OpenCloudOS-Kernel/drivers/spi/spi-hisi-kunpeng.c

506 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
//
// HiSilicon SPI Controller Driver for Kunpeng SoCs
//
// Copyright (c) 2021 HiSilicon Technologies Co., Ltd.
// Author: Jay Fang <f.fangjian@huawei.com>
//
// This code is based on spi-dw-core.c.
#include <linux/acpi.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
/* Register offsets */
#define HISI_SPI_CSCR 0x00 /* cs control register */
#define HISI_SPI_CR 0x04 /* spi common control register */
#define HISI_SPI_ENR 0x08 /* spi enable register */
#define HISI_SPI_FIFOC 0x0c /* fifo level control register */
#define HISI_SPI_IMR 0x10 /* interrupt mask register */
#define HISI_SPI_DIN 0x14 /* data in register */
#define HISI_SPI_DOUT 0x18 /* data out register */
#define HISI_SPI_SR 0x1c /* status register */
#define HISI_SPI_RISR 0x20 /* raw interrupt status register */
#define HISI_SPI_ISR 0x24 /* interrupt status register */
#define HISI_SPI_ICR 0x28 /* interrupt clear register */
#define HISI_SPI_VERSION 0xe0 /* version register */
/* Bit fields in HISI_SPI_CR */
#define CR_LOOP_MASK GENMASK(1, 1)
#define CR_CPOL_MASK GENMASK(2, 2)
#define CR_CPHA_MASK GENMASK(3, 3)
#define CR_DIV_PRE_MASK GENMASK(11, 4)
#define CR_DIV_POST_MASK GENMASK(19, 12)
#define CR_BPW_MASK GENMASK(24, 20)
#define CR_SPD_MODE_MASK GENMASK(25, 25)
/* Bit fields in HISI_SPI_FIFOC */
#define FIFOC_TX_MASK GENMASK(5, 3)
#define FIFOC_RX_MASK GENMASK(11, 9)
/* Bit fields in HISI_SPI_IMR, 4 bits */
#define IMR_RXOF BIT(0) /* Receive Overflow */
#define IMR_RXTO BIT(1) /* Receive Timeout */
#define IMR_RX BIT(2) /* Receive */
#define IMR_TX BIT(3) /* Transmit */
#define IMR_MASK (IMR_RXOF | IMR_RXTO | IMR_RX | IMR_TX)
/* Bit fields in HISI_SPI_SR, 5 bits */
#define SR_TXE BIT(0) /* Transmit FIFO empty */
#define SR_TXNF BIT(1) /* Transmit FIFO not full */
#define SR_RXNE BIT(2) /* Receive FIFO not empty */
#define SR_RXF BIT(3) /* Receive FIFO full */
#define SR_BUSY BIT(4) /* Busy Flag */
/* Bit fields in HISI_SPI_ISR, 4 bits */
#define ISR_RXOF BIT(0) /* Receive Overflow */
#define ISR_RXTO BIT(1) /* Receive Timeout */
#define ISR_RX BIT(2) /* Receive */
#define ISR_TX BIT(3) /* Transmit */
#define ISR_MASK (ISR_RXOF | ISR_RXTO | ISR_RX | ISR_TX)
/* Bit fields in HISI_SPI_ICR, 2 bits */
#define ICR_RXOF BIT(0) /* Receive Overflow */
#define ICR_RXTO BIT(1) /* Receive Timeout */
#define ICR_MASK (ICR_RXOF | ICR_RXTO)
#define DIV_POST_MAX 0xFF
#define DIV_POST_MIN 0x00
#define DIV_PRE_MAX 0xFE
#define DIV_PRE_MIN 0x02
#define CLK_DIV_MAX ((1 + DIV_POST_MAX) * DIV_PRE_MAX)
#define CLK_DIV_MIN ((1 + DIV_POST_MIN) * DIV_PRE_MIN)
#define DEFAULT_NUM_CS 1
#define HISI_SPI_WAIT_TIMEOUT_MS 10UL
enum hisi_spi_rx_level_trig {
HISI_SPI_RX_1,
HISI_SPI_RX_4,
HISI_SPI_RX_8,
HISI_SPI_RX_16,
HISI_SPI_RX_32,
HISI_SPI_RX_64,
HISI_SPI_RX_128
};
enum hisi_spi_tx_level_trig {
HISI_SPI_TX_1_OR_LESS,
HISI_SPI_TX_4_OR_LESS,
HISI_SPI_TX_8_OR_LESS,
HISI_SPI_TX_16_OR_LESS,
HISI_SPI_TX_32_OR_LESS,
HISI_SPI_TX_64_OR_LESS,
HISI_SPI_TX_128_OR_LESS
};
enum hisi_spi_frame_n_bytes {
HISI_SPI_N_BYTES_NULL,
HISI_SPI_N_BYTES_U8,
HISI_SPI_N_BYTES_U16,
HISI_SPI_N_BYTES_U32 = 4
};
/* Slave spi_dev related */
struct hisi_chip_data {
u32 cr;
u32 speed_hz; /* baud rate */
u16 clk_div; /* baud rate divider */
/* clk_div = (1 + div_post) * div_pre */
u8 div_post; /* value from 0 to 255 */
u8 div_pre; /* value from 2 to 254 (even only!) */
};
struct hisi_spi {
struct device *dev;
void __iomem *regs;
int irq;
u32 fifo_len; /* depth of the FIFO buffer */
/* Current message transfer state info */
const void *tx;
unsigned int tx_len;
void *rx;
unsigned int rx_len;
u8 n_bytes; /* current is a 1/2/4 bytes op */
};
static u32 hisi_spi_busy(struct hisi_spi *hs)
{
return readl(hs->regs + HISI_SPI_SR) & SR_BUSY;
}
static u32 hisi_spi_rx_not_empty(struct hisi_spi *hs)
{
return readl(hs->regs + HISI_SPI_SR) & SR_RXNE;
}
static u32 hisi_spi_tx_not_full(struct hisi_spi *hs)
{
return readl(hs->regs + HISI_SPI_SR) & SR_TXNF;
}
static void hisi_spi_flush_fifo(struct hisi_spi *hs)
{
unsigned long limit = loops_per_jiffy << 1;
do {
while (hisi_spi_rx_not_empty(hs))
readl(hs->regs + HISI_SPI_DOUT);
} while (hisi_spi_busy(hs) && limit--);
}
/* Disable the controller and all interrupts */
static void hisi_spi_disable(struct hisi_spi *hs)
{
writel(0, hs->regs + HISI_SPI_ENR);
writel(IMR_MASK, hs->regs + HISI_SPI_IMR);
writel(ICR_MASK, hs->regs + HISI_SPI_ICR);
}
static u8 hisi_spi_n_bytes(struct spi_transfer *transfer)
{
if (transfer->bits_per_word <= 8)
return HISI_SPI_N_BYTES_U8;
else if (transfer->bits_per_word <= 16)
return HISI_SPI_N_BYTES_U16;
else
return HISI_SPI_N_BYTES_U32;
}
static void hisi_spi_reader(struct hisi_spi *hs)
{
u32 max = min_t(u32, hs->rx_len, hs->fifo_len);
u32 rxw;
while (hisi_spi_rx_not_empty(hs) && max--) {
rxw = readl(hs->regs + HISI_SPI_DOUT);
/* Check the transfer's original "rx" is not null */
if (hs->rx) {
switch (hs->n_bytes) {
case HISI_SPI_N_BYTES_U8:
*(u8 *)(hs->rx) = rxw;
break;
case HISI_SPI_N_BYTES_U16:
*(u16 *)(hs->rx) = rxw;
break;
case HISI_SPI_N_BYTES_U32:
*(u32 *)(hs->rx) = rxw;
break;
}
hs->rx += hs->n_bytes;
}
--hs->rx_len;
}
}
static void hisi_spi_writer(struct hisi_spi *hs)
{
u32 max = min_t(u32, hs->tx_len, hs->fifo_len);
u32 txw = 0;
while (hisi_spi_tx_not_full(hs) && max--) {
/* Check the transfer's original "tx" is not null */
if (hs->tx) {
switch (hs->n_bytes) {
case HISI_SPI_N_BYTES_U8:
txw = *(u8 *)(hs->tx);
break;
case HISI_SPI_N_BYTES_U16:
txw = *(u16 *)(hs->tx);
break;
case HISI_SPI_N_BYTES_U32:
txw = *(u32 *)(hs->tx);
break;
}
hs->tx += hs->n_bytes;
}
writel(txw, hs->regs + HISI_SPI_DIN);
--hs->tx_len;
}
}
static void __hisi_calc_div_reg(struct hisi_chip_data *chip)
{
chip->div_pre = DIV_PRE_MAX;
while (chip->div_pre >= DIV_PRE_MIN) {
if (chip->clk_div % chip->div_pre == 0)
break;
chip->div_pre -= 2;
}
if (chip->div_pre > chip->clk_div)
chip->div_pre = chip->clk_div;
chip->div_post = (chip->clk_div / chip->div_pre) - 1;
}
static u32 hisi_calc_effective_speed(struct spi_controller *master,
struct hisi_chip_data *chip, u32 speed_hz)
{
u32 effective_speed;
/* Note clock divider doesn't support odd numbers */
chip->clk_div = DIV_ROUND_UP(master->max_speed_hz, speed_hz) + 1;
chip->clk_div &= 0xfffe;
if (chip->clk_div > CLK_DIV_MAX)
chip->clk_div = CLK_DIV_MAX;
effective_speed = master->max_speed_hz / chip->clk_div;
if (chip->speed_hz != effective_speed) {
__hisi_calc_div_reg(chip);
chip->speed_hz = effective_speed;
}
return effective_speed;
}
static u32 hisi_spi_prepare_cr(struct spi_device *spi)
{
u32 cr = FIELD_PREP(CR_SPD_MODE_MASK, 1);
cr |= FIELD_PREP(CR_CPHA_MASK, (spi->mode & SPI_CPHA) ? 1 : 0);
cr |= FIELD_PREP(CR_CPOL_MASK, (spi->mode & SPI_CPOL) ? 1 : 0);
cr |= FIELD_PREP(CR_LOOP_MASK, (spi->mode & SPI_LOOP) ? 1 : 0);
return cr;
}
static void hisi_spi_hw_init(struct hisi_spi *hs)
{
hisi_spi_disable(hs);
/* FIFO default config */
writel(FIELD_PREP(FIFOC_TX_MASK, HISI_SPI_TX_64_OR_LESS) |
FIELD_PREP(FIFOC_RX_MASK, HISI_SPI_RX_16),
hs->regs + HISI_SPI_FIFOC);
hs->fifo_len = 256;
}
static irqreturn_t hisi_spi_irq(int irq, void *dev_id)
{
struct spi_controller *master = dev_id;
struct hisi_spi *hs = spi_controller_get_devdata(master);
u32 irq_status = readl(hs->regs + HISI_SPI_ISR) & ISR_MASK;
if (!irq_status)
return IRQ_NONE;
if (!master->cur_msg)
return IRQ_HANDLED;
/* Error handling */
if (irq_status & ISR_RXOF) {
dev_err(hs->dev, "interrupt_transfer: fifo overflow\n");
master->cur_msg->status = -EIO;
goto finalize_transfer;
}
/*
* Read data from the Rx FIFO every time. If there is
* nothing left to receive, finalize the transfer.
*/
hisi_spi_reader(hs);
if (!hs->rx_len)
goto finalize_transfer;
/* Send data out when Tx FIFO IRQ triggered */
if (irq_status & ISR_TX)
hisi_spi_writer(hs);
return IRQ_HANDLED;
finalize_transfer:
hisi_spi_disable(hs);
spi_finalize_current_transfer(master);
return IRQ_HANDLED;
}
static int hisi_spi_transfer_one(struct spi_controller *master,
struct spi_device *spi, struct spi_transfer *transfer)
{
struct hisi_spi *hs = spi_controller_get_devdata(master);
struct hisi_chip_data *chip = spi_get_ctldata(spi);
u32 cr = chip->cr;
/* Update per transfer options for speed and bpw */
transfer->effective_speed_hz =
hisi_calc_effective_speed(master, chip, transfer->speed_hz);
cr |= FIELD_PREP(CR_DIV_PRE_MASK, chip->div_pre);
cr |= FIELD_PREP(CR_DIV_POST_MASK, chip->div_post);
cr |= FIELD_PREP(CR_BPW_MASK, transfer->bits_per_word - 1);
writel(cr, hs->regs + HISI_SPI_CR);
hisi_spi_flush_fifo(hs);
hs->n_bytes = hisi_spi_n_bytes(transfer);
hs->tx = transfer->tx_buf;
hs->tx_len = transfer->len / hs->n_bytes;
hs->rx = transfer->rx_buf;
hs->rx_len = hs->tx_len;
/*
* Ensure that the transfer data above has been updated
* before the interrupt to start.
*/
smp_mb();
/* Enable all interrupts and the controller */
writel(~(u32)IMR_MASK, hs->regs + HISI_SPI_IMR);
writel(1, hs->regs + HISI_SPI_ENR);
return 1;
}
static void hisi_spi_handle_err(struct spi_controller *master,
struct spi_message *msg)
{
struct hisi_spi *hs = spi_controller_get_devdata(master);
hisi_spi_disable(hs);
/*
* Wait for interrupt handler that is
* already in timeout to complete.
*/
msleep(HISI_SPI_WAIT_TIMEOUT_MS);
}
static int hisi_spi_setup(struct spi_device *spi)
{
struct hisi_chip_data *chip;
/* Only alloc on first setup */
chip = spi_get_ctldata(spi);
if (!chip) {
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
spi_set_ctldata(spi, chip);
}
chip->cr = hisi_spi_prepare_cr(spi);
return 0;
}
static void hisi_spi_cleanup(struct spi_device *spi)
{
struct hisi_chip_data *chip = spi_get_ctldata(spi);
kfree(chip);
spi_set_ctldata(spi, NULL);
}
static int hisi_spi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct spi_controller *master;
struct hisi_spi *hs;
int ret, irq;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
master = devm_spi_alloc_master(dev, sizeof(*hs));
if (!master)
return -ENOMEM;
platform_set_drvdata(pdev, master);
hs = spi_controller_get_devdata(master);
hs->dev = dev;
hs->irq = irq;
hs->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(hs->regs))
return PTR_ERR(hs->regs);
/* Specify maximum SPI clocking speed (master only) by firmware */
ret = device_property_read_u32(dev, "spi-max-frequency",
&master->max_speed_hz);
if (ret) {
dev_err(dev, "failed to get max SPI clocking speed, ret=%d\n",
ret);
return -EINVAL;
}
ret = device_property_read_u16(dev, "num-cs",
&master->num_chipselect);
if (ret)
master->num_chipselect = DEFAULT_NUM_CS;
master->use_gpio_descriptors = true;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
master->bus_num = pdev->id;
master->setup = hisi_spi_setup;
master->cleanup = hisi_spi_cleanup;
master->transfer_one = hisi_spi_transfer_one;
master->handle_err = hisi_spi_handle_err;
master->dev.fwnode = dev->fwnode;
hisi_spi_hw_init(hs);
ret = devm_request_irq(dev, hs->irq, hisi_spi_irq, 0, dev_name(dev),
master);
if (ret < 0) {
dev_err(dev, "failed to get IRQ=%d, ret=%d\n", hs->irq, ret);
return ret;
}
ret = spi_register_controller(master);
if (ret) {
dev_err(dev, "failed to register spi master, ret=%d\n", ret);
return ret;
}
dev_info(dev, "hw version:0x%x max-freq:%u kHz\n",
readl(hs->regs + HISI_SPI_VERSION),
master->max_speed_hz / 1000);
return 0;
}
static int hisi_spi_remove(struct platform_device *pdev)
{
struct spi_controller *master = platform_get_drvdata(pdev);
spi_unregister_controller(master);
return 0;
}
static const struct acpi_device_id hisi_spi_acpi_match[] = {
{"HISI03E1", 0},
{}
};
MODULE_DEVICE_TABLE(acpi, hisi_spi_acpi_match);
static struct platform_driver hisi_spi_driver = {
.probe = hisi_spi_probe,
.remove = hisi_spi_remove,
.driver = {
.name = "hisi-kunpeng-spi",
.acpi_match_table = hisi_spi_acpi_match,
},
};
module_platform_driver(hisi_spi_driver);
MODULE_AUTHOR("Jay Fang <f.fangjian@huawei.com>");
MODULE_DESCRIPTION("HiSilicon SPI Controller Driver for Kunpeng SoCs");
MODULE_LICENSE("GPL v2");