OpenCloudOS-Kernel/drivers/remoteproc/stm32_rproc.c

965 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2018 - All Rights Reserved
* Authors: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics.
* Fabien Dessenne <fabien.dessenne@st.com> for STMicroelectronics.
*/
#include <linux/arm-smccc.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mailbox_client.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_reserved_mem.h>
#include <linux/platform_device.h>
#include <linux/pm_wakeirq.h>
#include <linux/regmap.h>
#include <linux/remoteproc.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include "remoteproc_internal.h"
#define HOLD_BOOT 0
#define RELEASE_BOOT 1
#define MBOX_NB_VQ 2
#define MBOX_NB_MBX 4
#define STM32_SMC_RCC 0x82001000
#define STM32_SMC_REG_WRITE 0x1
#define STM32_MBX_VQ0 "vq0"
#define STM32_MBX_VQ0_ID 0
#define STM32_MBX_VQ1 "vq1"
#define STM32_MBX_VQ1_ID 1
#define STM32_MBX_SHUTDOWN "shutdown"
#define STM32_MBX_DETACH "detach"
#define RSC_TBL_SIZE 1024
#define M4_STATE_OFF 0
#define M4_STATE_INI 1
#define M4_STATE_CRUN 2
#define M4_STATE_CSTOP 3
#define M4_STATE_STANDBY 4
#define M4_STATE_CRASH 5
struct stm32_syscon {
struct regmap *map;
u32 reg;
u32 mask;
};
struct stm32_rproc_mem {
char name[20];
void __iomem *cpu_addr;
phys_addr_t bus_addr;
u32 dev_addr;
size_t size;
};
struct stm32_rproc_mem_ranges {
u32 dev_addr;
u32 bus_addr;
u32 size;
};
struct stm32_mbox {
const unsigned char name[10];
struct mbox_chan *chan;
struct mbox_client client;
struct work_struct vq_work;
int vq_id;
};
struct stm32_rproc {
struct reset_control *rst;
struct reset_control *hold_boot_rst;
struct stm32_syscon hold_boot;
struct stm32_syscon pdds;
struct stm32_syscon m4_state;
struct stm32_syscon rsctbl;
int wdg_irq;
u32 nb_rmems;
struct stm32_rproc_mem *rmems;
struct stm32_mbox mb[MBOX_NB_MBX];
struct workqueue_struct *workqueue;
bool hold_boot_smc;
void __iomem *rsc_va;
};
static int stm32_rproc_pa_to_da(struct rproc *rproc, phys_addr_t pa, u64 *da)
{
unsigned int i;
struct stm32_rproc *ddata = rproc->priv;
struct stm32_rproc_mem *p_mem;
for (i = 0; i < ddata->nb_rmems; i++) {
p_mem = &ddata->rmems[i];
if (pa < p_mem->bus_addr ||
pa >= p_mem->bus_addr + p_mem->size)
continue;
*da = pa - p_mem->bus_addr + p_mem->dev_addr;
dev_dbg(rproc->dev.parent, "pa %pa to da %llx\n", &pa, *da);
return 0;
}
return -EINVAL;
}
static int stm32_rproc_mem_alloc(struct rproc *rproc,
struct rproc_mem_entry *mem)
{
struct device *dev = rproc->dev.parent;
void *va;
dev_dbg(dev, "map memory: %pad+%zx\n", &mem->dma, mem->len);
va = ioremap_wc(mem->dma, mem->len);
if (IS_ERR_OR_NULL(va)) {
dev_err(dev, "Unable to map memory region: %pad+0x%zx\n",
&mem->dma, mem->len);
return -ENOMEM;
}
/* Update memory entry va */
mem->va = va;
return 0;
}
static int stm32_rproc_mem_release(struct rproc *rproc,
struct rproc_mem_entry *mem)
{
dev_dbg(rproc->dev.parent, "unmap memory: %pa\n", &mem->dma);
iounmap(mem->va);
return 0;
}
static int stm32_rproc_of_memory_translations(struct platform_device *pdev,
struct stm32_rproc *ddata)
{
struct device *parent, *dev = &pdev->dev;
struct device_node *np;
struct stm32_rproc_mem *p_mems;
struct stm32_rproc_mem_ranges *mem_range;
int cnt, array_size, i, ret = 0;
parent = dev->parent;
np = parent->of_node;
cnt = of_property_count_elems_of_size(np, "dma-ranges",
sizeof(*mem_range));
if (cnt <= 0) {
dev_err(dev, "%s: dma-ranges property not defined\n", __func__);
return -EINVAL;
}
p_mems = devm_kcalloc(dev, cnt, sizeof(*p_mems), GFP_KERNEL);
if (!p_mems)
return -ENOMEM;
mem_range = kcalloc(cnt, sizeof(*mem_range), GFP_KERNEL);
if (!mem_range)
return -ENOMEM;
array_size = cnt * sizeof(struct stm32_rproc_mem_ranges) / sizeof(u32);
ret = of_property_read_u32_array(np, "dma-ranges",
(u32 *)mem_range, array_size);
if (ret) {
dev_err(dev, "error while get dma-ranges property: %x\n", ret);
goto free_mem;
}
for (i = 0; i < cnt; i++) {
p_mems[i].bus_addr = mem_range[i].bus_addr;
p_mems[i].dev_addr = mem_range[i].dev_addr;
p_mems[i].size = mem_range[i].size;
dev_dbg(dev, "memory range[%i]: da %#x, pa %pa, size %#zx:\n",
i, p_mems[i].dev_addr, &p_mems[i].bus_addr,
p_mems[i].size);
}
ddata->rmems = p_mems;
ddata->nb_rmems = cnt;
free_mem:
kfree(mem_range);
return ret;
}
static int stm32_rproc_mbox_idx(struct rproc *rproc, const unsigned char *name)
{
struct stm32_rproc *ddata = rproc->priv;
int i;
for (i = 0; i < ARRAY_SIZE(ddata->mb); i++) {
if (!strncmp(ddata->mb[i].name, name, strlen(name)))
return i;
}
dev_err(&rproc->dev, "mailbox %s not found\n", name);
return -EINVAL;
}
static int stm32_rproc_prepare(struct rproc *rproc)
{
struct device *dev = rproc->dev.parent;
struct device_node *np = dev->of_node;
struct of_phandle_iterator it;
struct rproc_mem_entry *mem;
struct reserved_mem *rmem;
u64 da;
int index = 0;
/* Register associated reserved memory regions */
of_phandle_iterator_init(&it, np, "memory-region", NULL, 0);
while (of_phandle_iterator_next(&it) == 0) {
rmem = of_reserved_mem_lookup(it.node);
if (!rmem) {
of_node_put(it.node);
dev_err(dev, "unable to acquire memory-region\n");
return -EINVAL;
}
if (stm32_rproc_pa_to_da(rproc, rmem->base, &da) < 0) {
of_node_put(it.node);
dev_err(dev, "memory region not valid %pa\n",
&rmem->base);
return -EINVAL;
}
/* No need to map vdev buffer */
if (strcmp(it.node->name, "vdev0buffer")) {
/* Register memory region */
mem = rproc_mem_entry_init(dev, NULL,
(dma_addr_t)rmem->base,
rmem->size, da,
stm32_rproc_mem_alloc,
stm32_rproc_mem_release,
it.node->name);
if (mem)
rproc_coredump_add_segment(rproc, da,
rmem->size);
} else {
/* Register reserved memory for vdev buffer alloc */
mem = rproc_of_resm_mem_entry_init(dev, index,
rmem->size,
rmem->base,
it.node->name);
}
if (!mem) {
of_node_put(it.node);
return -ENOMEM;
}
rproc_add_carveout(rproc, mem);
index++;
}
return 0;
}
static int stm32_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
{
if (rproc_elf_load_rsc_table(rproc, fw))
dev_warn(&rproc->dev, "no resource table found for this firmware\n");
return 0;
}
static irqreturn_t stm32_rproc_wdg(int irq, void *data)
{
struct platform_device *pdev = data;
struct rproc *rproc = platform_get_drvdata(pdev);
rproc_report_crash(rproc, RPROC_WATCHDOG);
return IRQ_HANDLED;
}
static void stm32_rproc_mb_vq_work(struct work_struct *work)
{
struct stm32_mbox *mb = container_of(work, struct stm32_mbox, vq_work);
struct rproc *rproc = dev_get_drvdata(mb->client.dev);
mutex_lock(&rproc->lock);
if (rproc->state != RPROC_RUNNING)
goto unlock_mutex;
if (rproc_vq_interrupt(rproc, mb->vq_id) == IRQ_NONE)
dev_dbg(&rproc->dev, "no message found in vq%d\n", mb->vq_id);
unlock_mutex:
mutex_unlock(&rproc->lock);
}
static void stm32_rproc_mb_callback(struct mbox_client *cl, void *data)
{
struct rproc *rproc = dev_get_drvdata(cl->dev);
struct stm32_mbox *mb = container_of(cl, struct stm32_mbox, client);
struct stm32_rproc *ddata = rproc->priv;
queue_work(ddata->workqueue, &mb->vq_work);
}
static void stm32_rproc_free_mbox(struct rproc *rproc)
{
struct stm32_rproc *ddata = rproc->priv;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ddata->mb); i++) {
if (ddata->mb[i].chan)
mbox_free_channel(ddata->mb[i].chan);
ddata->mb[i].chan = NULL;
}
}
static const struct stm32_mbox stm32_rproc_mbox[MBOX_NB_MBX] = {
{
.name = STM32_MBX_VQ0,
.vq_id = STM32_MBX_VQ0_ID,
.client = {
.rx_callback = stm32_rproc_mb_callback,
.tx_block = false,
},
},
{
.name = STM32_MBX_VQ1,
.vq_id = STM32_MBX_VQ1_ID,
.client = {
.rx_callback = stm32_rproc_mb_callback,
.tx_block = false,
},
},
{
.name = STM32_MBX_SHUTDOWN,
.vq_id = -1,
.client = {
.tx_block = true,
.tx_done = NULL,
.tx_tout = 500, /* 500 ms time out */
},
},
{
.name = STM32_MBX_DETACH,
.vq_id = -1,
.client = {
.tx_block = true,
.tx_done = NULL,
.tx_tout = 200, /* 200 ms time out to detach should be fair enough */
},
}
};
static int stm32_rproc_request_mbox(struct rproc *rproc)
{
struct stm32_rproc *ddata = rproc->priv;
struct device *dev = &rproc->dev;
unsigned int i;
int j;
const unsigned char *name;
struct mbox_client *cl;
/* Initialise mailbox structure table */
memcpy(ddata->mb, stm32_rproc_mbox, sizeof(stm32_rproc_mbox));
for (i = 0; i < MBOX_NB_MBX; i++) {
name = ddata->mb[i].name;
cl = &ddata->mb[i].client;
cl->dev = dev->parent;
ddata->mb[i].chan = mbox_request_channel_byname(cl, name);
if (IS_ERR(ddata->mb[i].chan)) {
if (PTR_ERR(ddata->mb[i].chan) == -EPROBE_DEFER) {
dev_err_probe(dev->parent,
PTR_ERR(ddata->mb[i].chan),
"failed to request mailbox %s\n",
name);
goto err_probe;
}
dev_warn(dev, "cannot get %s mbox\n", name);
ddata->mb[i].chan = NULL;
}
if (ddata->mb[i].vq_id >= 0) {
INIT_WORK(&ddata->mb[i].vq_work,
stm32_rproc_mb_vq_work);
}
}
return 0;
err_probe:
for (j = i - 1; j >= 0; j--)
if (ddata->mb[j].chan)
mbox_free_channel(ddata->mb[j].chan);
return -EPROBE_DEFER;
}
static int stm32_rproc_set_hold_boot(struct rproc *rproc, bool hold)
{
struct stm32_rproc *ddata = rproc->priv;
struct stm32_syscon hold_boot = ddata->hold_boot;
struct arm_smccc_res smc_res;
int val, err;
/*
* Three ways to manage the hold boot
* - using SCMI: the hold boot is managed as a reset,
* - using Linux(no SCMI): the hold boot is managed as a syscon register
* - using SMC call (deprecated): use SMC reset interface
*/
val = hold ? HOLD_BOOT : RELEASE_BOOT;
if (ddata->hold_boot_rst) {
/* Use the SCMI reset controller */
if (!hold)
err = reset_control_deassert(ddata->hold_boot_rst);
else
err = reset_control_assert(ddata->hold_boot_rst);
} else if (IS_ENABLED(CONFIG_HAVE_ARM_SMCCC) && ddata->hold_boot_smc) {
/* Use the SMC call */
arm_smccc_smc(STM32_SMC_RCC, STM32_SMC_REG_WRITE,
hold_boot.reg, val, 0, 0, 0, 0, &smc_res);
err = smc_res.a0;
} else {
/* Use syscon */
err = regmap_update_bits(hold_boot.map, hold_boot.reg,
hold_boot.mask, val);
}
if (err)
dev_err(&rproc->dev, "failed to set hold boot\n");
return err;
}
static void stm32_rproc_add_coredump_trace(struct rproc *rproc)
{
struct rproc_debug_trace *trace;
struct rproc_dump_segment *segment;
bool already_added;
list_for_each_entry(trace, &rproc->traces, node) {
already_added = false;
list_for_each_entry(segment, &rproc->dump_segments, node) {
if (segment->da == trace->trace_mem.da) {
already_added = true;
break;
}
}
if (!already_added)
rproc_coredump_add_segment(rproc, trace->trace_mem.da,
trace->trace_mem.len);
}
}
static int stm32_rproc_start(struct rproc *rproc)
{
struct stm32_rproc *ddata = rproc->priv;
int err;
stm32_rproc_add_coredump_trace(rproc);
/* clear remote proc Deep Sleep */
if (ddata->pdds.map) {
err = regmap_update_bits(ddata->pdds.map, ddata->pdds.reg,
ddata->pdds.mask, 0);
if (err) {
dev_err(&rproc->dev, "failed to clear pdds\n");
return err;
}
}
err = stm32_rproc_set_hold_boot(rproc, false);
if (err)
return err;
return stm32_rproc_set_hold_boot(rproc, true);
}
static int stm32_rproc_attach(struct rproc *rproc)
{
stm32_rproc_add_coredump_trace(rproc);
return stm32_rproc_set_hold_boot(rproc, true);
}
static int stm32_rproc_detach(struct rproc *rproc)
{
struct stm32_rproc *ddata = rproc->priv;
int err, idx;
/* Inform the remote processor of the detach */
idx = stm32_rproc_mbox_idx(rproc, STM32_MBX_DETACH);
if (idx >= 0 && ddata->mb[idx].chan) {
err = mbox_send_message(ddata->mb[idx].chan, "stop");
if (err < 0)
dev_warn(&rproc->dev, "warning: remote FW detach without ack\n");
}
/* Allow remote processor to auto-reboot */
return stm32_rproc_set_hold_boot(rproc, false);
}
static int stm32_rproc_stop(struct rproc *rproc)
{
struct stm32_rproc *ddata = rproc->priv;
int err, idx;
/* request shutdown of the remote processor */
if (rproc->state != RPROC_OFFLINE && rproc->state != RPROC_CRASHED) {
idx = stm32_rproc_mbox_idx(rproc, STM32_MBX_SHUTDOWN);
if (idx >= 0 && ddata->mb[idx].chan) {
err = mbox_send_message(ddata->mb[idx].chan, "detach");
if (err < 0)
dev_warn(&rproc->dev, "warning: remote FW shutdown without ack\n");
}
}
err = stm32_rproc_set_hold_boot(rproc, true);
if (err)
return err;
err = reset_control_assert(ddata->rst);
if (err) {
dev_err(&rproc->dev, "failed to assert the reset\n");
return err;
}
/* to allow platform Standby power mode, set remote proc Deep Sleep */
if (ddata->pdds.map) {
err = regmap_update_bits(ddata->pdds.map, ddata->pdds.reg,
ddata->pdds.mask, 1);
if (err) {
dev_err(&rproc->dev, "failed to set pdds\n");
return err;
}
}
/* update coprocessor state to OFF if available */
if (ddata->m4_state.map) {
err = regmap_update_bits(ddata->m4_state.map,
ddata->m4_state.reg,
ddata->m4_state.mask,
M4_STATE_OFF);
if (err) {
dev_err(&rproc->dev, "failed to set copro state\n");
return err;
}
}
return 0;
}
static void stm32_rproc_kick(struct rproc *rproc, int vqid)
{
struct stm32_rproc *ddata = rproc->priv;
unsigned int i;
int err;
if (WARN_ON(vqid >= MBOX_NB_VQ))
return;
for (i = 0; i < MBOX_NB_MBX; i++) {
if (vqid != ddata->mb[i].vq_id)
continue;
if (!ddata->mb[i].chan)
return;
err = mbox_send_message(ddata->mb[i].chan, "kick");
if (err < 0)
dev_err(&rproc->dev, "%s: failed (%s, err:%d)\n",
__func__, ddata->mb[i].name, err);
return;
}
}
static int stm32_rproc_da_to_pa(struct rproc *rproc,
u64 da, phys_addr_t *pa)
{
struct stm32_rproc *ddata = rproc->priv;
struct device *dev = rproc->dev.parent;
struct stm32_rproc_mem *p_mem;
unsigned int i;
for (i = 0; i < ddata->nb_rmems; i++) {
p_mem = &ddata->rmems[i];
if (da < p_mem->dev_addr ||
da >= p_mem->dev_addr + p_mem->size)
continue;
*pa = da - p_mem->dev_addr + p_mem->bus_addr;
dev_dbg(dev, "da %llx to pa %pap\n", da, pa);
return 0;
}
dev_err(dev, "can't translate da %llx\n", da);
return -EINVAL;
}
static struct resource_table *
stm32_rproc_get_loaded_rsc_table(struct rproc *rproc, size_t *table_sz)
{
struct stm32_rproc *ddata = rproc->priv;
struct device *dev = rproc->dev.parent;
phys_addr_t rsc_pa;
u32 rsc_da;
int err;
/* The resource table has already been mapped, nothing to do */
if (ddata->rsc_va)
goto done;
err = regmap_read(ddata->rsctbl.map, ddata->rsctbl.reg, &rsc_da);
if (err) {
dev_err(dev, "failed to read rsc tbl addr\n");
return ERR_PTR(-EINVAL);
}
if (!rsc_da)
/* no rsc table */
return ERR_PTR(-ENOENT);
err = stm32_rproc_da_to_pa(rproc, rsc_da, &rsc_pa);
if (err)
return ERR_PTR(err);
ddata->rsc_va = devm_ioremap_wc(dev, rsc_pa, RSC_TBL_SIZE);
if (IS_ERR_OR_NULL(ddata->rsc_va)) {
dev_err(dev, "Unable to map memory region: %pa+%x\n",
&rsc_pa, RSC_TBL_SIZE);
ddata->rsc_va = NULL;
return ERR_PTR(-ENOMEM);
}
done:
/*
* Assuming the resource table fits in 1kB is fair.
* Notice for the detach, that this 1 kB memory area has to be reserved in the coprocessor
* firmware for the resource table. On detach, the remoteproc core re-initializes this
* entire area by overwriting it with the initial values stored in rproc->clean_table.
*/
*table_sz = RSC_TBL_SIZE;
return (struct resource_table *)ddata->rsc_va;
}
static const struct rproc_ops st_rproc_ops = {
.prepare = stm32_rproc_prepare,
.start = stm32_rproc_start,
.stop = stm32_rproc_stop,
.attach = stm32_rproc_attach,
.detach = stm32_rproc_detach,
.kick = stm32_rproc_kick,
.load = rproc_elf_load_segments,
.parse_fw = stm32_rproc_parse_fw,
.find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table,
.get_loaded_rsc_table = stm32_rproc_get_loaded_rsc_table,
.sanity_check = rproc_elf_sanity_check,
.get_boot_addr = rproc_elf_get_boot_addr,
};
static const struct of_device_id stm32_rproc_match[] = {
{ .compatible = "st,stm32mp1-m4" },
{},
};
MODULE_DEVICE_TABLE(of, stm32_rproc_match);
static int stm32_rproc_get_syscon(struct device_node *np, const char *prop,
struct stm32_syscon *syscon)
{
int err = 0;
syscon->map = syscon_regmap_lookup_by_phandle(np, prop);
if (IS_ERR(syscon->map)) {
err = PTR_ERR(syscon->map);
syscon->map = NULL;
goto out;
}
err = of_property_read_u32_index(np, prop, 1, &syscon->reg);
if (err)
goto out;
err = of_property_read_u32_index(np, prop, 2, &syscon->mask);
out:
return err;
}
static int stm32_rproc_parse_dt(struct platform_device *pdev,
struct stm32_rproc *ddata, bool *auto_boot)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct stm32_syscon tz;
unsigned int tzen;
int err, irq;
irq = platform_get_irq(pdev, 0);
if (irq == -EPROBE_DEFER)
return dev_err_probe(dev, irq, "failed to get interrupt\n");
if (irq > 0) {
err = devm_request_irq(dev, irq, stm32_rproc_wdg, 0,
dev_name(dev), pdev);
if (err)
return dev_err_probe(dev, err,
"failed to request wdg irq\n");
ddata->wdg_irq = irq;
if (of_property_read_bool(np, "wakeup-source")) {
device_init_wakeup(dev, true);
dev_pm_set_wake_irq(dev, irq);
}
dev_info(dev, "wdg irq registered\n");
}
ddata->rst = devm_reset_control_get_optional(dev, "mcu_rst");
if (!ddata->rst) {
/* Try legacy fallback method: get it by index */
ddata->rst = devm_reset_control_get_by_index(dev, 0);
}
if (IS_ERR(ddata->rst))
return dev_err_probe(dev, PTR_ERR(ddata->rst),
"failed to get mcu_reset\n");
/*
* Three ways to manage the hold boot
* - using SCMI: the hold boot is managed as a reset
* The DT "reset-mames" property should be defined with 2 items:
* reset-names = "mcu_rst", "hold_boot";
* - using SMC call (deprecated): use SMC reset interface
* The DT "reset-mames" property is optional, "st,syscfg-tz" is required
* - default(no SCMI, no SMC): the hold boot is managed as a syscon register
* The DT "reset-mames" property is optional, "st,syscfg-holdboot" is required
*/
ddata->hold_boot_rst = devm_reset_control_get_optional(dev, "hold_boot");
if (IS_ERR(ddata->hold_boot_rst))
return dev_err_probe(dev, PTR_ERR(ddata->hold_boot_rst),
"failed to get hold_boot reset\n");
if (!ddata->hold_boot_rst && IS_ENABLED(CONFIG_HAVE_ARM_SMCCC)) {
/* Manage the MCU_BOOT using SMC call */
err = stm32_rproc_get_syscon(np, "st,syscfg-tz", &tz);
if (!err) {
err = regmap_read(tz.map, tz.reg, &tzen);
if (err) {
dev_err(dev, "failed to read tzen\n");
return err;
}
ddata->hold_boot_smc = tzen & tz.mask;
}
}
if (!ddata->hold_boot_rst && !ddata->hold_boot_smc) {
/* Default: hold boot manage it through the syscon controller */
err = stm32_rproc_get_syscon(np, "st,syscfg-holdboot",
&ddata->hold_boot);
if (err) {
dev_err(dev, "failed to get hold boot\n");
return err;
}
}
err = stm32_rproc_get_syscon(np, "st,syscfg-pdds", &ddata->pdds);
if (err)
dev_info(dev, "failed to get pdds\n");
*auto_boot = of_property_read_bool(np, "st,auto-boot");
/*
* See if we can check the M4 status, i.e if it was started
* from the boot loader or not.
*/
err = stm32_rproc_get_syscon(np, "st,syscfg-m4-state",
&ddata->m4_state);
if (err) {
/* remember this */
ddata->m4_state.map = NULL;
/* no coprocessor state syscon (optional) */
dev_warn(dev, "m4 state not supported\n");
/* no need to go further */
return 0;
}
/* See if we can get the resource table */
err = stm32_rproc_get_syscon(np, "st,syscfg-rsc-tbl",
&ddata->rsctbl);
if (err) {
/* no rsc table syscon (optional) */
dev_warn(dev, "rsc tbl syscon not supported\n");
}
return 0;
}
static int stm32_rproc_get_m4_status(struct stm32_rproc *ddata,
unsigned int *state)
{
/* See stm32_rproc_parse_dt() */
if (!ddata->m4_state.map) {
/*
* We couldn't get the coprocessor's state, assume
* it is not running.
*/
*state = M4_STATE_OFF;
return 0;
}
return regmap_read(ddata->m4_state.map, ddata->m4_state.reg, state);
}
static int stm32_rproc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct stm32_rproc *ddata;
struct device_node *np = dev->of_node;
struct rproc *rproc;
unsigned int state;
int ret;
ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret)
return ret;
rproc = rproc_alloc(dev, np->name, &st_rproc_ops, NULL, sizeof(*ddata));
if (!rproc)
return -ENOMEM;
ddata = rproc->priv;
rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE);
ret = stm32_rproc_parse_dt(pdev, ddata, &rproc->auto_boot);
if (ret)
goto free_rproc;
ret = stm32_rproc_of_memory_translations(pdev, ddata);
if (ret)
goto free_rproc;
ret = stm32_rproc_get_m4_status(ddata, &state);
if (ret)
goto free_rproc;
if (state == M4_STATE_CRUN)
rproc->state = RPROC_DETACHED;
rproc->has_iommu = false;
ddata->workqueue = create_workqueue(dev_name(dev));
if (!ddata->workqueue) {
dev_err(dev, "cannot create workqueue\n");
ret = -ENOMEM;
goto free_resources;
}
platform_set_drvdata(pdev, rproc);
ret = stm32_rproc_request_mbox(rproc);
if (ret)
goto free_wkq;
ret = rproc_add(rproc);
if (ret)
goto free_mb;
return 0;
free_mb:
stm32_rproc_free_mbox(rproc);
free_wkq:
destroy_workqueue(ddata->workqueue);
free_resources:
rproc_resource_cleanup(rproc);
free_rproc:
if (device_may_wakeup(dev)) {
dev_pm_clear_wake_irq(dev);
device_init_wakeup(dev, false);
}
rproc_free(rproc);
return ret;
}
static void stm32_rproc_remove(struct platform_device *pdev)
{
struct rproc *rproc = platform_get_drvdata(pdev);
struct stm32_rproc *ddata = rproc->priv;
struct device *dev = &pdev->dev;
if (atomic_read(&rproc->power) > 0)
rproc_shutdown(rproc);
rproc_del(rproc);
stm32_rproc_free_mbox(rproc);
destroy_workqueue(ddata->workqueue);
if (device_may_wakeup(dev)) {
dev_pm_clear_wake_irq(dev);
device_init_wakeup(dev, false);
}
rproc_free(rproc);
}
static int stm32_rproc_suspend(struct device *dev)
{
struct rproc *rproc = dev_get_drvdata(dev);
struct stm32_rproc *ddata = rproc->priv;
if (device_may_wakeup(dev))
return enable_irq_wake(ddata->wdg_irq);
return 0;
}
static int stm32_rproc_resume(struct device *dev)
{
struct rproc *rproc = dev_get_drvdata(dev);
struct stm32_rproc *ddata = rproc->priv;
if (device_may_wakeup(dev))
return disable_irq_wake(ddata->wdg_irq);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(stm32_rproc_pm_ops,
stm32_rproc_suspend, stm32_rproc_resume);
static struct platform_driver stm32_rproc_driver = {
.probe = stm32_rproc_probe,
.remove_new = stm32_rproc_remove,
.driver = {
.name = "stm32-rproc",
.pm = pm_ptr(&stm32_rproc_pm_ops),
.of_match_table = stm32_rproc_match,
},
};
module_platform_driver(stm32_rproc_driver);
MODULE_DESCRIPTION("STM32 Remote Processor Control Driver");
MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>");
MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
MODULE_LICENSE("GPL v2");