OpenCloudOS-Kernel/drivers/scsi/lpfc/lpfc_debugfs.c

6492 lines
185 KiB
C

/*******************************************************************
* This file is part of the Emulex Linux Device Driver for *
* Fibre Channel Host Bus Adapters. *
* Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term *
* “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
* Copyright (C) 2007-2015 Emulex. All rights reserved. *
* EMULEX and SLI are trademarks of Emulex. *
* www.broadcom.com *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of version 2 of the GNU General *
* Public License as published by the Free Software Foundation. *
* This program is distributed in the hope that it will be useful. *
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
* DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
* TO BE LEGALLY INVALID. See the GNU General Public License for *
* more details, a copy of which can be found in the file COPYING *
* included with this package. *
*******************************************************************/
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include <linux/interrupt.h>
#include <linux/kthread.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/ctype.h>
#include <linux/vmalloc.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_transport_fc.h>
#include <scsi/fc/fc_fs.h>
#include "lpfc_hw4.h"
#include "lpfc_hw.h"
#include "lpfc_sli.h"
#include "lpfc_sli4.h"
#include "lpfc_nl.h"
#include "lpfc_disc.h"
#include "lpfc.h"
#include "lpfc_scsi.h"
#include "lpfc_nvme.h"
#include "lpfc_logmsg.h"
#include "lpfc_crtn.h"
#include "lpfc_vport.h"
#include "lpfc_version.h"
#include "lpfc_compat.h"
#include "lpfc_debugfs.h"
#include "lpfc_bsg.h"
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
/*
* debugfs interface
*
* To access this interface the user should:
* # mount -t debugfs none /sys/kernel/debug
*
* The lpfc debugfs directory hierarchy is:
* /sys/kernel/debug/lpfc/fnX/vportY
* where X is the lpfc hba function unique_id
* where Y is the vport VPI on that hba
*
* Debugging services available per vport:
* discovery_trace
* This is an ACSII readable file that contains a trace of the last
* lpfc_debugfs_max_disc_trc events that happened on a specific vport.
* See lpfc_debugfs.h for different categories of discovery events.
* To enable the discovery trace, the following module parameters must be set:
* lpfc_debugfs_enable=1 Turns on lpfc debugfs filesystem support
* lpfc_debugfs_max_disc_trc=X Where X is the event trace depth for
* EACH vport. X MUST also be a power of 2.
* lpfc_debugfs_mask_disc_trc=Y Where Y is an event mask as defined in
* lpfc_debugfs.h .
*
* slow_ring_trace
* This is an ACSII readable file that contains a trace of the last
* lpfc_debugfs_max_slow_ring_trc events that happened on a specific HBA.
* To enable the slow ring trace, the following module parameters must be set:
* lpfc_debugfs_enable=1 Turns on lpfc debugfs filesystem support
* lpfc_debugfs_max_slow_ring_trc=X Where X is the event trace depth for
* the HBA. X MUST also be a power of 2.
*/
static int lpfc_debugfs_enable = 1;
module_param(lpfc_debugfs_enable, int, S_IRUGO);
MODULE_PARM_DESC(lpfc_debugfs_enable, "Enable debugfs services");
/* This MUST be a power of 2 */
static int lpfc_debugfs_max_disc_trc;
module_param(lpfc_debugfs_max_disc_trc, int, S_IRUGO);
MODULE_PARM_DESC(lpfc_debugfs_max_disc_trc,
"Set debugfs discovery trace depth");
/* This MUST be a power of 2 */
static int lpfc_debugfs_max_slow_ring_trc;
module_param(lpfc_debugfs_max_slow_ring_trc, int, S_IRUGO);
MODULE_PARM_DESC(lpfc_debugfs_max_slow_ring_trc,
"Set debugfs slow ring trace depth");
/* This MUST be a power of 2 */
static int lpfc_debugfs_max_nvmeio_trc;
module_param(lpfc_debugfs_max_nvmeio_trc, int, 0444);
MODULE_PARM_DESC(lpfc_debugfs_max_nvmeio_trc,
"Set debugfs NVME IO trace depth");
static int lpfc_debugfs_mask_disc_trc;
module_param(lpfc_debugfs_mask_disc_trc, int, S_IRUGO);
MODULE_PARM_DESC(lpfc_debugfs_mask_disc_trc,
"Set debugfs discovery trace mask");
#include <linux/debugfs.h>
static atomic_t lpfc_debugfs_seq_trc_cnt = ATOMIC_INIT(0);
static unsigned long lpfc_debugfs_start_time = 0L;
/* iDiag */
static struct lpfc_idiag idiag;
/**
* lpfc_debugfs_disc_trc_data - Dump discovery logging to a buffer
* @vport: The vport to gather the log info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine gathers the lpfc discovery debugfs data from the @vport and
* dumps it to @buf up to @size number of bytes. It will start at the next entry
* in the log and process the log until the end of the buffer. Then it will
* gather from the beginning of the log and process until the current entry.
*
* Notes:
* Discovery logging will be disabled while while this routine dumps the log.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_disc_trc_data(struct lpfc_vport *vport, char *buf, int size)
{
int i, index, len, enable;
uint32_t ms;
struct lpfc_debugfs_trc *dtp;
char *buffer;
buffer = kmalloc(LPFC_DEBUG_TRC_ENTRY_SIZE, GFP_KERNEL);
if (!buffer)
return 0;
enable = lpfc_debugfs_enable;
lpfc_debugfs_enable = 0;
len = 0;
index = (atomic_read(&vport->disc_trc_cnt) + 1) &
(lpfc_debugfs_max_disc_trc - 1);
for (i = index; i < lpfc_debugfs_max_disc_trc; i++) {
dtp = vport->disc_trc + i;
if (!dtp->fmt)
continue;
ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time);
snprintf(buffer,
LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n",
dtp->seq_cnt, ms, dtp->fmt);
len += scnprintf(buf+len, size-len, buffer,
dtp->data1, dtp->data2, dtp->data3);
}
for (i = 0; i < index; i++) {
dtp = vport->disc_trc + i;
if (!dtp->fmt)
continue;
ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time);
snprintf(buffer,
LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n",
dtp->seq_cnt, ms, dtp->fmt);
len += scnprintf(buf+len, size-len, buffer,
dtp->data1, dtp->data2, dtp->data3);
}
lpfc_debugfs_enable = enable;
kfree(buffer);
return len;
}
/**
* lpfc_debugfs_slow_ring_trc_data - Dump slow ring logging to a buffer
* @phba: The HBA to gather the log info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine gathers the lpfc slow ring debugfs data from the @phba and
* dumps it to @buf up to @size number of bytes. It will start at the next entry
* in the log and process the log until the end of the buffer. Then it will
* gather from the beginning of the log and process until the current entry.
*
* Notes:
* Slow ring logging will be disabled while while this routine dumps the log.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_slow_ring_trc_data(struct lpfc_hba *phba, char *buf, int size)
{
int i, index, len, enable;
uint32_t ms;
struct lpfc_debugfs_trc *dtp;
char *buffer;
buffer = kmalloc(LPFC_DEBUG_TRC_ENTRY_SIZE, GFP_KERNEL);
if (!buffer)
return 0;
enable = lpfc_debugfs_enable;
lpfc_debugfs_enable = 0;
len = 0;
index = (atomic_read(&phba->slow_ring_trc_cnt) + 1) &
(lpfc_debugfs_max_slow_ring_trc - 1);
for (i = index; i < lpfc_debugfs_max_slow_ring_trc; i++) {
dtp = phba->slow_ring_trc + i;
if (!dtp->fmt)
continue;
ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time);
snprintf(buffer,
LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n",
dtp->seq_cnt, ms, dtp->fmt);
len += scnprintf(buf+len, size-len, buffer,
dtp->data1, dtp->data2, dtp->data3);
}
for (i = 0; i < index; i++) {
dtp = phba->slow_ring_trc + i;
if (!dtp->fmt)
continue;
ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time);
snprintf(buffer,
LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n",
dtp->seq_cnt, ms, dtp->fmt);
len += scnprintf(buf+len, size-len, buffer,
dtp->data1, dtp->data2, dtp->data3);
}
lpfc_debugfs_enable = enable;
kfree(buffer);
return len;
}
static int lpfc_debugfs_last_hbq = -1;
/**
* lpfc_debugfs_hbqinfo_data - Dump host buffer queue info to a buffer
* @phba: The HBA to gather host buffer info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the host buffer queue info from the @phba to @buf up to
* @size number of bytes. A header that describes the current hbq state will be
* dumped to @buf first and then info on each hbq entry will be dumped to @buf
* until @size bytes have been dumped or all the hbq info has been dumped.
*
* Notes:
* This routine will rotate through each configured HBQ each time called.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_hbqinfo_data(struct lpfc_hba *phba, char *buf, int size)
{
int len = 0;
int i, j, found, posted, low;
uint32_t phys, raw_index, getidx;
struct lpfc_hbq_init *hip;
struct hbq_s *hbqs;
struct lpfc_hbq_entry *hbqe;
struct lpfc_dmabuf *d_buf;
struct hbq_dmabuf *hbq_buf;
if (phba->sli_rev != 3)
return 0;
spin_lock_irq(&phba->hbalock);
/* toggle between multiple hbqs, if any */
i = lpfc_sli_hbq_count();
if (i > 1) {
lpfc_debugfs_last_hbq++;
if (lpfc_debugfs_last_hbq >= i)
lpfc_debugfs_last_hbq = 0;
}
else
lpfc_debugfs_last_hbq = 0;
i = lpfc_debugfs_last_hbq;
len += scnprintf(buf+len, size-len, "HBQ %d Info\n", i);
hbqs = &phba->hbqs[i];
posted = 0;
list_for_each_entry(d_buf, &hbqs->hbq_buffer_list, list)
posted++;
hip = lpfc_hbq_defs[i];
len += scnprintf(buf+len, size-len,
"idx:%d prof:%d rn:%d bufcnt:%d icnt:%d acnt:%d posted %d\n",
hip->hbq_index, hip->profile, hip->rn,
hip->buffer_count, hip->init_count, hip->add_count, posted);
raw_index = phba->hbq_get[i];
getidx = le32_to_cpu(raw_index);
len += scnprintf(buf+len, size-len,
"entries:%d bufcnt:%d Put:%d nPut:%d localGet:%d hbaGet:%d\n",
hbqs->entry_count, hbqs->buffer_count, hbqs->hbqPutIdx,
hbqs->next_hbqPutIdx, hbqs->local_hbqGetIdx, getidx);
hbqe = (struct lpfc_hbq_entry *) phba->hbqs[i].hbq_virt;
for (j=0; j<hbqs->entry_count; j++) {
len += scnprintf(buf+len, size-len,
"%03d: %08x %04x %05x ", j,
le32_to_cpu(hbqe->bde.addrLow),
le32_to_cpu(hbqe->bde.tus.w),
le32_to_cpu(hbqe->buffer_tag));
i = 0;
found = 0;
/* First calculate if slot has an associated posted buffer */
low = hbqs->hbqPutIdx - posted;
if (low >= 0) {
if ((j >= hbqs->hbqPutIdx) || (j < low)) {
len += scnprintf(buf + len, size - len,
"Unused\n");
goto skipit;
}
}
else {
if ((j >= hbqs->hbqPutIdx) &&
(j < (hbqs->entry_count+low))) {
len += scnprintf(buf + len, size - len,
"Unused\n");
goto skipit;
}
}
/* Get the Buffer info for the posted buffer */
list_for_each_entry(d_buf, &hbqs->hbq_buffer_list, list) {
hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
phys = ((uint64_t)hbq_buf->dbuf.phys & 0xffffffff);
if (phys == le32_to_cpu(hbqe->bde.addrLow)) {
len += scnprintf(buf+len, size-len,
"Buf%d: x%px %06x\n", i,
hbq_buf->dbuf.virt, hbq_buf->tag);
found = 1;
break;
}
i++;
}
if (!found) {
len += scnprintf(buf+len, size-len, "No DMAinfo?\n");
}
skipit:
hbqe++;
if (len > LPFC_HBQINFO_SIZE - 54)
break;
}
spin_unlock_irq(&phba->hbalock);
return len;
}
static int lpfc_debugfs_last_xripool;
/**
* lpfc_debugfs_common_xri_data - Dump Hardware Queue info to a buffer
* @phba: The HBA to gather host buffer info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the Hardware Queue info from the @phba to @buf up to
* @size number of bytes. A header that describes the current hdwq state will be
* dumped to @buf first and then info on each hdwq entry will be dumped to @buf
* until @size bytes have been dumped or all the hdwq info has been dumped.
*
* Notes:
* This routine will rotate through each configured Hardware Queue each
* time called.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_commonxripools_data(struct lpfc_hba *phba, char *buf, int size)
{
struct lpfc_sli4_hdw_queue *qp;
int len = 0;
int i, out;
unsigned long iflag;
for (i = 0; i < phba->cfg_hdw_queue; i++) {
if (len > (LPFC_DUMP_MULTIXRIPOOL_SIZE - 80))
break;
qp = &phba->sli4_hba.hdwq[lpfc_debugfs_last_xripool];
len += scnprintf(buf + len, size - len, "HdwQ %d Info ", i);
spin_lock_irqsave(&qp->abts_io_buf_list_lock, iflag);
spin_lock(&qp->io_buf_list_get_lock);
spin_lock(&qp->io_buf_list_put_lock);
out = qp->total_io_bufs - (qp->get_io_bufs + qp->put_io_bufs +
qp->abts_scsi_io_bufs + qp->abts_nvme_io_bufs);
len += scnprintf(buf + len, size - len,
"tot:%d get:%d put:%d mt:%d "
"ABTS scsi:%d nvme:%d Out:%d\n",
qp->total_io_bufs, qp->get_io_bufs, qp->put_io_bufs,
qp->empty_io_bufs, qp->abts_scsi_io_bufs,
qp->abts_nvme_io_bufs, out);
spin_unlock(&qp->io_buf_list_put_lock);
spin_unlock(&qp->io_buf_list_get_lock);
spin_unlock_irqrestore(&qp->abts_io_buf_list_lock, iflag);
lpfc_debugfs_last_xripool++;
if (lpfc_debugfs_last_xripool >= phba->cfg_hdw_queue)
lpfc_debugfs_last_xripool = 0;
}
return len;
}
/**
* lpfc_debugfs_multixripools_data - Display multi-XRI pools information
* @phba: The HBA to gather host buffer info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine displays current multi-XRI pools information including XRI
* count in public, private and txcmplq. It also displays current high and
* low watermark.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_multixripools_data(struct lpfc_hba *phba, char *buf, int size)
{
u32 i;
u32 hwq_count;
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_multixri_pool *multixri_pool;
struct lpfc_pvt_pool *pvt_pool;
struct lpfc_pbl_pool *pbl_pool;
u32 txcmplq_cnt;
char tmp[LPFC_DEBUG_OUT_LINE_SZ] = {0};
if (phba->sli_rev != LPFC_SLI_REV4)
return 0;
if (!phba->sli4_hba.hdwq)
return 0;
if (!phba->cfg_xri_rebalancing) {
i = lpfc_debugfs_commonxripools_data(phba, buf, size);
return i;
}
/*
* Pbl: Current number of free XRIs in public pool
* Pvt: Current number of free XRIs in private pool
* Busy: Current number of outstanding XRIs
* HWM: Current high watermark
* pvt_empty: Incremented by 1 when IO submission fails (no xri)
* pbl_empty: Incremented by 1 when all pbl_pool are empty during
* IO submission
*/
scnprintf(tmp, sizeof(tmp),
"HWQ: Pbl Pvt Busy HWM | pvt_empty pbl_empty ");
if (strlcat(buf, tmp, size) >= size)
return strnlen(buf, size);
#ifdef LPFC_MXP_STAT
/*
* MAXH: Max high watermark seen so far
* above_lmt: Incremented by 1 if xri_owned > xri_limit during
* IO submission
* below_lmt: Incremented by 1 if xri_owned <= xri_limit during
* IO submission
* locPbl_hit: Incremented by 1 if successfully get a batch of XRI from
* local pbl_pool
* othPbl_hit: Incremented by 1 if successfully get a batch of XRI from
* other pbl_pool
*/
scnprintf(tmp, sizeof(tmp),
"MAXH above_lmt below_lmt locPbl_hit othPbl_hit");
if (strlcat(buf, tmp, size) >= size)
return strnlen(buf, size);
/*
* sPbl: snapshot of Pbl 15 sec after stat gets cleared
* sPvt: snapshot of Pvt 15 sec after stat gets cleared
* sBusy: snapshot of Busy 15 sec after stat gets cleared
*/
scnprintf(tmp, sizeof(tmp),
" | sPbl sPvt sBusy");
if (strlcat(buf, tmp, size) >= size)
return strnlen(buf, size);
#endif
scnprintf(tmp, sizeof(tmp), "\n");
if (strlcat(buf, tmp, size) >= size)
return strnlen(buf, size);
hwq_count = phba->cfg_hdw_queue;
for (i = 0; i < hwq_count; i++) {
qp = &phba->sli4_hba.hdwq[i];
multixri_pool = qp->p_multixri_pool;
if (!multixri_pool)
continue;
pbl_pool = &multixri_pool->pbl_pool;
pvt_pool = &multixri_pool->pvt_pool;
txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
scnprintf(tmp, sizeof(tmp),
"%03d: %4d %4d %4d %4d | %10d %10d ",
i, pbl_pool->count, pvt_pool->count,
txcmplq_cnt, pvt_pool->high_watermark,
qp->empty_io_bufs, multixri_pool->pbl_empty_count);
if (strlcat(buf, tmp, size) >= size)
break;
#ifdef LPFC_MXP_STAT
scnprintf(tmp, sizeof(tmp),
"%4d %10d %10d %10d %10d",
multixri_pool->stat_max_hwm,
multixri_pool->above_limit_count,
multixri_pool->below_limit_count,
multixri_pool->local_pbl_hit_count,
multixri_pool->other_pbl_hit_count);
if (strlcat(buf, tmp, size) >= size)
break;
scnprintf(tmp, sizeof(tmp),
" | %4d %4d %5d",
multixri_pool->stat_pbl_count,
multixri_pool->stat_pvt_count,
multixri_pool->stat_busy_count);
if (strlcat(buf, tmp, size) >= size)
break;
#endif
scnprintf(tmp, sizeof(tmp), "\n");
if (strlcat(buf, tmp, size) >= size)
break;
}
return strnlen(buf, size);
}
#ifdef LPFC_HDWQ_LOCK_STAT
static int lpfc_debugfs_last_lock;
/**
* lpfc_debugfs_lockstat_data - Dump Hardware Queue info to a buffer
* @phba: The HBA to gather host buffer info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the Hardware Queue info from the @phba to @buf up to
* @size number of bytes. A header that describes the current hdwq state will be
* dumped to @buf first and then info on each hdwq entry will be dumped to @buf
* until @size bytes have been dumped or all the hdwq info has been dumped.
*
* Notes:
* This routine will rotate through each configured Hardware Queue each
* time called.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_lockstat_data(struct lpfc_hba *phba, char *buf, int size)
{
struct lpfc_sli4_hdw_queue *qp;
int len = 0;
int i;
if (phba->sli_rev != LPFC_SLI_REV4)
return 0;
if (!phba->sli4_hba.hdwq)
return 0;
for (i = 0; i < phba->cfg_hdw_queue; i++) {
if (len > (LPFC_HDWQINFO_SIZE - 100))
break;
qp = &phba->sli4_hba.hdwq[lpfc_debugfs_last_lock];
len += scnprintf(buf + len, size - len, "HdwQ %03d Lock ", i);
if (phba->cfg_xri_rebalancing) {
len += scnprintf(buf + len, size - len,
"get_pvt:%d mv_pvt:%d "
"mv2pub:%d mv2pvt:%d "
"put_pvt:%d put_pub:%d wq:%d\n",
qp->lock_conflict.alloc_pvt_pool,
qp->lock_conflict.mv_from_pvt_pool,
qp->lock_conflict.mv_to_pub_pool,
qp->lock_conflict.mv_to_pvt_pool,
qp->lock_conflict.free_pvt_pool,
qp->lock_conflict.free_pub_pool,
qp->lock_conflict.wq_access);
} else {
len += scnprintf(buf + len, size - len,
"get:%d put:%d free:%d wq:%d\n",
qp->lock_conflict.alloc_xri_get,
qp->lock_conflict.alloc_xri_put,
qp->lock_conflict.free_xri,
qp->lock_conflict.wq_access);
}
lpfc_debugfs_last_lock++;
if (lpfc_debugfs_last_lock >= phba->cfg_hdw_queue)
lpfc_debugfs_last_lock = 0;
}
return len;
}
#endif
static int lpfc_debugfs_last_hba_slim_off;
/**
* lpfc_debugfs_dumpHBASlim_data - Dump HBA SLIM info to a buffer
* @phba: The HBA to gather SLIM info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the current contents of HBA SLIM for the HBA associated
* with @phba to @buf up to @size bytes of data. This is the raw HBA SLIM data.
*
* Notes:
* This routine will only dump up to 1024 bytes of data each time called and
* should be called multiple times to dump the entire HBA SLIM.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_dumpHBASlim_data(struct lpfc_hba *phba, char *buf, int size)
{
int len = 0;
int i, off;
uint32_t *ptr;
char *buffer;
buffer = kmalloc(1024, GFP_KERNEL);
if (!buffer)
return 0;
off = 0;
spin_lock_irq(&phba->hbalock);
len += scnprintf(buf+len, size-len, "HBA SLIM\n");
lpfc_memcpy_from_slim(buffer,
phba->MBslimaddr + lpfc_debugfs_last_hba_slim_off, 1024);
ptr = (uint32_t *)&buffer[0];
off = lpfc_debugfs_last_hba_slim_off;
/* Set it up for the next time */
lpfc_debugfs_last_hba_slim_off += 1024;
if (lpfc_debugfs_last_hba_slim_off >= 4096)
lpfc_debugfs_last_hba_slim_off = 0;
i = 1024;
while (i > 0) {
len += scnprintf(buf+len, size-len,
"%08x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
off, *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4),
*(ptr+5), *(ptr+6), *(ptr+7));
ptr += 8;
i -= (8 * sizeof(uint32_t));
off += (8 * sizeof(uint32_t));
}
spin_unlock_irq(&phba->hbalock);
kfree(buffer);
return len;
}
/**
* lpfc_debugfs_dumpHostSlim_data - Dump host SLIM info to a buffer
* @phba: The HBA to gather Host SLIM info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the current contents of host SLIM for the host associated
* with @phba to @buf up to @size bytes of data. The dump will contain the
* Mailbox, PCB, Rings, and Registers that are located in host memory.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_dumpHostSlim_data(struct lpfc_hba *phba, char *buf, int size)
{
int len = 0;
int i, off;
uint32_t word0, word1, word2, word3;
uint32_t *ptr;
struct lpfc_pgp *pgpp;
struct lpfc_sli *psli = &phba->sli;
struct lpfc_sli_ring *pring;
off = 0;
spin_lock_irq(&phba->hbalock);
len += scnprintf(buf+len, size-len, "SLIM Mailbox\n");
ptr = (uint32_t *)phba->slim2p.virt;
i = sizeof(MAILBOX_t);
while (i > 0) {
len += scnprintf(buf+len, size-len,
"%08x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
off, *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4),
*(ptr+5), *(ptr+6), *(ptr+7));
ptr += 8;
i -= (8 * sizeof(uint32_t));
off += (8 * sizeof(uint32_t));
}
len += scnprintf(buf+len, size-len, "SLIM PCB\n");
ptr = (uint32_t *)phba->pcb;
i = sizeof(PCB_t);
while (i > 0) {
len += scnprintf(buf+len, size-len,
"%08x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
off, *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4),
*(ptr+5), *(ptr+6), *(ptr+7));
ptr += 8;
i -= (8 * sizeof(uint32_t));
off += (8 * sizeof(uint32_t));
}
if (phba->sli_rev <= LPFC_SLI_REV3) {
for (i = 0; i < 4; i++) {
pgpp = &phba->port_gp[i];
pring = &psli->sli3_ring[i];
len += scnprintf(buf+len, size-len,
"Ring %d: CMD GetInx:%d "
"(Max:%d Next:%d "
"Local:%d flg:x%x) "
"RSP PutInx:%d Max:%d\n",
i, pgpp->cmdGetInx,
pring->sli.sli3.numCiocb,
pring->sli.sli3.next_cmdidx,
pring->sli.sli3.local_getidx,
pring->flag, pgpp->rspPutInx,
pring->sli.sli3.numRiocb);
}
word0 = readl(phba->HAregaddr);
word1 = readl(phba->CAregaddr);
word2 = readl(phba->HSregaddr);
word3 = readl(phba->HCregaddr);
len += scnprintf(buf+len, size-len, "HA:%08x CA:%08x HS:%08x "
"HC:%08x\n", word0, word1, word2, word3);
}
spin_unlock_irq(&phba->hbalock);
return len;
}
/**
* lpfc_debugfs_nodelist_data - Dump target node list to a buffer
* @vport: The vport to gather target node info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the current target node list associated with @vport to
* @buf up to @size bytes of data. Each node entry in the dump will contain a
* node state, DID, WWPN, WWNN, RPI, flags, type, and other useful fields.
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_nodelist_data(struct lpfc_vport *vport, char *buf, int size)
{
int len = 0;
int i, iocnt, outio, cnt;
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
struct lpfc_nodelist *ndlp;
unsigned char *statep;
struct nvme_fc_local_port *localport;
struct nvme_fc_remote_port *nrport = NULL;
struct lpfc_nvme_rport *rport;
cnt = (LPFC_NODELIST_SIZE / LPFC_NODELIST_ENTRY_SIZE);
outio = 0;
len += scnprintf(buf+len, size-len, "\nFCP Nodelist Entries ...\n");
spin_lock_irq(shost->host_lock);
list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) {
iocnt = 0;
if (!cnt) {
len += scnprintf(buf+len, size-len,
"Missing Nodelist Entries\n");
break;
}
cnt--;
switch (ndlp->nlp_state) {
case NLP_STE_UNUSED_NODE:
statep = "UNUSED";
break;
case NLP_STE_PLOGI_ISSUE:
statep = "PLOGI ";
break;
case NLP_STE_ADISC_ISSUE:
statep = "ADISC ";
break;
case NLP_STE_REG_LOGIN_ISSUE:
statep = "REGLOG";
break;
case NLP_STE_PRLI_ISSUE:
statep = "PRLI ";
break;
case NLP_STE_LOGO_ISSUE:
statep = "LOGO ";
break;
case NLP_STE_UNMAPPED_NODE:
statep = "UNMAP ";
iocnt = 1;
break;
case NLP_STE_MAPPED_NODE:
statep = "MAPPED";
iocnt = 1;
break;
case NLP_STE_NPR_NODE:
statep = "NPR ";
break;
default:
statep = "UNKNOWN";
}
len += scnprintf(buf+len, size-len, "%s DID:x%06x ",
statep, ndlp->nlp_DID);
len += scnprintf(buf+len, size-len,
"WWPN x%llx ",
wwn_to_u64(ndlp->nlp_portname.u.wwn));
len += scnprintf(buf+len, size-len,
"WWNN x%llx ",
wwn_to_u64(ndlp->nlp_nodename.u.wwn));
if (ndlp->nlp_flag & NLP_RPI_REGISTERED)
len += scnprintf(buf+len, size-len, "RPI:%03d ",
ndlp->nlp_rpi);
else
len += scnprintf(buf+len, size-len, "RPI:none ");
len += scnprintf(buf+len, size-len, "flag:x%08x ",
ndlp->nlp_flag);
if (!ndlp->nlp_type)
len += scnprintf(buf+len, size-len, "UNKNOWN_TYPE ");
if (ndlp->nlp_type & NLP_FC_NODE)
len += scnprintf(buf+len, size-len, "FC_NODE ");
if (ndlp->nlp_type & NLP_FABRIC) {
len += scnprintf(buf+len, size-len, "FABRIC ");
iocnt = 0;
}
if (ndlp->nlp_type & NLP_FCP_TARGET)
len += scnprintf(buf+len, size-len, "FCP_TGT sid:%d ",
ndlp->nlp_sid);
if (ndlp->nlp_type & NLP_FCP_INITIATOR)
len += scnprintf(buf+len, size-len, "FCP_INITIATOR ");
if (ndlp->nlp_type & NLP_NVME_TARGET)
len += scnprintf(buf + len,
size - len, "NVME_TGT sid:%d ",
NLP_NO_SID);
if (ndlp->nlp_type & NLP_NVME_INITIATOR)
len += scnprintf(buf + len,
size - len, "NVME_INITIATOR ");
len += scnprintf(buf+len, size-len, "refcnt:%x",
kref_read(&ndlp->kref));
if (iocnt) {
i = atomic_read(&ndlp->cmd_pending);
len += scnprintf(buf + len, size - len,
" OutIO:x%x Qdepth x%x",
i, ndlp->cmd_qdepth);
outio += i;
}
len += scnprintf(buf + len, size - len, "defer:%x ",
ndlp->nlp_defer_did);
len += scnprintf(buf+len, size-len, "\n");
}
spin_unlock_irq(shost->host_lock);
len += scnprintf(buf + len, size - len,
"\nOutstanding IO x%x\n", outio);
if (phba->nvmet_support && phba->targetport && (vport == phba->pport)) {
len += scnprintf(buf + len, size - len,
"\nNVME Targetport Entry ...\n");
/* Port state is only one of two values for now. */
if (phba->targetport->port_id)
statep = "REGISTERED";
else
statep = "INIT";
len += scnprintf(buf + len, size - len,
"TGT WWNN x%llx WWPN x%llx State %s\n",
wwn_to_u64(vport->fc_nodename.u.wwn),
wwn_to_u64(vport->fc_portname.u.wwn),
statep);
len += scnprintf(buf + len, size - len,
" Targetport DID x%06x\n",
phba->targetport->port_id);
goto out_exit;
}
len += scnprintf(buf + len, size - len,
"\nNVME Lport/Rport Entries ...\n");
localport = vport->localport;
if (!localport)
goto out_exit;
spin_lock_irq(shost->host_lock);
/* Port state is only one of two values for now. */
if (localport->port_id)
statep = "ONLINE";
else
statep = "UNKNOWN ";
len += scnprintf(buf + len, size - len,
"Lport DID x%06x PortState %s\n",
localport->port_id, statep);
len += scnprintf(buf + len, size - len, "\tRport List:\n");
list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) {
/* local short-hand pointer. */
spin_lock(&ndlp->lock);
rport = lpfc_ndlp_get_nrport(ndlp);
if (rport)
nrport = rport->remoteport;
else
nrport = NULL;
spin_unlock(&ndlp->lock);
if (!nrport)
continue;
/* Port state is only one of two values for now. */
switch (nrport->port_state) {
case FC_OBJSTATE_ONLINE:
statep = "ONLINE";
break;
case FC_OBJSTATE_UNKNOWN:
statep = "UNKNOWN ";
break;
default:
statep = "UNSUPPORTED";
break;
}
/* Tab in to show lport ownership. */
len += scnprintf(buf + len, size - len,
"\t%s Port ID:x%06x ",
statep, nrport->port_id);
len += scnprintf(buf + len, size - len, "WWPN x%llx ",
nrport->port_name);
len += scnprintf(buf + len, size - len, "WWNN x%llx ",
nrport->node_name);
/* An NVME rport can have multiple roles. */
if (nrport->port_role & FC_PORT_ROLE_NVME_INITIATOR)
len += scnprintf(buf + len, size - len,
"INITIATOR ");
if (nrport->port_role & FC_PORT_ROLE_NVME_TARGET)
len += scnprintf(buf + len, size - len,
"TARGET ");
if (nrport->port_role & FC_PORT_ROLE_NVME_DISCOVERY)
len += scnprintf(buf + len, size - len,
"DISCSRVC ");
if (nrport->port_role & ~(FC_PORT_ROLE_NVME_INITIATOR |
FC_PORT_ROLE_NVME_TARGET |
FC_PORT_ROLE_NVME_DISCOVERY))
len += scnprintf(buf + len, size - len,
"UNKNOWN ROLE x%x",
nrport->port_role);
/* Terminate the string. */
len += scnprintf(buf + len, size - len, "\n");
}
spin_unlock_irq(shost->host_lock);
out_exit:
return len;
}
/**
* lpfc_debugfs_nvmestat_data - Dump target node list to a buffer
* @vport: The vport to gather target node info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the NVME statistics associated with @vport
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_nvmestat_data(struct lpfc_vport *vport, char *buf, int size)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_nvmet_tgtport *tgtp;
struct lpfc_async_xchg_ctx *ctxp, *next_ctxp;
struct nvme_fc_local_port *localport;
struct lpfc_fc4_ctrl_stat *cstat;
struct lpfc_nvme_lport *lport;
uint64_t data1, data2, data3;
uint64_t tot, totin, totout;
int cnt, i;
int len = 0;
if (phba->nvmet_support) {
if (!phba->targetport)
return len;
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
len += scnprintf(buf + len, size - len,
"\nNVME Targetport Statistics\n");
len += scnprintf(buf + len, size - len,
"LS: Rcv %08x Drop %08x Abort %08x\n",
atomic_read(&tgtp->rcv_ls_req_in),
atomic_read(&tgtp->rcv_ls_req_drop),
atomic_read(&tgtp->xmt_ls_abort));
if (atomic_read(&tgtp->rcv_ls_req_in) !=
atomic_read(&tgtp->rcv_ls_req_out)) {
len += scnprintf(buf + len, size - len,
"Rcv LS: in %08x != out %08x\n",
atomic_read(&tgtp->rcv_ls_req_in),
atomic_read(&tgtp->rcv_ls_req_out));
}
len += scnprintf(buf + len, size - len,
"LS: Xmt %08x Drop %08x Cmpl %08x\n",
atomic_read(&tgtp->xmt_ls_rsp),
atomic_read(&tgtp->xmt_ls_drop),
atomic_read(&tgtp->xmt_ls_rsp_cmpl));
len += scnprintf(buf + len, size - len,
"LS: RSP Abort %08x xb %08x Err %08x\n",
atomic_read(&tgtp->xmt_ls_rsp_aborted),
atomic_read(&tgtp->xmt_ls_rsp_xb_set),
atomic_read(&tgtp->xmt_ls_rsp_error));
len += scnprintf(buf + len, size - len,
"FCP: Rcv %08x Defer %08x Release %08x "
"Drop %08x\n",
atomic_read(&tgtp->rcv_fcp_cmd_in),
atomic_read(&tgtp->rcv_fcp_cmd_defer),
atomic_read(&tgtp->xmt_fcp_release),
atomic_read(&tgtp->rcv_fcp_cmd_drop));
if (atomic_read(&tgtp->rcv_fcp_cmd_in) !=
atomic_read(&tgtp->rcv_fcp_cmd_out)) {
len += scnprintf(buf + len, size - len,
"Rcv FCP: in %08x != out %08x\n",
atomic_read(&tgtp->rcv_fcp_cmd_in),
atomic_read(&tgtp->rcv_fcp_cmd_out));
}
len += scnprintf(buf + len, size - len,
"FCP Rsp: read %08x readrsp %08x "
"write %08x rsp %08x\n",
atomic_read(&tgtp->xmt_fcp_read),
atomic_read(&tgtp->xmt_fcp_read_rsp),
atomic_read(&tgtp->xmt_fcp_write),
atomic_read(&tgtp->xmt_fcp_rsp));
len += scnprintf(buf + len, size - len,
"FCP Rsp Cmpl: %08x err %08x drop %08x\n",
atomic_read(&tgtp->xmt_fcp_rsp_cmpl),
atomic_read(&tgtp->xmt_fcp_rsp_error),
atomic_read(&tgtp->xmt_fcp_rsp_drop));
len += scnprintf(buf + len, size - len,
"FCP Rsp Abort: %08x xb %08x xricqe %08x\n",
atomic_read(&tgtp->xmt_fcp_rsp_aborted),
atomic_read(&tgtp->xmt_fcp_rsp_xb_set),
atomic_read(&tgtp->xmt_fcp_xri_abort_cqe));
len += scnprintf(buf + len, size - len,
"ABORT: Xmt %08x Cmpl %08x\n",
atomic_read(&tgtp->xmt_fcp_abort),
atomic_read(&tgtp->xmt_fcp_abort_cmpl));
len += scnprintf(buf + len, size - len,
"ABORT: Sol %08x Usol %08x Err %08x Cmpl %08x",
atomic_read(&tgtp->xmt_abort_sol),
atomic_read(&tgtp->xmt_abort_unsol),
atomic_read(&tgtp->xmt_abort_rsp),
atomic_read(&tgtp->xmt_abort_rsp_error));
len += scnprintf(buf + len, size - len, "\n");
cnt = 0;
spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
list_for_each_entry_safe(ctxp, next_ctxp,
&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
list) {
cnt++;
}
spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
if (cnt) {
len += scnprintf(buf + len, size - len,
"ABORT: %d ctx entries\n", cnt);
spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
list_for_each_entry_safe(ctxp, next_ctxp,
&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
list) {
if (len >= (size - LPFC_DEBUG_OUT_LINE_SZ))
break;
len += scnprintf(buf + len, size - len,
"Entry: oxid %x state %x "
"flag %x\n",
ctxp->oxid, ctxp->state,
ctxp->flag);
}
spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
}
/* Calculate outstanding IOs */
tot = atomic_read(&tgtp->rcv_fcp_cmd_drop);
tot += atomic_read(&tgtp->xmt_fcp_release);
tot = atomic_read(&tgtp->rcv_fcp_cmd_in) - tot;
len += scnprintf(buf + len, size - len,
"IO_CTX: %08x WAIT: cur %08x tot %08x\n"
"CTX Outstanding %08llx\n",
phba->sli4_hba.nvmet_xri_cnt,
phba->sli4_hba.nvmet_io_wait_cnt,
phba->sli4_hba.nvmet_io_wait_total,
tot);
} else {
if (!(vport->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
return len;
localport = vport->localport;
if (!localport)
return len;
lport = (struct lpfc_nvme_lport *)localport->private;
if (!lport)
return len;
len += scnprintf(buf + len, size - len,
"\nNVME HDWQ Statistics\n");
len += scnprintf(buf + len, size - len,
"LS: Xmt %016x Cmpl %016x\n",
atomic_read(&lport->fc4NvmeLsRequests),
atomic_read(&lport->fc4NvmeLsCmpls));
totin = 0;
totout = 0;
for (i = 0; i < phba->cfg_hdw_queue; i++) {
cstat = &phba->sli4_hba.hdwq[i].nvme_cstat;
tot = cstat->io_cmpls;
totin += tot;
data1 = cstat->input_requests;
data2 = cstat->output_requests;
data3 = cstat->control_requests;
totout += (data1 + data2 + data3);
/* Limit to 32, debugfs display buffer limitation */
if (i >= 32)
continue;
len += scnprintf(buf + len, PAGE_SIZE - len,
"HDWQ (%d): Rd %016llx Wr %016llx "
"IO %016llx ",
i, data1, data2, data3);
len += scnprintf(buf + len, PAGE_SIZE - len,
"Cmpl %016llx OutIO %016llx\n",
tot, ((data1 + data2 + data3) - tot));
}
len += scnprintf(buf + len, PAGE_SIZE - len,
"Total FCP Cmpl %016llx Issue %016llx "
"OutIO %016llx\n",
totin, totout, totout - totin);
len += scnprintf(buf + len, size - len,
"LS Xmt Err: Abrt %08x Err %08x "
"Cmpl Err: xb %08x Err %08x\n",
atomic_read(&lport->xmt_ls_abort),
atomic_read(&lport->xmt_ls_err),
atomic_read(&lport->cmpl_ls_xb),
atomic_read(&lport->cmpl_ls_err));
len += scnprintf(buf + len, size - len,
"FCP Xmt Err: noxri %06x nondlp %06x "
"qdepth %06x wqerr %06x err %06x Abrt %06x\n",
atomic_read(&lport->xmt_fcp_noxri),
atomic_read(&lport->xmt_fcp_bad_ndlp),
atomic_read(&lport->xmt_fcp_qdepth),
atomic_read(&lport->xmt_fcp_wqerr),
atomic_read(&lport->xmt_fcp_err),
atomic_read(&lport->xmt_fcp_abort));
len += scnprintf(buf + len, size - len,
"FCP Cmpl Err: xb %08x Err %08x\n",
atomic_read(&lport->cmpl_fcp_xb),
atomic_read(&lport->cmpl_fcp_err));
}
return len;
}
/**
* lpfc_debugfs_scsistat_data - Dump target node list to a buffer
* @vport: The vport to gather target node info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the SCSI statistics associated with @vport
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_scsistat_data(struct lpfc_vport *vport, char *buf, int size)
{
int len;
struct lpfc_hba *phba = vport->phba;
struct lpfc_fc4_ctrl_stat *cstat;
u64 data1, data2, data3;
u64 tot, totin, totout;
int i;
char tmp[LPFC_MAX_SCSI_INFO_TMP_LEN] = {0};
if (!(vport->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ||
(phba->sli_rev != LPFC_SLI_REV4))
return 0;
scnprintf(buf, size, "SCSI HDWQ Statistics\n");
totin = 0;
totout = 0;
for (i = 0; i < phba->cfg_hdw_queue; i++) {
cstat = &phba->sli4_hba.hdwq[i].scsi_cstat;
tot = cstat->io_cmpls;
totin += tot;
data1 = cstat->input_requests;
data2 = cstat->output_requests;
data3 = cstat->control_requests;
totout += (data1 + data2 + data3);
scnprintf(tmp, sizeof(tmp), "HDWQ (%d): Rd %016llx Wr %016llx "
"IO %016llx ", i, data1, data2, data3);
if (strlcat(buf, tmp, size) >= size)
goto buffer_done;
scnprintf(tmp, sizeof(tmp), "Cmpl %016llx OutIO %016llx\n",
tot, ((data1 + data2 + data3) - tot));
if (strlcat(buf, tmp, size) >= size)
goto buffer_done;
}
scnprintf(tmp, sizeof(tmp), "Total FCP Cmpl %016llx Issue %016llx "
"OutIO %016llx\n", totin, totout, totout - totin);
strlcat(buf, tmp, size);
buffer_done:
len = strnlen(buf, size);
return len;
}
void
lpfc_io_ktime(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd)
{
uint64_t seg1, seg2, seg3, seg4;
uint64_t segsum;
if (!lpfc_cmd->ts_last_cmd ||
!lpfc_cmd->ts_cmd_start ||
!lpfc_cmd->ts_cmd_wqput ||
!lpfc_cmd->ts_isr_cmpl ||
!lpfc_cmd->ts_data_io)
return;
if (lpfc_cmd->ts_data_io < lpfc_cmd->ts_cmd_start)
return;
if (lpfc_cmd->ts_cmd_start < lpfc_cmd->ts_last_cmd)
return;
if (lpfc_cmd->ts_cmd_wqput < lpfc_cmd->ts_cmd_start)
return;
if (lpfc_cmd->ts_isr_cmpl < lpfc_cmd->ts_cmd_wqput)
return;
if (lpfc_cmd->ts_data_io < lpfc_cmd->ts_isr_cmpl)
return;
/*
* Segment 1 - Time from Last FCP command cmpl is handed
* off to NVME Layer to start of next command.
* Segment 2 - Time from Driver receives a IO cmd start
* from NVME Layer to WQ put is done on IO cmd.
* Segment 3 - Time from Driver WQ put is done on IO cmd
* to MSI-X ISR for IO cmpl.
* Segment 4 - Time from MSI-X ISR for IO cmpl to when
* cmpl is handled off to the NVME Layer.
*/
seg1 = lpfc_cmd->ts_cmd_start - lpfc_cmd->ts_last_cmd;
if (seg1 > 5000000) /* 5 ms - for sequential IOs only */
seg1 = 0;
/* Calculate times relative to start of IO */
seg2 = (lpfc_cmd->ts_cmd_wqput - lpfc_cmd->ts_cmd_start);
segsum = seg2;
seg3 = lpfc_cmd->ts_isr_cmpl - lpfc_cmd->ts_cmd_start;
if (segsum > seg3)
return;
seg3 -= segsum;
segsum += seg3;
seg4 = lpfc_cmd->ts_data_io - lpfc_cmd->ts_cmd_start;
if (segsum > seg4)
return;
seg4 -= segsum;
phba->ktime_data_samples++;
phba->ktime_seg1_total += seg1;
if (seg1 < phba->ktime_seg1_min)
phba->ktime_seg1_min = seg1;
else if (seg1 > phba->ktime_seg1_max)
phba->ktime_seg1_max = seg1;
phba->ktime_seg2_total += seg2;
if (seg2 < phba->ktime_seg2_min)
phba->ktime_seg2_min = seg2;
else if (seg2 > phba->ktime_seg2_max)
phba->ktime_seg2_max = seg2;
phba->ktime_seg3_total += seg3;
if (seg3 < phba->ktime_seg3_min)
phba->ktime_seg3_min = seg3;
else if (seg3 > phba->ktime_seg3_max)
phba->ktime_seg3_max = seg3;
phba->ktime_seg4_total += seg4;
if (seg4 < phba->ktime_seg4_min)
phba->ktime_seg4_min = seg4;
else if (seg4 > phba->ktime_seg4_max)
phba->ktime_seg4_max = seg4;
lpfc_cmd->ts_last_cmd = 0;
lpfc_cmd->ts_cmd_start = 0;
lpfc_cmd->ts_cmd_wqput = 0;
lpfc_cmd->ts_isr_cmpl = 0;
lpfc_cmd->ts_data_io = 0;
}
/**
* lpfc_debugfs_ioktime_data - Dump target node list to a buffer
* @vport: The vport to gather target node info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the NVME statistics associated with @vport
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_ioktime_data(struct lpfc_vport *vport, char *buf, int size)
{
struct lpfc_hba *phba = vport->phba;
int len = 0;
if (phba->nvmet_support == 0) {
/* Initiator */
len += scnprintf(buf + len, PAGE_SIZE - len,
"ktime %s: Total Samples: %lld\n",
(phba->ktime_on ? "Enabled" : "Disabled"),
phba->ktime_data_samples);
if (phba->ktime_data_samples == 0)
return len;
len += scnprintf(
buf + len, PAGE_SIZE - len,
"Segment 1: Last Cmd cmpl "
"done -to- Start of next Cmd (in driver)\n");
len += scnprintf(
buf + len, PAGE_SIZE - len,
"avg:%08lld min:%08lld max %08lld\n",
div_u64(phba->ktime_seg1_total,
phba->ktime_data_samples),
phba->ktime_seg1_min,
phba->ktime_seg1_max);
len += scnprintf(
buf + len, PAGE_SIZE - len,
"Segment 2: Driver start of Cmd "
"-to- Firmware WQ doorbell\n");
len += scnprintf(
buf + len, PAGE_SIZE - len,
"avg:%08lld min:%08lld max %08lld\n",
div_u64(phba->ktime_seg2_total,
phba->ktime_data_samples),
phba->ktime_seg2_min,
phba->ktime_seg2_max);
len += scnprintf(
buf + len, PAGE_SIZE - len,
"Segment 3: Firmware WQ doorbell -to- "
"MSI-X ISR cmpl\n");
len += scnprintf(
buf + len, PAGE_SIZE - len,
"avg:%08lld min:%08lld max %08lld\n",
div_u64(phba->ktime_seg3_total,
phba->ktime_data_samples),
phba->ktime_seg3_min,
phba->ktime_seg3_max);
len += scnprintf(
buf + len, PAGE_SIZE - len,
"Segment 4: MSI-X ISR cmpl -to- "
"Cmd cmpl done\n");
len += scnprintf(
buf + len, PAGE_SIZE - len,
"avg:%08lld min:%08lld max %08lld\n",
div_u64(phba->ktime_seg4_total,
phba->ktime_data_samples),
phba->ktime_seg4_min,
phba->ktime_seg4_max);
len += scnprintf(
buf + len, PAGE_SIZE - len,
"Total IO avg time: %08lld\n",
div_u64(phba->ktime_seg1_total +
phba->ktime_seg2_total +
phba->ktime_seg3_total +
phba->ktime_seg4_total,
phba->ktime_data_samples));
return len;
}
/* NVME Target */
len += scnprintf(buf + len, PAGE_SIZE-len,
"ktime %s: Total Samples: %lld %lld\n",
(phba->ktime_on ? "Enabled" : "Disabled"),
phba->ktime_data_samples,
phba->ktime_status_samples);
if (phba->ktime_data_samples == 0)
return len;
len += scnprintf(buf + len, PAGE_SIZE-len,
"Segment 1: MSI-X ISR Rcv cmd -to- "
"cmd pass to NVME Layer\n");
len += scnprintf(buf + len, PAGE_SIZE-len,
"avg:%08lld min:%08lld max %08lld\n",
div_u64(phba->ktime_seg1_total,
phba->ktime_data_samples),
phba->ktime_seg1_min,
phba->ktime_seg1_max);
len += scnprintf(buf + len, PAGE_SIZE-len,
"Segment 2: cmd pass to NVME Layer- "
"-to- Driver rcv cmd OP (action)\n");
len += scnprintf(buf + len, PAGE_SIZE-len,
"avg:%08lld min:%08lld max %08lld\n",
div_u64(phba->ktime_seg2_total,
phba->ktime_data_samples),
phba->ktime_seg2_min,
phba->ktime_seg2_max);
len += scnprintf(buf + len, PAGE_SIZE-len,
"Segment 3: Driver rcv cmd OP -to- "
"Firmware WQ doorbell: cmd\n");
len += scnprintf(buf + len, PAGE_SIZE-len,
"avg:%08lld min:%08lld max %08lld\n",
div_u64(phba->ktime_seg3_total,
phba->ktime_data_samples),
phba->ktime_seg3_min,
phba->ktime_seg3_max);
len += scnprintf(buf + len, PAGE_SIZE-len,
"Segment 4: Firmware WQ doorbell: cmd "
"-to- MSI-X ISR for cmd cmpl\n");
len += scnprintf(buf + len, PAGE_SIZE-len,
"avg:%08lld min:%08lld max %08lld\n",
div_u64(phba->ktime_seg4_total,
phba->ktime_data_samples),
phba->ktime_seg4_min,
phba->ktime_seg4_max);
len += scnprintf(buf + len, PAGE_SIZE-len,
"Segment 5: MSI-X ISR for cmd cmpl "
"-to- NVME layer passed cmd done\n");
len += scnprintf(buf + len, PAGE_SIZE-len,
"avg:%08lld min:%08lld max %08lld\n",
div_u64(phba->ktime_seg5_total,
phba->ktime_data_samples),
phba->ktime_seg5_min,
phba->ktime_seg5_max);
if (phba->ktime_status_samples == 0) {
len += scnprintf(buf + len, PAGE_SIZE-len,
"Total: cmd received by MSI-X ISR "
"-to- cmd completed on wire\n");
len += scnprintf(buf + len, PAGE_SIZE-len,
"avg:%08lld min:%08lld "
"max %08lld\n",
div_u64(phba->ktime_seg10_total,
phba->ktime_data_samples),
phba->ktime_seg10_min,
phba->ktime_seg10_max);
return len;
}
len += scnprintf(buf + len, PAGE_SIZE-len,
"Segment 6: NVME layer passed cmd done "
"-to- Driver rcv rsp status OP\n");
len += scnprintf(buf + len, PAGE_SIZE-len,
"avg:%08lld min:%08lld max %08lld\n",
div_u64(phba->ktime_seg6_total,
phba->ktime_status_samples),
phba->ktime_seg6_min,
phba->ktime_seg6_max);
len += scnprintf(buf + len, PAGE_SIZE-len,
"Segment 7: Driver rcv rsp status OP "
"-to- Firmware WQ doorbell: status\n");
len += scnprintf(buf + len, PAGE_SIZE-len,
"avg:%08lld min:%08lld max %08lld\n",
div_u64(phba->ktime_seg7_total,
phba->ktime_status_samples),
phba->ktime_seg7_min,
phba->ktime_seg7_max);
len += scnprintf(buf + len, PAGE_SIZE-len,
"Segment 8: Firmware WQ doorbell: status"
" -to- MSI-X ISR for status cmpl\n");
len += scnprintf(buf + len, PAGE_SIZE-len,
"avg:%08lld min:%08lld max %08lld\n",
div_u64(phba->ktime_seg8_total,
phba->ktime_status_samples),
phba->ktime_seg8_min,
phba->ktime_seg8_max);
len += scnprintf(buf + len, PAGE_SIZE-len,
"Segment 9: MSI-X ISR for status cmpl "
"-to- NVME layer passed status done\n");
len += scnprintf(buf + len, PAGE_SIZE-len,
"avg:%08lld min:%08lld max %08lld\n",
div_u64(phba->ktime_seg9_total,
phba->ktime_status_samples),
phba->ktime_seg9_min,
phba->ktime_seg9_max);
len += scnprintf(buf + len, PAGE_SIZE-len,
"Total: cmd received by MSI-X ISR -to- "
"cmd completed on wire\n");
len += scnprintf(buf + len, PAGE_SIZE-len,
"avg:%08lld min:%08lld max %08lld\n",
div_u64(phba->ktime_seg10_total,
phba->ktime_status_samples),
phba->ktime_seg10_min,
phba->ktime_seg10_max);
return len;
}
/**
* lpfc_debugfs_nvmeio_trc_data - Dump NVME IO trace list to a buffer
* @phba: The phba to gather target node info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the NVME IO trace associated with @phba
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_nvmeio_trc_data(struct lpfc_hba *phba, char *buf, int size)
{
struct lpfc_debugfs_nvmeio_trc *dtp;
int i, state, index, skip;
int len = 0;
state = phba->nvmeio_trc_on;
index = (atomic_read(&phba->nvmeio_trc_cnt) + 1) &
(phba->nvmeio_trc_size - 1);
skip = phba->nvmeio_trc_output_idx;
len += scnprintf(buf + len, size - len,
"%s IO Trace %s: next_idx %d skip %d size %d\n",
(phba->nvmet_support ? "NVME" : "NVMET"),
(state ? "Enabled" : "Disabled"),
index, skip, phba->nvmeio_trc_size);
if (!phba->nvmeio_trc || state)
return len;
/* trace MUST bhe off to continue */
for (i = index; i < phba->nvmeio_trc_size; i++) {
if (skip) {
skip--;
continue;
}
dtp = phba->nvmeio_trc + i;
phba->nvmeio_trc_output_idx++;
if (!dtp->fmt)
continue;
len += scnprintf(buf + len, size - len, dtp->fmt,
dtp->data1, dtp->data2, dtp->data3);
if (phba->nvmeio_trc_output_idx >= phba->nvmeio_trc_size) {
phba->nvmeio_trc_output_idx = 0;
len += scnprintf(buf + len, size - len,
"Trace Complete\n");
goto out;
}
if (len >= (size - LPFC_DEBUG_OUT_LINE_SZ)) {
len += scnprintf(buf + len, size - len,
"Trace Continue (%d of %d)\n",
phba->nvmeio_trc_output_idx,
phba->nvmeio_trc_size);
goto out;
}
}
for (i = 0; i < index; i++) {
if (skip) {
skip--;
continue;
}
dtp = phba->nvmeio_trc + i;
phba->nvmeio_trc_output_idx++;
if (!dtp->fmt)
continue;
len += scnprintf(buf + len, size - len, dtp->fmt,
dtp->data1, dtp->data2, dtp->data3);
if (phba->nvmeio_trc_output_idx >= phba->nvmeio_trc_size) {
phba->nvmeio_trc_output_idx = 0;
len += scnprintf(buf + len, size - len,
"Trace Complete\n");
goto out;
}
if (len >= (size - LPFC_DEBUG_OUT_LINE_SZ)) {
len += scnprintf(buf + len, size - len,
"Trace Continue (%d of %d)\n",
phba->nvmeio_trc_output_idx,
phba->nvmeio_trc_size);
goto out;
}
}
len += scnprintf(buf + len, size - len,
"Trace Done\n");
out:
return len;
}
/**
* lpfc_debugfs_hdwqstat_data - Dump I/O stats to a buffer
* @vport: The vport to gather target node info from.
* @buf: The buffer to dump log into.
* @size: The maximum amount of data to process.
*
* Description:
* This routine dumps the NVME + SCSI statistics associated with @vport
*
* Return Value:
* This routine returns the amount of bytes that were dumped into @buf and will
* not exceed @size.
**/
static int
lpfc_debugfs_hdwqstat_data(struct lpfc_vport *vport, char *buf, int size)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_hdwq_stat *c_stat;
int i, j, len;
uint32_t tot_xmt;
uint32_t tot_rcv;
uint32_t tot_cmpl;
char tmp[LPFC_MAX_SCSI_INFO_TMP_LEN] = {0};
scnprintf(tmp, sizeof(tmp), "HDWQ Stats:\n\n");
if (strlcat(buf, tmp, size) >= size)
goto buffer_done;
scnprintf(tmp, sizeof(tmp), "(NVME Accounting: %s) ",
(phba->hdwqstat_on &
(LPFC_CHECK_NVME_IO | LPFC_CHECK_NVMET_IO) ?
"Enabled" : "Disabled"));
if (strlcat(buf, tmp, size) >= size)
goto buffer_done;
scnprintf(tmp, sizeof(tmp), "(SCSI Accounting: %s) ",
(phba->hdwqstat_on & LPFC_CHECK_SCSI_IO ?
"Enabled" : "Disabled"));
if (strlcat(buf, tmp, size) >= size)
goto buffer_done;
scnprintf(tmp, sizeof(tmp), "\n\n");
if (strlcat(buf, tmp, size) >= size)
goto buffer_done;
for (i = 0; i < phba->cfg_hdw_queue; i++) {
tot_rcv = 0;
tot_xmt = 0;
tot_cmpl = 0;
for_each_present_cpu(j) {
c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, j);
/* Only display for this HDWQ */
if (i != c_stat->hdwq_no)
continue;
/* Only display non-zero counters */
if (!c_stat->xmt_io && !c_stat->cmpl_io &&
!c_stat->rcv_io)
continue;
if (!tot_xmt && !tot_cmpl && !tot_rcv) {
/* Print HDWQ string only the first time */
scnprintf(tmp, sizeof(tmp), "[HDWQ %d]:\t", i);
if (strlcat(buf, tmp, size) >= size)
goto buffer_done;
}
tot_xmt += c_stat->xmt_io;
tot_cmpl += c_stat->cmpl_io;
if (phba->nvmet_support)
tot_rcv += c_stat->rcv_io;
scnprintf(tmp, sizeof(tmp), "| [CPU %d]: ", j);
if (strlcat(buf, tmp, size) >= size)
goto buffer_done;
if (phba->nvmet_support) {
scnprintf(tmp, sizeof(tmp),
"XMT 0x%x CMPL 0x%x RCV 0x%x |",
c_stat->xmt_io, c_stat->cmpl_io,
c_stat->rcv_io);
if (strlcat(buf, tmp, size) >= size)
goto buffer_done;
} else {
scnprintf(tmp, sizeof(tmp),
"XMT 0x%x CMPL 0x%x |",
c_stat->xmt_io, c_stat->cmpl_io);
if (strlcat(buf, tmp, size) >= size)
goto buffer_done;
}
}
/* Check if nothing to display */
if (!tot_xmt && !tot_cmpl && !tot_rcv)
continue;
scnprintf(tmp, sizeof(tmp), "\t->\t[HDWQ Total: ");
if (strlcat(buf, tmp, size) >= size)
goto buffer_done;
if (phba->nvmet_support) {
scnprintf(tmp, sizeof(tmp),
"XMT 0x%x CMPL 0x%x RCV 0x%x]\n\n",
tot_xmt, tot_cmpl, tot_rcv);
if (strlcat(buf, tmp, size) >= size)
goto buffer_done;
} else {
scnprintf(tmp, sizeof(tmp),
"XMT 0x%x CMPL 0x%x]\n\n",
tot_xmt, tot_cmpl);
if (strlcat(buf, tmp, size) >= size)
goto buffer_done;
}
}
buffer_done:
len = strnlen(buf, size);
return len;
}
#endif
/**
* lpfc_debugfs_disc_trc - Store discovery trace log
* @vport: The vport to associate this trace string with for retrieval.
* @mask: Log entry classification.
* @fmt: Format string to be displayed when dumping the log.
* @data1: 1st data parameter to be applied to @fmt.
* @data2: 2nd data parameter to be applied to @fmt.
* @data3: 3rd data parameter to be applied to @fmt.
*
* Description:
* This routine is used by the driver code to add a debugfs log entry to the
* discovery trace buffer associated with @vport. Only entries with a @mask that
* match the current debugfs discovery mask will be saved. Entries that do not
* match will be thrown away. @fmt, @data1, @data2, and @data3 are used like
* printf when displaying the log.
**/
inline void
lpfc_debugfs_disc_trc(struct lpfc_vport *vport, int mask, char *fmt,
uint32_t data1, uint32_t data2, uint32_t data3)
{
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
struct lpfc_debugfs_trc *dtp;
int index;
if (!(lpfc_debugfs_mask_disc_trc & mask))
return;
if (!lpfc_debugfs_enable || !lpfc_debugfs_max_disc_trc ||
!vport || !vport->disc_trc)
return;
index = atomic_inc_return(&vport->disc_trc_cnt) &
(lpfc_debugfs_max_disc_trc - 1);
dtp = vport->disc_trc + index;
dtp->fmt = fmt;
dtp->data1 = data1;
dtp->data2 = data2;
dtp->data3 = data3;
dtp->seq_cnt = atomic_inc_return(&lpfc_debugfs_seq_trc_cnt);
dtp->jif = jiffies;
#endif
return;
}
/**
* lpfc_debugfs_slow_ring_trc - Store slow ring trace log
* @phba: The phba to associate this trace string with for retrieval.
* @fmt: Format string to be displayed when dumping the log.
* @data1: 1st data parameter to be applied to @fmt.
* @data2: 2nd data parameter to be applied to @fmt.
* @data3: 3rd data parameter to be applied to @fmt.
*
* Description:
* This routine is used by the driver code to add a debugfs log entry to the
* discovery trace buffer associated with @vport. @fmt, @data1, @data2, and
* @data3 are used like printf when displaying the log.
**/
inline void
lpfc_debugfs_slow_ring_trc(struct lpfc_hba *phba, char *fmt,
uint32_t data1, uint32_t data2, uint32_t data3)
{
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
struct lpfc_debugfs_trc *dtp;
int index;
if (!lpfc_debugfs_enable || !lpfc_debugfs_max_slow_ring_trc ||
!phba || !phba->slow_ring_trc)
return;
index = atomic_inc_return(&phba->slow_ring_trc_cnt) &
(lpfc_debugfs_max_slow_ring_trc - 1);
dtp = phba->slow_ring_trc + index;
dtp->fmt = fmt;
dtp->data1 = data1;
dtp->data2 = data2;
dtp->data3 = data3;
dtp->seq_cnt = atomic_inc_return(&lpfc_debugfs_seq_trc_cnt);
dtp->jif = jiffies;
#endif
return;
}
/**
* lpfc_debugfs_nvme_trc - Store NVME/NVMET trace log
* @phba: The phba to associate this trace string with for retrieval.
* @fmt: Format string to be displayed when dumping the log.
* @data1: 1st data parameter to be applied to @fmt.
* @data2: 2nd data parameter to be applied to @fmt.
* @data3: 3rd data parameter to be applied to @fmt.
*
* Description:
* This routine is used by the driver code to add a debugfs log entry to the
* nvme trace buffer associated with @phba. @fmt, @data1, @data2, and
* @data3 are used like printf when displaying the log.
**/
inline void
lpfc_debugfs_nvme_trc(struct lpfc_hba *phba, char *fmt,
uint16_t data1, uint16_t data2, uint32_t data3)
{
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
struct lpfc_debugfs_nvmeio_trc *dtp;
int index;
if (!phba->nvmeio_trc_on || !phba->nvmeio_trc)
return;
index = atomic_inc_return(&phba->nvmeio_trc_cnt) &
(phba->nvmeio_trc_size - 1);
dtp = phba->nvmeio_trc + index;
dtp->fmt = fmt;
dtp->data1 = data1;
dtp->data2 = data2;
dtp->data3 = data3;
#endif
}
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
/**
* lpfc_debugfs_disc_trc_open - Open the discovery trace log
* @inode: The inode pointer that contains a vport pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the vport from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this vport, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return a negative
* error value.
**/
static int
lpfc_debugfs_disc_trc_open(struct inode *inode, struct file *file)
{
struct lpfc_vport *vport = inode->i_private;
struct lpfc_debug *debug;
int size;
int rc = -ENOMEM;
if (!lpfc_debugfs_max_disc_trc) {
rc = -ENOSPC;
goto out;
}
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
size = (lpfc_debugfs_max_disc_trc * LPFC_DEBUG_TRC_ENTRY_SIZE);
size = PAGE_ALIGN(size);
debug->buffer = kmalloc(size, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_disc_trc_data(vport, debug->buffer, size);
file->private_data = debug;
rc = 0;
out:
return rc;
}
/**
* lpfc_debugfs_slow_ring_trc_open - Open the Slow Ring trace log
* @inode: The inode pointer that contains a vport pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the vport from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this vport, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return a negative
* error value.
**/
static int
lpfc_debugfs_slow_ring_trc_open(struct inode *inode, struct file *file)
{
struct lpfc_hba *phba = inode->i_private;
struct lpfc_debug *debug;
int size;
int rc = -ENOMEM;
if (!lpfc_debugfs_max_slow_ring_trc) {
rc = -ENOSPC;
goto out;
}
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
size = (lpfc_debugfs_max_slow_ring_trc * LPFC_DEBUG_TRC_ENTRY_SIZE);
size = PAGE_ALIGN(size);
debug->buffer = kmalloc(size, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_slow_ring_trc_data(phba, debug->buffer, size);
file->private_data = debug;
rc = 0;
out:
return rc;
}
/**
* lpfc_debugfs_hbqinfo_open - Open the hbqinfo debugfs buffer
* @inode: The inode pointer that contains a vport pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the vport from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this vport, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return a negative
* error value.
**/
static int
lpfc_debugfs_hbqinfo_open(struct inode *inode, struct file *file)
{
struct lpfc_hba *phba = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kmalloc(LPFC_HBQINFO_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_hbqinfo_data(phba, debug->buffer,
LPFC_HBQINFO_SIZE);
file->private_data = debug;
rc = 0;
out:
return rc;
}
/**
* lpfc_debugfs_multixripools_open - Open the multixripool debugfs buffer
* @inode: The inode pointer that contains a hba pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the hba from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this hba, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return a negative
* error value.
**/
static int
lpfc_debugfs_multixripools_open(struct inode *inode, struct file *file)
{
struct lpfc_hba *phba = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kzalloc(LPFC_DUMP_MULTIXRIPOOL_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_multixripools_data(
phba, debug->buffer, LPFC_DUMP_MULTIXRIPOOL_SIZE);
debug->i_private = inode->i_private;
file->private_data = debug;
rc = 0;
out:
return rc;
}
#ifdef LPFC_HDWQ_LOCK_STAT
/**
* lpfc_debugfs_lockstat_open - Open the lockstat debugfs buffer
* @inode: The inode pointer that contains a vport pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the vport from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this vport, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return a negative
* error value.
**/
static int
lpfc_debugfs_lockstat_open(struct inode *inode, struct file *file)
{
struct lpfc_hba *phba = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kmalloc(LPFC_HDWQINFO_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_lockstat_data(phba, debug->buffer,
LPFC_HBQINFO_SIZE);
file->private_data = debug;
rc = 0;
out:
return rc;
}
static ssize_t
lpfc_debugfs_lockstat_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
struct lpfc_sli4_hdw_queue *qp;
char mybuf[64];
char *pbuf;
int i;
memset(mybuf, 0, sizeof(mybuf));
if (copy_from_user(mybuf, buf, nbytes))
return -EFAULT;
pbuf = &mybuf[0];
if ((strncmp(pbuf, "reset", strlen("reset")) == 0) ||
(strncmp(pbuf, "zero", strlen("zero")) == 0)) {
for (i = 0; i < phba->cfg_hdw_queue; i++) {
qp = &phba->sli4_hba.hdwq[i];
qp->lock_conflict.alloc_xri_get = 0;
qp->lock_conflict.alloc_xri_put = 0;
qp->lock_conflict.free_xri = 0;
qp->lock_conflict.wq_access = 0;
qp->lock_conflict.alloc_pvt_pool = 0;
qp->lock_conflict.mv_from_pvt_pool = 0;
qp->lock_conflict.mv_to_pub_pool = 0;
qp->lock_conflict.mv_to_pvt_pool = 0;
qp->lock_conflict.free_pvt_pool = 0;
qp->lock_conflict.free_pub_pool = 0;
qp->lock_conflict.wq_access = 0;
}
}
return nbytes;
}
#endif
static int lpfc_debugfs_ras_log_data(struct lpfc_hba *phba,
char *buffer, int size)
{
int copied = 0;
struct lpfc_dmabuf *dmabuf, *next;
memset(buffer, 0, size);
spin_lock_irq(&phba->hbalock);
if (phba->ras_fwlog.state != ACTIVE) {
spin_unlock_irq(&phba->hbalock);
return -EINVAL;
}
spin_unlock_irq(&phba->hbalock);
list_for_each_entry_safe(dmabuf, next,
&phba->ras_fwlog.fwlog_buff_list, list) {
/* Check if copying will go over size and a '\0' char */
if ((copied + LPFC_RAS_MAX_ENTRY_SIZE) >= (size - 1)) {
memcpy(buffer + copied, dmabuf->virt,
size - copied - 1);
copied += size - copied - 1;
break;
}
memcpy(buffer + copied, dmabuf->virt, LPFC_RAS_MAX_ENTRY_SIZE);
copied += LPFC_RAS_MAX_ENTRY_SIZE;
}
return copied;
}
static int
lpfc_debugfs_ras_log_release(struct inode *inode, struct file *file)
{
struct lpfc_debug *debug = file->private_data;
vfree(debug->buffer);
kfree(debug);
return 0;
}
/**
* lpfc_debugfs_ras_log_open - Open the RAS log debugfs buffer
* @inode: The inode pointer that contains a vport pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the vport from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this vport, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return a negative
* error value.
**/
static int
lpfc_debugfs_ras_log_open(struct inode *inode, struct file *file)
{
struct lpfc_hba *phba = inode->i_private;
struct lpfc_debug *debug;
int size;
int rc = -ENOMEM;
spin_lock_irq(&phba->hbalock);
if (phba->ras_fwlog.state != ACTIVE) {
spin_unlock_irq(&phba->hbalock);
rc = -EINVAL;
goto out;
}
spin_unlock_irq(&phba->hbalock);
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
size = LPFC_RAS_MIN_BUFF_POST_SIZE * phba->cfg_ras_fwlog_buffsize;
debug->buffer = vmalloc(size);
if (!debug->buffer)
goto free_debug;
debug->len = lpfc_debugfs_ras_log_data(phba, debug->buffer, size);
if (debug->len < 0) {
rc = -EINVAL;
goto free_buffer;
}
file->private_data = debug;
return 0;
free_buffer:
vfree(debug->buffer);
free_debug:
kfree(debug);
out:
return rc;
}
/**
* lpfc_debugfs_dumpHBASlim_open - Open the Dump HBA SLIM debugfs buffer
* @inode: The inode pointer that contains a vport pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the vport from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this vport, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return a negative
* error value.
**/
static int
lpfc_debugfs_dumpHBASlim_open(struct inode *inode, struct file *file)
{
struct lpfc_hba *phba = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kmalloc(LPFC_DUMPHBASLIM_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_dumpHBASlim_data(phba, debug->buffer,
LPFC_DUMPHBASLIM_SIZE);
file->private_data = debug;
rc = 0;
out:
return rc;
}
/**
* lpfc_debugfs_dumpHostSlim_open - Open the Dump Host SLIM debugfs buffer
* @inode: The inode pointer that contains a vport pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the vport from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this vport, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return a negative
* error value.
**/
static int
lpfc_debugfs_dumpHostSlim_open(struct inode *inode, struct file *file)
{
struct lpfc_hba *phba = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kmalloc(LPFC_DUMPHOSTSLIM_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_dumpHostSlim_data(phba, debug->buffer,
LPFC_DUMPHOSTSLIM_SIZE);
file->private_data = debug;
rc = 0;
out:
return rc;
}
static ssize_t
lpfc_debugfs_dif_err_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct dentry *dent = file->f_path.dentry;
struct lpfc_hba *phba = file->private_data;
char cbuf[32];
uint64_t tmp = 0;
int cnt = 0;
if (dent == phba->debug_writeGuard)
cnt = scnprintf(cbuf, 32, "%u\n", phba->lpfc_injerr_wgrd_cnt);
else if (dent == phba->debug_writeApp)
cnt = scnprintf(cbuf, 32, "%u\n", phba->lpfc_injerr_wapp_cnt);
else if (dent == phba->debug_writeRef)
cnt = scnprintf(cbuf, 32, "%u\n", phba->lpfc_injerr_wref_cnt);
else if (dent == phba->debug_readGuard)
cnt = scnprintf(cbuf, 32, "%u\n", phba->lpfc_injerr_rgrd_cnt);
else if (dent == phba->debug_readApp)
cnt = scnprintf(cbuf, 32, "%u\n", phba->lpfc_injerr_rapp_cnt);
else if (dent == phba->debug_readRef)
cnt = scnprintf(cbuf, 32, "%u\n", phba->lpfc_injerr_rref_cnt);
else if (dent == phba->debug_InjErrNPortID)
cnt = scnprintf(cbuf, 32, "0x%06x\n",
phba->lpfc_injerr_nportid);
else if (dent == phba->debug_InjErrWWPN) {
memcpy(&tmp, &phba->lpfc_injerr_wwpn, sizeof(struct lpfc_name));
tmp = cpu_to_be64(tmp);
cnt = scnprintf(cbuf, 32, "0x%016llx\n", tmp);
} else if (dent == phba->debug_InjErrLBA) {
if (phba->lpfc_injerr_lba == (sector_t)(-1))
cnt = scnprintf(cbuf, 32, "off\n");
else
cnt = scnprintf(cbuf, 32, "0x%llx\n",
(uint64_t) phba->lpfc_injerr_lba);
} else
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0547 Unknown debugfs error injection entry\n");
return simple_read_from_buffer(buf, nbytes, ppos, &cbuf, cnt);
}
static ssize_t
lpfc_debugfs_dif_err_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct dentry *dent = file->f_path.dentry;
struct lpfc_hba *phba = file->private_data;
char dstbuf[33];
uint64_t tmp = 0;
int size;
memset(dstbuf, 0, 33);
size = (nbytes < 32) ? nbytes : 32;
if (copy_from_user(dstbuf, buf, size))
return 0;
if (dent == phba->debug_InjErrLBA) {
if ((dstbuf[0] == 'o') && (dstbuf[1] == 'f') &&
(dstbuf[2] == 'f'))
tmp = (uint64_t)(-1);
}
if ((tmp == 0) && (kstrtoull(dstbuf, 0, &tmp)))
return 0;
if (dent == phba->debug_writeGuard)
phba->lpfc_injerr_wgrd_cnt = (uint32_t)tmp;
else if (dent == phba->debug_writeApp)
phba->lpfc_injerr_wapp_cnt = (uint32_t)tmp;
else if (dent == phba->debug_writeRef)
phba->lpfc_injerr_wref_cnt = (uint32_t)tmp;
else if (dent == phba->debug_readGuard)
phba->lpfc_injerr_rgrd_cnt = (uint32_t)tmp;
else if (dent == phba->debug_readApp)
phba->lpfc_injerr_rapp_cnt = (uint32_t)tmp;
else if (dent == phba->debug_readRef)
phba->lpfc_injerr_rref_cnt = (uint32_t)tmp;
else if (dent == phba->debug_InjErrLBA)
phba->lpfc_injerr_lba = (sector_t)tmp;
else if (dent == phba->debug_InjErrNPortID)
phba->lpfc_injerr_nportid = (uint32_t)(tmp & Mask_DID);
else if (dent == phba->debug_InjErrWWPN) {
tmp = cpu_to_be64(tmp);
memcpy(&phba->lpfc_injerr_wwpn, &tmp, sizeof(struct lpfc_name));
} else
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0548 Unknown debugfs error injection entry\n");
return nbytes;
}
static int
lpfc_debugfs_dif_err_release(struct inode *inode, struct file *file)
{
return 0;
}
/**
* lpfc_debugfs_nodelist_open - Open the nodelist debugfs file
* @inode: The inode pointer that contains a vport pointer.
* @file: The file pointer to attach the log output.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It gets
* the vport from the i_private field in @inode, allocates the necessary buffer
* for the log, fills the buffer from the in-memory log for this vport, and then
* returns a pointer to that log in the private_data field in @file.
*
* Returns:
* This function returns zero if successful. On error it will return a negative
* error value.
**/
static int
lpfc_debugfs_nodelist_open(struct inode *inode, struct file *file)
{
struct lpfc_vport *vport = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kmalloc(LPFC_NODELIST_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_nodelist_data(vport, debug->buffer,
LPFC_NODELIST_SIZE);
file->private_data = debug;
rc = 0;
out:
return rc;
}
/**
* lpfc_debugfs_lseek - Seek through a debugfs file
* @file: The file pointer to seek through.
* @off: The offset to seek to or the amount to seek by.
* @whence: Indicates how to seek.
*
* Description:
* This routine is the entry point for the debugfs lseek file operation. The
* @whence parameter indicates whether @off is the offset to directly seek to,
* or if it is a value to seek forward or reverse by. This function figures out
* what the new offset of the debugfs file will be and assigns that value to the
* f_pos field of @file.
*
* Returns:
* This function returns the new offset if successful and returns a negative
* error if unable to process the seek.
**/
static loff_t
lpfc_debugfs_lseek(struct file *file, loff_t off, int whence)
{
struct lpfc_debug *debug = file->private_data;
return fixed_size_llseek(file, off, whence, debug->len);
}
/**
* lpfc_debugfs_read - Read a debugfs file
* @file: The file pointer to read from.
* @buf: The buffer to copy the data to.
* @nbytes: The number of bytes to read.
* @ppos: The position in the file to start reading from.
*
* Description:
* This routine reads data from from the buffer indicated in the private_data
* field of @file. It will start reading at @ppos and copy up to @nbytes of
* data to @buf.
*
* Returns:
* This function returns the amount of data that was read (this could be less
* than @nbytes if the end of the file was reached) or a negative error value.
**/
static ssize_t
lpfc_debugfs_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
return simple_read_from_buffer(buf, nbytes, ppos, debug->buffer,
debug->len);
}
/**
* lpfc_debugfs_release - Release the buffer used to store debugfs file data
* @inode: The inode pointer that contains a vport pointer. (unused)
* @file: The file pointer that contains the buffer to release.
*
* Description:
* This routine frees the buffer that was allocated when the debugfs file was
* opened.
*
* Returns:
* This function returns zero.
**/
static int
lpfc_debugfs_release(struct inode *inode, struct file *file)
{
struct lpfc_debug *debug = file->private_data;
kfree(debug->buffer);
kfree(debug);
return 0;
}
/**
* lpfc_debugfs_multixripools_write - Clear multi-XRI pools statistics
* @file: The file pointer to read from.
* @buf: The buffer to copy the user data from.
* @nbytes: The number of bytes to get.
* @ppos: The position in the file to start reading from.
*
* Description:
* This routine clears multi-XRI pools statistics when buf contains "clear".
*
* Return Value:
* It returns the @nbytges passing in from debugfs user space when successful.
* In case of error conditions, it returns proper error code back to the user
* space.
**/
static ssize_t
lpfc_debugfs_multixripools_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
char mybuf[64];
char *pbuf;
u32 i;
u32 hwq_count;
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_multixri_pool *multixri_pool;
if (nbytes > 64)
nbytes = 64;
memset(mybuf, 0, sizeof(mybuf));
if (copy_from_user(mybuf, buf, nbytes))
return -EFAULT;
pbuf = &mybuf[0];
if ((strncmp(pbuf, "clear", strlen("clear"))) == 0) {
hwq_count = phba->cfg_hdw_queue;
for (i = 0; i < hwq_count; i++) {
qp = &phba->sli4_hba.hdwq[i];
multixri_pool = qp->p_multixri_pool;
if (!multixri_pool)
continue;
qp->empty_io_bufs = 0;
multixri_pool->pbl_empty_count = 0;
#ifdef LPFC_MXP_STAT
multixri_pool->above_limit_count = 0;
multixri_pool->below_limit_count = 0;
multixri_pool->stat_max_hwm = 0;
multixri_pool->local_pbl_hit_count = 0;
multixri_pool->other_pbl_hit_count = 0;
multixri_pool->stat_pbl_count = 0;
multixri_pool->stat_pvt_count = 0;
multixri_pool->stat_busy_count = 0;
multixri_pool->stat_snapshot_taken = 0;
#endif
}
return strlen(pbuf);
}
return -EINVAL;
}
static int
lpfc_debugfs_nvmestat_open(struct inode *inode, struct file *file)
{
struct lpfc_vport *vport = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kmalloc(LPFC_NVMESTAT_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_nvmestat_data(vport, debug->buffer,
LPFC_NVMESTAT_SIZE);
debug->i_private = inode->i_private;
file->private_data = debug;
rc = 0;
out:
return rc;
}
static ssize_t
lpfc_debugfs_nvmestat_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_vport *vport = (struct lpfc_vport *)debug->i_private;
struct lpfc_hba *phba = vport->phba;
struct lpfc_nvmet_tgtport *tgtp;
char mybuf[64];
char *pbuf;
if (!phba->targetport)
return -ENXIO;
if (nbytes > 64)
nbytes = 64;
memset(mybuf, 0, sizeof(mybuf));
if (copy_from_user(mybuf, buf, nbytes))
return -EFAULT;
pbuf = &mybuf[0];
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
if ((strncmp(pbuf, "reset", strlen("reset")) == 0) ||
(strncmp(pbuf, "zero", strlen("zero")) == 0)) {
atomic_set(&tgtp->rcv_ls_req_in, 0);
atomic_set(&tgtp->rcv_ls_req_out, 0);
atomic_set(&tgtp->rcv_ls_req_drop, 0);
atomic_set(&tgtp->xmt_ls_abort, 0);
atomic_set(&tgtp->xmt_ls_abort_cmpl, 0);
atomic_set(&tgtp->xmt_ls_rsp, 0);
atomic_set(&tgtp->xmt_ls_drop, 0);
atomic_set(&tgtp->xmt_ls_rsp_error, 0);
atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0);
atomic_set(&tgtp->rcv_fcp_cmd_in, 0);
atomic_set(&tgtp->rcv_fcp_cmd_out, 0);
atomic_set(&tgtp->rcv_fcp_cmd_drop, 0);
atomic_set(&tgtp->xmt_fcp_drop, 0);
atomic_set(&tgtp->xmt_fcp_read_rsp, 0);
atomic_set(&tgtp->xmt_fcp_read, 0);
atomic_set(&tgtp->xmt_fcp_write, 0);
atomic_set(&tgtp->xmt_fcp_rsp, 0);
atomic_set(&tgtp->xmt_fcp_release, 0);
atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0);
atomic_set(&tgtp->xmt_fcp_rsp_error, 0);
atomic_set(&tgtp->xmt_fcp_rsp_drop, 0);
atomic_set(&tgtp->xmt_fcp_abort, 0);
atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0);
atomic_set(&tgtp->xmt_abort_sol, 0);
atomic_set(&tgtp->xmt_abort_unsol, 0);
atomic_set(&tgtp->xmt_abort_rsp, 0);
atomic_set(&tgtp->xmt_abort_rsp_error, 0);
}
return nbytes;
}
static int
lpfc_debugfs_scsistat_open(struct inode *inode, struct file *file)
{
struct lpfc_vport *vport = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kzalloc(LPFC_SCSISTAT_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_scsistat_data(vport, debug->buffer,
LPFC_SCSISTAT_SIZE);
debug->i_private = inode->i_private;
file->private_data = debug;
rc = 0;
out:
return rc;
}
static ssize_t
lpfc_debugfs_scsistat_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_vport *vport = (struct lpfc_vport *)debug->i_private;
struct lpfc_hba *phba = vport->phba;
char mybuf[6] = {0};
int i;
if (copy_from_user(mybuf, buf, (nbytes >= sizeof(mybuf)) ?
(sizeof(mybuf) - 1) : nbytes))
return -EFAULT;
if ((strncmp(&mybuf[0], "reset", strlen("reset")) == 0) ||
(strncmp(&mybuf[0], "zero", strlen("zero")) == 0)) {
for (i = 0; i < phba->cfg_hdw_queue; i++) {
memset(&phba->sli4_hba.hdwq[i].scsi_cstat, 0,
sizeof(phba->sli4_hba.hdwq[i].scsi_cstat));
}
}
return nbytes;
}
static int
lpfc_debugfs_ioktime_open(struct inode *inode, struct file *file)
{
struct lpfc_vport *vport = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kmalloc(LPFC_IOKTIME_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_ioktime_data(vport, debug->buffer,
LPFC_IOKTIME_SIZE);
debug->i_private = inode->i_private;
file->private_data = debug;
rc = 0;
out:
return rc;
}
static ssize_t
lpfc_debugfs_ioktime_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_vport *vport = (struct lpfc_vport *)debug->i_private;
struct lpfc_hba *phba = vport->phba;
char mybuf[64];
char *pbuf;
if (nbytes > 64)
nbytes = 64;
memset(mybuf, 0, sizeof(mybuf));
if (copy_from_user(mybuf, buf, nbytes))
return -EFAULT;
pbuf = &mybuf[0];
if ((strncmp(pbuf, "on", sizeof("on") - 1) == 0)) {
phba->ktime_data_samples = 0;
phba->ktime_status_samples = 0;
phba->ktime_seg1_total = 0;
phba->ktime_seg1_max = 0;
phba->ktime_seg1_min = 0xffffffff;
phba->ktime_seg2_total = 0;
phba->ktime_seg2_max = 0;
phba->ktime_seg2_min = 0xffffffff;
phba->ktime_seg3_total = 0;
phba->ktime_seg3_max = 0;
phba->ktime_seg3_min = 0xffffffff;
phba->ktime_seg4_total = 0;
phba->ktime_seg4_max = 0;
phba->ktime_seg4_min = 0xffffffff;
phba->ktime_seg5_total = 0;
phba->ktime_seg5_max = 0;
phba->ktime_seg5_min = 0xffffffff;
phba->ktime_seg6_total = 0;
phba->ktime_seg6_max = 0;
phba->ktime_seg6_min = 0xffffffff;
phba->ktime_seg7_total = 0;
phba->ktime_seg7_max = 0;
phba->ktime_seg7_min = 0xffffffff;
phba->ktime_seg8_total = 0;
phba->ktime_seg8_max = 0;
phba->ktime_seg8_min = 0xffffffff;
phba->ktime_seg9_total = 0;
phba->ktime_seg9_max = 0;
phba->ktime_seg9_min = 0xffffffff;
phba->ktime_seg10_total = 0;
phba->ktime_seg10_max = 0;
phba->ktime_seg10_min = 0xffffffff;
phba->ktime_on = 1;
return strlen(pbuf);
} else if ((strncmp(pbuf, "off",
sizeof("off") - 1) == 0)) {
phba->ktime_on = 0;
return strlen(pbuf);
} else if ((strncmp(pbuf, "zero",
sizeof("zero") - 1) == 0)) {
phba->ktime_data_samples = 0;
phba->ktime_status_samples = 0;
phba->ktime_seg1_total = 0;
phba->ktime_seg1_max = 0;
phba->ktime_seg1_min = 0xffffffff;
phba->ktime_seg2_total = 0;
phba->ktime_seg2_max = 0;
phba->ktime_seg2_min = 0xffffffff;
phba->ktime_seg3_total = 0;
phba->ktime_seg3_max = 0;
phba->ktime_seg3_min = 0xffffffff;
phba->ktime_seg4_total = 0;
phba->ktime_seg4_max = 0;
phba->ktime_seg4_min = 0xffffffff;
phba->ktime_seg5_total = 0;
phba->ktime_seg5_max = 0;
phba->ktime_seg5_min = 0xffffffff;
phba->ktime_seg6_total = 0;
phba->ktime_seg6_max = 0;
phba->ktime_seg6_min = 0xffffffff;
phba->ktime_seg7_total = 0;
phba->ktime_seg7_max = 0;
phba->ktime_seg7_min = 0xffffffff;
phba->ktime_seg8_total = 0;
phba->ktime_seg8_max = 0;
phba->ktime_seg8_min = 0xffffffff;
phba->ktime_seg9_total = 0;
phba->ktime_seg9_max = 0;
phba->ktime_seg9_min = 0xffffffff;
phba->ktime_seg10_total = 0;
phba->ktime_seg10_max = 0;
phba->ktime_seg10_min = 0xffffffff;
return strlen(pbuf);
}
return -EINVAL;
}
static int
lpfc_debugfs_nvmeio_trc_open(struct inode *inode, struct file *file)
{
struct lpfc_hba *phba = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kmalloc(LPFC_NVMEIO_TRC_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_nvmeio_trc_data(phba, debug->buffer,
LPFC_NVMEIO_TRC_SIZE);
debug->i_private = inode->i_private;
file->private_data = debug;
rc = 0;
out:
return rc;
}
static ssize_t
lpfc_debugfs_nvmeio_trc_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
int i;
unsigned long sz;
char mybuf[64];
char *pbuf;
if (nbytes > 64)
nbytes = 64;
memset(mybuf, 0, sizeof(mybuf));
if (copy_from_user(mybuf, buf, nbytes))
return -EFAULT;
pbuf = &mybuf[0];
if ((strncmp(pbuf, "off", sizeof("off") - 1) == 0)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0570 nvmeio_trc_off\n");
phba->nvmeio_trc_output_idx = 0;
phba->nvmeio_trc_on = 0;
return strlen(pbuf);
} else if ((strncmp(pbuf, "on", sizeof("on") - 1) == 0)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0571 nvmeio_trc_on\n");
phba->nvmeio_trc_output_idx = 0;
phba->nvmeio_trc_on = 1;
return strlen(pbuf);
}
/* We must be off to allocate the trace buffer */
if (phba->nvmeio_trc_on != 0)
return -EINVAL;
/* If not on or off, the parameter is the trace buffer size */
i = kstrtoul(pbuf, 0, &sz);
if (i)
return -EINVAL;
phba->nvmeio_trc_size = (uint32_t)sz;
/* It must be a power of 2 - round down */
i = 0;
while (sz > 1) {
sz = sz >> 1;
i++;
}
sz = (1 << i);
if (phba->nvmeio_trc_size != sz)
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0572 nvmeio_trc_size changed to %ld\n",
sz);
phba->nvmeio_trc_size = (uint32_t)sz;
/* If one previously exists, free it */
kfree(phba->nvmeio_trc);
/* Allocate new trace buffer and initialize */
phba->nvmeio_trc = kzalloc((sizeof(struct lpfc_debugfs_nvmeio_trc) *
sz), GFP_KERNEL);
if (!phba->nvmeio_trc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0573 Cannot create debugfs "
"nvmeio_trc buffer\n");
return -ENOMEM;
}
atomic_set(&phba->nvmeio_trc_cnt, 0);
phba->nvmeio_trc_on = 0;
phba->nvmeio_trc_output_idx = 0;
return strlen(pbuf);
}
static int
lpfc_debugfs_hdwqstat_open(struct inode *inode, struct file *file)
{
struct lpfc_vport *vport = inode->i_private;
struct lpfc_debug *debug;
int rc = -ENOMEM;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
goto out;
/* Round to page boundary */
debug->buffer = kcalloc(1, LPFC_SCSISTAT_SIZE, GFP_KERNEL);
if (!debug->buffer) {
kfree(debug);
goto out;
}
debug->len = lpfc_debugfs_hdwqstat_data(vport, debug->buffer,
LPFC_SCSISTAT_SIZE);
debug->i_private = inode->i_private;
file->private_data = debug;
rc = 0;
out:
return rc;
}
static ssize_t
lpfc_debugfs_hdwqstat_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_vport *vport = (struct lpfc_vport *)debug->i_private;
struct lpfc_hba *phba = vport->phba;
struct lpfc_hdwq_stat *c_stat;
char mybuf[64];
char *pbuf;
int i;
if (nbytes > 64)
nbytes = 64;
memset(mybuf, 0, sizeof(mybuf));
if (copy_from_user(mybuf, buf, nbytes))
return -EFAULT;
pbuf = &mybuf[0];
if ((strncmp(pbuf, "on", sizeof("on") - 1) == 0)) {
if (phba->nvmet_support)
phba->hdwqstat_on |= LPFC_CHECK_NVMET_IO;
else
phba->hdwqstat_on |= (LPFC_CHECK_NVME_IO |
LPFC_CHECK_SCSI_IO);
return strlen(pbuf);
} else if ((strncmp(pbuf, "nvme_on", sizeof("nvme_on") - 1) == 0)) {
if (phba->nvmet_support)
phba->hdwqstat_on |= LPFC_CHECK_NVMET_IO;
else
phba->hdwqstat_on |= LPFC_CHECK_NVME_IO;
return strlen(pbuf);
} else if ((strncmp(pbuf, "scsi_on", sizeof("scsi_on") - 1) == 0)) {
if (!phba->nvmet_support)
phba->hdwqstat_on |= LPFC_CHECK_SCSI_IO;
return strlen(pbuf);
} else if ((strncmp(pbuf, "nvme_off", sizeof("nvme_off") - 1) == 0)) {
phba->hdwqstat_on &= ~(LPFC_CHECK_NVME_IO |
LPFC_CHECK_NVMET_IO);
return strlen(pbuf);
} else if ((strncmp(pbuf, "scsi_off", sizeof("scsi_off") - 1) == 0)) {
phba->hdwqstat_on &= ~LPFC_CHECK_SCSI_IO;
return strlen(pbuf);
} else if ((strncmp(pbuf, "off",
sizeof("off") - 1) == 0)) {
phba->hdwqstat_on = LPFC_CHECK_OFF;
return strlen(pbuf);
} else if ((strncmp(pbuf, "zero",
sizeof("zero") - 1) == 0)) {
for_each_present_cpu(i) {
c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, i);
c_stat->xmt_io = 0;
c_stat->cmpl_io = 0;
c_stat->rcv_io = 0;
}
return strlen(pbuf);
}
return -EINVAL;
}
/*
* ---------------------------------
* iDiag debugfs file access methods
* ---------------------------------
*
* All access methods are through the proper SLI4 PCI function's debugfs
* iDiag directory:
*
* /sys/kernel/debug/lpfc/fn<#>/iDiag
*/
/**
* lpfc_idiag_cmd_get - Get and parse idiag debugfs comands from user space
* @buf: The pointer to the user space buffer.
* @nbytes: The number of bytes in the user space buffer.
* @idiag_cmd: pointer to the idiag command struct.
*
* This routine reads data from debugfs user space buffer and parses the
* buffer for getting the idiag command and arguments. The while space in
* between the set of data is used as the parsing separator.
*
* This routine returns 0 when successful, it returns proper error code
* back to the user space in error conditions.
*/
static int lpfc_idiag_cmd_get(const char __user *buf, size_t nbytes,
struct lpfc_idiag_cmd *idiag_cmd)
{
char mybuf[64];
char *pbuf, *step_str;
int i;
size_t bsize;
memset(mybuf, 0, sizeof(mybuf));
memset(idiag_cmd, 0, sizeof(*idiag_cmd));
bsize = min(nbytes, (sizeof(mybuf)-1));
if (copy_from_user(mybuf, buf, bsize))
return -EFAULT;
pbuf = &mybuf[0];
step_str = strsep(&pbuf, "\t ");
/* The opcode must present */
if (!step_str)
return -EINVAL;
idiag_cmd->opcode = simple_strtol(step_str, NULL, 0);
if (idiag_cmd->opcode == 0)
return -EINVAL;
for (i = 0; i < LPFC_IDIAG_CMD_DATA_SIZE; i++) {
step_str = strsep(&pbuf, "\t ");
if (!step_str)
return i;
idiag_cmd->data[i] = simple_strtol(step_str, NULL, 0);
}
return i;
}
/**
* lpfc_idiag_open - idiag open debugfs
* @inode: The inode pointer that contains a pointer to phba.
* @file: The file pointer to attach the file operation.
*
* Description:
* This routine is the entry point for the debugfs open file operation. It
* gets the reference to phba from the i_private field in @inode, it then
* allocates buffer for the file operation, performs the necessary PCI config
* space read into the allocated buffer according to the idiag user command
* setup, and then returns a pointer to buffer in the private_data field in
* @file.
*
* Returns:
* This function returns zero if successful. On error it will return an
* negative error value.
**/
static int
lpfc_idiag_open(struct inode *inode, struct file *file)
{
struct lpfc_debug *debug;
debug = kmalloc(sizeof(*debug), GFP_KERNEL);
if (!debug)
return -ENOMEM;
debug->i_private = inode->i_private;
debug->buffer = NULL;
file->private_data = debug;
return 0;
}
/**
* lpfc_idiag_release - Release idiag access file operation
* @inode: The inode pointer that contains a vport pointer. (unused)
* @file: The file pointer that contains the buffer to release.
*
* Description:
* This routine is the generic release routine for the idiag access file
* operation, it frees the buffer that was allocated when the debugfs file
* was opened.
*
* Returns:
* This function returns zero.
**/
static int
lpfc_idiag_release(struct inode *inode, struct file *file)
{
struct lpfc_debug *debug = file->private_data;
/* Free the buffers to the file operation */
kfree(debug->buffer);
kfree(debug);
return 0;
}
/**
* lpfc_idiag_cmd_release - Release idiag cmd access file operation
* @inode: The inode pointer that contains a vport pointer. (unused)
* @file: The file pointer that contains the buffer to release.
*
* Description:
* This routine frees the buffer that was allocated when the debugfs file
* was opened. It also reset the fields in the idiag command struct in the
* case of command for write operation.
*
* Returns:
* This function returns zero.
**/
static int
lpfc_idiag_cmd_release(struct inode *inode, struct file *file)
{
struct lpfc_debug *debug = file->private_data;
if (debug->op == LPFC_IDIAG_OP_WR) {
switch (idiag.cmd.opcode) {
case LPFC_IDIAG_CMD_PCICFG_WR:
case LPFC_IDIAG_CMD_PCICFG_ST:
case LPFC_IDIAG_CMD_PCICFG_CL:
case LPFC_IDIAG_CMD_QUEACC_WR:
case LPFC_IDIAG_CMD_QUEACC_ST:
case LPFC_IDIAG_CMD_QUEACC_CL:
memset(&idiag, 0, sizeof(idiag));
break;
default:
break;
}
}
/* Free the buffers to the file operation */
kfree(debug->buffer);
kfree(debug);
return 0;
}
/**
* lpfc_idiag_pcicfg_read - idiag debugfs read pcicfg
* @file: The file pointer to read from.
* @buf: The buffer to copy the data to.
* @nbytes: The number of bytes to read.
* @ppos: The position in the file to start reading from.
*
* Description:
* This routine reads data from the @phba pci config space according to the
* idiag command, and copies to user @buf. Depending on the PCI config space
* read command setup, it does either a single register read of a byte
* (8 bits), a word (16 bits), or a dword (32 bits) or browsing through all
* registers from the 4K extended PCI config space.
*
* Returns:
* This function returns the amount of data that was read (this could be less
* than @nbytes if the end of the file was reached) or a negative error value.
**/
static ssize_t
lpfc_idiag_pcicfg_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
int offset_label, offset, len = 0, index = LPFC_PCI_CFG_RD_SIZE;
int where, count;
char *pbuffer;
struct pci_dev *pdev;
uint32_t u32val;
uint16_t u16val;
uint8_t u8val;
pdev = phba->pcidev;
if (!pdev)
return 0;
/* This is a user read operation */
debug->op = LPFC_IDIAG_OP_RD;
if (!debug->buffer)
debug->buffer = kmalloc(LPFC_PCI_CFG_SIZE, GFP_KERNEL);
if (!debug->buffer)
return 0;
pbuffer = debug->buffer;
if (*ppos)
return 0;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_RD) {
where = idiag.cmd.data[IDIAG_PCICFG_WHERE_INDX];
count = idiag.cmd.data[IDIAG_PCICFG_COUNT_INDX];
} else
return 0;
/* Read single PCI config space register */
switch (count) {
case SIZE_U8: /* byte (8 bits) */
pci_read_config_byte(pdev, where, &u8val);
len += scnprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
"%03x: %02x\n", where, u8val);
break;
case SIZE_U16: /* word (16 bits) */
pci_read_config_word(pdev, where, &u16val);
len += scnprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
"%03x: %04x\n", where, u16val);
break;
case SIZE_U32: /* double word (32 bits) */
pci_read_config_dword(pdev, where, &u32val);
len += scnprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
"%03x: %08x\n", where, u32val);
break;
case LPFC_PCI_CFG_BROWSE: /* browse all */
goto pcicfg_browse;
default:
/* illegal count */
len = 0;
break;
}
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
pcicfg_browse:
/* Browse all PCI config space registers */
offset_label = idiag.offset.last_rd;
offset = offset_label;
/* Read PCI config space */
len += scnprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
"%03x: ", offset_label);
while (index > 0) {
pci_read_config_dword(pdev, offset, &u32val);
len += scnprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
"%08x ", u32val);
offset += sizeof(uint32_t);
if (offset >= LPFC_PCI_CFG_SIZE) {
len += scnprintf(pbuffer+len,
LPFC_PCI_CFG_SIZE-len, "\n");
break;
}
index -= sizeof(uint32_t);
if (!index)
len += scnprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
"\n");
else if (!(index % (8 * sizeof(uint32_t)))) {
offset_label += (8 * sizeof(uint32_t));
len += scnprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len,
"\n%03x: ", offset_label);
}
}
/* Set up the offset for next portion of pci cfg read */
if (index == 0) {
idiag.offset.last_rd += LPFC_PCI_CFG_RD_SIZE;
if (idiag.offset.last_rd >= LPFC_PCI_CFG_SIZE)
idiag.offset.last_rd = 0;
} else
idiag.offset.last_rd = 0;
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
}
/**
* lpfc_idiag_pcicfg_write - Syntax check and set up idiag pcicfg commands
* @file: The file pointer to read from.
* @buf: The buffer to copy the user data from.
* @nbytes: The number of bytes to get.
* @ppos: The position in the file to start reading from.
*
* This routine get the debugfs idiag command struct from user space and
* then perform the syntax check for PCI config space read or write command
* accordingly. In the case of PCI config space read command, it sets up
* the command in the idiag command struct for the debugfs read operation.
* In the case of PCI config space write operation, it executes the write
* operation into the PCI config space accordingly.
*
* It returns the @nbytges passing in from debugfs user space when successful.
* In case of error conditions, it returns proper error code back to the user
* space.
*/
static ssize_t
lpfc_idiag_pcicfg_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
uint32_t where, value, count;
uint32_t u32val;
uint16_t u16val;
uint8_t u8val;
struct pci_dev *pdev;
int rc;
pdev = phba->pcidev;
if (!pdev)
return -EFAULT;
/* This is a user write operation */
debug->op = LPFC_IDIAG_OP_WR;
rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd);
if (rc < 0)
return rc;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_RD) {
/* Sanity check on PCI config read command line arguments */
if (rc != LPFC_PCI_CFG_RD_CMD_ARG)
goto error_out;
/* Read command from PCI config space, set up command fields */
where = idiag.cmd.data[IDIAG_PCICFG_WHERE_INDX];
count = idiag.cmd.data[IDIAG_PCICFG_COUNT_INDX];
if (count == LPFC_PCI_CFG_BROWSE) {
if (where % sizeof(uint32_t))
goto error_out;
/* Starting offset to browse */
idiag.offset.last_rd = where;
} else if ((count != sizeof(uint8_t)) &&
(count != sizeof(uint16_t)) &&
(count != sizeof(uint32_t)))
goto error_out;
if (count == sizeof(uint8_t)) {
if (where > LPFC_PCI_CFG_SIZE - sizeof(uint8_t))
goto error_out;
if (where % sizeof(uint8_t))
goto error_out;
}
if (count == sizeof(uint16_t)) {
if (where > LPFC_PCI_CFG_SIZE - sizeof(uint16_t))
goto error_out;
if (where % sizeof(uint16_t))
goto error_out;
}
if (count == sizeof(uint32_t)) {
if (where > LPFC_PCI_CFG_SIZE - sizeof(uint32_t))
goto error_out;
if (where % sizeof(uint32_t))
goto error_out;
}
} else if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) {
/* Sanity check on PCI config write command line arguments */
if (rc != LPFC_PCI_CFG_WR_CMD_ARG)
goto error_out;
/* Write command to PCI config space, read-modify-write */
where = idiag.cmd.data[IDIAG_PCICFG_WHERE_INDX];
count = idiag.cmd.data[IDIAG_PCICFG_COUNT_INDX];
value = idiag.cmd.data[IDIAG_PCICFG_VALUE_INDX];
/* Sanity checks */
if ((count != sizeof(uint8_t)) &&
(count != sizeof(uint16_t)) &&
(count != sizeof(uint32_t)))
goto error_out;
if (count == sizeof(uint8_t)) {
if (where > LPFC_PCI_CFG_SIZE - sizeof(uint8_t))
goto error_out;
if (where % sizeof(uint8_t))
goto error_out;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR)
pci_write_config_byte(pdev, where,
(uint8_t)value);
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST) {
rc = pci_read_config_byte(pdev, where, &u8val);
if (!rc) {
u8val |= (uint8_t)value;
pci_write_config_byte(pdev, where,
u8val);
}
}
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) {
rc = pci_read_config_byte(pdev, where, &u8val);
if (!rc) {
u8val &= (uint8_t)(~value);
pci_write_config_byte(pdev, where,
u8val);
}
}
}
if (count == sizeof(uint16_t)) {
if (where > LPFC_PCI_CFG_SIZE - sizeof(uint16_t))
goto error_out;
if (where % sizeof(uint16_t))
goto error_out;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR)
pci_write_config_word(pdev, where,
(uint16_t)value);
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST) {
rc = pci_read_config_word(pdev, where, &u16val);
if (!rc) {
u16val |= (uint16_t)value;
pci_write_config_word(pdev, where,
u16val);
}
}
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) {
rc = pci_read_config_word(pdev, where, &u16val);
if (!rc) {
u16val &= (uint16_t)(~value);
pci_write_config_word(pdev, where,
u16val);
}
}
}
if (count == sizeof(uint32_t)) {
if (where > LPFC_PCI_CFG_SIZE - sizeof(uint32_t))
goto error_out;
if (where % sizeof(uint32_t))
goto error_out;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR)
pci_write_config_dword(pdev, where, value);
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST) {
rc = pci_read_config_dword(pdev, where,
&u32val);
if (!rc) {
u32val |= value;
pci_write_config_dword(pdev, where,
u32val);
}
}
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) {
rc = pci_read_config_dword(pdev, where,
&u32val);
if (!rc) {
u32val &= ~value;
pci_write_config_dword(pdev, where,
u32val);
}
}
}
} else
/* All other opecodes are illegal for now */
goto error_out;
return nbytes;
error_out:
memset(&idiag, 0, sizeof(idiag));
return -EINVAL;
}
/**
* lpfc_idiag_baracc_read - idiag debugfs pci bar access read
* @file: The file pointer to read from.
* @buf: The buffer to copy the data to.
* @nbytes: The number of bytes to read.
* @ppos: The position in the file to start reading from.
*
* Description:
* This routine reads data from the @phba pci bar memory mapped space
* according to the idiag command, and copies to user @buf.
*
* Returns:
* This function returns the amount of data that was read (this could be less
* than @nbytes if the end of the file was reached) or a negative error value.
**/
static ssize_t
lpfc_idiag_baracc_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
int offset_label, offset, offset_run, len = 0, index;
int bar_num, acc_range, bar_size;
char *pbuffer;
void __iomem *mem_mapped_bar;
uint32_t if_type;
struct pci_dev *pdev;
uint32_t u32val;
pdev = phba->pcidev;
if (!pdev)
return 0;
/* This is a user read operation */
debug->op = LPFC_IDIAG_OP_RD;
if (!debug->buffer)
debug->buffer = kmalloc(LPFC_PCI_BAR_RD_BUF_SIZE, GFP_KERNEL);
if (!debug->buffer)
return 0;
pbuffer = debug->buffer;
if (*ppos)
return 0;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_RD) {
bar_num = idiag.cmd.data[IDIAG_BARACC_BAR_NUM_INDX];
offset = idiag.cmd.data[IDIAG_BARACC_OFF_SET_INDX];
acc_range = idiag.cmd.data[IDIAG_BARACC_ACC_MOD_INDX];
bar_size = idiag.cmd.data[IDIAG_BARACC_BAR_SZE_INDX];
} else
return 0;
if (acc_range == 0)
return 0;
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
if (bar_num == IDIAG_BARACC_BAR_0)
mem_mapped_bar = phba->sli4_hba.conf_regs_memmap_p;
else if (bar_num == IDIAG_BARACC_BAR_1)
mem_mapped_bar = phba->sli4_hba.ctrl_regs_memmap_p;
else if (bar_num == IDIAG_BARACC_BAR_2)
mem_mapped_bar = phba->sli4_hba.drbl_regs_memmap_p;
else
return 0;
} else if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
if (bar_num == IDIAG_BARACC_BAR_0)
mem_mapped_bar = phba->sli4_hba.conf_regs_memmap_p;
else
return 0;
} else
return 0;
/* Read single PCI bar space register */
if (acc_range == SINGLE_WORD) {
offset_run = offset;
u32val = readl(mem_mapped_bar + offset_run);
len += scnprintf(pbuffer+len, LPFC_PCI_BAR_RD_BUF_SIZE-len,
"%05x: %08x\n", offset_run, u32val);
} else
goto baracc_browse;
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
baracc_browse:
/* Browse all PCI bar space registers */
offset_label = idiag.offset.last_rd;
offset_run = offset_label;
/* Read PCI bar memory mapped space */
len += scnprintf(pbuffer+len, LPFC_PCI_BAR_RD_BUF_SIZE-len,
"%05x: ", offset_label);
index = LPFC_PCI_BAR_RD_SIZE;
while (index > 0) {
u32val = readl(mem_mapped_bar + offset_run);
len += scnprintf(pbuffer+len, LPFC_PCI_BAR_RD_BUF_SIZE-len,
"%08x ", u32val);
offset_run += sizeof(uint32_t);
if (acc_range == LPFC_PCI_BAR_BROWSE) {
if (offset_run >= bar_size) {
len += scnprintf(pbuffer+len,
LPFC_PCI_BAR_RD_BUF_SIZE-len, "\n");
break;
}
} else {
if (offset_run >= offset +
(acc_range * sizeof(uint32_t))) {
len += scnprintf(pbuffer+len,
LPFC_PCI_BAR_RD_BUF_SIZE-len, "\n");
break;
}
}
index -= sizeof(uint32_t);
if (!index)
len += scnprintf(pbuffer+len,
LPFC_PCI_BAR_RD_BUF_SIZE-len, "\n");
else if (!(index % (8 * sizeof(uint32_t)))) {
offset_label += (8 * sizeof(uint32_t));
len += scnprintf(pbuffer+len,
LPFC_PCI_BAR_RD_BUF_SIZE-len,
"\n%05x: ", offset_label);
}
}
/* Set up the offset for next portion of pci bar read */
if (index == 0) {
idiag.offset.last_rd += LPFC_PCI_BAR_RD_SIZE;
if (acc_range == LPFC_PCI_BAR_BROWSE) {
if (idiag.offset.last_rd >= bar_size)
idiag.offset.last_rd = 0;
} else {
if (offset_run >= offset +
(acc_range * sizeof(uint32_t)))
idiag.offset.last_rd = offset;
}
} else {
if (acc_range == LPFC_PCI_BAR_BROWSE)
idiag.offset.last_rd = 0;
else
idiag.offset.last_rd = offset;
}
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
}
/**
* lpfc_idiag_baracc_write - Syntax check and set up idiag bar access commands
* @file: The file pointer to read from.
* @buf: The buffer to copy the user data from.
* @nbytes: The number of bytes to get.
* @ppos: The position in the file to start reading from.
*
* This routine get the debugfs idiag command struct from user space and
* then perform the syntax check for PCI bar memory mapped space read or
* write command accordingly. In the case of PCI bar memory mapped space
* read command, it sets up the command in the idiag command struct for
* the debugfs read operation. In the case of PCI bar memorpy mapped space
* write operation, it executes the write operation into the PCI bar memory
* mapped space accordingly.
*
* It returns the @nbytges passing in from debugfs user space when successful.
* In case of error conditions, it returns proper error code back to the user
* space.
*/
static ssize_t
lpfc_idiag_baracc_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
uint32_t bar_num, bar_size, offset, value, acc_range;
struct pci_dev *pdev;
void __iomem *mem_mapped_bar;
uint32_t if_type;
uint32_t u32val;
int rc;
pdev = phba->pcidev;
if (!pdev)
return -EFAULT;
/* This is a user write operation */
debug->op = LPFC_IDIAG_OP_WR;
rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd);
if (rc < 0)
return rc;
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
bar_num = idiag.cmd.data[IDIAG_BARACC_BAR_NUM_INDX];
if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
if ((bar_num != IDIAG_BARACC_BAR_0) &&
(bar_num != IDIAG_BARACC_BAR_1) &&
(bar_num != IDIAG_BARACC_BAR_2))
goto error_out;
} else if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
if (bar_num != IDIAG_BARACC_BAR_0)
goto error_out;
} else
goto error_out;
if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
if (bar_num == IDIAG_BARACC_BAR_0) {
idiag.cmd.data[IDIAG_BARACC_BAR_SZE_INDX] =
LPFC_PCI_IF0_BAR0_SIZE;
mem_mapped_bar = phba->sli4_hba.conf_regs_memmap_p;
} else if (bar_num == IDIAG_BARACC_BAR_1) {
idiag.cmd.data[IDIAG_BARACC_BAR_SZE_INDX] =
LPFC_PCI_IF0_BAR1_SIZE;
mem_mapped_bar = phba->sli4_hba.ctrl_regs_memmap_p;
} else if (bar_num == IDIAG_BARACC_BAR_2) {
idiag.cmd.data[IDIAG_BARACC_BAR_SZE_INDX] =
LPFC_PCI_IF0_BAR2_SIZE;
mem_mapped_bar = phba->sli4_hba.drbl_regs_memmap_p;
} else
goto error_out;
} else if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
if (bar_num == IDIAG_BARACC_BAR_0) {
idiag.cmd.data[IDIAG_BARACC_BAR_SZE_INDX] =
LPFC_PCI_IF2_BAR0_SIZE;
mem_mapped_bar = phba->sli4_hba.conf_regs_memmap_p;
} else
goto error_out;
} else
goto error_out;
offset = idiag.cmd.data[IDIAG_BARACC_OFF_SET_INDX];
if (offset % sizeof(uint32_t))
goto error_out;
bar_size = idiag.cmd.data[IDIAG_BARACC_BAR_SZE_INDX];
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_RD) {
/* Sanity check on PCI config read command line arguments */
if (rc != LPFC_PCI_BAR_RD_CMD_ARG)
goto error_out;
acc_range = idiag.cmd.data[IDIAG_BARACC_ACC_MOD_INDX];
if (acc_range == LPFC_PCI_BAR_BROWSE) {
if (offset > bar_size - sizeof(uint32_t))
goto error_out;
/* Starting offset to browse */
idiag.offset.last_rd = offset;
} else if (acc_range > SINGLE_WORD) {
if (offset + acc_range * sizeof(uint32_t) > bar_size)
goto error_out;
/* Starting offset to browse */
idiag.offset.last_rd = offset;
} else if (acc_range != SINGLE_WORD)
goto error_out;
} else if (idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_WR ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_ST ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_CL) {
/* Sanity check on PCI bar write command line arguments */
if (rc != LPFC_PCI_BAR_WR_CMD_ARG)
goto error_out;
/* Write command to PCI bar space, read-modify-write */
acc_range = SINGLE_WORD;
value = idiag.cmd.data[IDIAG_BARACC_REG_VAL_INDX];
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_WR) {
writel(value, mem_mapped_bar + offset);
readl(mem_mapped_bar + offset);
}
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_ST) {
u32val = readl(mem_mapped_bar + offset);
u32val |= value;
writel(u32val, mem_mapped_bar + offset);
readl(mem_mapped_bar + offset);
}
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_CL) {
u32val = readl(mem_mapped_bar + offset);
u32val &= ~value;
writel(u32val, mem_mapped_bar + offset);
readl(mem_mapped_bar + offset);
}
} else
/* All other opecodes are illegal for now */
goto error_out;
return nbytes;
error_out:
memset(&idiag, 0, sizeof(idiag));
return -EINVAL;
}
static int
__lpfc_idiag_print_wq(struct lpfc_queue *qp, char *wqtype,
char *pbuffer, int len)
{
if (!qp)
return len;
len += scnprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len,
"\t\t%s WQ info: ", wqtype);
len += scnprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len,
"AssocCQID[%04d]: WQ-STAT[oflow:x%x posted:x%llx]\n",
qp->assoc_qid, qp->q_cnt_1,
(unsigned long long)qp->q_cnt_4);
len += scnprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len,
"\t\tWQID[%02d], QE-CNT[%04d], QE-SZ[%04d], "
"HST-IDX[%04d], PRT-IDX[%04d], NTFI[%03d]",
qp->queue_id, qp->entry_count,
qp->entry_size, qp->host_index,
qp->hba_index, qp->notify_interval);
len += scnprintf(pbuffer + len,
LPFC_QUE_INFO_GET_BUF_SIZE - len, "\n");
return len;
}
static int
lpfc_idiag_wqs_for_cq(struct lpfc_hba *phba, char *wqtype, char *pbuffer,
int *len, int max_cnt, int cq_id)
{
struct lpfc_queue *qp;
int qidx;
for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
qp = phba->sli4_hba.hdwq[qidx].io_wq;
if (qp->assoc_qid != cq_id)
continue;
*len = __lpfc_idiag_print_wq(qp, wqtype, pbuffer, *len);
if (*len >= max_cnt)
return 1;
}
return 0;
}
static int
__lpfc_idiag_print_cq(struct lpfc_queue *qp, char *cqtype,
char *pbuffer, int len)
{
if (!qp)
return len;
len += scnprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len,
"\t%s CQ info: ", cqtype);
len += scnprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len,
"AssocEQID[%02d]: CQ STAT[max:x%x relw:x%x "
"xabt:x%x wq:x%llx]\n",
qp->assoc_qid, qp->q_cnt_1, qp->q_cnt_2,
qp->q_cnt_3, (unsigned long long)qp->q_cnt_4);
len += scnprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len,
"\tCQID[%02d], QE-CNT[%04d], QE-SZ[%04d], "
"HST-IDX[%04d], NTFI[%03d], PLMT[%03d]",
qp->queue_id, qp->entry_count,
qp->entry_size, qp->host_index,
qp->notify_interval, qp->max_proc_limit);
len += scnprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len,
"\n");
return len;
}
static int
__lpfc_idiag_print_rqpair(struct lpfc_queue *qp, struct lpfc_queue *datqp,
char *rqtype, char *pbuffer, int len)
{
if (!qp || !datqp)
return len;
len += scnprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len,
"\t\t%s RQ info: ", rqtype);
len += scnprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len,
"AssocCQID[%02d]: RQ-STAT[nopost:x%x nobuf:x%x "
"posted:x%x rcv:x%llx]\n",
qp->assoc_qid, qp->q_cnt_1, qp->q_cnt_2,
qp->q_cnt_3, (unsigned long long)qp->q_cnt_4);
len += scnprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len,
"\t\tHQID[%02d], QE-CNT[%04d], QE-SZ[%04d], "
"HST-IDX[%04d], PRT-IDX[%04d], NTFI[%03d]\n",
qp->queue_id, qp->entry_count, qp->entry_size,
qp->host_index, qp->hba_index, qp->notify_interval);
len += scnprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len,
"\t\tDQID[%02d], QE-CNT[%04d], QE-SZ[%04d], "
"HST-IDX[%04d], PRT-IDX[%04d], NTFI[%03d]\n",
datqp->queue_id, datqp->entry_count,
datqp->entry_size, datqp->host_index,
datqp->hba_index, datqp->notify_interval);
return len;
}
static int
lpfc_idiag_cqs_for_eq(struct lpfc_hba *phba, char *pbuffer,
int *len, int max_cnt, int eqidx, int eq_id)
{
struct lpfc_queue *qp;
int rc;
qp = phba->sli4_hba.hdwq[eqidx].io_cq;
*len = __lpfc_idiag_print_cq(qp, "IO", pbuffer, *len);
/* Reset max counter */
qp->CQ_max_cqe = 0;
if (*len >= max_cnt)
return 1;
rc = lpfc_idiag_wqs_for_cq(phba, "IO", pbuffer, len,
max_cnt, qp->queue_id);
if (rc)
return 1;
if ((eqidx < phba->cfg_nvmet_mrq) && phba->nvmet_support) {
/* NVMET CQset */
qp = phba->sli4_hba.nvmet_cqset[eqidx];
*len = __lpfc_idiag_print_cq(qp, "NVMET CQset", pbuffer, *len);
/* Reset max counter */
qp->CQ_max_cqe = 0;
if (*len >= max_cnt)
return 1;
/* RQ header */
qp = phba->sli4_hba.nvmet_mrq_hdr[eqidx];
*len = __lpfc_idiag_print_rqpair(qp,
phba->sli4_hba.nvmet_mrq_data[eqidx],
"NVMET MRQ", pbuffer, *len);
if (*len >= max_cnt)
return 1;
}
return 0;
}
static int
__lpfc_idiag_print_eq(struct lpfc_queue *qp, char *eqtype,
char *pbuffer, int len)
{
if (!qp)
return len;
len += scnprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len,
"\n%s EQ info: EQ-STAT[max:x%x noE:x%x "
"cqe_proc:x%x eqe_proc:x%llx eqd %d]\n",
eqtype, qp->q_cnt_1, qp->q_cnt_2, qp->q_cnt_3,
(unsigned long long)qp->q_cnt_4, qp->q_mode);
len += scnprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len,
"EQID[%02d], QE-CNT[%04d], QE-SZ[%04d], "
"HST-IDX[%04d], NTFI[%03d], PLMT[%03d], AFFIN[%03d]",
qp->queue_id, qp->entry_count, qp->entry_size,
qp->host_index, qp->notify_interval,
qp->max_proc_limit, qp->chann);
len += scnprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len,
"\n");
return len;
}
/**
* lpfc_idiag_queinfo_read - idiag debugfs read queue information
* @file: The file pointer to read from.
* @buf: The buffer to copy the data to.
* @nbytes: The number of bytes to read.
* @ppos: The position in the file to start reading from.
*
* Description:
* This routine reads data from the @phba SLI4 PCI function queue information,
* and copies to user @buf.
* This routine only returns 1 EQs worth of information. It remembers the last
* EQ read and jumps to the next EQ. Thus subsequent calls to queInfo will
* retrieve all EQs allocated for the phba.
*
* Returns:
* This function returns the amount of data that was read (this could be less
* than @nbytes if the end of the file was reached) or a negative error value.
**/
static ssize_t
lpfc_idiag_queinfo_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
char *pbuffer;
int max_cnt, rc, x, len = 0;
struct lpfc_queue *qp = NULL;
if (!debug->buffer)
debug->buffer = kmalloc(LPFC_QUE_INFO_GET_BUF_SIZE, GFP_KERNEL);
if (!debug->buffer)
return 0;
pbuffer = debug->buffer;
max_cnt = LPFC_QUE_INFO_GET_BUF_SIZE - 256;
if (*ppos)
return 0;
spin_lock_irq(&phba->hbalock);
/* Fast-path event queue */
if (phba->sli4_hba.hdwq && phba->cfg_hdw_queue) {
x = phba->lpfc_idiag_last_eq;
phba->lpfc_idiag_last_eq++;
if (phba->lpfc_idiag_last_eq >= phba->cfg_hdw_queue)
phba->lpfc_idiag_last_eq = 0;
len += scnprintf(pbuffer + len,
LPFC_QUE_INFO_GET_BUF_SIZE - len,
"HDWQ %d out of %d HBA HDWQs\n",
x, phba->cfg_hdw_queue);
/* Fast-path EQ */
qp = phba->sli4_hba.hdwq[x].hba_eq;
if (!qp)
goto out;
len = __lpfc_idiag_print_eq(qp, "HBA", pbuffer, len);
/* Reset max counter */
qp->EQ_max_eqe = 0;
if (len >= max_cnt)
goto too_big;
/* will dump both fcp and nvme cqs/wqs for the eq */
rc = lpfc_idiag_cqs_for_eq(phba, pbuffer, &len,
max_cnt, x, qp->queue_id);
if (rc)
goto too_big;
/* Only EQ 0 has slow path CQs configured */
if (x)
goto out;
/* Slow-path mailbox CQ */
qp = phba->sli4_hba.mbx_cq;
len = __lpfc_idiag_print_cq(qp, "MBX", pbuffer, len);
if (len >= max_cnt)
goto too_big;
/* Slow-path MBOX MQ */
qp = phba->sli4_hba.mbx_wq;
len = __lpfc_idiag_print_wq(qp, "MBX", pbuffer, len);
if (len >= max_cnt)
goto too_big;
/* Slow-path ELS response CQ */
qp = phba->sli4_hba.els_cq;
len = __lpfc_idiag_print_cq(qp, "ELS", pbuffer, len);
/* Reset max counter */
if (qp)
qp->CQ_max_cqe = 0;
if (len >= max_cnt)
goto too_big;
/* Slow-path ELS WQ */
qp = phba->sli4_hba.els_wq;
len = __lpfc_idiag_print_wq(qp, "ELS", pbuffer, len);
if (len >= max_cnt)
goto too_big;
qp = phba->sli4_hba.hdr_rq;
len = __lpfc_idiag_print_rqpair(qp, phba->sli4_hba.dat_rq,
"ELS RQpair", pbuffer, len);
if (len >= max_cnt)
goto too_big;
/* Slow-path NVME LS response CQ */
qp = phba->sli4_hba.nvmels_cq;
len = __lpfc_idiag_print_cq(qp, "NVME LS",
pbuffer, len);
/* Reset max counter */
if (qp)
qp->CQ_max_cqe = 0;
if (len >= max_cnt)
goto too_big;
/* Slow-path NVME LS WQ */
qp = phba->sli4_hba.nvmels_wq;
len = __lpfc_idiag_print_wq(qp, "NVME LS",
pbuffer, len);
if (len >= max_cnt)
goto too_big;
goto out;
}
spin_unlock_irq(&phba->hbalock);
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
too_big:
len += scnprintf(pbuffer + len,
LPFC_QUE_INFO_GET_BUF_SIZE - len, "Truncated ...\n");
out:
spin_unlock_irq(&phba->hbalock);
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
}
/**
* lpfc_idiag_que_param_check - queue access command parameter sanity check
* @q: The pointer to queue structure.
* @index: The index into a queue entry.
* @count: The number of queue entries to access.
*
* Description:
* The routine performs sanity check on device queue access method commands.
*
* Returns:
* This function returns -EINVAL when fails the sanity check, otherwise, it
* returns 0.
**/
static int
lpfc_idiag_que_param_check(struct lpfc_queue *q, int index, int count)
{
/* Only support single entry read or browsing */
if ((count != 1) && (count != LPFC_QUE_ACC_BROWSE))
return -EINVAL;
if (index > q->entry_count - 1)
return -EINVAL;
return 0;
}
/**
* lpfc_idiag_queacc_read_qe - read a single entry from the given queue index
* @pbuffer: The pointer to buffer to copy the read data into.
* @len: Length of the buffer.
* @pque: The pointer to the queue to be read.
* @index: The index into the queue entry.
*
* Description:
* This routine reads out a single entry from the given queue's index location
* and copies it into the buffer provided.
*
* Returns:
* This function returns 0 when it fails, otherwise, it returns the length of
* the data read into the buffer provided.
**/
static int
lpfc_idiag_queacc_read_qe(char *pbuffer, int len, struct lpfc_queue *pque,
uint32_t index)
{
int offset, esize;
uint32_t *pentry;
if (!pbuffer || !pque)
return 0;
esize = pque->entry_size;
len += scnprintf(pbuffer+len, LPFC_QUE_ACC_BUF_SIZE-len,
"QE-INDEX[%04d]:\n", index);
offset = 0;
pentry = lpfc_sli4_qe(pque, index);
while (esize > 0) {
len += scnprintf(pbuffer+len, LPFC_QUE_ACC_BUF_SIZE-len,
"%08x ", *pentry);
pentry++;
offset += sizeof(uint32_t);
esize -= sizeof(uint32_t);
if (esize > 0 && !(offset % (4 * sizeof(uint32_t))))
len += scnprintf(pbuffer+len,
LPFC_QUE_ACC_BUF_SIZE-len, "\n");
}
len += scnprintf(pbuffer+len, LPFC_QUE_ACC_BUF_SIZE-len, "\n");
return len;
}
/**
* lpfc_idiag_queacc_read - idiag debugfs read port queue
* @file: The file pointer to read from.
* @buf: The buffer to copy the data to.
* @nbytes: The number of bytes to read.
* @ppos: The position in the file to start reading from.
*
* Description:
* This routine reads data from the @phba device queue memory according to the
* idiag command, and copies to user @buf. Depending on the queue dump read
* command setup, it does either a single queue entry read or browing through
* all entries of the queue.
*
* Returns:
* This function returns the amount of data that was read (this could be less
* than @nbytes if the end of the file was reached) or a negative error value.
**/
static ssize_t
lpfc_idiag_queacc_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
uint32_t last_index, index, count;
struct lpfc_queue *pque = NULL;
char *pbuffer;
int len = 0;
/* This is a user read operation */
debug->op = LPFC_IDIAG_OP_RD;
if (!debug->buffer)
debug->buffer = kmalloc(LPFC_QUE_ACC_BUF_SIZE, GFP_KERNEL);
if (!debug->buffer)
return 0;
pbuffer = debug->buffer;
if (*ppos)
return 0;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_RD) {
index = idiag.cmd.data[IDIAG_QUEACC_INDEX_INDX];
count = idiag.cmd.data[IDIAG_QUEACC_COUNT_INDX];
pque = (struct lpfc_queue *)idiag.ptr_private;
} else
return 0;
/* Browse the queue starting from index */
if (count == LPFC_QUE_ACC_BROWSE)
goto que_browse;
/* Read a single entry from the queue */
len = lpfc_idiag_queacc_read_qe(pbuffer, len, pque, index);
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
que_browse:
/* Browse all entries from the queue */
last_index = idiag.offset.last_rd;
index = last_index;
while (len < LPFC_QUE_ACC_SIZE - pque->entry_size) {
len = lpfc_idiag_queacc_read_qe(pbuffer, len, pque, index);
index++;
if (index > pque->entry_count - 1)
break;
}
/* Set up the offset for next portion of pci cfg read */
if (index > pque->entry_count - 1)
index = 0;
idiag.offset.last_rd = index;
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
}
/**
* lpfc_idiag_queacc_write - Syntax check and set up idiag queacc commands
* @file: The file pointer to read from.
* @buf: The buffer to copy the user data from.
* @nbytes: The number of bytes to get.
* @ppos: The position in the file to start reading from.
*
* This routine get the debugfs idiag command struct from user space and then
* perform the syntax check for port queue read (dump) or write (set) command
* accordingly. In the case of port queue read command, it sets up the command
* in the idiag command struct for the following debugfs read operation. In
* the case of port queue write operation, it executes the write operation
* into the port queue entry accordingly.
*
* It returns the @nbytges passing in from debugfs user space when successful.
* In case of error conditions, it returns proper error code back to the user
* space.
**/
static ssize_t
lpfc_idiag_queacc_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
uint32_t qidx, quetp, queid, index, count, offset, value;
uint32_t *pentry;
struct lpfc_queue *pque, *qp;
int rc;
/* This is a user write operation */
debug->op = LPFC_IDIAG_OP_WR;
rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd);
if (rc < 0)
return rc;
/* Get and sanity check on command feilds */
quetp = idiag.cmd.data[IDIAG_QUEACC_QUETP_INDX];
queid = idiag.cmd.data[IDIAG_QUEACC_QUEID_INDX];
index = idiag.cmd.data[IDIAG_QUEACC_INDEX_INDX];
count = idiag.cmd.data[IDIAG_QUEACC_COUNT_INDX];
offset = idiag.cmd.data[IDIAG_QUEACC_OFFST_INDX];
value = idiag.cmd.data[IDIAG_QUEACC_VALUE_INDX];
/* Sanity check on command line arguments */
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_WR ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_ST ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_CL) {
if (rc != LPFC_QUE_ACC_WR_CMD_ARG)
goto error_out;
if (count != 1)
goto error_out;
} else if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_RD) {
if (rc != LPFC_QUE_ACC_RD_CMD_ARG)
goto error_out;
} else
goto error_out;
switch (quetp) {
case LPFC_IDIAG_EQ:
/* HBA event queue */
if (phba->sli4_hba.hdwq) {
for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
qp = phba->sli4_hba.hdwq[qidx].hba_eq;
if (qp && qp->queue_id == queid) {
/* Sanity check */
rc = lpfc_idiag_que_param_check(qp,
index, count);
if (rc)
goto error_out;
idiag.ptr_private = qp;
goto pass_check;
}
}
}
goto error_out;
case LPFC_IDIAG_CQ:
/* MBX complete queue */
if (phba->sli4_hba.mbx_cq &&
phba->sli4_hba.mbx_cq->queue_id == queid) {
/* Sanity check */
rc = lpfc_idiag_que_param_check(
phba->sli4_hba.mbx_cq, index, count);
if (rc)
goto error_out;
idiag.ptr_private = phba->sli4_hba.mbx_cq;
goto pass_check;
}
/* ELS complete queue */
if (phba->sli4_hba.els_cq &&
phba->sli4_hba.els_cq->queue_id == queid) {
/* Sanity check */
rc = lpfc_idiag_que_param_check(
phba->sli4_hba.els_cq, index, count);
if (rc)
goto error_out;
idiag.ptr_private = phba->sli4_hba.els_cq;
goto pass_check;
}
/* NVME LS complete queue */
if (phba->sli4_hba.nvmels_cq &&
phba->sli4_hba.nvmels_cq->queue_id == queid) {
/* Sanity check */
rc = lpfc_idiag_que_param_check(
phba->sli4_hba.nvmels_cq, index, count);
if (rc)
goto error_out;
idiag.ptr_private = phba->sli4_hba.nvmels_cq;
goto pass_check;
}
/* FCP complete queue */
if (phba->sli4_hba.hdwq) {
for (qidx = 0; qidx < phba->cfg_hdw_queue;
qidx++) {
qp = phba->sli4_hba.hdwq[qidx].io_cq;
if (qp && qp->queue_id == queid) {
/* Sanity check */
rc = lpfc_idiag_que_param_check(
qp, index, count);
if (rc)
goto error_out;
idiag.ptr_private = qp;
goto pass_check;
}
}
}
goto error_out;
case LPFC_IDIAG_MQ:
/* MBX work queue */
if (phba->sli4_hba.mbx_wq &&
phba->sli4_hba.mbx_wq->queue_id == queid) {
/* Sanity check */
rc = lpfc_idiag_que_param_check(
phba->sli4_hba.mbx_wq, index, count);
if (rc)
goto error_out;
idiag.ptr_private = phba->sli4_hba.mbx_wq;
goto pass_check;
}
goto error_out;
case LPFC_IDIAG_WQ:
/* ELS work queue */
if (phba->sli4_hba.els_wq &&
phba->sli4_hba.els_wq->queue_id == queid) {
/* Sanity check */
rc = lpfc_idiag_que_param_check(
phba->sli4_hba.els_wq, index, count);
if (rc)
goto error_out;
idiag.ptr_private = phba->sli4_hba.els_wq;
goto pass_check;
}
/* NVME LS work queue */
if (phba->sli4_hba.nvmels_wq &&
phba->sli4_hba.nvmels_wq->queue_id == queid) {
/* Sanity check */
rc = lpfc_idiag_que_param_check(
phba->sli4_hba.nvmels_wq, index, count);
if (rc)
goto error_out;
idiag.ptr_private = phba->sli4_hba.nvmels_wq;
goto pass_check;
}
if (phba->sli4_hba.hdwq) {
/* FCP/SCSI work queue */
for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
qp = phba->sli4_hba.hdwq[qidx].io_wq;
if (qp && qp->queue_id == queid) {
/* Sanity check */
rc = lpfc_idiag_que_param_check(
qp, index, count);
if (rc)
goto error_out;
idiag.ptr_private = qp;
goto pass_check;
}
}
}
goto error_out;
case LPFC_IDIAG_RQ:
/* HDR queue */
if (phba->sli4_hba.hdr_rq &&
phba->sli4_hba.hdr_rq->queue_id == queid) {
/* Sanity check */
rc = lpfc_idiag_que_param_check(
phba->sli4_hba.hdr_rq, index, count);
if (rc)
goto error_out;
idiag.ptr_private = phba->sli4_hba.hdr_rq;
goto pass_check;
}
/* DAT queue */
if (phba->sli4_hba.dat_rq &&
phba->sli4_hba.dat_rq->queue_id == queid) {
/* Sanity check */
rc = lpfc_idiag_que_param_check(
phba->sli4_hba.dat_rq, index, count);
if (rc)
goto error_out;
idiag.ptr_private = phba->sli4_hba.dat_rq;
goto pass_check;
}
goto error_out;
default:
goto error_out;
}
pass_check:
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_RD) {
if (count == LPFC_QUE_ACC_BROWSE)
idiag.offset.last_rd = index;
}
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_WR ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_ST ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_CL) {
/* Additional sanity checks on write operation */
pque = (struct lpfc_queue *)idiag.ptr_private;
if (offset > pque->entry_size/sizeof(uint32_t) - 1)
goto error_out;
pentry = lpfc_sli4_qe(pque, index);
pentry += offset;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_WR)
*pentry = value;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_ST)
*pentry |= value;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_CL)
*pentry &= ~value;
}
return nbytes;
error_out:
/* Clean out command structure on command error out */
memset(&idiag, 0, sizeof(idiag));
return -EINVAL;
}
/**
* lpfc_idiag_drbacc_read_reg - idiag debugfs read a doorbell register
* @phba: The pointer to hba structure.
* @pbuffer: The pointer to the buffer to copy the data to.
* @len: The length of bytes to copied.
* @drbregid: The id to doorbell registers.
*
* Description:
* This routine reads a doorbell register and copies its content to the
* user buffer pointed to by @pbuffer.
*
* Returns:
* This function returns the amount of data that was copied into @pbuffer.
**/
static int
lpfc_idiag_drbacc_read_reg(struct lpfc_hba *phba, char *pbuffer,
int len, uint32_t drbregid)
{
if (!pbuffer)
return 0;
switch (drbregid) {
case LPFC_DRB_EQ:
len += scnprintf(pbuffer + len, LPFC_DRB_ACC_BUF_SIZE-len,
"EQ-DRB-REG: 0x%08x\n",
readl(phba->sli4_hba.EQDBregaddr));
break;
case LPFC_DRB_CQ:
len += scnprintf(pbuffer + len, LPFC_DRB_ACC_BUF_SIZE - len,
"CQ-DRB-REG: 0x%08x\n",
readl(phba->sli4_hba.CQDBregaddr));
break;
case LPFC_DRB_MQ:
len += scnprintf(pbuffer+len, LPFC_DRB_ACC_BUF_SIZE-len,
"MQ-DRB-REG: 0x%08x\n",
readl(phba->sli4_hba.MQDBregaddr));
break;
case LPFC_DRB_WQ:
len += scnprintf(pbuffer+len, LPFC_DRB_ACC_BUF_SIZE-len,
"WQ-DRB-REG: 0x%08x\n",
readl(phba->sli4_hba.WQDBregaddr));
break;
case LPFC_DRB_RQ:
len += scnprintf(pbuffer+len, LPFC_DRB_ACC_BUF_SIZE-len,
"RQ-DRB-REG: 0x%08x\n",
readl(phba->sli4_hba.RQDBregaddr));
break;
default:
break;
}
return len;
}
/**
* lpfc_idiag_drbacc_read - idiag debugfs read port doorbell
* @file: The file pointer to read from.
* @buf: The buffer to copy the data to.
* @nbytes: The number of bytes to read.
* @ppos: The position in the file to start reading from.
*
* Description:
* This routine reads data from the @phba device doorbell register according
* to the idiag command, and copies to user @buf. Depending on the doorbell
* register read command setup, it does either a single doorbell register
* read or dump all doorbell registers.
*
* Returns:
* This function returns the amount of data that was read (this could be less
* than @nbytes if the end of the file was reached) or a negative error value.
**/
static ssize_t
lpfc_idiag_drbacc_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
uint32_t drb_reg_id, i;
char *pbuffer;
int len = 0;
/* This is a user read operation */
debug->op = LPFC_IDIAG_OP_RD;
if (!debug->buffer)
debug->buffer = kmalloc(LPFC_DRB_ACC_BUF_SIZE, GFP_KERNEL);
if (!debug->buffer)
return 0;
pbuffer = debug->buffer;
if (*ppos)
return 0;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_RD)
drb_reg_id = idiag.cmd.data[IDIAG_DRBACC_REGID_INDX];
else
return 0;
if (drb_reg_id == LPFC_DRB_ACC_ALL)
for (i = 1; i <= LPFC_DRB_MAX; i++)
len = lpfc_idiag_drbacc_read_reg(phba,
pbuffer, len, i);
else
len = lpfc_idiag_drbacc_read_reg(phba,
pbuffer, len, drb_reg_id);
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
}
/**
* lpfc_idiag_drbacc_write - Syntax check and set up idiag drbacc commands
* @file: The file pointer to read from.
* @buf: The buffer to copy the user data from.
* @nbytes: The number of bytes to get.
* @ppos: The position in the file to start reading from.
*
* This routine get the debugfs idiag command struct from user space and then
* perform the syntax check for port doorbell register read (dump) or write
* (set) command accordingly. In the case of port queue read command, it sets
* up the command in the idiag command struct for the following debugfs read
* operation. In the case of port doorbell register write operation, it
* executes the write operation into the port doorbell register accordingly.
*
* It returns the @nbytges passing in from debugfs user space when successful.
* In case of error conditions, it returns proper error code back to the user
* space.
**/
static ssize_t
lpfc_idiag_drbacc_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
uint32_t drb_reg_id, value, reg_val = 0;
void __iomem *drb_reg;
int rc;
/* This is a user write operation */
debug->op = LPFC_IDIAG_OP_WR;
rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd);
if (rc < 0)
return rc;
/* Sanity check on command line arguments */
drb_reg_id = idiag.cmd.data[IDIAG_DRBACC_REGID_INDX];
value = idiag.cmd.data[IDIAG_DRBACC_VALUE_INDX];
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_WR ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_ST ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_CL) {
if (rc != LPFC_DRB_ACC_WR_CMD_ARG)
goto error_out;
if (drb_reg_id > LPFC_DRB_MAX)
goto error_out;
} else if (idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_RD) {
if (rc != LPFC_DRB_ACC_RD_CMD_ARG)
goto error_out;
if ((drb_reg_id > LPFC_DRB_MAX) &&
(drb_reg_id != LPFC_DRB_ACC_ALL))
goto error_out;
} else
goto error_out;
/* Perform the write access operation */
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_WR ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_ST ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_CL) {
switch (drb_reg_id) {
case LPFC_DRB_EQ:
drb_reg = phba->sli4_hba.EQDBregaddr;
break;
case LPFC_DRB_CQ:
drb_reg = phba->sli4_hba.CQDBregaddr;
break;
case LPFC_DRB_MQ:
drb_reg = phba->sli4_hba.MQDBregaddr;
break;
case LPFC_DRB_WQ:
drb_reg = phba->sli4_hba.WQDBregaddr;
break;
case LPFC_DRB_RQ:
drb_reg = phba->sli4_hba.RQDBregaddr;
break;
default:
goto error_out;
}
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_WR)
reg_val = value;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_ST) {
reg_val = readl(drb_reg);
reg_val |= value;
}
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_CL) {
reg_val = readl(drb_reg);
reg_val &= ~value;
}
writel(reg_val, drb_reg);
readl(drb_reg); /* flush */
}
return nbytes;
error_out:
/* Clean out command structure on command error out */
memset(&idiag, 0, sizeof(idiag));
return -EINVAL;
}
/**
* lpfc_idiag_ctlacc_read_reg - idiag debugfs read a control registers
* @phba: The pointer to hba structure.
* @pbuffer: The pointer to the buffer to copy the data to.
* @len: The length of bytes to copied.
* @ctlregid: The id to doorbell registers.
*
* Description:
* This routine reads a control register and copies its content to the
* user buffer pointed to by @pbuffer.
*
* Returns:
* This function returns the amount of data that was copied into @pbuffer.
**/
static int
lpfc_idiag_ctlacc_read_reg(struct lpfc_hba *phba, char *pbuffer,
int len, uint32_t ctlregid)
{
if (!pbuffer)
return 0;
switch (ctlregid) {
case LPFC_CTL_PORT_SEM:
len += scnprintf(pbuffer+len, LPFC_CTL_ACC_BUF_SIZE-len,
"Port SemReg: 0x%08x\n",
readl(phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_SEM_OFFSET));
break;
case LPFC_CTL_PORT_STA:
len += scnprintf(pbuffer+len, LPFC_CTL_ACC_BUF_SIZE-len,
"Port StaReg: 0x%08x\n",
readl(phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_STA_OFFSET));
break;
case LPFC_CTL_PORT_CTL:
len += scnprintf(pbuffer+len, LPFC_CTL_ACC_BUF_SIZE-len,
"Port CtlReg: 0x%08x\n",
readl(phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_CTL_OFFSET));
break;
case LPFC_CTL_PORT_ER1:
len += scnprintf(pbuffer+len, LPFC_CTL_ACC_BUF_SIZE-len,
"Port Er1Reg: 0x%08x\n",
readl(phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_ER1_OFFSET));
break;
case LPFC_CTL_PORT_ER2:
len += scnprintf(pbuffer+len, LPFC_CTL_ACC_BUF_SIZE-len,
"Port Er2Reg: 0x%08x\n",
readl(phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_ER2_OFFSET));
break;
case LPFC_CTL_PDEV_CTL:
len += scnprintf(pbuffer+len, LPFC_CTL_ACC_BUF_SIZE-len,
"PDev CtlReg: 0x%08x\n",
readl(phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PDEV_CTL_OFFSET));
break;
default:
break;
}
return len;
}
/**
* lpfc_idiag_ctlacc_read - idiag debugfs read port and device control register
* @file: The file pointer to read from.
* @buf: The buffer to copy the data to.
* @nbytes: The number of bytes to read.
* @ppos: The position in the file to start reading from.
*
* Description:
* This routine reads data from the @phba port and device registers according
* to the idiag command, and copies to user @buf.
*
* Returns:
* This function returns the amount of data that was read (this could be less
* than @nbytes if the end of the file was reached) or a negative error value.
**/
static ssize_t
lpfc_idiag_ctlacc_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
uint32_t ctl_reg_id, i;
char *pbuffer;
int len = 0;
/* This is a user read operation */
debug->op = LPFC_IDIAG_OP_RD;
if (!debug->buffer)
debug->buffer = kmalloc(LPFC_CTL_ACC_BUF_SIZE, GFP_KERNEL);
if (!debug->buffer)
return 0;
pbuffer = debug->buffer;
if (*ppos)
return 0;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_RD)
ctl_reg_id = idiag.cmd.data[IDIAG_CTLACC_REGID_INDX];
else
return 0;
if (ctl_reg_id == LPFC_CTL_ACC_ALL)
for (i = 1; i <= LPFC_CTL_MAX; i++)
len = lpfc_idiag_ctlacc_read_reg(phba,
pbuffer, len, i);
else
len = lpfc_idiag_ctlacc_read_reg(phba,
pbuffer, len, ctl_reg_id);
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
}
/**
* lpfc_idiag_ctlacc_write - Syntax check and set up idiag ctlacc commands
* @file: The file pointer to read from.
* @buf: The buffer to copy the user data from.
* @nbytes: The number of bytes to get.
* @ppos: The position in the file to start reading from.
*
* This routine get the debugfs idiag command struct from user space and then
* perform the syntax check for port and device control register read (dump)
* or write (set) command accordingly.
*
* It returns the @nbytges passing in from debugfs user space when successful.
* In case of error conditions, it returns proper error code back to the user
* space.
**/
static ssize_t
lpfc_idiag_ctlacc_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
uint32_t ctl_reg_id, value, reg_val = 0;
void __iomem *ctl_reg;
int rc;
/* This is a user write operation */
debug->op = LPFC_IDIAG_OP_WR;
rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd);
if (rc < 0)
return rc;
/* Sanity check on command line arguments */
ctl_reg_id = idiag.cmd.data[IDIAG_CTLACC_REGID_INDX];
value = idiag.cmd.data[IDIAG_CTLACC_VALUE_INDX];
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_WR ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_ST ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_CL) {
if (rc != LPFC_CTL_ACC_WR_CMD_ARG)
goto error_out;
if (ctl_reg_id > LPFC_CTL_MAX)
goto error_out;
} else if (idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_RD) {
if (rc != LPFC_CTL_ACC_RD_CMD_ARG)
goto error_out;
if ((ctl_reg_id > LPFC_CTL_MAX) &&
(ctl_reg_id != LPFC_CTL_ACC_ALL))
goto error_out;
} else
goto error_out;
/* Perform the write access operation */
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_WR ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_ST ||
idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_CL) {
switch (ctl_reg_id) {
case LPFC_CTL_PORT_SEM:
ctl_reg = phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_SEM_OFFSET;
break;
case LPFC_CTL_PORT_STA:
ctl_reg = phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_STA_OFFSET;
break;
case LPFC_CTL_PORT_CTL:
ctl_reg = phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_CTL_OFFSET;
break;
case LPFC_CTL_PORT_ER1:
ctl_reg = phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_ER1_OFFSET;
break;
case LPFC_CTL_PORT_ER2:
ctl_reg = phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PORT_ER2_OFFSET;
break;
case LPFC_CTL_PDEV_CTL:
ctl_reg = phba->sli4_hba.conf_regs_memmap_p +
LPFC_CTL_PDEV_CTL_OFFSET;
break;
default:
goto error_out;
}
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_WR)
reg_val = value;
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_ST) {
reg_val = readl(ctl_reg);
reg_val |= value;
}
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_CL) {
reg_val = readl(ctl_reg);
reg_val &= ~value;
}
writel(reg_val, ctl_reg);
readl(ctl_reg); /* flush */
}
return nbytes;
error_out:
/* Clean out command structure on command error out */
memset(&idiag, 0, sizeof(idiag));
return -EINVAL;
}
/**
* lpfc_idiag_mbxacc_get_setup - idiag debugfs get mailbox access setup
* @phba: Pointer to HBA context object.
* @pbuffer: Pointer to data buffer.
*
* Description:
* This routine gets the driver mailbox access debugfs setup information.
*
* Returns:
* This function returns the amount of data that was read (this could be less
* than @nbytes if the end of the file was reached) or a negative error value.
**/
static int
lpfc_idiag_mbxacc_get_setup(struct lpfc_hba *phba, char *pbuffer)
{
uint32_t mbx_dump_map, mbx_dump_cnt, mbx_word_cnt, mbx_mbox_cmd;
int len = 0;
mbx_mbox_cmd = idiag.cmd.data[IDIAG_MBXACC_MBCMD_INDX];
mbx_dump_map = idiag.cmd.data[IDIAG_MBXACC_DPMAP_INDX];
mbx_dump_cnt = idiag.cmd.data[IDIAG_MBXACC_DPCNT_INDX];
mbx_word_cnt = idiag.cmd.data[IDIAG_MBXACC_WDCNT_INDX];
len += scnprintf(pbuffer+len, LPFC_MBX_ACC_BUF_SIZE-len,
"mbx_dump_map: 0x%08x\n", mbx_dump_map);
len += scnprintf(pbuffer+len, LPFC_MBX_ACC_BUF_SIZE-len,
"mbx_dump_cnt: %04d\n", mbx_dump_cnt);
len += scnprintf(pbuffer+len, LPFC_MBX_ACC_BUF_SIZE-len,
"mbx_word_cnt: %04d\n", mbx_word_cnt);
len += scnprintf(pbuffer+len, LPFC_MBX_ACC_BUF_SIZE-len,
"mbx_mbox_cmd: 0x%02x\n", mbx_mbox_cmd);
return len;
}
/**
* lpfc_idiag_mbxacc_read - idiag debugfs read on mailbox access
* @file: The file pointer to read from.
* @buf: The buffer to copy the data to.
* @nbytes: The number of bytes to read.
* @ppos: The position in the file to start reading from.
*
* Description:
* This routine reads data from the @phba driver mailbox access debugfs setup
* information.
*
* Returns:
* This function returns the amount of data that was read (this could be less
* than @nbytes if the end of the file was reached) or a negative error value.
**/
static ssize_t
lpfc_idiag_mbxacc_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
char *pbuffer;
int len = 0;
/* This is a user read operation */
debug->op = LPFC_IDIAG_OP_RD;
if (!debug->buffer)
debug->buffer = kmalloc(LPFC_MBX_ACC_BUF_SIZE, GFP_KERNEL);
if (!debug->buffer)
return 0;
pbuffer = debug->buffer;
if (*ppos)
return 0;
if ((idiag.cmd.opcode != LPFC_IDIAG_CMD_MBXACC_DP) &&
(idiag.cmd.opcode != LPFC_IDIAG_BSG_MBXACC_DP))
return 0;
len = lpfc_idiag_mbxacc_get_setup(phba, pbuffer);
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
}
/**
* lpfc_idiag_mbxacc_write - Syntax check and set up idiag mbxacc commands
* @file: The file pointer to read from.
* @buf: The buffer to copy the user data from.
* @nbytes: The number of bytes to get.
* @ppos: The position in the file to start reading from.
*
* This routine get the debugfs idiag command struct from user space and then
* perform the syntax check for driver mailbox command (dump) and sets up the
* necessary states in the idiag command struct accordingly.
*
* It returns the @nbytges passing in from debugfs user space when successful.
* In case of error conditions, it returns proper error code back to the user
* space.
**/
static ssize_t
lpfc_idiag_mbxacc_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
uint32_t mbx_dump_map, mbx_dump_cnt, mbx_word_cnt, mbx_mbox_cmd;
int rc;
/* This is a user write operation */
debug->op = LPFC_IDIAG_OP_WR;
rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd);
if (rc < 0)
return rc;
/* Sanity check on command line arguments */
mbx_mbox_cmd = idiag.cmd.data[IDIAG_MBXACC_MBCMD_INDX];
mbx_dump_map = idiag.cmd.data[IDIAG_MBXACC_DPMAP_INDX];
mbx_dump_cnt = idiag.cmd.data[IDIAG_MBXACC_DPCNT_INDX];
mbx_word_cnt = idiag.cmd.data[IDIAG_MBXACC_WDCNT_INDX];
if (idiag.cmd.opcode == LPFC_IDIAG_CMD_MBXACC_DP) {
if (!(mbx_dump_map & LPFC_MBX_DMP_MBX_ALL))
goto error_out;
if ((mbx_dump_map & ~LPFC_MBX_DMP_MBX_ALL) &&
(mbx_dump_map != LPFC_MBX_DMP_ALL))
goto error_out;
if (mbx_word_cnt > sizeof(MAILBOX_t))
goto error_out;
} else if (idiag.cmd.opcode == LPFC_IDIAG_BSG_MBXACC_DP) {
if (!(mbx_dump_map & LPFC_BSG_DMP_MBX_ALL))
goto error_out;
if ((mbx_dump_map & ~LPFC_BSG_DMP_MBX_ALL) &&
(mbx_dump_map != LPFC_MBX_DMP_ALL))
goto error_out;
if (mbx_word_cnt > (BSG_MBOX_SIZE)/4)
goto error_out;
if (mbx_mbox_cmd != 0x9b)
goto error_out;
} else
goto error_out;
if (mbx_word_cnt == 0)
goto error_out;
if (rc != LPFC_MBX_DMP_ARG)
goto error_out;
if (mbx_mbox_cmd & ~0xff)
goto error_out;
/* condition for stop mailbox dump */
if (mbx_dump_cnt == 0)
goto reset_out;
return nbytes;
reset_out:
/* Clean out command structure on command error out */
memset(&idiag, 0, sizeof(idiag));
return nbytes;
error_out:
/* Clean out command structure on command error out */
memset(&idiag, 0, sizeof(idiag));
return -EINVAL;
}
/**
* lpfc_idiag_extacc_avail_get - get the available extents information
* @phba: pointer to lpfc hba data structure.
* @pbuffer: pointer to internal buffer.
* @len: length into the internal buffer data has been copied.
*
* Description:
* This routine is to get the available extent information.
*
* Returns:
* overall lenth of the data read into the internal buffer.
**/
static int
lpfc_idiag_extacc_avail_get(struct lpfc_hba *phba, char *pbuffer, int len)
{
uint16_t ext_cnt, ext_size;
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\nAvailable Extents Information:\n");
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\tPort Available VPI extents: ");
lpfc_sli4_get_avail_extnt_rsrc(phba, LPFC_RSC_TYPE_FCOE_VPI,
&ext_cnt, &ext_size);
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"Count %3d, Size %3d\n", ext_cnt, ext_size);
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\tPort Available VFI extents: ");
lpfc_sli4_get_avail_extnt_rsrc(phba, LPFC_RSC_TYPE_FCOE_VFI,
&ext_cnt, &ext_size);
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"Count %3d, Size %3d\n", ext_cnt, ext_size);
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\tPort Available RPI extents: ");
lpfc_sli4_get_avail_extnt_rsrc(phba, LPFC_RSC_TYPE_FCOE_RPI,
&ext_cnt, &ext_size);
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"Count %3d, Size %3d\n", ext_cnt, ext_size);
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\tPort Available XRI extents: ");
lpfc_sli4_get_avail_extnt_rsrc(phba, LPFC_RSC_TYPE_FCOE_XRI,
&ext_cnt, &ext_size);
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"Count %3d, Size %3d\n", ext_cnt, ext_size);
return len;
}
/**
* lpfc_idiag_extacc_alloc_get - get the allocated extents information
* @phba: pointer to lpfc hba data structure.
* @pbuffer: pointer to internal buffer.
* @len: length into the internal buffer data has been copied.
*
* Description:
* This routine is to get the allocated extent information.
*
* Returns:
* overall lenth of the data read into the internal buffer.
**/
static int
lpfc_idiag_extacc_alloc_get(struct lpfc_hba *phba, char *pbuffer, int len)
{
uint16_t ext_cnt, ext_size;
int rc;
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\nAllocated Extents Information:\n");
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\tHost Allocated VPI extents: ");
rc = lpfc_sli4_get_allocated_extnts(phba, LPFC_RSC_TYPE_FCOE_VPI,
&ext_cnt, &ext_size);
if (!rc)
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"Port %d Extent %3d, Size %3d\n",
phba->brd_no, ext_cnt, ext_size);
else
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"N/A\n");
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\tHost Allocated VFI extents: ");
rc = lpfc_sli4_get_allocated_extnts(phba, LPFC_RSC_TYPE_FCOE_VFI,
&ext_cnt, &ext_size);
if (!rc)
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"Port %d Extent %3d, Size %3d\n",
phba->brd_no, ext_cnt, ext_size);
else
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"N/A\n");
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\tHost Allocated RPI extents: ");
rc = lpfc_sli4_get_allocated_extnts(phba, LPFC_RSC_TYPE_FCOE_RPI,
&ext_cnt, &ext_size);
if (!rc)
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"Port %d Extent %3d, Size %3d\n",
phba->brd_no, ext_cnt, ext_size);
else
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"N/A\n");
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\tHost Allocated XRI extents: ");
rc = lpfc_sli4_get_allocated_extnts(phba, LPFC_RSC_TYPE_FCOE_XRI,
&ext_cnt, &ext_size);
if (!rc)
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"Port %d Extent %3d, Size %3d\n",
phba->brd_no, ext_cnt, ext_size);
else
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"N/A\n");
return len;
}
/**
* lpfc_idiag_extacc_drivr_get - get driver extent information
* @phba: pointer to lpfc hba data structure.
* @pbuffer: pointer to internal buffer.
* @len: length into the internal buffer data has been copied.
*
* Description:
* This routine is to get the driver extent information.
*
* Returns:
* overall lenth of the data read into the internal buffer.
**/
static int
lpfc_idiag_extacc_drivr_get(struct lpfc_hba *phba, char *pbuffer, int len)
{
struct lpfc_rsrc_blks *rsrc_blks;
int index;
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\nDriver Extents Information:\n");
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\tVPI extents:\n");
index = 0;
list_for_each_entry(rsrc_blks, &phba->lpfc_vpi_blk_list, list) {
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\t\tBlock %3d: Start %4d, Count %4d\n",
index, rsrc_blks->rsrc_start,
rsrc_blks->rsrc_size);
index++;
}
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\tVFI extents:\n");
index = 0;
list_for_each_entry(rsrc_blks, &phba->sli4_hba.lpfc_vfi_blk_list,
list) {
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\t\tBlock %3d: Start %4d, Count %4d\n",
index, rsrc_blks->rsrc_start,
rsrc_blks->rsrc_size);
index++;
}
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\tRPI extents:\n");
index = 0;
list_for_each_entry(rsrc_blks, &phba->sli4_hba.lpfc_rpi_blk_list,
list) {
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\t\tBlock %3d: Start %4d, Count %4d\n",
index, rsrc_blks->rsrc_start,
rsrc_blks->rsrc_size);
index++;
}
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\tXRI extents:\n");
index = 0;
list_for_each_entry(rsrc_blks, &phba->sli4_hba.lpfc_xri_blk_list,
list) {
len += scnprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len,
"\t\tBlock %3d: Start %4d, Count %4d\n",
index, rsrc_blks->rsrc_start,
rsrc_blks->rsrc_size);
index++;
}
return len;
}
/**
* lpfc_idiag_extacc_write - Syntax check and set up idiag extacc commands
* @file: The file pointer to read from.
* @buf: The buffer to copy the user data from.
* @nbytes: The number of bytes to get.
* @ppos: The position in the file to start reading from.
*
* This routine get the debugfs idiag command struct from user space and then
* perform the syntax check for extent information access commands and sets
* up the necessary states in the idiag command struct accordingly.
*
* It returns the @nbytges passing in from debugfs user space when successful.
* In case of error conditions, it returns proper error code back to the user
* space.
**/
static ssize_t
lpfc_idiag_extacc_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
uint32_t ext_map;
int rc;
/* This is a user write operation */
debug->op = LPFC_IDIAG_OP_WR;
rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd);
if (rc < 0)
return rc;
ext_map = idiag.cmd.data[IDIAG_EXTACC_EXMAP_INDX];
if (idiag.cmd.opcode != LPFC_IDIAG_CMD_EXTACC_RD)
goto error_out;
if (rc != LPFC_EXT_ACC_CMD_ARG)
goto error_out;
if (!(ext_map & LPFC_EXT_ACC_ALL))
goto error_out;
return nbytes;
error_out:
/* Clean out command structure on command error out */
memset(&idiag, 0, sizeof(idiag));
return -EINVAL;
}
/**
* lpfc_idiag_extacc_read - idiag debugfs read access to extent information
* @file: The file pointer to read from.
* @buf: The buffer to copy the data to.
* @nbytes: The number of bytes to read.
* @ppos: The position in the file to start reading from.
*
* Description:
* This routine reads data from the proper extent information according to
* the idiag command, and copies to user @buf.
*
* Returns:
* This function returns the amount of data that was read (this could be less
* than @nbytes if the end of the file was reached) or a negative error value.
**/
static ssize_t
lpfc_idiag_extacc_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
struct lpfc_debug *debug = file->private_data;
struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private;
char *pbuffer;
uint32_t ext_map;
int len = 0;
/* This is a user read operation */
debug->op = LPFC_IDIAG_OP_RD;
if (!debug->buffer)
debug->buffer = kmalloc(LPFC_EXT_ACC_BUF_SIZE, GFP_KERNEL);
if (!debug->buffer)
return 0;
pbuffer = debug->buffer;
if (*ppos)
return 0;
if (idiag.cmd.opcode != LPFC_IDIAG_CMD_EXTACC_RD)
return 0;
ext_map = idiag.cmd.data[IDIAG_EXTACC_EXMAP_INDX];
if (ext_map & LPFC_EXT_ACC_AVAIL)
len = lpfc_idiag_extacc_avail_get(phba, pbuffer, len);
if (ext_map & LPFC_EXT_ACC_ALLOC)
len = lpfc_idiag_extacc_alloc_get(phba, pbuffer, len);
if (ext_map & LPFC_EXT_ACC_DRIVR)
len = lpfc_idiag_extacc_drivr_get(phba, pbuffer, len);
return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len);
}
#undef lpfc_debugfs_op_disc_trc
static const struct file_operations lpfc_debugfs_op_disc_trc = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_disc_trc_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_nodelist
static const struct file_operations lpfc_debugfs_op_nodelist = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_nodelist_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_multixripools
static const struct file_operations lpfc_debugfs_op_multixripools = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_multixripools_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.write = lpfc_debugfs_multixripools_write,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_hbqinfo
static const struct file_operations lpfc_debugfs_op_hbqinfo = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_hbqinfo_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.release = lpfc_debugfs_release,
};
#ifdef LPFC_HDWQ_LOCK_STAT
#undef lpfc_debugfs_op_lockstat
static const struct file_operations lpfc_debugfs_op_lockstat = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_lockstat_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.write = lpfc_debugfs_lockstat_write,
.release = lpfc_debugfs_release,
};
#endif
#undef lpfc_debugfs_ras_log
static const struct file_operations lpfc_debugfs_ras_log = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_ras_log_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.release = lpfc_debugfs_ras_log_release,
};
#undef lpfc_debugfs_op_dumpHBASlim
static const struct file_operations lpfc_debugfs_op_dumpHBASlim = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_dumpHBASlim_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_dumpHostSlim
static const struct file_operations lpfc_debugfs_op_dumpHostSlim = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_dumpHostSlim_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_nvmestat
static const struct file_operations lpfc_debugfs_op_nvmestat = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_nvmestat_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.write = lpfc_debugfs_nvmestat_write,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_scsistat
static const struct file_operations lpfc_debugfs_op_scsistat = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_scsistat_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.write = lpfc_debugfs_scsistat_write,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_ioktime
static const struct file_operations lpfc_debugfs_op_ioktime = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_ioktime_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.write = lpfc_debugfs_ioktime_write,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_nvmeio_trc
static const struct file_operations lpfc_debugfs_op_nvmeio_trc = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_nvmeio_trc_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.write = lpfc_debugfs_nvmeio_trc_write,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_hdwqstat
static const struct file_operations lpfc_debugfs_op_hdwqstat = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_hdwqstat_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.write = lpfc_debugfs_hdwqstat_write,
.release = lpfc_debugfs_release,
};
#undef lpfc_debugfs_op_dif_err
static const struct file_operations lpfc_debugfs_op_dif_err = {
.owner = THIS_MODULE,
.open = simple_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_dif_err_read,
.write = lpfc_debugfs_dif_err_write,
.release = lpfc_debugfs_dif_err_release,
};
#undef lpfc_debugfs_op_slow_ring_trc
static const struct file_operations lpfc_debugfs_op_slow_ring_trc = {
.owner = THIS_MODULE,
.open = lpfc_debugfs_slow_ring_trc_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_debugfs_read,
.release = lpfc_debugfs_release,
};
static struct dentry *lpfc_debugfs_root = NULL;
static atomic_t lpfc_debugfs_hba_count;
/*
* File operations for the iDiag debugfs
*/
#undef lpfc_idiag_op_pciCfg
static const struct file_operations lpfc_idiag_op_pciCfg = {
.owner = THIS_MODULE,
.open = lpfc_idiag_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_idiag_pcicfg_read,
.write = lpfc_idiag_pcicfg_write,
.release = lpfc_idiag_cmd_release,
};
#undef lpfc_idiag_op_barAcc
static const struct file_operations lpfc_idiag_op_barAcc = {
.owner = THIS_MODULE,
.open = lpfc_idiag_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_idiag_baracc_read,
.write = lpfc_idiag_baracc_write,
.release = lpfc_idiag_cmd_release,
};
#undef lpfc_idiag_op_queInfo
static const struct file_operations lpfc_idiag_op_queInfo = {
.owner = THIS_MODULE,
.open = lpfc_idiag_open,
.read = lpfc_idiag_queinfo_read,
.release = lpfc_idiag_release,
};
#undef lpfc_idiag_op_queAcc
static const struct file_operations lpfc_idiag_op_queAcc = {
.owner = THIS_MODULE,
.open = lpfc_idiag_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_idiag_queacc_read,
.write = lpfc_idiag_queacc_write,
.release = lpfc_idiag_cmd_release,
};
#undef lpfc_idiag_op_drbAcc
static const struct file_operations lpfc_idiag_op_drbAcc = {
.owner = THIS_MODULE,
.open = lpfc_idiag_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_idiag_drbacc_read,
.write = lpfc_idiag_drbacc_write,
.release = lpfc_idiag_cmd_release,
};
#undef lpfc_idiag_op_ctlAcc
static const struct file_operations lpfc_idiag_op_ctlAcc = {
.owner = THIS_MODULE,
.open = lpfc_idiag_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_idiag_ctlacc_read,
.write = lpfc_idiag_ctlacc_write,
.release = lpfc_idiag_cmd_release,
};
#undef lpfc_idiag_op_mbxAcc
static const struct file_operations lpfc_idiag_op_mbxAcc = {
.owner = THIS_MODULE,
.open = lpfc_idiag_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_idiag_mbxacc_read,
.write = lpfc_idiag_mbxacc_write,
.release = lpfc_idiag_cmd_release,
};
#undef lpfc_idiag_op_extAcc
static const struct file_operations lpfc_idiag_op_extAcc = {
.owner = THIS_MODULE,
.open = lpfc_idiag_open,
.llseek = lpfc_debugfs_lseek,
.read = lpfc_idiag_extacc_read,
.write = lpfc_idiag_extacc_write,
.release = lpfc_idiag_cmd_release,
};
#endif
/* lpfc_idiag_mbxacc_dump_bsg_mbox - idiag debugfs dump bsg mailbox command
* @phba: Pointer to HBA context object.
* @dmabuf: Pointer to a DMA buffer descriptor.
*
* Description:
* This routine dump a bsg pass-through non-embedded mailbox command with
* external buffer.
**/
void
lpfc_idiag_mbxacc_dump_bsg_mbox(struct lpfc_hba *phba, enum nemb_type nemb_tp,
enum mbox_type mbox_tp, enum dma_type dma_tp,
enum sta_type sta_tp,
struct lpfc_dmabuf *dmabuf, uint32_t ext_buf)
{
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
uint32_t *mbx_mbox_cmd, *mbx_dump_map, *mbx_dump_cnt, *mbx_word_cnt;
char line_buf[LPFC_MBX_ACC_LBUF_SZ];
int len = 0;
uint32_t do_dump = 0;
uint32_t *pword;
uint32_t i;
if (idiag.cmd.opcode != LPFC_IDIAG_BSG_MBXACC_DP)
return;
mbx_mbox_cmd = &idiag.cmd.data[IDIAG_MBXACC_MBCMD_INDX];
mbx_dump_map = &idiag.cmd.data[IDIAG_MBXACC_DPMAP_INDX];
mbx_dump_cnt = &idiag.cmd.data[IDIAG_MBXACC_DPCNT_INDX];
mbx_word_cnt = &idiag.cmd.data[IDIAG_MBXACC_WDCNT_INDX];
if (!(*mbx_dump_map & LPFC_MBX_DMP_ALL) ||
(*mbx_dump_cnt == 0) ||
(*mbx_word_cnt == 0))
return;
if (*mbx_mbox_cmd != 0x9B)
return;
if ((mbox_tp == mbox_rd) && (dma_tp == dma_mbox)) {
if (*mbx_dump_map & LPFC_BSG_DMP_MBX_RD_MBX) {
do_dump |= LPFC_BSG_DMP_MBX_RD_MBX;
pr_err("\nRead mbox command (x%x), "
"nemb:0x%x, extbuf_cnt:%d:\n",
sta_tp, nemb_tp, ext_buf);
}
}
if ((mbox_tp == mbox_rd) && (dma_tp == dma_ebuf)) {
if (*mbx_dump_map & LPFC_BSG_DMP_MBX_RD_BUF) {
do_dump |= LPFC_BSG_DMP_MBX_RD_BUF;
pr_err("\nRead mbox buffer (x%x), "
"nemb:0x%x, extbuf_seq:%d:\n",
sta_tp, nemb_tp, ext_buf);
}
}
if ((mbox_tp == mbox_wr) && (dma_tp == dma_mbox)) {
if (*mbx_dump_map & LPFC_BSG_DMP_MBX_WR_MBX) {
do_dump |= LPFC_BSG_DMP_MBX_WR_MBX;
pr_err("\nWrite mbox command (x%x), "
"nemb:0x%x, extbuf_cnt:%d:\n",
sta_tp, nemb_tp, ext_buf);
}
}
if ((mbox_tp == mbox_wr) && (dma_tp == dma_ebuf)) {
if (*mbx_dump_map & LPFC_BSG_DMP_MBX_WR_BUF) {
do_dump |= LPFC_BSG_DMP_MBX_WR_BUF;
pr_err("\nWrite mbox buffer (x%x), "
"nemb:0x%x, extbuf_seq:%d:\n",
sta_tp, nemb_tp, ext_buf);
}
}
/* dump buffer content */
if (do_dump) {
pword = (uint32_t *)dmabuf->virt;
for (i = 0; i < *mbx_word_cnt; i++) {
if (!(i % 8)) {
if (i != 0)
pr_err("%s\n", line_buf);
len = 0;
len += scnprintf(line_buf+len,
LPFC_MBX_ACC_LBUF_SZ-len,
"%03d: ", i);
}
len += scnprintf(line_buf+len, LPFC_MBX_ACC_LBUF_SZ-len,
"%08x ", (uint32_t)*pword);
pword++;
}
if ((i - 1) % 8)
pr_err("%s\n", line_buf);
(*mbx_dump_cnt)--;
}
/* Clean out command structure on reaching dump count */
if (*mbx_dump_cnt == 0)
memset(&idiag, 0, sizeof(idiag));
return;
#endif
}
/* lpfc_idiag_mbxacc_dump_issue_mbox - idiag debugfs dump issue mailbox command
* @phba: Pointer to HBA context object.
* @dmabuf: Pointer to a DMA buffer descriptor.
*
* Description:
* This routine dump a pass-through non-embedded mailbox command from issue
* mailbox command.
**/
void
lpfc_idiag_mbxacc_dump_issue_mbox(struct lpfc_hba *phba, MAILBOX_t *pmbox)
{
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
uint32_t *mbx_dump_map, *mbx_dump_cnt, *mbx_word_cnt, *mbx_mbox_cmd;
char line_buf[LPFC_MBX_ACC_LBUF_SZ];
int len = 0;
uint32_t *pword;
uint8_t *pbyte;
uint32_t i, j;
if (idiag.cmd.opcode != LPFC_IDIAG_CMD_MBXACC_DP)
return;
mbx_mbox_cmd = &idiag.cmd.data[IDIAG_MBXACC_MBCMD_INDX];
mbx_dump_map = &idiag.cmd.data[IDIAG_MBXACC_DPMAP_INDX];
mbx_dump_cnt = &idiag.cmd.data[IDIAG_MBXACC_DPCNT_INDX];
mbx_word_cnt = &idiag.cmd.data[IDIAG_MBXACC_WDCNT_INDX];
if (!(*mbx_dump_map & LPFC_MBX_DMP_MBX_ALL) ||
(*mbx_dump_cnt == 0) ||
(*mbx_word_cnt == 0))
return;
if ((*mbx_mbox_cmd != LPFC_MBX_ALL_CMD) &&
(*mbx_mbox_cmd != pmbox->mbxCommand))
return;
/* dump buffer content */
if (*mbx_dump_map & LPFC_MBX_DMP_MBX_WORD) {
pr_err("Mailbox command:0x%x dump by word:\n",
pmbox->mbxCommand);
pword = (uint32_t *)pmbox;
for (i = 0; i < *mbx_word_cnt; i++) {
if (!(i % 8)) {
if (i != 0)
pr_err("%s\n", line_buf);
len = 0;
memset(line_buf, 0, LPFC_MBX_ACC_LBUF_SZ);
len += scnprintf(line_buf+len,
LPFC_MBX_ACC_LBUF_SZ-len,
"%03d: ", i);
}
len += scnprintf(line_buf+len, LPFC_MBX_ACC_LBUF_SZ-len,
"%08x ",
((uint32_t)*pword) & 0xffffffff);
pword++;
}
if ((i - 1) % 8)
pr_err("%s\n", line_buf);
pr_err("\n");
}
if (*mbx_dump_map & LPFC_MBX_DMP_MBX_BYTE) {
pr_err("Mailbox command:0x%x dump by byte:\n",
pmbox->mbxCommand);
pbyte = (uint8_t *)pmbox;
for (i = 0; i < *mbx_word_cnt; i++) {
if (!(i % 8)) {
if (i != 0)
pr_err("%s\n", line_buf);
len = 0;
memset(line_buf, 0, LPFC_MBX_ACC_LBUF_SZ);
len += scnprintf(line_buf+len,
LPFC_MBX_ACC_LBUF_SZ-len,
"%03d: ", i);
}
for (j = 0; j < 4; j++) {
len += scnprintf(line_buf+len,
LPFC_MBX_ACC_LBUF_SZ-len,
"%02x",
((uint8_t)*pbyte) & 0xff);
pbyte++;
}
len += scnprintf(line_buf+len,
LPFC_MBX_ACC_LBUF_SZ-len, " ");
}
if ((i - 1) % 8)
pr_err("%s\n", line_buf);
pr_err("\n");
}
(*mbx_dump_cnt)--;
/* Clean out command structure on reaching dump count */
if (*mbx_dump_cnt == 0)
memset(&idiag, 0, sizeof(idiag));
return;
#endif
}
/**
* lpfc_debugfs_initialize - Initialize debugfs for a vport
* @vport: The vport pointer to initialize.
*
* Description:
* When Debugfs is configured this routine sets up the lpfc debugfs file system.
* If not already created, this routine will create the lpfc directory, and
* lpfcX directory (for this HBA), and vportX directory for this vport. It will
* also create each file used to access lpfc specific debugfs information.
**/
inline void
lpfc_debugfs_initialize(struct lpfc_vport *vport)
{
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
struct lpfc_hba *phba = vport->phba;
char name[64];
uint32_t num, i;
bool pport_setup = false;
if (!lpfc_debugfs_enable)
return;
/* Setup lpfc root directory */
if (!lpfc_debugfs_root) {
lpfc_debugfs_root = debugfs_create_dir("lpfc", NULL);
atomic_set(&lpfc_debugfs_hba_count, 0);
}
if (!lpfc_debugfs_start_time)
lpfc_debugfs_start_time = jiffies;
/* Setup funcX directory for specific HBA PCI function */
snprintf(name, sizeof(name), "fn%d", phba->brd_no);
if (!phba->hba_debugfs_root) {
pport_setup = true;
phba->hba_debugfs_root =
debugfs_create_dir(name, lpfc_debugfs_root);
atomic_inc(&lpfc_debugfs_hba_count);
atomic_set(&phba->debugfs_vport_count, 0);
/* Multi-XRI pools */
snprintf(name, sizeof(name), "multixripools");
phba->debug_multixri_pools =
debugfs_create_file(name, S_IFREG | 0644,
phba->hba_debugfs_root,
phba,
&lpfc_debugfs_op_multixripools);
if (!phba->debug_multixri_pools) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0527 Cannot create debugfs multixripools\n");
goto debug_failed;
}
/* RAS log */
snprintf(name, sizeof(name), "ras_log");
phba->debug_ras_log =
debugfs_create_file(name, 0644,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_ras_log);
if (!phba->debug_ras_log) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"6148 Cannot create debugfs"
" ras_log\n");
goto debug_failed;
}
/* Setup hbqinfo */
snprintf(name, sizeof(name), "hbqinfo");
phba->debug_hbqinfo =
debugfs_create_file(name, S_IFREG | 0644,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_hbqinfo);
#ifdef LPFC_HDWQ_LOCK_STAT
/* Setup lockstat */
snprintf(name, sizeof(name), "lockstat");
phba->debug_lockstat =
debugfs_create_file(name, S_IFREG | 0644,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_lockstat);
if (!phba->debug_lockstat) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"4610 Can't create debugfs lockstat\n");
goto debug_failed;
}
#endif
/* Setup dumpHBASlim */
if (phba->sli_rev < LPFC_SLI_REV4) {
snprintf(name, sizeof(name), "dumpHBASlim");
phba->debug_dumpHBASlim =
debugfs_create_file(name,
S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dumpHBASlim);
} else
phba->debug_dumpHBASlim = NULL;
/* Setup dumpHostSlim */
if (phba->sli_rev < LPFC_SLI_REV4) {
snprintf(name, sizeof(name), "dumpHostSlim");
phba->debug_dumpHostSlim =
debugfs_create_file(name,
S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dumpHostSlim);
} else
phba->debug_dumpHostSlim = NULL;
/* Setup DIF Error Injections */
snprintf(name, sizeof(name), "InjErrLBA");
phba->debug_InjErrLBA =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dif_err);
phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF;
snprintf(name, sizeof(name), "InjErrNPortID");
phba->debug_InjErrNPortID =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dif_err);
snprintf(name, sizeof(name), "InjErrWWPN");
phba->debug_InjErrWWPN =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dif_err);
snprintf(name, sizeof(name), "writeGuardInjErr");
phba->debug_writeGuard =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dif_err);
snprintf(name, sizeof(name), "writeAppInjErr");
phba->debug_writeApp =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dif_err);
snprintf(name, sizeof(name), "writeRefInjErr");
phba->debug_writeRef =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dif_err);
snprintf(name, sizeof(name), "readGuardInjErr");
phba->debug_readGuard =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dif_err);
snprintf(name, sizeof(name), "readAppInjErr");
phba->debug_readApp =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dif_err);
snprintf(name, sizeof(name), "readRefInjErr");
phba->debug_readRef =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_dif_err);
/* Setup slow ring trace */
if (lpfc_debugfs_max_slow_ring_trc) {
num = lpfc_debugfs_max_slow_ring_trc - 1;
if (num & lpfc_debugfs_max_slow_ring_trc) {
/* Change to be a power of 2 */
num = lpfc_debugfs_max_slow_ring_trc;
i = 0;
while (num > 1) {
num = num >> 1;
i++;
}
lpfc_debugfs_max_slow_ring_trc = (1 << i);
pr_err("lpfc_debugfs_max_disc_trc changed to "
"%d\n", lpfc_debugfs_max_disc_trc);
}
}
snprintf(name, sizeof(name), "slow_ring_trace");
phba->debug_slow_ring_trc =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_slow_ring_trc);
if (!phba->slow_ring_trc) {
phba->slow_ring_trc = kmalloc(
(sizeof(struct lpfc_debugfs_trc) *
lpfc_debugfs_max_slow_ring_trc),
GFP_KERNEL);
if (!phba->slow_ring_trc) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0416 Cannot create debugfs "
"slow_ring buffer\n");
goto debug_failed;
}
atomic_set(&phba->slow_ring_trc_cnt, 0);
memset(phba->slow_ring_trc, 0,
(sizeof(struct lpfc_debugfs_trc) *
lpfc_debugfs_max_slow_ring_trc));
}
snprintf(name, sizeof(name), "nvmeio_trc");
phba->debug_nvmeio_trc =
debugfs_create_file(name, 0644,
phba->hba_debugfs_root,
phba, &lpfc_debugfs_op_nvmeio_trc);
atomic_set(&phba->nvmeio_trc_cnt, 0);
if (lpfc_debugfs_max_nvmeio_trc) {
num = lpfc_debugfs_max_nvmeio_trc - 1;
if (num & lpfc_debugfs_max_disc_trc) {
/* Change to be a power of 2 */
num = lpfc_debugfs_max_nvmeio_trc;
i = 0;
while (num > 1) {
num = num >> 1;
i++;
}
lpfc_debugfs_max_nvmeio_trc = (1 << i);
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0575 lpfc_debugfs_max_nvmeio_trc "
"changed to %d\n",
lpfc_debugfs_max_nvmeio_trc);
}
phba->nvmeio_trc_size = lpfc_debugfs_max_nvmeio_trc;
/* Allocate trace buffer and initialize */
phba->nvmeio_trc = kzalloc(
(sizeof(struct lpfc_debugfs_nvmeio_trc) *
phba->nvmeio_trc_size), GFP_KERNEL);
if (!phba->nvmeio_trc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0576 Cannot create debugfs "
"nvmeio_trc buffer\n");
goto nvmeio_off;
}
phba->nvmeio_trc_on = 1;
phba->nvmeio_trc_output_idx = 0;
phba->nvmeio_trc = NULL;
} else {
nvmeio_off:
phba->nvmeio_trc_size = 0;
phba->nvmeio_trc_on = 0;
phba->nvmeio_trc_output_idx = 0;
phba->nvmeio_trc = NULL;
}
}
snprintf(name, sizeof(name), "vport%d", vport->vpi);
if (!vport->vport_debugfs_root) {
vport->vport_debugfs_root =
debugfs_create_dir(name, phba->hba_debugfs_root);
atomic_inc(&phba->debugfs_vport_count);
}
if (lpfc_debugfs_max_disc_trc) {
num = lpfc_debugfs_max_disc_trc - 1;
if (num & lpfc_debugfs_max_disc_trc) {
/* Change to be a power of 2 */
num = lpfc_debugfs_max_disc_trc;
i = 0;
while (num > 1) {
num = num >> 1;
i++;
}
lpfc_debugfs_max_disc_trc = (1 << i);
pr_err("lpfc_debugfs_max_disc_trc changed to %d\n",
lpfc_debugfs_max_disc_trc);
}
}
vport->disc_trc = kzalloc(
(sizeof(struct lpfc_debugfs_trc) * lpfc_debugfs_max_disc_trc),
GFP_KERNEL);
if (!vport->disc_trc) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0418 Cannot create debugfs disc trace "
"buffer\n");
goto debug_failed;
}
atomic_set(&vport->disc_trc_cnt, 0);
snprintf(name, sizeof(name), "discovery_trace");
vport->debug_disc_trc =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
vport->vport_debugfs_root,
vport, &lpfc_debugfs_op_disc_trc);
snprintf(name, sizeof(name), "nodelist");
vport->debug_nodelist =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
vport->vport_debugfs_root,
vport, &lpfc_debugfs_op_nodelist);
snprintf(name, sizeof(name), "nvmestat");
vport->debug_nvmestat =
debugfs_create_file(name, 0644,
vport->vport_debugfs_root,
vport, &lpfc_debugfs_op_nvmestat);
snprintf(name, sizeof(name), "scsistat");
vport->debug_scsistat =
debugfs_create_file(name, 0644,
vport->vport_debugfs_root,
vport, &lpfc_debugfs_op_scsistat);
if (!vport->debug_scsistat) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"4611 Cannot create debugfs scsistat\n");
goto debug_failed;
}
snprintf(name, sizeof(name), "ioktime");
vport->debug_ioktime =
debugfs_create_file(name, 0644,
vport->vport_debugfs_root,
vport, &lpfc_debugfs_op_ioktime);
if (!vport->debug_ioktime) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT,
"0815 Cannot create debugfs ioktime\n");
goto debug_failed;
}
snprintf(name, sizeof(name), "hdwqstat");
vport->debug_hdwqstat =
debugfs_create_file(name, 0644,
vport->vport_debugfs_root,
vport, &lpfc_debugfs_op_hdwqstat);
/*
* The following section is for additional directories/files for the
* physical port.
*/
if (!pport_setup)
goto debug_failed;
/*
* iDiag debugfs root entry points for SLI4 device only
*/
if (phba->sli_rev < LPFC_SLI_REV4)
goto debug_failed;
snprintf(name, sizeof(name), "iDiag");
if (!phba->idiag_root) {
phba->idiag_root =
debugfs_create_dir(name, phba->hba_debugfs_root);
/* Initialize iDiag data structure */
memset(&idiag, 0, sizeof(idiag));
}
/* iDiag read PCI config space */
snprintf(name, sizeof(name), "pciCfg");
if (!phba->idiag_pci_cfg) {
phba->idiag_pci_cfg =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->idiag_root, phba, &lpfc_idiag_op_pciCfg);
idiag.offset.last_rd = 0;
}
/* iDiag PCI BAR access */
snprintf(name, sizeof(name), "barAcc");
if (!phba->idiag_bar_acc) {
phba->idiag_bar_acc =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->idiag_root, phba, &lpfc_idiag_op_barAcc);
idiag.offset.last_rd = 0;
}
/* iDiag get PCI function queue information */
snprintf(name, sizeof(name), "queInfo");
if (!phba->idiag_que_info) {
phba->idiag_que_info =
debugfs_create_file(name, S_IFREG|S_IRUGO,
phba->idiag_root, phba, &lpfc_idiag_op_queInfo);
}
/* iDiag access PCI function queue */
snprintf(name, sizeof(name), "queAcc");
if (!phba->idiag_que_acc) {
phba->idiag_que_acc =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->idiag_root, phba, &lpfc_idiag_op_queAcc);
}
/* iDiag access PCI function doorbell registers */
snprintf(name, sizeof(name), "drbAcc");
if (!phba->idiag_drb_acc) {
phba->idiag_drb_acc =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->idiag_root, phba, &lpfc_idiag_op_drbAcc);
}
/* iDiag access PCI function control registers */
snprintf(name, sizeof(name), "ctlAcc");
if (!phba->idiag_ctl_acc) {
phba->idiag_ctl_acc =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->idiag_root, phba, &lpfc_idiag_op_ctlAcc);
}
/* iDiag access mbox commands */
snprintf(name, sizeof(name), "mbxAcc");
if (!phba->idiag_mbx_acc) {
phba->idiag_mbx_acc =
debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR,
phba->idiag_root, phba, &lpfc_idiag_op_mbxAcc);
}
/* iDiag extents access commands */
if (phba->sli4_hba.extents_in_use) {
snprintf(name, sizeof(name), "extAcc");
if (!phba->idiag_ext_acc) {
phba->idiag_ext_acc =
debugfs_create_file(name,
S_IFREG|S_IRUGO|S_IWUSR,
phba->idiag_root, phba,
&lpfc_idiag_op_extAcc);
}
}
debug_failed:
return;
#endif
}
/**
* lpfc_debugfs_terminate - Tear down debugfs infrastructure for this vport
* @vport: The vport pointer to remove from debugfs.
*
* Description:
* When Debugfs is configured this routine removes debugfs file system elements
* that are specific to this vport. It also checks to see if there are any
* users left for the debugfs directories associated with the HBA and driver. If
* this is the last user of the HBA directory or driver directory then it will
* remove those from the debugfs infrastructure as well.
**/
inline void
lpfc_debugfs_terminate(struct lpfc_vport *vport)
{
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
struct lpfc_hba *phba = vport->phba;
kfree(vport->disc_trc);
vport->disc_trc = NULL;
debugfs_remove(vport->debug_disc_trc); /* discovery_trace */
vport->debug_disc_trc = NULL;
debugfs_remove(vport->debug_nodelist); /* nodelist */
vport->debug_nodelist = NULL;
debugfs_remove(vport->debug_nvmestat); /* nvmestat */
vport->debug_nvmestat = NULL;
debugfs_remove(vport->debug_scsistat); /* scsistat */
vport->debug_scsistat = NULL;
debugfs_remove(vport->debug_ioktime); /* ioktime */
vport->debug_ioktime = NULL;
debugfs_remove(vport->debug_hdwqstat); /* hdwqstat */
vport->debug_hdwqstat = NULL;
if (vport->vport_debugfs_root) {
debugfs_remove(vport->vport_debugfs_root); /* vportX */
vport->vport_debugfs_root = NULL;
atomic_dec(&phba->debugfs_vport_count);
}
if (atomic_read(&phba->debugfs_vport_count) == 0) {
debugfs_remove(phba->debug_multixri_pools); /* multixripools*/
phba->debug_multixri_pools = NULL;
debugfs_remove(phba->debug_hbqinfo); /* hbqinfo */
phba->debug_hbqinfo = NULL;
debugfs_remove(phba->debug_ras_log);
phba->debug_ras_log = NULL;
#ifdef LPFC_HDWQ_LOCK_STAT
debugfs_remove(phba->debug_lockstat); /* lockstat */
phba->debug_lockstat = NULL;
#endif
debugfs_remove(phba->debug_dumpHBASlim); /* HBASlim */
phba->debug_dumpHBASlim = NULL;
debugfs_remove(phba->debug_dumpHostSlim); /* HostSlim */
phba->debug_dumpHostSlim = NULL;
debugfs_remove(phba->debug_InjErrLBA); /* InjErrLBA */
phba->debug_InjErrLBA = NULL;
debugfs_remove(phba->debug_InjErrNPortID);
phba->debug_InjErrNPortID = NULL;
debugfs_remove(phba->debug_InjErrWWPN); /* InjErrWWPN */
phba->debug_InjErrWWPN = NULL;
debugfs_remove(phba->debug_writeGuard); /* writeGuard */
phba->debug_writeGuard = NULL;
debugfs_remove(phba->debug_writeApp); /* writeApp */
phba->debug_writeApp = NULL;
debugfs_remove(phba->debug_writeRef); /* writeRef */
phba->debug_writeRef = NULL;
debugfs_remove(phba->debug_readGuard); /* readGuard */
phba->debug_readGuard = NULL;
debugfs_remove(phba->debug_readApp); /* readApp */
phba->debug_readApp = NULL;
debugfs_remove(phba->debug_readRef); /* readRef */
phba->debug_readRef = NULL;
kfree(phba->slow_ring_trc);
phba->slow_ring_trc = NULL;
/* slow_ring_trace */
debugfs_remove(phba->debug_slow_ring_trc);
phba->debug_slow_ring_trc = NULL;
debugfs_remove(phba->debug_nvmeio_trc);
phba->debug_nvmeio_trc = NULL;
kfree(phba->nvmeio_trc);
phba->nvmeio_trc = NULL;
/*
* iDiag release
*/
if (phba->sli_rev == LPFC_SLI_REV4) {
/* iDiag extAcc */
debugfs_remove(phba->idiag_ext_acc);
phba->idiag_ext_acc = NULL;
/* iDiag mbxAcc */
debugfs_remove(phba->idiag_mbx_acc);
phba->idiag_mbx_acc = NULL;
/* iDiag ctlAcc */
debugfs_remove(phba->idiag_ctl_acc);
phba->idiag_ctl_acc = NULL;
/* iDiag drbAcc */
debugfs_remove(phba->idiag_drb_acc);
phba->idiag_drb_acc = NULL;
/* iDiag queAcc */
debugfs_remove(phba->idiag_que_acc);
phba->idiag_que_acc = NULL;
/* iDiag queInfo */
debugfs_remove(phba->idiag_que_info);
phba->idiag_que_info = NULL;
/* iDiag barAcc */
debugfs_remove(phba->idiag_bar_acc);
phba->idiag_bar_acc = NULL;
/* iDiag pciCfg */
debugfs_remove(phba->idiag_pci_cfg);
phba->idiag_pci_cfg = NULL;
/* Finally remove the iDiag debugfs root */
debugfs_remove(phba->idiag_root);
phba->idiag_root = NULL;
}
if (phba->hba_debugfs_root) {
debugfs_remove(phba->hba_debugfs_root); /* fnX */
phba->hba_debugfs_root = NULL;
atomic_dec(&lpfc_debugfs_hba_count);
}
if (atomic_read(&lpfc_debugfs_hba_count) == 0) {
debugfs_remove(lpfc_debugfs_root); /* lpfc */
lpfc_debugfs_root = NULL;
}
}
#endif
return;
}
/*
* Driver debug utility routines outside of debugfs. The debug utility
* routines implemented here is intended to be used in the instrumented
* debug driver for debugging host or port issues.
*/
/**
* lpfc_debug_dump_all_queues - dump all the queues with a hba
* @phba: Pointer to HBA context object.
*
* This function dumps entries of all the queues asociated with the @phba.
**/
void
lpfc_debug_dump_all_queues(struct lpfc_hba *phba)
{
int idx;
/*
* Dump Work Queues (WQs)
*/
lpfc_debug_dump_wq(phba, DUMP_MBX, 0);
lpfc_debug_dump_wq(phba, DUMP_ELS, 0);
lpfc_debug_dump_wq(phba, DUMP_NVMELS, 0);
for (idx = 0; idx < phba->cfg_hdw_queue; idx++)
lpfc_debug_dump_wq(phba, DUMP_IO, idx);
lpfc_debug_dump_hdr_rq(phba);
lpfc_debug_dump_dat_rq(phba);
/*
* Dump Complete Queues (CQs)
*/
lpfc_debug_dump_cq(phba, DUMP_MBX, 0);
lpfc_debug_dump_cq(phba, DUMP_ELS, 0);
lpfc_debug_dump_cq(phba, DUMP_NVMELS, 0);
for (idx = 0; idx < phba->cfg_hdw_queue; idx++)
lpfc_debug_dump_cq(phba, DUMP_IO, idx);
/*
* Dump Event Queues (EQs)
*/
for (idx = 0; idx < phba->cfg_hdw_queue; idx++)
lpfc_debug_dump_hba_eq(phba, idx);
}