdev, u8 status,
|
|
u16 opcode)
|
|
{
|
|
unsigned long timeout, duration, scan_start, now;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
if (status) {
|
|
BT_ERR("Failed to restart LE scan: status %d", status);
|
|
return;
|
|
}
|
|
|
|
if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
|
|
!hdev->discovery.scan_start)
|
|
return;
|
|
|
|
/* When the scan was started, hdev->le_scan_disable has been queued
|
|
* after duration from scan_start. During scan restart this job
|
|
* has been canceled, and we need to queue it again after proper
|
|
* timeout, to make sure that scan does not run indefinitely.
|
|
*/
|
|
duration = hdev->discovery.scan_duration;
|
|
scan_start = hdev->discovery.scan_start;
|
|
now = jiffies;
|
|
if (now - scan_start <= duration) {
|
|
int elapsed;
|
|
|
|
if (now >= scan_start)
|
|
elapsed = now - scan_start;
|
|
else
|
|
elapsed = ULONG_MAX - scan_start + now;
|
|
|
|
timeout = duration - elapsed;
|
|
} else {
|
|
timeout = 0;
|
|
}
|
|
queue_delayed_work(hdev->workqueue,
|
|
&hdev->le_scan_disable, timeout);
|
|
}
|
|
|
|
static void le_scan_restart_work(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev = container_of(work, struct hci_dev,
|
|
le_scan_restart.work);
|
|
struct hci_request req;
|
|
struct hci_cp_le_set_scan_enable cp;
|
|
int err;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
/* If controller is not scanning we are done. */
|
|
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
|
|
return;
|
|
|
|
hci_req_init(&req, hdev);
|
|
|
|
hci_req_add_le_scan_disable(&req);
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
cp.enable = LE_SCAN_ENABLE;
|
|
cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
|
|
hci_req_add(&req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
|
|
|
|
err = hci_req_run(&req, le_scan_restart_work_complete);
|
|
if (err)
|
|
BT_ERR("Restart LE scan request failed: err %d", err);
|
|
}
|
|
|
|
/* Copy the Identity Address of the controller.
|
|
*
|
|
* If the controller has a public BD_ADDR, then by default use that one.
|
|
* If this is a LE only controller without a public address, default to
|
|
* the static random address.
|
|
*
|
|
* For debugging purposes it is possible to force controllers with a
|
|
* public address to use the static random address instead.
|
|
*
|
|
* In case BR/EDR has been disabled on a dual-mode controller and
|
|
* userspace has configured a static address, then that address
|
|
* becomes the identity address instead of the public BR/EDR address.
|
|
*/
|
|
void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
|
|
u8 *bdaddr_type)
|
|
{
|
|
if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
|
|
!bacmp(&hdev->bdaddr, BDADDR_ANY) ||
|
|
(!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
|
|
bacmp(&hdev->static_addr, BDADDR_ANY))) {
|
|
bacpy(bdaddr, &hdev->static_addr);
|
|
*bdaddr_type = ADDR_LE_DEV_RANDOM;
|
|
} else {
|
|
bacpy(bdaddr, &hdev->bdaddr);
|
|
*bdaddr_type = ADDR_LE_DEV_PUBLIC;
|
|
}
|
|
}
|
|
|
|
/* Alloc HCI device */
|
|
struct hci_dev *hci_alloc_dev(void)
|
|
{
|
|
struct hci_dev *hdev;
|
|
|
|
hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
|
|
if (!hdev)
|
|
return NULL;
|
|
|
|
hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
|
|
hdev->esco_type = (ESCO_HV1);
|
|
hdev->link_mode = (HCI_LM_ACCEPT);
|
|
hdev->num_iac = 0x01; /* One IAC support is mandatory */
|
|
hdev->io_capability = 0x03; /* No Input No Output */
|
|
hdev->manufacturer = 0xffff; /* Default to internal use */
|
|
hdev->inq_tx_power = HCI_TX_POWER_INVALID;
|
|
hdev->adv_tx_power = HCI_TX_POWER_INVALID;
|
|
hdev->adv_instance_cnt = 0;
|
|
hdev->cur_adv_instance = 0x00;
|
|
hdev->adv_instance_timeout = 0;
|
|
|
|
hdev->sniff_max_interval = 800;
|
|
hdev->sniff_min_interval = 80;
|
|
|
|
hdev->le_adv_channel_map = 0x07;
|
|
hdev->le_adv_min_interval = 0x0800;
|
|
hdev->le_adv_max_interval = 0x0800;
|
|
hdev->le_scan_interval = 0x0060;
|
|
hdev->le_scan_window = 0x0030;
|
|
hdev->le_conn_min_interval = 0x0028;
|
|
hdev->le_conn_max_interval = 0x0038;
|
|
hdev->le_conn_latency = 0x0000;
|
|
hdev->le_supv_timeout = 0x002a;
|
|
hdev->le_def_tx_len = 0x001b;
|
|
hdev->le_def_tx_time = 0x0148;
|
|
hdev->le_max_tx_len = 0x001b;
|
|
hdev->le_max_tx_time = 0x0148;
|
|
hdev->le_max_rx_len = 0x001b;
|
|
hdev->le_max_rx_time = 0x0148;
|
|
|
|
hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
|
|
hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
|
|
hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
|
|
hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
|
|
|
|
mutex_init(&hdev->lock);
|
|
mutex_init(&hdev->req_lock);
|
|
|
|
INIT_LIST_HEAD(&hdev->mgmt_pending);
|
|
INIT_LIST_HEAD(&hdev->blacklist);
|
|
INIT_LIST_HEAD(&hdev->whitelist);
|
|
INIT_LIST_HEAD(&hdev->uuids);
|
|
INIT_LIST_HEAD(&hdev->link_keys);
|
|
INIT_LIST_HEAD(&hdev->long_term_keys);
|
|
INIT_LIST_HEAD(&hdev->identity_resolving_keys);
|
|
INIT_LIST_HEAD(&hdev->remote_oob_data);
|
|
INIT_LIST_HEAD(&hdev->le_white_list);
|
|
INIT_LIST_HEAD(&hdev->le_conn_params);
|
|
INIT_LIST_HEAD(&hdev->pend_le_conns);
|
|
INIT_LIST_HEAD(&hdev->pend_le_reports);
|
|
INIT_LIST_HEAD(&hdev->conn_hash.list);
|
|
INIT_LIST_HEAD(&hdev->adv_instances);
|
|
|
|
INIT_WORK(&hdev->rx_work, hci_rx_work);
|
|
INIT_WORK(&hdev->cmd_work, hci_cmd_work);
|
|
INIT_WORK(&hdev->tx_work, hci_tx_work);
|
|
INIT_WORK(&hdev->power_on, hci_power_on);
|
|
INIT_WORK(&hdev->error_reset, hci_error_reset);
|
|
|
|
INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
|
|
INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
|
|
INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
|
|
INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
|
|
INIT_DELAYED_WORK(&hdev->adv_instance_expire, hci_adv_timeout_expire);
|
|
|
|
skb_queue_head_init(&hdev->rx_q);
|
|
skb_queue_head_init(&hdev->cmd_q);
|
|
skb_queue_head_init(&hdev->raw_q);
|
|
|
|
init_waitqueue_head(&hdev->req_wait_q);
|
|
|
|
INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
|
|
|
|
hci_init_sysfs(hdev);
|
|
discovery_init(hdev);
|
|
|
|
return hdev;
|
|
}
|
|
EXPORT_SYMBOL(hci_alloc_dev);
|
|
|
|
/* Free HCI device */
|
|
void hci_free_dev(struct hci_dev *hdev)
|
|
{
|
|
/* will free via device release */
|
|
put_device(&hdev->dev);
|
|
}
|
|
EXPORT_SYMBOL(hci_free_dev);
|
|
|
|
/* Register HCI device */
|
|
int hci_register_dev(struct hci_dev *hdev)
|
|
{
|
|
int id, error;
|
|
|
|
if (!hdev->open || !hdev->close || !hdev->send)
|
|
return -EINVAL;
|
|
|
|
/* Do not allow HCI_AMP devices to register at index 0,
|
|
* so the index can be used as the AMP controller ID.
|
|
*/
|
|
switch (hdev->dev_type) {
|
|
case HCI_BREDR:
|
|
id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
|
|
break;
|
|
case HCI_AMP:
|
|
id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (id < 0)
|
|
return id;
|
|
|
|
sprintf(hdev->name, "hci%d", id);
|
|
hdev->id = id;
|
|
|
|
BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
|
|
|
|
hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
|
|
WQ_MEM_RECLAIM, 1, hdev->name);
|
|
if (!hdev->workqueue) {
|
|
error = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
|
|
WQ_MEM_RECLAIM, 1, hdev->name);
|
|
if (!hdev->req_workqueue) {
|
|
destroy_workqueue(hdev->workqueue);
|
|
error = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
if (!IS_ERR_OR_NULL(bt_debugfs))
|
|
hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
|
|
|
|
dev_set_name(&hdev->dev, "%s", hdev->name);
|
|
|
|
error = device_add(&hdev->dev);
|
|
if (error < 0)
|
|
goto err_wqueue;
|
|
|
|
hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
|
|
RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
|
|
hdev);
|
|
if (hdev->rfkill) {
|
|
if (rfkill_register(hdev->rfkill) < 0) {
|
|
rfkill_destroy(hdev->rfkill);
|
|
hdev->rfkill = NULL;
|
|
}
|
|
}
|
|
|
|
if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
|
|
hci_dev_set_flag(hdev, HCI_RFKILLED);
|
|
|
|
hci_dev_set_flag(hdev, HCI_SETUP);
|
|
hci_dev_set_flag(hdev, HCI_AUTO_OFF);
|
|
|
|
if (hdev->dev_type == HCI_BREDR) {
|
|
/* Assume BR/EDR support until proven otherwise (such as
|
|
* through reading supported features during init.
|
|
*/
|
|
hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
|
|
}
|
|
|
|
write_lock(&hci_dev_list_lock);
|
|
list_add(&hdev->list, &hci_dev_list);
|
|
write_unlock(&hci_dev_list_lock);
|
|
|
|
/* Devices that are marked for raw-only usage are unconfigured
|
|
* and should not be included in normal operation.
|
|
*/
|
|
if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
|
|
hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
|
|
|
|
hci_sock_dev_event(hdev, HCI_DEV_REG);
|
|
hci_dev_hold(hdev);
|
|
|
|
queue_work(hdev->req_workqueue, &hdev->power_on);
|
|
|
|
return id;
|
|
|
|
err_wqueue:
|
|
destroy_workqueue(hdev->workqueue);
|
|
destroy_workqueue(hdev->req_workqueue);
|
|
err:
|
|
ida_simple_remove(&hci_index_ida, hdev->id);
|
|
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(hci_register_dev);
|
|
|
|
/* Unregister HCI device */
|
|
void hci_unregister_dev(struct hci_dev *hdev)
|
|
{
|
|
int id;
|
|
|
|
BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
|
|
|
|
hci_dev_set_flag(hdev, HCI_UNREGISTER);
|
|
|
|
id = hdev->id;
|
|
|
|
write_lock(&hci_dev_list_lock);
|
|
list_del(&hdev->list);
|
|
write_unlock(&hci_dev_list_lock);
|
|
|
|
hci_dev_do_close(hdev);
|
|
|
|
cancel_work_sync(&hdev->power_on);
|
|
|
|
if (!test_bit(HCI_INIT, &hdev->flags) &&
|
|
!hci_dev_test_flag(hdev, HCI_SETUP) &&
|
|
!hci_dev_test_flag(hdev, HCI_CONFIG)) {
|
|
hci_dev_lock(hdev);
|
|
mgmt_index_removed(hdev);
|
|
hci_dev_unlock(hdev);
|
|
}
|
|
|
|
/* mgmt_index_removed should take care of emptying the
|
|
* pending list */
|
|
BUG_ON(!list_empty(&hdev->mgmt_pending));
|
|
|
|
hci_sock_dev_event(hdev, HCI_DEV_UNREG);
|
|
|
|
if (hdev->rfkill) {
|
|
rfkill_unregister(hdev->rfkill);
|
|
rfkill_destroy(hdev->rfkill);
|
|
}
|
|
|
|
device_del(&hdev->dev);
|
|
|
|
debugfs_remove_recursive(hdev->debugfs);
|
|
|
|
destroy_workqueue(hdev->workqueue);
|
|
destroy_workqueue(hdev->req_workqueue);
|
|
|
|
hci_dev_lock(hdev);
|
|
hci_bdaddr_list_clear(&hdev->blacklist);
|
|
hci_bdaddr_list_clear(&hdev->whitelist);
|
|
hci_uuids_clear(hdev);
|
|
hci_link_keys_clear(hdev);
|
|
hci_smp_ltks_clear(hdev);
|
|
hci_smp_irks_clear(hdev);
|
|
hci_remote_oob_data_clear(hdev);
|
|
hci_adv_instances_clear(hdev);
|
|
hci_bdaddr_list_clear(&hdev->le_white_list);
|
|
hci_conn_params_clear_all(hdev);
|
|
hci_discovery_filter_clear(hdev);
|
|
hci_dev_unlock(hdev);
|
|
|
|
hci_dev_put(hdev);
|
|
|
|
ida_simple_remove(&hci_index_ida, id);
|
|
}
|
|
EXPORT_SYMBOL(hci_unregister_dev);
|
|
|
|
/* Suspend HCI device */
|
|
int hci_suspend_dev(struct hci_dev *hdev)
|
|
{
|
|
hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(hci_suspend_dev);
|
|
|
|
/* Resume HCI device */
|
|
int hci_resume_dev(struct hci_dev *hdev)
|
|
{
|
|
hci_sock_dev_event(hdev, HCI_DEV_RESUME);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(hci_resume_dev);
|
|
|
|
/* Reset HCI device */
|
|
int hci_reset_dev(struct hci_dev *hdev)
|
|
{
|
|
const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
|
|
struct sk_buff *skb;
|
|
|
|
skb = bt_skb_alloc(3, GFP_ATOMIC);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
|
|
bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
|
|
memcpy(skb_put(skb, 3), hw_err, 3);
|
|
|
|
/* Send Hardware Error to upper stack */
|
|
return hci_recv_frame(hdev, skb);
|
|
}
|
|
EXPORT_SYMBOL(hci_reset_dev);
|
|
|
|
/* Receive frame from HCI drivers */
|
|
int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
|
|
{
|
|
if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
|
|
&& !test_bit(HCI_INIT, &hdev->flags))) {
|
|
kfree_skb(skb);
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (bt_cb(skb)->pkt_type != HCI_EVENT_PKT &&
|
|
bt_cb(skb)->pkt_type != HCI_ACLDATA_PKT &&
|
|
bt_cb(skb)->pkt_type != HCI_SCODATA_PKT) {
|
|
kfree_skb(skb);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Incoming skb */
|
|
bt_cb(skb)->incoming = 1;
|
|
|
|
/* Time stamp */
|
|
__net_timestamp(skb);
|
|
|
|
skb_queue_tail(&hdev->rx_q, skb);
|
|
queue_work(hdev->workqueue, &hdev->rx_work);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(hci_recv_frame);
|
|
|
|
/* Receive diagnostic message from HCI drivers */
|
|
int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
|
|
{
|
|
/* Mark as diagnostic packet */
|
|
bt_cb(skb)->pkt_type = HCI_DIAG_PKT;
|
|
|
|
/* Time stamp */
|
|
__net_timestamp(skb);
|
|
|
|
skb_queue_tail(&hdev->rx_q, skb);
|
|
queue_work(hdev->workqueue, &hdev->rx_work);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(hci_recv_diag);
|
|
|
|
/* ---- Interface to upper protocols ---- */
|
|
|
|
int hci_register_cb(struct hci_cb *cb)
|
|
{
|
|
BT_DBG("%p name %s", cb, cb->name);
|
|
|
|
mutex_lock(&hci_cb_list_lock);
|
|
list_add_tail(&cb->list, &hci_cb_list);
|
|
mutex_unlock(&hci_cb_list_lock);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(hci_register_cb);
|
|
|
|
int hci_unregister_cb(struct hci_cb *cb)
|
|
{
|
|
BT_DBG("%p name %s", cb, cb->name);
|
|
|
|
mutex_lock(&hci_cb_list_lock);
|
|
list_del(&cb->list);
|
|
mutex_unlock(&hci_cb_list_lock);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(hci_unregister_cb);
|
|
|
|
static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
|
|
{
|
|
int err;
|
|
|
|
BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
|
|
|
|
/* Time stamp */
|
|
__net_timestamp(skb);
|
|
|
|
/* Send copy to monitor */
|
|
hci_send_to_monitor(hdev, skb);
|
|
|
|
if (atomic_read(&hdev->promisc)) {
|
|
/* Send copy to the sockets */
|
|
hci_send_to_sock(hdev, skb);
|
|
}
|
|
|
|
/* Get rid of skb owner, prior to sending to the driver. */
|
|
skb_orphan(skb);
|
|
|
|
if (!test_bit(HCI_RUNNING, &hdev->flags)) {
|
|
kfree_skb(skb);
|
|
return;
|
|
}
|
|
|
|
err = hdev->send(hdev, skb);
|
|
if (err < 0) {
|
|
BT_ERR("%s sending frame failed (%d)", hdev->name, err);
|
|
kfree_skb(skb);
|
|
}
|
|
}
|
|
|
|
/* Send HCI command */
|
|
int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
|
|
const void *param)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
|
|
|
|
skb = hci_prepare_cmd(hdev, opcode, plen, param);
|
|
if (!skb) {
|
|
BT_ERR("%s no memory for command", hdev->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Stand-alone HCI commands must be flagged as
|
|
* single-command requests.
|
|
*/
|
|
bt_cb(skb)->hci.req_start = true;
|
|
|
|
skb_queue_tail(&hdev->cmd_q, skb);
|
|
queue_work(hdev->workqueue, &hdev->cmd_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Get data from the previously sent command */
|
|
void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
|
|
{
|
|
struct hci_command_hdr *hdr;
|
|
|
|
if (!hdev->sent_cmd)
|
|
return NULL;
|
|
|
|
hdr = (void *) hdev->sent_cmd->data;
|
|
|
|
if (hdr->opcode != cpu_to_le16(opcode))
|
|
return NULL;
|
|
|
|
BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
|
|
|
|
return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
|
|
}
|
|
|
|
/* Send HCI command and wait for command commplete event */
|
|
struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
|
|
const void *param, u32 timeout)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
if (!test_bit(HCI_UP, &hdev->flags))
|
|
return ERR_PTR(-ENETDOWN);
|
|
|
|
bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
|
|
|
|
hci_req_lock(hdev);
|
|
skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
|
|
hci_req_unlock(hdev);
|
|
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL(hci_cmd_sync);
|
|
|
|
/* Send ACL data */
|
|
static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
|
|
{
|
|
struct hci_acl_hdr *hdr;
|
|
int len = skb->len;
|
|
|
|
skb_push(skb, HCI_ACL_HDR_SIZE);
|
|
skb_reset_transport_header(skb);
|
|
hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
|
|
hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
|
|
hdr->dlen = cpu_to_le16(len);
|
|
}
|
|
|
|
static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
|
|
struct sk_buff *skb, __u16 flags)
|
|
{
|
|
struct hci_conn *conn = chan->conn;
|
|
struct hci_dev *hdev = conn->hdev;
|
|
struct sk_buff *list;
|
|
|
|
skb->len = skb_headlen(skb);
|
|
skb->data_len = 0;
|
|
|
|
bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
|
|
|
|
switch (hdev->dev_type) {
|
|
case HCI_BREDR:
|
|
hci_add_acl_hdr(skb, conn->handle, flags);
|
|
break;
|
|
case HCI_AMP:
|
|
hci_add_acl_hdr(skb, chan->handle, flags);
|
|
break;
|
|
default:
|
|
BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
|
|
return;
|
|
}
|
|
|
|
list = skb_shinfo(skb)->frag_list;
|
|
if (!list) {
|
|
/* Non fragmented */
|
|
BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
|
|
|
|
skb_queue_tail(queue, skb);
|
|
} else {
|
|
/* Fragmented */
|
|
BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
|
|
|
|
skb_shinfo(skb)->frag_list = NULL;
|
|
|
|
/* Queue all fragments atomically. We need to use spin_lock_bh
|
|
* here because of 6LoWPAN links, as there this function is
|
|
* called from softirq and using normal spin lock could cause
|
|
* deadlocks.
|
|
*/
|
|
spin_lock_bh(&queue->lock);
|
|
|
|
__skb_queue_tail(queue, skb);
|
|
|
|
flags &= ~ACL_START;
|
|
flags |= ACL_CONT;
|
|
do {
|
|
skb = list; list = list->next;
|
|
|
|
bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
|
|
hci_add_acl_hdr(skb, conn->handle, flags);
|
|
|
|
BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
|
|
|
|
__skb_queue_tail(queue, skb);
|
|
} while (list);
|
|
|
|
spin_unlock_bh(&queue->lock);
|
|
}
|
|
}
|
|
|
|
void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
|
|
{
|
|
struct hci_dev *hdev = chan->conn->hdev;
|
|
|
|
BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
|
|
|
|
hci_queue_acl(chan, &chan->data_q, skb, flags);
|
|
|
|
queue_work(hdev->workqueue, &hdev->tx_work);
|
|
}
|
|
|
|
/* Send SCO data */
|
|
void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
|
|
{
|
|
struct hci_dev *hdev = conn->hdev;
|
|
struct hci_sco_hdr hdr;
|
|
|
|
BT_DBG("%s len %d", hdev->name, skb->len);
|
|
|
|
hdr.handle = cpu_to_le16(conn->handle);
|
|
hdr.dlen = skb->len;
|
|
|
|
skb_push(skb, HCI_SCO_HDR_SIZE);
|
|
skb_reset_transport_header(skb);
|
|
memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
|
|
|
|
bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
|
|
|
|
skb_queue_tail(&conn->data_q, skb);
|
|
queue_work(hdev->workqueue, &hdev->tx_work);
|
|
}
|
|
|
|
/* ---- HCI TX task (outgoing data) ---- */
|
|
|
|
/* HCI Connection scheduler */
|
|
static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
|
|
int *quote)
|
|
{
|
|
struct hci_conn_hash *h = &hdev->conn_hash;
|
|
struct hci_conn *conn = NULL, *c;
|
|
unsigned int num = 0, min = ~0;
|
|
|
|
/* We don't have to lock device here. Connections are always
|
|
* added and removed with TX task disabled. */
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(c, &h->list, list) {
|
|
if (c->type != type || skb_queue_empty(&c->data_q))
|
|
continue;
|
|
|
|
if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
|
|
continue;
|
|
|
|
num++;
|
|
|
|
if (c->sent < min) {
|
|
min = c->sent;
|
|
conn = c;
|
|
}
|
|
|
|
if (hci_conn_num(hdev, type) == num)
|
|
break;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
if (conn) {
|
|
int cnt, q;
|
|
|
|
switch (conn->type) {
|
|
case ACL_LINK:
|
|
cnt = hdev->acl_cnt;
|
|
break;
|
|
case SCO_LINK:
|
|
case ESCO_LINK:
|
|
cnt = hdev->sco_cnt;
|
|
break;
|
|
case LE_LINK:
|
|
cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
|
|
break;
|
|
default:
|
|
cnt = 0;
|
|
BT_ERR("Unknown link type");
|
|
}
|
|
|
|
q = cnt / num;
|
|
*quote = q ? q : 1;
|
|
} else
|
|
*quote = 0;
|
|
|
|
BT_DBG("conn %p quote %d", conn, *quote);
|
|
return conn;
|
|
}
|
|
|
|
static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
|
|
{
|
|
struct hci_conn_hash *h = &hdev->conn_hash;
|
|
struct hci_conn *c;
|
|
|
|
BT_ERR("%s link tx timeout", hdev->name);
|
|
|
|
rcu_read_lock();
|
|
|
|
/* Kill stalled connections */
|
|
list_for_each_entry_rcu(c, &h->list, list) {
|
|
if (c->type == type && c->sent) {
|
|
BT_ERR("%s killing stalled connection %pMR",
|
|
hdev->name, &c->dst);
|
|
hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
|
|
int *quote)
|
|
{
|
|
struct hci_conn_hash *h = &hdev->conn_hash;
|
|
struct hci_chan *chan = NULL;
|
|
unsigned int num = 0, min = ~0, cur_prio = 0;
|
|
struct hci_conn *conn;
|
|
int cnt, q, conn_num = 0;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(conn, &h->list, list) {
|
|
struct hci_chan *tmp;
|
|
|
|
if (conn->type != type)
|
|
continue;
|
|
|
|
if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
|
|
continue;
|
|
|
|
conn_num++;
|
|
|
|
list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
|
|
struct sk_buff *skb;
|
|
|
|
if (skb_queue_empty(&tmp->data_q))
|
|
continue;
|
|
|
|
skb = skb_peek(&tmp->data_q);
|
|
if (skb->priority < cur_prio)
|
|
continue;
|
|
|
|
if (skb->priority > cur_prio) {
|
|
num = 0;
|
|
min = ~0;
|
|
cur_prio = skb->priority;
|
|
}
|
|
|
|
num++;
|
|
|
|
if (conn->sent < min) {
|
|
min = conn->sent;
|
|
chan = tmp;
|
|
}
|
|
}
|
|
|
|
if (hci_conn_num(hdev, type) == conn_num)
|
|
break;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
if (!chan)
|
|
return NULL;
|
|
|
|
switch (chan->conn->type) {
|
|
case ACL_LINK:
|
|
cnt = hdev->acl_cnt;
|
|
break;
|
|
case AMP_LINK:
|
|
cnt = hdev->block_cnt;
|
|
break;
|
|
case SCO_LINK:
|
|
case ESCO_LINK:
|
|
cnt = hdev->sco_cnt;
|
|
break;
|
|
case LE_LINK:
|
|
cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
|
|
break;
|
|
default:
|
|
cnt = 0;
|
|
BT_ERR("Unknown link type");
|
|
}
|
|
|
|
q = cnt / num;
|
|
*quote = q ? q : 1;
|
|
BT_DBG("chan %p quote %d", chan, *quote);
|
|
return chan;
|
|
}
|
|
|
|
static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
|
|
{
|
|
struct hci_conn_hash *h = &hdev->conn_hash;
|
|
struct hci_conn *conn;
|
|
int num = 0;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(conn, &h->list, list) {
|
|
struct hci_chan *chan;
|
|
|
|
if (conn->type != type)
|
|
continue;
|
|
|
|
if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
|
|
continue;
|
|
|
|
num++;
|
|
|
|
list_for_each_entry_rcu(chan, &conn->chan_list, list) {
|
|
struct sk_buff *skb;
|
|
|
|
if (chan->sent) {
|
|
chan->sent = 0;
|
|
continue;
|
|
}
|
|
|
|
if (skb_queue_empty(&chan->data_q))
|
|
continue;
|
|
|
|
skb = skb_peek(&chan->data_q);
|
|
if (skb->priority >= HCI_PRIO_MAX - 1)
|
|
continue;
|
|
|
|
skb->priority = HCI_PRIO_MAX - 1;
|
|
|
|
BT_DBG("chan %p skb %p promoted to %d", chan, skb,
|
|
skb->priority);
|
|
}
|
|
|
|
if (hci_conn_num(hdev, type) == num)
|
|
break;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
}
|
|
|
|
static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
|
|
{
|
|
/* Calculate count of blocks used by this packet */
|
|
return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
|
|
}
|
|
|
|
static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
|
|
{
|
|
if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
|
|
/* ACL tx timeout must be longer than maximum
|
|
* link supervision timeout (40.9 seconds) */
|
|
if (!cnt && time_after(jiffies, hdev->acl_last_tx +
|
|
HCI_ACL_TX_TIMEOUT))
|
|
hci_link_tx_to(hdev, ACL_LINK);
|
|
}
|
|
}
|
|
|
|
static void hci_sched_acl_pkt(struct hci_dev *hdev)
|
|
{
|
|
unsigned int cnt = hdev->acl_cnt;
|
|
struct hci_chan *chan;
|
|
struct sk_buff *skb;
|
|
int quote;
|
|
|
|
__check_timeout(hdev, cnt);
|
|
|
|
while (hdev->acl_cnt &&
|
|
(chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
|
|
u32 priority = (skb_peek(&chan->data_q))->priority;
|
|
while (quote-- && (skb = skb_peek(&chan->data_q))) {
|
|
BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
|
|
skb->len, skb->priority);
|
|
|
|
/* Stop if priority has changed */
|
|
if (skb->priority < priority)
|
|
break;
|
|
|
|
skb = skb_dequeue(&chan->data_q);
|
|
|
|
hci_conn_enter_active_mode(chan->conn,
|
|
bt_cb(skb)->force_active);
|
|
|
|
hci_send_frame(hdev, skb);
|
|
hdev->acl_last_tx = jiffies;
|
|
|
|
hdev->acl_cnt--;
|
|
chan->sent++;
|
|
chan->conn->sent++;
|
|
}
|
|
}
|
|
|
|
if (cnt != hdev->acl_cnt)
|
|
hci_prio_recalculate(hdev, ACL_LINK);
|
|
}
|
|
|
|
static void hci_sched_acl_blk(struct hci_dev *hdev)
|
|
{
|
|
unsigned int cnt = hdev->block_cnt;
|
|
struct hci_chan *chan;
|
|
struct sk_buff *skb;
|
|
int quote;
|
|
u8 type;
|
|
|
|
__check_timeout(hdev, cnt);
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
if (hdev->dev_type == HCI_AMP)
|
|
type = AMP_LINK;
|
|
else
|
|
type = ACL_LINK;
|
|
|
|
while (hdev->block_cnt > 0 &&
|
|
(chan = hci_chan_sent(hdev, type, "e))) {
|
|
u32 priority = (skb_peek(&chan->data_q))->priority;
|
|
while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
|
|
int blocks;
|
|
|
|
BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
|
|
skb->len, skb->priority);
|
|
|
|
/* Stop if priority has changed */
|
|
if (skb->priority < priority)
|
|
break;
|
|
|
|
skb = skb_dequeue(&chan->data_q);
|
|
|
|
blocks = __get_blocks(hdev, skb);
|
|
if (blocks > hdev->block_cnt)
|
|
return;
|
|
|
|
hci_conn_enter_active_mode(chan->conn,
|
|
bt_cb(skb)->force_active);
|
|
|
|
hci_send_frame(hdev, skb);
|
|
hdev->acl_last_tx = jiffies;
|
|
|
|
hdev->block_cnt -= blocks;
|
|
quote -= blocks;
|
|
|
|
chan->sent += blocks;
|
|
chan->conn->sent += blocks;
|
|
}
|
|
}
|
|
|
|
if (cnt != hdev->block_cnt)
|
|
hci_prio_recalculate(hdev, type);
|
|
}
|
|
|
|
static void hci_sched_acl(struct hci_dev *hdev)
|
|
{
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
/* No ACL link over BR/EDR controller */
|
|
if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
|
|
return;
|
|
|
|
/* No AMP link over AMP controller */
|
|
if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
|
|
return;
|
|
|
|
switch (hdev->flow_ctl_mode) {
|
|
case HCI_FLOW_CTL_MODE_PACKET_BASED:
|
|
hci_sched_acl_pkt(hdev);
|
|
break;
|
|
|
|
case HCI_FLOW_CTL_MODE_BLOCK_BASED:
|
|
hci_sched_acl_blk(hdev);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Schedule SCO */
|
|
static void hci_sched_sco(struct hci_dev *hdev)
|
|
{
|
|
struct hci_conn *conn;
|
|
struct sk_buff *skb;
|
|
int quote;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
if (!hci_conn_num(hdev, SCO_LINK))
|
|
return;
|
|
|
|
while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
|
|
while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
|
|
BT_DBG("skb %p len %d", skb, skb->len);
|
|
hci_send_frame(hdev, skb);
|
|
|
|
conn->sent++;
|
|
if (conn->sent == ~0)
|
|
conn->sent = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void hci_sched_esco(struct hci_dev *hdev)
|
|
{
|
|
struct hci_conn *conn;
|
|
struct sk_buff *skb;
|
|
int quote;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
if (!hci_conn_num(hdev, ESCO_LINK))
|
|
return;
|
|
|
|
while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
|
|
"e))) {
|
|
while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
|
|
BT_DBG("skb %p len %d", skb, skb->len);
|
|
hci_send_frame(hdev, skb);
|
|
|
|
conn->sent++;
|
|
if (conn->sent == ~0)
|
|
conn->sent = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void hci_sched_le(struct hci_dev *hdev)
|
|
{
|
|
struct hci_chan *chan;
|
|
struct sk_buff *skb;
|
|
int quote, cnt, tmp;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
if (!hci_conn_num(hdev, LE_LINK))
|
|
return;
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
|
|
/* LE tx timeout must be longer than maximum
|
|
* link supervision timeout (40.9 seconds) */
|
|
if (!hdev->le_cnt && hdev->le_pkts &&
|
|
time_after(jiffies, hdev->le_last_tx + HZ * 45))
|
|
hci_link_tx_to(hdev, LE_LINK);
|
|
}
|
|
|
|
cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
|
|
tmp = cnt;
|
|
while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
|
|
u32 priority = (skb_peek(&chan->data_q))->priority;
|
|
while (quote-- && (skb = skb_peek(&chan->data_q))) {
|
|
BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
|
|
skb->len, skb->priority);
|
|
|
|
/* Stop if priority has changed */
|
|
if (skb->priority < priority)
|
|
break;
|
|
|
|
skb = skb_dequeue(&chan->data_q);
|
|
|
|
hci_send_frame(hdev, skb);
|
|
hdev->le_last_tx = jiffies;
|
|
|
|
cnt--;
|
|
chan->sent++;
|
|
chan->conn->sent++;
|
|
}
|
|
}
|
|
|
|
if (hdev->le_pkts)
|
|
hdev->le_cnt = cnt;
|
|
else
|
|
hdev->acl_cnt = cnt;
|
|
|
|
if (cnt != tmp)
|
|
hci_prio_recalculate(hdev, LE_LINK);
|
|
}
|
|
|
|
static void hci_tx_work(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
|
|
struct sk_buff *skb;
|
|
|
|
BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
|
|
hdev->sco_cnt, hdev->le_cnt);
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
|
|
/* Schedule queues and send stuff to HCI driver */
|
|
hci_sched_acl(hdev);
|
|
hci_sched_sco(hdev);
|
|
hci_sched_esco(hdev);
|
|
hci_sched_le(hdev);
|
|
}
|
|
|
|
/* Send next queued raw (unknown type) packet */
|
|
while ((skb = skb_dequeue(&hdev->raw_q)))
|
|
hci_send_frame(hdev, skb);
|
|
}
|
|
|
|
/* ----- HCI RX task (incoming data processing) ----- */
|
|
|
|
/* ACL data packet */
|
|
static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
|
|
{
|
|
struct hci_acl_hdr *hdr = (void *) skb->data;
|
|
struct hci_conn *conn;
|
|
__u16 handle, flags;
|
|
|
|
skb_pull(skb, HCI_ACL_HDR_SIZE);
|
|
|
|
handle = __le16_to_cpu(hdr->handle);
|
|
flags = hci_flags(handle);
|
|
handle = hci_handle(handle);
|
|
|
|
BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
|
|
handle, flags);
|
|
|
|
hdev->stat.acl_rx++;
|
|
|
|
hci_dev_lock(hdev);
|
|
conn = hci_conn_hash_lookup_handle(hdev, handle);
|
|
hci_dev_unlock(hdev);
|
|
|
|
if (conn) {
|
|
hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
|
|
|
|
/* Send to upper protocol */
|
|
l2cap_recv_acldata(conn, skb, flags);
|
|
return;
|
|
} else {
|
|
BT_ERR("%s ACL packet for unknown connection handle %d",
|
|
hdev->name, handle);
|
|
}
|
|
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
/* SCO data packet */
|
|
static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
|
|
{
|
|
struct hci_sco_hdr *hdr = (void *) skb->data;
|
|
struct hci_conn *conn;
|
|
__u16 handle;
|
|
|
|
skb_pull(skb, HCI_SCO_HDR_SIZE);
|
|
|
|
handle = __le16_to_cpu(hdr->handle);
|
|
|
|
BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
|
|
|
|
hdev->stat.sco_rx++;
|
|
|
|
hci_dev_lock(hdev);
|
|
conn = hci_conn_hash_lookup_handle(hdev, handle);
|
|
hci_dev_unlock(hdev);
|
|
|
|
if (conn) {
|
|
/* Send to upper protocol */
|
|
sco_recv_scodata(conn, skb);
|
|
return;
|
|
} else {
|
|
BT_ERR("%s SCO packet for unknown connection handle %d",
|
|
hdev->name, handle);
|
|
}
|
|
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
static bool hci_req_is_complete(struct hci_dev *hdev)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = skb_peek(&hdev->cmd_q);
|
|
if (!skb)
|
|
return true;
|
|
|
|
return bt_cb(skb)->hci.req_start;
|
|
}
|
|
|
|
static void hci_resend_last(struct hci_dev *hdev)
|
|
{
|
|
struct hci_command_hdr *sent;
|
|
struct sk_buff *skb;
|
|
u16 opcode;
|
|
|
|
if (!hdev->sent_cmd)
|
|
return;
|
|
|
|
sent = (void *) hdev->sent_cmd->data;
|
|
opcode = __le16_to_cpu(sent->opcode);
|
|
if (opcode == HCI_OP_RESET)
|
|
return;
|
|
|
|
skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
|
|
if (!skb)
|
|
return;
|
|
|
|
skb_queue_head(&hdev->cmd_q, skb);
|
|
queue_work(hdev->workqueue, &hdev->cmd_work);
|
|
}
|
|
|
|
void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
|
|
hci_req_complete_t *req_complete,
|
|
hci_req_complete_skb_t *req_complete_skb)
|
|
{
|
|
struct sk_buff *skb;
|
|
unsigned long flags;
|
|
|
|
BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
|
|
|
|
/* If the completed command doesn't match the last one that was
|
|
* sent we need to do special handling of it.
|
|
*/
|
|
if (!hci_sent_cmd_data(hdev, opcode)) {
|
|
/* Some CSR based controllers generate a spontaneous
|
|
* reset complete event during init and any pending
|
|
* command will never be completed. In such a case we
|
|
* need to resend whatever was the last sent
|
|
* command.
|
|
*/
|
|
if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
|
|
hci_resend_last(hdev);
|
|
|
|
return;
|
|
}
|
|
|
|
/* If the command succeeded and there's still more commands in
|
|
* this request the request is not yet complete.
|
|
*/
|
|
if (!status && !hci_req_is_complete(hdev))
|
|
return;
|
|
|
|
/* If this was the last command in a request the complete
|
|
* callback would be found in hdev->sent_cmd instead of the
|
|
* command queue (hdev->cmd_q).
|
|
*/
|
|
if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
|
|
*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
|
|
return;
|
|
}
|
|
|
|
if (bt_cb(hdev->sent_cmd)->hci.req_complete_skb) {
|
|
*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
|
|
return;
|
|
}
|
|
|
|
/* Remove all pending commands belonging to this request */
|
|
spin_lock_irqsave(&hdev->cmd_q.lock, flags);
|
|
while ((skb = __skb_dequeue(&hdev->cmd_q))) {
|
|
if (bt_cb(skb)->hci.req_start) {
|
|
__skb_queue_head(&hdev->cmd_q, skb);
|
|
break;
|
|
}
|
|
|
|
*req_complete = bt_cb(skb)->hci.req_complete;
|
|
*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
|
|
kfree_skb(skb);
|
|
}
|
|
spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
|
|
}
|
|
|
|
static void hci_rx_work(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
|
|
struct sk_buff *skb;
|
|
|
|
BT_DBG("%s", hdev->name);
|
|
|
|
while ((skb = skb_dequeue(&hdev->rx_q))) {
|
|
/* Send copy to monitor */
|
|
hci_send_to_monitor(hdev, skb);
|
|
|
|
if (atomic_read(&hdev->promisc)) {
|
|
/* Send copy to the sockets */
|
|
hci_send_to_sock(hdev, skb);
|
|
}
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
|
|
kfree_skb(skb);
|
|
continue;
|
|
}
|
|
|
|
if (test_bit(HCI_INIT, &hdev->flags)) {
|
|
/* Don't process data packets in this states. */
|
|
switch (bt_cb(skb)->pkt_type) {
|
|
case HCI_ACLDATA_PKT:
|
|
case HCI_SCODATA_PKT:
|
|
kfree_skb(skb);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Process frame */
|
|
switch (bt_cb(skb)->pkt_type) {
|
|
case HCI_EVENT_PKT:
|
|
BT_DBG("%s Event packet", hdev->name);
|
|
hci_event_packet(hdev, skb);
|
|
break;
|
|
|
|
case HCI_ACLDATA_PKT:
|
|
BT_DBG("%s ACL data packet", hdev->name);
|
|
hci_acldata_packet(hdev, skb);
|
|
break;
|
|
|
|
case HCI_SCODATA_PKT:
|
|
BT_DBG("%s SCO data packet", hdev->name);
|
|
hci_scodata_packet(hdev, skb);
|
|
break;
|
|
|
|
default:
|
|
kfree_skb(skb);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void hci_cmd_work(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
|
|
struct sk_buff *skb;
|
|
|
|
BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
|
|
atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
|
|
|
|
/* Send queued commands */
|
|
if (atomic_read(&hdev->cmd_cnt)) {
|
|
skb = skb_dequeue(&hdev->cmd_q);
|
|
if (!skb)
|
|
return;
|
|
|
|
kfree_skb(hdev->sent_cmd);
|
|
|
|
hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
|
|
if (hdev->sent_cmd) {
|
|
atomic_dec(&hdev->cmd_cnt);
|
|
hci_send_frame(hdev, skb);
|
|
if (test_bit(HCI_RESET, &hdev->flags))
|
|
cancel_delayed_work(&hdev->cmd_timer);
|
|
else
|
|
schedule_delayed_work(&hdev->cmd_timer,
|
|
HCI_CMD_TIMEOUT);
|
|
} else {
|
|
skb_queue_head(&hdev->cmd_q, skb);
|
|
queue_work(hdev->workqueue, &hdev->cmd_work);
|
|
}
|
|
}
|
|
}
|