OpenCloudOS-Kernel/drivers/gpu/drm/i915/display/intel_dpll_mgr.c

4514 lines
123 KiB
C

/*
* Copyright © 2006-2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "intel_display_types.h"
#include "intel_dpio_phy.h"
#include "intel_dpll_mgr.h"
/**
* DOC: Display PLLs
*
* Display PLLs used for driving outputs vary by platform. While some have
* per-pipe or per-encoder dedicated PLLs, others allow the use of any PLL
* from a pool. In the latter scenario, it is possible that multiple pipes
* share a PLL if their configurations match.
*
* This file provides an abstraction over display PLLs. The function
* intel_shared_dpll_init() initializes the PLLs for the given platform. The
* users of a PLL are tracked and that tracking is integrated with the atomic
* modset interface. During an atomic operation, required PLLs can be reserved
* for a given CRTC and encoder configuration by calling
* intel_reserve_shared_dplls() and previously reserved PLLs can be released
* with intel_release_shared_dplls().
* Changes to the users are first staged in the atomic state, and then made
* effective by calling intel_shared_dpll_swap_state() during the atomic
* commit phase.
*/
struct intel_dpll_mgr {
const struct dpll_info *dpll_info;
bool (*get_dplls)(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder);
void (*put_dplls)(struct intel_atomic_state *state,
struct intel_crtc *crtc);
void (*update_active_dpll)(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder);
void (*update_ref_clks)(struct drm_i915_private *i915);
void (*dump_hw_state)(struct drm_i915_private *dev_priv,
const struct intel_dpll_hw_state *hw_state);
};
static void
intel_atomic_duplicate_dpll_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll_state *shared_dpll)
{
enum intel_dpll_id i;
/* Copy shared dpll state */
for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->dpll.shared_dplls[i];
shared_dpll[i] = pll->state;
}
}
static struct intel_shared_dpll_state *
intel_atomic_get_shared_dpll_state(struct drm_atomic_state *s)
{
struct intel_atomic_state *state = to_intel_atomic_state(s);
WARN_ON(!drm_modeset_is_locked(&s->dev->mode_config.connection_mutex));
if (!state->dpll_set) {
state->dpll_set = true;
intel_atomic_duplicate_dpll_state(to_i915(s->dev),
state->shared_dpll);
}
return state->shared_dpll;
}
/**
* intel_get_shared_dpll_by_id - get a DPLL given its id
* @dev_priv: i915 device instance
* @id: pll id
*
* Returns:
* A pointer to the DPLL with @id
*/
struct intel_shared_dpll *
intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
enum intel_dpll_id id)
{
return &dev_priv->dpll.shared_dplls[id];
}
/**
* intel_get_shared_dpll_id - get the id of a DPLL
* @dev_priv: i915 device instance
* @pll: the DPLL
*
* Returns:
* The id of @pll
*/
enum intel_dpll_id
intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
long pll_idx = pll - dev_priv->dpll.shared_dplls;
if (drm_WARN_ON(&dev_priv->drm,
pll_idx < 0 ||
pll_idx >= dev_priv->dpll.num_shared_dpll))
return -1;
return pll_idx;
}
/* For ILK+ */
void assert_shared_dpll(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
bool state)
{
bool cur_state;
struct intel_dpll_hw_state hw_state;
if (drm_WARN(&dev_priv->drm, !pll,
"asserting DPLL %s with no DPLL\n", onoff(state)))
return;
cur_state = pll->info->funcs->get_hw_state(dev_priv, pll, &hw_state);
I915_STATE_WARN(cur_state != state,
"%s assertion failure (expected %s, current %s)\n",
pll->info->name, onoff(state), onoff(cur_state));
}
/**
* intel_prepare_shared_dpll - call a dpll's prepare hook
* @crtc_state: CRTC, and its state, which has a shared dpll
*
* This calls the PLL's prepare hook if it has one and if the PLL is not
* already enabled. The prepare hook is platform specific.
*/
void intel_prepare_shared_dpll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll = crtc_state->shared_dpll;
if (drm_WARN_ON(&dev_priv->drm, pll == NULL))
return;
mutex_lock(&dev_priv->dpll.lock);
drm_WARN_ON(&dev_priv->drm, !pll->state.crtc_mask);
if (!pll->active_mask) {
drm_dbg(&dev_priv->drm, "setting up %s\n", pll->info->name);
drm_WARN_ON(&dev_priv->drm, pll->on);
assert_shared_dpll_disabled(dev_priv, pll);
pll->info->funcs->prepare(dev_priv, pll);
}
mutex_unlock(&dev_priv->dpll.lock);
}
/**
* intel_enable_shared_dpll - enable a CRTC's shared DPLL
* @crtc_state: CRTC, and its state, which has a shared DPLL
*
* Enable the shared DPLL used by @crtc.
*/
void intel_enable_shared_dpll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll = crtc_state->shared_dpll;
unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
unsigned int old_mask;
if (drm_WARN_ON(&dev_priv->drm, pll == NULL))
return;
mutex_lock(&dev_priv->dpll.lock);
old_mask = pll->active_mask;
if (drm_WARN_ON(&dev_priv->drm, !(pll->state.crtc_mask & crtc_mask)) ||
drm_WARN_ON(&dev_priv->drm, pll->active_mask & crtc_mask))
goto out;
pll->active_mask |= crtc_mask;
drm_dbg_kms(&dev_priv->drm,
"enable %s (active %x, on? %d) for crtc %d\n",
pll->info->name, pll->active_mask, pll->on,
crtc->base.base.id);
if (old_mask) {
drm_WARN_ON(&dev_priv->drm, !pll->on);
assert_shared_dpll_enabled(dev_priv, pll);
goto out;
}
drm_WARN_ON(&dev_priv->drm, pll->on);
drm_dbg_kms(&dev_priv->drm, "enabling %s\n", pll->info->name);
pll->info->funcs->enable(dev_priv, pll);
pll->on = true;
out:
mutex_unlock(&dev_priv->dpll.lock);
}
/**
* intel_disable_shared_dpll - disable a CRTC's shared DPLL
* @crtc_state: CRTC, and its state, which has a shared DPLL
*
* Disable the shared DPLL used by @crtc.
*/
void intel_disable_shared_dpll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll = crtc_state->shared_dpll;
unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
/* PCH only available on ILK+ */
if (INTEL_GEN(dev_priv) < 5)
return;
if (pll == NULL)
return;
mutex_lock(&dev_priv->dpll.lock);
if (drm_WARN_ON(&dev_priv->drm, !(pll->active_mask & crtc_mask)))
goto out;
drm_dbg_kms(&dev_priv->drm,
"disable %s (active %x, on? %d) for crtc %d\n",
pll->info->name, pll->active_mask, pll->on,
crtc->base.base.id);
assert_shared_dpll_enabled(dev_priv, pll);
drm_WARN_ON(&dev_priv->drm, !pll->on);
pll->active_mask &= ~crtc_mask;
if (pll->active_mask)
goto out;
drm_dbg_kms(&dev_priv->drm, "disabling %s\n", pll->info->name);
pll->info->funcs->disable(dev_priv, pll);
pll->on = false;
out:
mutex_unlock(&dev_priv->dpll.lock);
}
static struct intel_shared_dpll *
intel_find_shared_dpll(struct intel_atomic_state *state,
const struct intel_crtc *crtc,
const struct intel_dpll_hw_state *pll_state,
unsigned long dpll_mask)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll, *unused_pll = NULL;
struct intel_shared_dpll_state *shared_dpll;
enum intel_dpll_id i;
shared_dpll = intel_atomic_get_shared_dpll_state(&state->base);
drm_WARN_ON(&dev_priv->drm, dpll_mask & ~(BIT(I915_NUM_PLLS) - 1));
for_each_set_bit(i, &dpll_mask, I915_NUM_PLLS) {
pll = &dev_priv->dpll.shared_dplls[i];
/* Only want to check enabled timings first */
if (shared_dpll[i].crtc_mask == 0) {
if (!unused_pll)
unused_pll = pll;
continue;
}
if (memcmp(pll_state,
&shared_dpll[i].hw_state,
sizeof(*pll_state)) == 0) {
drm_dbg_kms(&dev_priv->drm,
"[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
crtc->base.base.id, crtc->base.name,
pll->info->name,
shared_dpll[i].crtc_mask,
pll->active_mask);
return pll;
}
}
/* Ok no matching timings, maybe there's a free one? */
if (unused_pll) {
drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] allocated %s\n",
crtc->base.base.id, crtc->base.name,
unused_pll->info->name);
return unused_pll;
}
return NULL;
}
static void
intel_reference_shared_dpll(struct intel_atomic_state *state,
const struct intel_crtc *crtc,
const struct intel_shared_dpll *pll,
const struct intel_dpll_hw_state *pll_state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_shared_dpll_state *shared_dpll;
const enum intel_dpll_id id = pll->info->id;
shared_dpll = intel_atomic_get_shared_dpll_state(&state->base);
if (shared_dpll[id].crtc_mask == 0)
shared_dpll[id].hw_state = *pll_state;
drm_dbg(&i915->drm, "using %s for pipe %c\n", pll->info->name,
pipe_name(crtc->pipe));
shared_dpll[id].crtc_mask |= 1 << crtc->pipe;
}
static void intel_unreference_shared_dpll(struct intel_atomic_state *state,
const struct intel_crtc *crtc,
const struct intel_shared_dpll *pll)
{
struct intel_shared_dpll_state *shared_dpll;
shared_dpll = intel_atomic_get_shared_dpll_state(&state->base);
shared_dpll[pll->info->id].crtc_mask &= ~(1 << crtc->pipe);
}
static void intel_put_dpll(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
new_crtc_state->shared_dpll = NULL;
if (!old_crtc_state->shared_dpll)
return;
intel_unreference_shared_dpll(state, crtc, old_crtc_state->shared_dpll);
}
/**
* intel_shared_dpll_swap_state - make atomic DPLL configuration effective
* @state: atomic state
*
* This is the dpll version of drm_atomic_helper_swap_state() since the
* helper does not handle driver-specific global state.
*
* For consistency with atomic helpers this function does a complete swap,
* i.e. it also puts the current state into @state, even though there is no
* need for that at this moment.
*/
void intel_shared_dpll_swap_state(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_shared_dpll_state *shared_dpll = state->shared_dpll;
enum intel_dpll_id i;
if (!state->dpll_set)
return;
for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) {
struct intel_shared_dpll *pll =
&dev_priv->dpll.shared_dplls[i];
swap(pll->state, shared_dpll[i]);
}
}
static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
const enum intel_dpll_id id = pll->info->id;
intel_wakeref_t wakeref;
u32 val;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_DISPLAY_CORE);
if (!wakeref)
return false;
val = intel_de_read(dev_priv, PCH_DPLL(id));
hw_state->dpll = val;
hw_state->fp0 = intel_de_read(dev_priv, PCH_FP0(id));
hw_state->fp1 = intel_de_read(dev_priv, PCH_FP1(id));
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
return val & DPLL_VCO_ENABLE;
}
static void ibx_pch_dpll_prepare(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
intel_de_write(dev_priv, PCH_FP0(id), pll->state.hw_state.fp0);
intel_de_write(dev_priv, PCH_FP1(id), pll->state.hw_state.fp1);
}
static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
{
u32 val;
bool enabled;
I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
val = intel_de_read(dev_priv, PCH_DREF_CONTROL);
enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
DREF_SUPERSPREAD_SOURCE_MASK));
I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
}
static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
/* PCH refclock must be enabled first */
ibx_assert_pch_refclk_enabled(dev_priv);
intel_de_write(dev_priv, PCH_DPLL(id), pll->state.hw_state.dpll);
/* Wait for the clocks to stabilize. */
intel_de_posting_read(dev_priv, PCH_DPLL(id));
udelay(150);
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
intel_de_write(dev_priv, PCH_DPLL(id), pll->state.hw_state.dpll);
intel_de_posting_read(dev_priv, PCH_DPLL(id));
udelay(200);
}
static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
intel_de_write(dev_priv, PCH_DPLL(id), 0);
intel_de_posting_read(dev_priv, PCH_DPLL(id));
udelay(200);
}
static bool ibx_get_dpll(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll;
enum intel_dpll_id i;
if (HAS_PCH_IBX(dev_priv)) {
/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
i = (enum intel_dpll_id) crtc->pipe;
pll = &dev_priv->dpll.shared_dplls[i];
drm_dbg_kms(&dev_priv->drm,
"[CRTC:%d:%s] using pre-allocated %s\n",
crtc->base.base.id, crtc->base.name,
pll->info->name);
} else {
pll = intel_find_shared_dpll(state, crtc,
&crtc_state->dpll_hw_state,
BIT(DPLL_ID_PCH_PLL_B) |
BIT(DPLL_ID_PCH_PLL_A));
}
if (!pll)
return false;
/* reference the pll */
intel_reference_shared_dpll(state, crtc,
pll, &crtc_state->dpll_hw_state);
crtc_state->shared_dpll = pll;
return true;
}
static void ibx_dump_hw_state(struct drm_i915_private *dev_priv,
const struct intel_dpll_hw_state *hw_state)
{
drm_dbg_kms(&dev_priv->drm,
"dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
"fp0: 0x%x, fp1: 0x%x\n",
hw_state->dpll,
hw_state->dpll_md,
hw_state->fp0,
hw_state->fp1);
}
static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
.prepare = ibx_pch_dpll_prepare,
.enable = ibx_pch_dpll_enable,
.disable = ibx_pch_dpll_disable,
.get_hw_state = ibx_pch_dpll_get_hw_state,
};
static const struct dpll_info pch_plls[] = {
{ "PCH DPLL A", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_A, 0 },
{ "PCH DPLL B", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_B, 0 },
{ },
};
static const struct intel_dpll_mgr pch_pll_mgr = {
.dpll_info = pch_plls,
.get_dplls = ibx_get_dpll,
.put_dplls = intel_put_dpll,
.dump_hw_state = ibx_dump_hw_state,
};
static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
intel_de_write(dev_priv, WRPLL_CTL(id), pll->state.hw_state.wrpll);
intel_de_posting_read(dev_priv, WRPLL_CTL(id));
udelay(20);
}
static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
intel_de_write(dev_priv, SPLL_CTL, pll->state.hw_state.spll);
intel_de_posting_read(dev_priv, SPLL_CTL);
udelay(20);
}
static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
u32 val;
val = intel_de_read(dev_priv, WRPLL_CTL(id));
intel_de_write(dev_priv, WRPLL_CTL(id), val & ~WRPLL_PLL_ENABLE);
intel_de_posting_read(dev_priv, WRPLL_CTL(id));
/*
* Try to set up the PCH reference clock once all DPLLs
* that depend on it have been shut down.
*/
if (dev_priv->pch_ssc_use & BIT(id))
intel_init_pch_refclk(dev_priv);
}
static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
enum intel_dpll_id id = pll->info->id;
u32 val;
val = intel_de_read(dev_priv, SPLL_CTL);
intel_de_write(dev_priv, SPLL_CTL, val & ~SPLL_PLL_ENABLE);
intel_de_posting_read(dev_priv, SPLL_CTL);
/*
* Try to set up the PCH reference clock once all DPLLs
* that depend on it have been shut down.
*/
if (dev_priv->pch_ssc_use & BIT(id))
intel_init_pch_refclk(dev_priv);
}
static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
const enum intel_dpll_id id = pll->info->id;
intel_wakeref_t wakeref;
u32 val;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_DISPLAY_CORE);
if (!wakeref)
return false;
val = intel_de_read(dev_priv, WRPLL_CTL(id));
hw_state->wrpll = val;
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
return val & WRPLL_PLL_ENABLE;
}
static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
intel_wakeref_t wakeref;
u32 val;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_DISPLAY_CORE);
if (!wakeref)
return false;
val = intel_de_read(dev_priv, SPLL_CTL);
hw_state->spll = val;
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
return val & SPLL_PLL_ENABLE;
}
#define LC_FREQ 2700
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
#define P_MIN 2
#define P_MAX 64
#define P_INC 2
/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800
struct hsw_wrpll_rnp {
unsigned p, n2, r2;
};
static unsigned hsw_wrpll_get_budget_for_freq(int clock)
{
unsigned budget;
switch (clock) {
case 25175000:
case 25200000:
case 27000000:
case 27027000:
case 37762500:
case 37800000:
case 40500000:
case 40541000:
case 54000000:
case 54054000:
case 59341000:
case 59400000:
case 72000000:
case 74176000:
case 74250000:
case 81000000:
case 81081000:
case 89012000:
case 89100000:
case 108000000:
case 108108000:
case 111264000:
case 111375000:
case 148352000:
case 148500000:
case 162000000:
case 162162000:
case 222525000:
case 222750000:
case 296703000:
case 297000000:
budget = 0;
break;
case 233500000:
case 245250000:
case 247750000:
case 253250000:
case 298000000:
budget = 1500;
break;
case 169128000:
case 169500000:
case 179500000:
case 202000000:
budget = 2000;
break;
case 256250000:
case 262500000:
case 270000000:
case 272500000:
case 273750000:
case 280750000:
case 281250000:
case 286000000:
case 291750000:
budget = 4000;
break;
case 267250000:
case 268500000:
budget = 5000;
break;
default:
budget = 1000;
break;
}
return budget;
}
static void hsw_wrpll_update_rnp(u64 freq2k, unsigned int budget,
unsigned int r2, unsigned int n2,
unsigned int p,
struct hsw_wrpll_rnp *best)
{
u64 a, b, c, d, diff, diff_best;
/* No best (r,n,p) yet */
if (best->p == 0) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
return;
}
/*
* Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
* freq2k.
*
* delta = 1e6 *
* abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
* freq2k;
*
* and we would like delta <= budget.
*
* If the discrepancy is above the PPM-based budget, always prefer to
* improve upon the previous solution. However, if you're within the
* budget, try to maximize Ref * VCO, that is N / (P * R^2).
*/
a = freq2k * budget * p * r2;
b = freq2k * budget * best->p * best->r2;
diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
diff_best = abs_diff(freq2k * best->p * best->r2,
LC_FREQ_2K * best->n2);
c = 1000000 * diff;
d = 1000000 * diff_best;
if (a < c && b < d) {
/* If both are above the budget, pick the closer */
if (best->p * best->r2 * diff < p * r2 * diff_best) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
}
} else if (a >= c && b < d) {
/* If A is below the threshold but B is above it? Update. */
best->p = p;
best->n2 = n2;
best->r2 = r2;
} else if (a >= c && b >= d) {
/* Both are below the limit, so pick the higher n2/(r2*r2) */
if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
}
}
/* Otherwise a < c && b >= d, do nothing */
}
static void
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
{
u64 freq2k;
unsigned p, n2, r2;
struct hsw_wrpll_rnp best = { 0, 0, 0 };
unsigned budget;
freq2k = clock / 100;
budget = hsw_wrpll_get_budget_for_freq(clock);
/* Special case handling for 540 pixel clock: bypass WR PLL entirely
* and directly pass the LC PLL to it. */
if (freq2k == 5400000) {
*n2_out = 2;
*p_out = 1;
*r2_out = 2;
return;
}
/*
* Ref = LC_FREQ / R, where Ref is the actual reference input seen by
* the WR PLL.
*
* We want R so that REF_MIN <= Ref <= REF_MAX.
* Injecting R2 = 2 * R gives:
* REF_MAX * r2 > LC_FREQ * 2 and
* REF_MIN * r2 < LC_FREQ * 2
*
* Which means the desired boundaries for r2 are:
* LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
*
*/
for (r2 = LC_FREQ * 2 / REF_MAX + 1;
r2 <= LC_FREQ * 2 / REF_MIN;
r2++) {
/*
* VCO = N * Ref, that is: VCO = N * LC_FREQ / R
*
* Once again we want VCO_MIN <= VCO <= VCO_MAX.
* Injecting R2 = 2 * R and N2 = 2 * N, we get:
* VCO_MAX * r2 > n2 * LC_FREQ and
* VCO_MIN * r2 < n2 * LC_FREQ)
*
* Which means the desired boundaries for n2 are:
* VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
*/
for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
n2 <= VCO_MAX * r2 / LC_FREQ;
n2++) {
for (p = P_MIN; p <= P_MAX; p += P_INC)
hsw_wrpll_update_rnp(freq2k, budget,
r2, n2, p, &best);
}
}
*n2_out = best.n2;
*p_out = best.p;
*r2_out = best.r2;
}
static struct intel_shared_dpll *
hsw_ddi_wrpll_get_dpll(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_shared_dpll *pll;
u32 val;
unsigned int p, n2, r2;
hsw_ddi_calculate_wrpll(crtc_state->port_clock * 1000, &r2, &n2, &p);
val = WRPLL_PLL_ENABLE | WRPLL_REF_LCPLL |
WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
WRPLL_DIVIDER_POST(p);
crtc_state->dpll_hw_state.wrpll = val;
pll = intel_find_shared_dpll(state, crtc,
&crtc_state->dpll_hw_state,
BIT(DPLL_ID_WRPLL2) |
BIT(DPLL_ID_WRPLL1));
if (!pll)
return NULL;
return pll;
}
static int hsw_ddi_wrpll_get_freq(struct drm_i915_private *dev_priv,
const struct intel_shared_dpll *pll)
{
int refclk;
int n, p, r;
u32 wrpll = pll->state.hw_state.wrpll;
switch (wrpll & WRPLL_REF_MASK) {
case WRPLL_REF_SPECIAL_HSW:
/* Muxed-SSC for BDW, non-SSC for non-ULT HSW. */
if (IS_HASWELL(dev_priv) && !IS_HSW_ULT(dev_priv)) {
refclk = dev_priv->dpll.ref_clks.nssc;
break;
}
/* fall through */
case WRPLL_REF_PCH_SSC:
/*
* We could calculate spread here, but our checking
* code only cares about 5% accuracy, and spread is a max of
* 0.5% downspread.
*/
refclk = dev_priv->dpll.ref_clks.ssc;
break;
case WRPLL_REF_LCPLL:
refclk = 2700000;
break;
default:
MISSING_CASE(wrpll);
return 0;
}
r = wrpll & WRPLL_DIVIDER_REF_MASK;
p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
/* Convert to KHz, p & r have a fixed point portion */
return (refclk * n / 10) / (p * r) * 2;
}
static struct intel_shared_dpll *
hsw_ddi_lcpll_get_dpll(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
struct intel_shared_dpll *pll;
enum intel_dpll_id pll_id;
int clock = crtc_state->port_clock;
switch (clock / 2) {
case 81000:
pll_id = DPLL_ID_LCPLL_810;
break;
case 135000:
pll_id = DPLL_ID_LCPLL_1350;
break;
case 270000:
pll_id = DPLL_ID_LCPLL_2700;
break;
default:
drm_dbg_kms(&dev_priv->drm, "Invalid clock for DP: %d\n",
clock);
return NULL;
}
pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);
if (!pll)
return NULL;
return pll;
}
static int hsw_ddi_lcpll_get_freq(struct drm_i915_private *i915,
const struct intel_shared_dpll *pll)
{
int link_clock = 0;
switch (pll->info->id) {
case DPLL_ID_LCPLL_810:
link_clock = 81000;
break;
case DPLL_ID_LCPLL_1350:
link_clock = 135000;
break;
case DPLL_ID_LCPLL_2700:
link_clock = 270000;
break;
default:
drm_WARN(&i915->drm, 1, "bad port clock sel\n");
break;
}
return link_clock * 2;
}
static struct intel_shared_dpll *
hsw_ddi_spll_get_dpll(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (WARN_ON(crtc_state->port_clock / 2 != 135000))
return NULL;
crtc_state->dpll_hw_state.spll = SPLL_PLL_ENABLE | SPLL_FREQ_1350MHz |
SPLL_REF_MUXED_SSC;
return intel_find_shared_dpll(state, crtc, &crtc_state->dpll_hw_state,
BIT(DPLL_ID_SPLL));
}
static int hsw_ddi_spll_get_freq(struct drm_i915_private *i915,
const struct intel_shared_dpll *pll)
{
int link_clock = 0;
switch (pll->state.hw_state.spll & SPLL_FREQ_MASK) {
case SPLL_FREQ_810MHz:
link_clock = 81000;
break;
case SPLL_FREQ_1350MHz:
link_clock = 135000;
break;
case SPLL_FREQ_2700MHz:
link_clock = 270000;
break;
default:
drm_WARN(&i915->drm, 1, "bad spll freq\n");
break;
}
return link_clock * 2;
}
static bool hsw_get_dpll(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_shared_dpll *pll;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
pll = hsw_ddi_wrpll_get_dpll(state, crtc);
else if (intel_crtc_has_dp_encoder(crtc_state))
pll = hsw_ddi_lcpll_get_dpll(crtc_state);
else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
pll = hsw_ddi_spll_get_dpll(state, crtc);
else
return false;
if (!pll)
return false;
intel_reference_shared_dpll(state, crtc,
pll, &crtc_state->dpll_hw_state);
crtc_state->shared_dpll = pll;
return true;
}
static void hsw_update_dpll_ref_clks(struct drm_i915_private *i915)
{
i915->dpll.ref_clks.ssc = 135000;
/* Non-SSC is only used on non-ULT HSW. */
if (intel_de_read(i915, FUSE_STRAP3) & HSW_REF_CLK_SELECT)
i915->dpll.ref_clks.nssc = 24000;
else
i915->dpll.ref_clks.nssc = 135000;
}
static void hsw_dump_hw_state(struct drm_i915_private *dev_priv,
const struct intel_dpll_hw_state *hw_state)
{
drm_dbg_kms(&dev_priv->drm, "dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
hw_state->wrpll, hw_state->spll);
}
static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
.enable = hsw_ddi_wrpll_enable,
.disable = hsw_ddi_wrpll_disable,
.get_hw_state = hsw_ddi_wrpll_get_hw_state,
.get_freq = hsw_ddi_wrpll_get_freq,
};
static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
.enable = hsw_ddi_spll_enable,
.disable = hsw_ddi_spll_disable,
.get_hw_state = hsw_ddi_spll_get_hw_state,
.get_freq = hsw_ddi_spll_get_freq,
};
static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
}
static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
}
static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
return true;
}
static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
.enable = hsw_ddi_lcpll_enable,
.disable = hsw_ddi_lcpll_disable,
.get_hw_state = hsw_ddi_lcpll_get_hw_state,
.get_freq = hsw_ddi_lcpll_get_freq,
};
static const struct dpll_info hsw_plls[] = {
{ "WRPLL 1", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL1, 0 },
{ "WRPLL 2", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL2, 0 },
{ "SPLL", &hsw_ddi_spll_funcs, DPLL_ID_SPLL, 0 },
{ "LCPLL 810", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_810, INTEL_DPLL_ALWAYS_ON },
{ "LCPLL 1350", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_1350, INTEL_DPLL_ALWAYS_ON },
{ "LCPLL 2700", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_2700, INTEL_DPLL_ALWAYS_ON },
{ },
};
static const struct intel_dpll_mgr hsw_pll_mgr = {
.dpll_info = hsw_plls,
.get_dplls = hsw_get_dpll,
.put_dplls = intel_put_dpll,
.update_ref_clks = hsw_update_dpll_ref_clks,
.dump_hw_state = hsw_dump_hw_state,
};
struct skl_dpll_regs {
i915_reg_t ctl, cfgcr1, cfgcr2;
};
/* this array is indexed by the *shared* pll id */
static const struct skl_dpll_regs skl_dpll_regs[4] = {
{
/* DPLL 0 */
.ctl = LCPLL1_CTL,
/* DPLL 0 doesn't support HDMI mode */
},
{
/* DPLL 1 */
.ctl = LCPLL2_CTL,
.cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
.cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
},
{
/* DPLL 2 */
.ctl = WRPLL_CTL(0),
.cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
.cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
},
{
/* DPLL 3 */
.ctl = WRPLL_CTL(1),
.cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
.cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
},
};
static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
u32 val;
val = intel_de_read(dev_priv, DPLL_CTRL1);
val &= ~(DPLL_CTRL1_HDMI_MODE(id) |
DPLL_CTRL1_SSC(id) |
DPLL_CTRL1_LINK_RATE_MASK(id));
val |= pll->state.hw_state.ctrl1 << (id * 6);
intel_de_write(dev_priv, DPLL_CTRL1, val);
intel_de_posting_read(dev_priv, DPLL_CTRL1);
}
static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const struct skl_dpll_regs *regs = skl_dpll_regs;
const enum intel_dpll_id id = pll->info->id;
skl_ddi_pll_write_ctrl1(dev_priv, pll);
intel_de_write(dev_priv, regs[id].cfgcr1, pll->state.hw_state.cfgcr1);
intel_de_write(dev_priv, regs[id].cfgcr2, pll->state.hw_state.cfgcr2);
intel_de_posting_read(dev_priv, regs[id].cfgcr1);
intel_de_posting_read(dev_priv, regs[id].cfgcr2);
/* the enable bit is always bit 31 */
intel_de_write(dev_priv, regs[id].ctl,
intel_de_read(dev_priv, regs[id].ctl) | LCPLL_PLL_ENABLE);
if (intel_de_wait_for_set(dev_priv, DPLL_STATUS, DPLL_LOCK(id), 5))
drm_err(&dev_priv->drm, "DPLL %d not locked\n", id);
}
static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
skl_ddi_pll_write_ctrl1(dev_priv, pll);
}
static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const struct skl_dpll_regs *regs = skl_dpll_regs;
const enum intel_dpll_id id = pll->info->id;
/* the enable bit is always bit 31 */
intel_de_write(dev_priv, regs[id].ctl,
intel_de_read(dev_priv, regs[id].ctl) & ~LCPLL_PLL_ENABLE);
intel_de_posting_read(dev_priv, regs[id].ctl);
}
static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
}
static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
u32 val;
const struct skl_dpll_regs *regs = skl_dpll_regs;
const enum intel_dpll_id id = pll->info->id;
intel_wakeref_t wakeref;
bool ret;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_DISPLAY_CORE);
if (!wakeref)
return false;
ret = false;
val = intel_de_read(dev_priv, regs[id].ctl);
if (!(val & LCPLL_PLL_ENABLE))
goto out;
val = intel_de_read(dev_priv, DPLL_CTRL1);
hw_state->ctrl1 = (val >> (id * 6)) & 0x3f;
/* avoid reading back stale values if HDMI mode is not enabled */
if (val & DPLL_CTRL1_HDMI_MODE(id)) {
hw_state->cfgcr1 = intel_de_read(dev_priv, regs[id].cfgcr1);
hw_state->cfgcr2 = intel_de_read(dev_priv, regs[id].cfgcr2);
}
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
return ret;
}
static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
const struct skl_dpll_regs *regs = skl_dpll_regs;
const enum intel_dpll_id id = pll->info->id;
intel_wakeref_t wakeref;
u32 val;
bool ret;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_DISPLAY_CORE);
if (!wakeref)
return false;
ret = false;
/* DPLL0 is always enabled since it drives CDCLK */
val = intel_de_read(dev_priv, regs[id].ctl);
if (drm_WARN_ON(&dev_priv->drm, !(val & LCPLL_PLL_ENABLE)))
goto out;
val = intel_de_read(dev_priv, DPLL_CTRL1);
hw_state->ctrl1 = (val >> (id * 6)) & 0x3f;
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
return ret;
}
struct skl_wrpll_context {
u64 min_deviation; /* current minimal deviation */
u64 central_freq; /* chosen central freq */
u64 dco_freq; /* chosen dco freq */
unsigned int p; /* chosen divider */
};
static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
{
memset(ctx, 0, sizeof(*ctx));
ctx->min_deviation = U64_MAX;
}
/* DCO freq must be within +1%/-6% of the DCO central freq */
#define SKL_DCO_MAX_PDEVIATION 100
#define SKL_DCO_MAX_NDEVIATION 600
static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
u64 central_freq,
u64 dco_freq,
unsigned int divider)
{
u64 deviation;
deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
central_freq);
/* positive deviation */
if (dco_freq >= central_freq) {
if (deviation < SKL_DCO_MAX_PDEVIATION &&
deviation < ctx->min_deviation) {
ctx->min_deviation = deviation;
ctx->central_freq = central_freq;
ctx->dco_freq = dco_freq;
ctx->p = divider;
}
/* negative deviation */
} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
deviation < ctx->min_deviation) {
ctx->min_deviation = deviation;
ctx->central_freq = central_freq;
ctx->dco_freq = dco_freq;
ctx->p = divider;
}
}
static void skl_wrpll_get_multipliers(unsigned int p,
unsigned int *p0 /* out */,
unsigned int *p1 /* out */,
unsigned int *p2 /* out */)
{
/* even dividers */
if (p % 2 == 0) {
unsigned int half = p / 2;
if (half == 1 || half == 2 || half == 3 || half == 5) {
*p0 = 2;
*p1 = 1;
*p2 = half;
} else if (half % 2 == 0) {
*p0 = 2;
*p1 = half / 2;
*p2 = 2;
} else if (half % 3 == 0) {
*p0 = 3;
*p1 = half / 3;
*p2 = 2;
} else if (half % 7 == 0) {
*p0 = 7;
*p1 = half / 7;
*p2 = 2;
}
} else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
*p0 = 3;
*p1 = 1;
*p2 = p / 3;
} else if (p == 5 || p == 7) {
*p0 = p;
*p1 = 1;
*p2 = 1;
} else if (p == 15) {
*p0 = 3;
*p1 = 1;
*p2 = 5;
} else if (p == 21) {
*p0 = 7;
*p1 = 1;
*p2 = 3;
} else if (p == 35) {
*p0 = 7;
*p1 = 1;
*p2 = 5;
}
}
struct skl_wrpll_params {
u32 dco_fraction;
u32 dco_integer;
u32 qdiv_ratio;
u32 qdiv_mode;
u32 kdiv;
u32 pdiv;
u32 central_freq;
};
static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
u64 afe_clock,
int ref_clock,
u64 central_freq,
u32 p0, u32 p1, u32 p2)
{
u64 dco_freq;
switch (central_freq) {
case 9600000000ULL:
params->central_freq = 0;
break;
case 9000000000ULL:
params->central_freq = 1;
break;
case 8400000000ULL:
params->central_freq = 3;
}
switch (p0) {
case 1:
params->pdiv = 0;
break;
case 2:
params->pdiv = 1;
break;
case 3:
params->pdiv = 2;
break;
case 7:
params->pdiv = 4;
break;
default:
WARN(1, "Incorrect PDiv\n");
}
switch (p2) {
case 5:
params->kdiv = 0;
break;
case 2:
params->kdiv = 1;
break;
case 3:
params->kdiv = 2;
break;
case 1:
params->kdiv = 3;
break;
default:
WARN(1, "Incorrect KDiv\n");
}
params->qdiv_ratio = p1;
params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
dco_freq = p0 * p1 * p2 * afe_clock;
/*
* Intermediate values are in Hz.
* Divide by MHz to match bsepc
*/
params->dco_integer = div_u64(dco_freq, ref_clock * KHz(1));
params->dco_fraction =
div_u64((div_u64(dco_freq, ref_clock / KHz(1)) -
params->dco_integer * MHz(1)) * 0x8000, MHz(1));
}
static bool
skl_ddi_calculate_wrpll(int clock /* in Hz */,
int ref_clock,
struct skl_wrpll_params *wrpll_params)
{
u64 afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
u64 dco_central_freq[3] = { 8400000000ULL,
9000000000ULL,
9600000000ULL };
static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
24, 28, 30, 32, 36, 40, 42, 44,
48, 52, 54, 56, 60, 64, 66, 68,
70, 72, 76, 78, 80, 84, 88, 90,
92, 96, 98 };
static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
static const struct {
const int *list;
int n_dividers;
} dividers[] = {
{ even_dividers, ARRAY_SIZE(even_dividers) },
{ odd_dividers, ARRAY_SIZE(odd_dividers) },
};
struct skl_wrpll_context ctx;
unsigned int dco, d, i;
unsigned int p0, p1, p2;
skl_wrpll_context_init(&ctx);
for (d = 0; d < ARRAY_SIZE(dividers); d++) {
for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
for (i = 0; i < dividers[d].n_dividers; i++) {
unsigned int p = dividers[d].list[i];
u64 dco_freq = p * afe_clock;
skl_wrpll_try_divider(&ctx,
dco_central_freq[dco],
dco_freq,
p);
/*
* Skip the remaining dividers if we're sure to
* have found the definitive divider, we can't
* improve a 0 deviation.
*/
if (ctx.min_deviation == 0)
goto skip_remaining_dividers;
}
}
skip_remaining_dividers:
/*
* If a solution is found with an even divider, prefer
* this one.
*/
if (d == 0 && ctx.p)
break;
}
if (!ctx.p) {
DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
return false;
}
/*
* gcc incorrectly analyses that these can be used without being
* initialized. To be fair, it's hard to guess.
*/
p0 = p1 = p2 = 0;
skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
skl_wrpll_params_populate(wrpll_params, afe_clock, ref_clock,
ctx.central_freq, p0, p1, p2);
return true;
}
static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
u32 ctrl1, cfgcr1, cfgcr2;
struct skl_wrpll_params wrpll_params = { 0, };
/*
* See comment in intel_dpll_hw_state to understand why we always use 0
* as the DPLL id in this function.
*/
ctrl1 = DPLL_CTRL1_OVERRIDE(0);
ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
if (!skl_ddi_calculate_wrpll(crtc_state->port_clock * 1000,
i915->dpll.ref_clks.nssc,
&wrpll_params))
return false;
cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
wrpll_params.dco_integer;
cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
wrpll_params.central_freq;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
crtc_state->dpll_hw_state.ctrl1 = ctrl1;
crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
return true;
}
static int skl_ddi_wrpll_get_freq(struct drm_i915_private *i915,
const struct intel_shared_dpll *pll)
{
const struct intel_dpll_hw_state *pll_state = &pll->state.hw_state;
int ref_clock = i915->dpll.ref_clks.nssc;
u32 p0, p1, p2, dco_freq;
p0 = pll_state->cfgcr2 & DPLL_CFGCR2_PDIV_MASK;
p2 = pll_state->cfgcr2 & DPLL_CFGCR2_KDIV_MASK;
if (pll_state->cfgcr2 & DPLL_CFGCR2_QDIV_MODE(1))
p1 = (pll_state->cfgcr2 & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
else
p1 = 1;
switch (p0) {
case DPLL_CFGCR2_PDIV_1:
p0 = 1;
break;
case DPLL_CFGCR2_PDIV_2:
p0 = 2;
break;
case DPLL_CFGCR2_PDIV_3:
p0 = 3;
break;
case DPLL_CFGCR2_PDIV_7:
p0 = 7;
break;
}
switch (p2) {
case DPLL_CFGCR2_KDIV_5:
p2 = 5;
break;
case DPLL_CFGCR2_KDIV_2:
p2 = 2;
break;
case DPLL_CFGCR2_KDIV_3:
p2 = 3;
break;
case DPLL_CFGCR2_KDIV_1:
p2 = 1;
break;
}
dco_freq = (pll_state->cfgcr1 & DPLL_CFGCR1_DCO_INTEGER_MASK) *
ref_clock;
dco_freq += ((pll_state->cfgcr1 & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) *
ref_clock / 0x8000;
if (WARN_ON(p0 == 0 || p1 == 0 || p2 == 0))
return 0;
return dco_freq / (p0 * p1 * p2 * 5);
}
static bool
skl_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state)
{
u32 ctrl1;
/*
* See comment in intel_dpll_hw_state to understand why we always use 0
* as the DPLL id in this function.
*/
ctrl1 = DPLL_CTRL1_OVERRIDE(0);
switch (crtc_state->port_clock / 2) {
case 81000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
break;
case 135000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
break;
case 270000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
break;
/* eDP 1.4 rates */
case 162000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
break;
case 108000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
break;
case 216000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
break;
}
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
crtc_state->dpll_hw_state.ctrl1 = ctrl1;
return true;
}
static int skl_ddi_lcpll_get_freq(struct drm_i915_private *i915,
const struct intel_shared_dpll *pll)
{
int link_clock = 0;
switch ((pll->state.hw_state.ctrl1 &
DPLL_CTRL1_LINK_RATE_MASK(0)) >>
DPLL_CTRL1_LINK_RATE_SHIFT(0)) {
case DPLL_CTRL1_LINK_RATE_810:
link_clock = 81000;
break;
case DPLL_CTRL1_LINK_RATE_1080:
link_clock = 108000;
break;
case DPLL_CTRL1_LINK_RATE_1350:
link_clock = 135000;
break;
case DPLL_CTRL1_LINK_RATE_1620:
link_clock = 162000;
break;
case DPLL_CTRL1_LINK_RATE_2160:
link_clock = 216000;
break;
case DPLL_CTRL1_LINK_RATE_2700:
link_clock = 270000;
break;
default:
drm_WARN(&i915->drm, 1, "Unsupported link rate\n");
break;
}
return link_clock * 2;
}
static bool skl_get_dpll(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll;
bool bret;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
bret = skl_ddi_hdmi_pll_dividers(crtc_state);
if (!bret) {
drm_dbg_kms(&i915->drm,
"Could not get HDMI pll dividers.\n");
return false;
}
} else if (intel_crtc_has_dp_encoder(crtc_state)) {
bret = skl_ddi_dp_set_dpll_hw_state(crtc_state);
if (!bret) {
drm_dbg_kms(&i915->drm,
"Could not set DP dpll HW state.\n");
return false;
}
} else {
return false;
}
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
pll = intel_find_shared_dpll(state, crtc,
&crtc_state->dpll_hw_state,
BIT(DPLL_ID_SKL_DPLL0));
else
pll = intel_find_shared_dpll(state, crtc,
&crtc_state->dpll_hw_state,
BIT(DPLL_ID_SKL_DPLL3) |
BIT(DPLL_ID_SKL_DPLL2) |
BIT(DPLL_ID_SKL_DPLL1));
if (!pll)
return false;
intel_reference_shared_dpll(state, crtc,
pll, &crtc_state->dpll_hw_state);
crtc_state->shared_dpll = pll;
return true;
}
static int skl_ddi_pll_get_freq(struct drm_i915_private *i915,
const struct intel_shared_dpll *pll)
{
/*
* ctrl1 register is already shifted for each pll, just use 0 to get
* the internal shift for each field
*/
if (pll->state.hw_state.ctrl1 & DPLL_CTRL1_HDMI_MODE(0))
return skl_ddi_wrpll_get_freq(i915, pll);
else
return skl_ddi_lcpll_get_freq(i915, pll);
}
static void skl_update_dpll_ref_clks(struct drm_i915_private *i915)
{
/* No SSC ref */
i915->dpll.ref_clks.nssc = i915->cdclk.hw.ref;
}
static void skl_dump_hw_state(struct drm_i915_private *dev_priv,
const struct intel_dpll_hw_state *hw_state)
{
drm_dbg_kms(&dev_priv->drm, "dpll_hw_state: "
"ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
hw_state->ctrl1,
hw_state->cfgcr1,
hw_state->cfgcr2);
}
static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
.enable = skl_ddi_pll_enable,
.disable = skl_ddi_pll_disable,
.get_hw_state = skl_ddi_pll_get_hw_state,
.get_freq = skl_ddi_pll_get_freq,
};
static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
.enable = skl_ddi_dpll0_enable,
.disable = skl_ddi_dpll0_disable,
.get_hw_state = skl_ddi_dpll0_get_hw_state,
.get_freq = skl_ddi_pll_get_freq,
};
static const struct dpll_info skl_plls[] = {
{ "DPLL 0", &skl_ddi_dpll0_funcs, DPLL_ID_SKL_DPLL0, INTEL_DPLL_ALWAYS_ON },
{ "DPLL 1", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
{ "DPLL 2", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
{ "DPLL 3", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL3, 0 },
{ },
};
static const struct intel_dpll_mgr skl_pll_mgr = {
.dpll_info = skl_plls,
.get_dplls = skl_get_dpll,
.put_dplls = intel_put_dpll,
.update_ref_clks = skl_update_dpll_ref_clks,
.dump_hw_state = skl_dump_hw_state,
};
static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
u32 temp;
enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
enum dpio_phy phy;
enum dpio_channel ch;
bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
/* Non-SSC reference */
temp = intel_de_read(dev_priv, BXT_PORT_PLL_ENABLE(port));
temp |= PORT_PLL_REF_SEL;
intel_de_write(dev_priv, BXT_PORT_PLL_ENABLE(port), temp);
if (IS_GEMINILAKE(dev_priv)) {
temp = intel_de_read(dev_priv, BXT_PORT_PLL_ENABLE(port));
temp |= PORT_PLL_POWER_ENABLE;
intel_de_write(dev_priv, BXT_PORT_PLL_ENABLE(port), temp);
if (wait_for_us((intel_de_read(dev_priv, BXT_PORT_PLL_ENABLE(port)) &
PORT_PLL_POWER_STATE), 200))
drm_err(&dev_priv->drm,
"Power state not set for PLL:%d\n", port);
}
/* Disable 10 bit clock */
temp = intel_de_read(dev_priv, BXT_PORT_PLL_EBB_4(phy, ch));
temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
intel_de_write(dev_priv, BXT_PORT_PLL_EBB_4(phy, ch), temp);
/* Write P1 & P2 */
temp = intel_de_read(dev_priv, BXT_PORT_PLL_EBB_0(phy, ch));
temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
temp |= pll->state.hw_state.ebb0;
intel_de_write(dev_priv, BXT_PORT_PLL_EBB_0(phy, ch), temp);
/* Write M2 integer */
temp = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 0));
temp &= ~PORT_PLL_M2_MASK;
temp |= pll->state.hw_state.pll0;
intel_de_write(dev_priv, BXT_PORT_PLL(phy, ch, 0), temp);
/* Write N */
temp = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 1));
temp &= ~PORT_PLL_N_MASK;
temp |= pll->state.hw_state.pll1;
intel_de_write(dev_priv, BXT_PORT_PLL(phy, ch, 1), temp);
/* Write M2 fraction */
temp = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 2));
temp &= ~PORT_PLL_M2_FRAC_MASK;
temp |= pll->state.hw_state.pll2;
intel_de_write(dev_priv, BXT_PORT_PLL(phy, ch, 2), temp);
/* Write M2 fraction enable */
temp = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 3));
temp &= ~PORT_PLL_M2_FRAC_ENABLE;
temp |= pll->state.hw_state.pll3;
intel_de_write(dev_priv, BXT_PORT_PLL(phy, ch, 3), temp);
/* Write coeff */
temp = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 6));
temp &= ~PORT_PLL_PROP_COEFF_MASK;
temp &= ~PORT_PLL_INT_COEFF_MASK;
temp &= ~PORT_PLL_GAIN_CTL_MASK;
temp |= pll->state.hw_state.pll6;
intel_de_write(dev_priv, BXT_PORT_PLL(phy, ch, 6), temp);
/* Write calibration val */
temp = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 8));
temp &= ~PORT_PLL_TARGET_CNT_MASK;
temp |= pll->state.hw_state.pll8;
intel_de_write(dev_priv, BXT_PORT_PLL(phy, ch, 8), temp);
temp = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 9));
temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
temp |= pll->state.hw_state.pll9;
intel_de_write(dev_priv, BXT_PORT_PLL(phy, ch, 9), temp);
temp = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 10));
temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
temp &= ~PORT_PLL_DCO_AMP_MASK;
temp |= pll->state.hw_state.pll10;
intel_de_write(dev_priv, BXT_PORT_PLL(phy, ch, 10), temp);
/* Recalibrate with new settings */
temp = intel_de_read(dev_priv, BXT_PORT_PLL_EBB_4(phy, ch));
temp |= PORT_PLL_RECALIBRATE;
intel_de_write(dev_priv, BXT_PORT_PLL_EBB_4(phy, ch), temp);
temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
temp |= pll->state.hw_state.ebb4;
intel_de_write(dev_priv, BXT_PORT_PLL_EBB_4(phy, ch), temp);
/* Enable PLL */
temp = intel_de_read(dev_priv, BXT_PORT_PLL_ENABLE(port));
temp |= PORT_PLL_ENABLE;
intel_de_write(dev_priv, BXT_PORT_PLL_ENABLE(port), temp);
intel_de_posting_read(dev_priv, BXT_PORT_PLL_ENABLE(port));
if (wait_for_us((intel_de_read(dev_priv, BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
200))
drm_err(&dev_priv->drm, "PLL %d not locked\n", port);
if (IS_GEMINILAKE(dev_priv)) {
temp = intel_de_read(dev_priv, BXT_PORT_TX_DW5_LN0(phy, ch));
temp |= DCC_DELAY_RANGE_2;
intel_de_write(dev_priv, BXT_PORT_TX_DW5_GRP(phy, ch), temp);
}
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers and we pick lanes 0/1 for that.
*/
temp = intel_de_read(dev_priv, BXT_PORT_PCS_DW12_LN01(phy, ch));
temp &= ~LANE_STAGGER_MASK;
temp &= ~LANESTAGGER_STRAP_OVRD;
temp |= pll->state.hw_state.pcsdw12;
intel_de_write(dev_priv, BXT_PORT_PCS_DW12_GRP(phy, ch), temp);
}
static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
u32 temp;
temp = intel_de_read(dev_priv, BXT_PORT_PLL_ENABLE(port));
temp &= ~PORT_PLL_ENABLE;
intel_de_write(dev_priv, BXT_PORT_PLL_ENABLE(port), temp);
intel_de_posting_read(dev_priv, BXT_PORT_PLL_ENABLE(port));
if (IS_GEMINILAKE(dev_priv)) {
temp = intel_de_read(dev_priv, BXT_PORT_PLL_ENABLE(port));
temp &= ~PORT_PLL_POWER_ENABLE;
intel_de_write(dev_priv, BXT_PORT_PLL_ENABLE(port), temp);
if (wait_for_us(!(intel_de_read(dev_priv, BXT_PORT_PLL_ENABLE(port)) &
PORT_PLL_POWER_STATE), 200))
drm_err(&dev_priv->drm,
"Power state not reset for PLL:%d\n", port);
}
}
static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
intel_wakeref_t wakeref;
enum dpio_phy phy;
enum dpio_channel ch;
u32 val;
bool ret;
bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_DISPLAY_CORE);
if (!wakeref)
return false;
ret = false;
val = intel_de_read(dev_priv, BXT_PORT_PLL_ENABLE(port));
if (!(val & PORT_PLL_ENABLE))
goto out;
hw_state->ebb0 = intel_de_read(dev_priv, BXT_PORT_PLL_EBB_0(phy, ch));
hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
hw_state->ebb4 = intel_de_read(dev_priv, BXT_PORT_PLL_EBB_4(phy, ch));
hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
hw_state->pll0 = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 0));
hw_state->pll0 &= PORT_PLL_M2_MASK;
hw_state->pll1 = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 1));
hw_state->pll1 &= PORT_PLL_N_MASK;
hw_state->pll2 = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 2));
hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
hw_state->pll3 = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 3));
hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
hw_state->pll6 = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 6));
hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
PORT_PLL_INT_COEFF_MASK |
PORT_PLL_GAIN_CTL_MASK;
hw_state->pll8 = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 8));
hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
hw_state->pll9 = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 9));
hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
hw_state->pll10 = intel_de_read(dev_priv, BXT_PORT_PLL(phy, ch, 10));
hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
PORT_PLL_DCO_AMP_MASK;
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers. We configure all lanes the same way, so
* here just read out lanes 0/1 and output a note if lanes 2/3 differ.
*/
hw_state->pcsdw12 = intel_de_read(dev_priv,
BXT_PORT_PCS_DW12_LN01(phy, ch));
if (intel_de_read(dev_priv, BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12)
drm_dbg(&dev_priv->drm,
"lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
hw_state->pcsdw12,
intel_de_read(dev_priv,
BXT_PORT_PCS_DW12_LN23(phy, ch)));
hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
return ret;
}
/* bxt clock parameters */
struct bxt_clk_div {
int clock;
u32 p1;
u32 p2;
u32 m2_int;
u32 m2_frac;
bool m2_frac_en;
u32 n;
int vco;
};
/* pre-calculated values for DP linkrates */
static const struct bxt_clk_div bxt_dp_clk_val[] = {
{162000, 4, 2, 32, 1677722, 1, 1},
{270000, 4, 1, 27, 0, 0, 1},
{540000, 2, 1, 27, 0, 0, 1},
{216000, 3, 2, 32, 1677722, 1, 1},
{243000, 4, 1, 24, 1258291, 1, 1},
{324000, 4, 1, 32, 1677722, 1, 1},
{432000, 3, 1, 32, 1677722, 1, 1}
};
static bool
bxt_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state,
struct bxt_clk_div *clk_div)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct dpll best_clock;
/* Calculate HDMI div */
/*
* FIXME: tie the following calculation into
* i9xx_crtc_compute_clock
*/
if (!bxt_find_best_dpll(crtc_state, &best_clock)) {
drm_dbg(&i915->drm, "no PLL dividers found for clock %d pipe %c\n",
crtc_state->port_clock,
pipe_name(crtc->pipe));
return false;
}
clk_div->p1 = best_clock.p1;
clk_div->p2 = best_clock.p2;
WARN_ON(best_clock.m1 != 2);
clk_div->n = best_clock.n;
clk_div->m2_int = best_clock.m2 >> 22;
clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
clk_div->m2_frac_en = clk_div->m2_frac != 0;
clk_div->vco = best_clock.vco;
return true;
}
static void bxt_ddi_dp_pll_dividers(struct intel_crtc_state *crtc_state,
struct bxt_clk_div *clk_div)
{
int clock = crtc_state->port_clock;
int i;
*clk_div = bxt_dp_clk_val[0];
for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
if (bxt_dp_clk_val[i].clock == clock) {
*clk_div = bxt_dp_clk_val[i];
break;
}
}
clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
}
static bool bxt_ddi_set_dpll_hw_state(struct intel_crtc_state *crtc_state,
const struct bxt_clk_div *clk_div)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
struct intel_dpll_hw_state *dpll_hw_state = &crtc_state->dpll_hw_state;
int clock = crtc_state->port_clock;
int vco = clk_div->vco;
u32 prop_coef, int_coef, gain_ctl, targ_cnt;
u32 lanestagger;
memset(dpll_hw_state, 0, sizeof(*dpll_hw_state));
if (vco >= 6200000 && vco <= 6700000) {
prop_coef = 4;
int_coef = 9;
gain_ctl = 3;
targ_cnt = 8;
} else if ((vco > 5400000 && vco < 6200000) ||
(vco >= 4800000 && vco < 5400000)) {
prop_coef = 5;
int_coef = 11;
gain_ctl = 3;
targ_cnt = 9;
} else if (vco == 5400000) {
prop_coef = 3;
int_coef = 8;
gain_ctl = 1;
targ_cnt = 9;
} else {
drm_err(&i915->drm, "Invalid VCO\n");
return false;
}
if (clock > 270000)
lanestagger = 0x18;
else if (clock > 135000)
lanestagger = 0x0d;
else if (clock > 67000)
lanestagger = 0x07;
else if (clock > 33000)
lanestagger = 0x04;
else
lanestagger = 0x02;
dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
dpll_hw_state->pll0 = clk_div->m2_int;
dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
dpll_hw_state->pll2 = clk_div->m2_frac;
if (clk_div->m2_frac_en)
dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
dpll_hw_state->pll8 = targ_cnt;
dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
dpll_hw_state->pll10 =
PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
| PORT_PLL_DCO_AMP_OVR_EN_H;
dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;
return true;
}
static bool
bxt_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state)
{
struct bxt_clk_div clk_div = {};
bxt_ddi_dp_pll_dividers(crtc_state, &clk_div);
return bxt_ddi_set_dpll_hw_state(crtc_state, &clk_div);
}
static bool
bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc_state *crtc_state)
{
struct bxt_clk_div clk_div = {};
bxt_ddi_hdmi_pll_dividers(crtc_state, &clk_div);
return bxt_ddi_set_dpll_hw_state(crtc_state, &clk_div);
}
static int bxt_ddi_pll_get_freq(struct drm_i915_private *i915,
const struct intel_shared_dpll *pll)
{
const struct intel_dpll_hw_state *pll_state = &pll->state.hw_state;
struct dpll clock;
clock.m1 = 2;
clock.m2 = (pll_state->pll0 & PORT_PLL_M2_MASK) << 22;
if (pll_state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
clock.m2 |= pll_state->pll2 & PORT_PLL_M2_FRAC_MASK;
clock.n = (pll_state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
clock.p1 = (pll_state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
clock.p2 = (pll_state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
return chv_calc_dpll_params(i915->dpll.ref_clks.nssc, &clock);
}
static bool bxt_get_dpll(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll;
enum intel_dpll_id id;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
!bxt_ddi_hdmi_set_dpll_hw_state(crtc_state))
return false;
if (intel_crtc_has_dp_encoder(crtc_state) &&
!bxt_ddi_dp_set_dpll_hw_state(crtc_state))
return false;
/* 1:1 mapping between ports and PLLs */
id = (enum intel_dpll_id) encoder->port;
pll = intel_get_shared_dpll_by_id(dev_priv, id);
drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] using pre-allocated %s\n",
crtc->base.base.id, crtc->base.name, pll->info->name);
intel_reference_shared_dpll(state, crtc,
pll, &crtc_state->dpll_hw_state);
crtc_state->shared_dpll = pll;
return true;
}
static void bxt_update_dpll_ref_clks(struct drm_i915_private *i915)
{
i915->dpll.ref_clks.ssc = 100000;
i915->dpll.ref_clks.nssc = 100000;
/* DSI non-SSC ref 19.2MHz */
}
static void bxt_dump_hw_state(struct drm_i915_private *dev_priv,
const struct intel_dpll_hw_state *hw_state)
{
drm_dbg_kms(&dev_priv->drm, "dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
"pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
"pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
hw_state->ebb0,
hw_state->ebb4,
hw_state->pll0,
hw_state->pll1,
hw_state->pll2,
hw_state->pll3,
hw_state->pll6,
hw_state->pll8,
hw_state->pll9,
hw_state->pll10,
hw_state->pcsdw12);
}
static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
.enable = bxt_ddi_pll_enable,
.disable = bxt_ddi_pll_disable,
.get_hw_state = bxt_ddi_pll_get_hw_state,
.get_freq = bxt_ddi_pll_get_freq,
};
static const struct dpll_info bxt_plls[] = {
{ "PORT PLL A", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 },
{ "PORT PLL B", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
{ "PORT PLL C", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
{ },
};
static const struct intel_dpll_mgr bxt_pll_mgr = {
.dpll_info = bxt_plls,
.get_dplls = bxt_get_dpll,
.put_dplls = intel_put_dpll,
.update_ref_clks = bxt_update_dpll_ref_clks,
.dump_hw_state = bxt_dump_hw_state,
};
static void cnl_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
u32 val;
/* 1. Enable DPLL power in DPLL_ENABLE. */
val = intel_de_read(dev_priv, CNL_DPLL_ENABLE(id));
val |= PLL_POWER_ENABLE;
intel_de_write(dev_priv, CNL_DPLL_ENABLE(id), val);
/* 2. Wait for DPLL power state enabled in DPLL_ENABLE. */
if (intel_de_wait_for_set(dev_priv, CNL_DPLL_ENABLE(id),
PLL_POWER_STATE, 5))
drm_err(&dev_priv->drm, "PLL %d Power not enabled\n", id);
/*
* 3. Configure DPLL_CFGCR0 to set SSC enable/disable,
* select DP mode, and set DP link rate.
*/
val = pll->state.hw_state.cfgcr0;
intel_de_write(dev_priv, CNL_DPLL_CFGCR0(id), val);
/* 4. Reab back to ensure writes completed */
intel_de_posting_read(dev_priv, CNL_DPLL_CFGCR0(id));
/* 3. Configure DPLL_CFGCR0 */
/* Avoid touch CFGCR1 if HDMI mode is not enabled */
if (pll->state.hw_state.cfgcr0 & DPLL_CFGCR0_HDMI_MODE) {
val = pll->state.hw_state.cfgcr1;
intel_de_write(dev_priv, CNL_DPLL_CFGCR1(id), val);
/* 4. Reab back to ensure writes completed */
intel_de_posting_read(dev_priv, CNL_DPLL_CFGCR1(id));
}
/*
* 5. If the frequency will result in a change to the voltage
* requirement, follow the Display Voltage Frequency Switching
* Sequence Before Frequency Change
*
* Note: DVFS is actually handled via the cdclk code paths,
* hence we do nothing here.
*/
/* 6. Enable DPLL in DPLL_ENABLE. */
val = intel_de_read(dev_priv, CNL_DPLL_ENABLE(id));
val |= PLL_ENABLE;
intel_de_write(dev_priv, CNL_DPLL_ENABLE(id), val);
/* 7. Wait for PLL lock status in DPLL_ENABLE. */
if (intel_de_wait_for_set(dev_priv, CNL_DPLL_ENABLE(id), PLL_LOCK, 5))
drm_err(&dev_priv->drm, "PLL %d not locked\n", id);
/*
* 8. If the frequency will result in a change to the voltage
* requirement, follow the Display Voltage Frequency Switching
* Sequence After Frequency Change
*
* Note: DVFS is actually handled via the cdclk code paths,
* hence we do nothing here.
*/
/*
* 9. turn on the clock for the DDI and map the DPLL to the DDI
* Done at intel_ddi_clk_select
*/
}
static void cnl_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
u32 val;
/*
* 1. Configure DPCLKA_CFGCR0 to turn off the clock for the DDI.
* Done at intel_ddi_post_disable
*/
/*
* 2. If the frequency will result in a change to the voltage
* requirement, follow the Display Voltage Frequency Switching
* Sequence Before Frequency Change
*
* Note: DVFS is actually handled via the cdclk code paths,
* hence we do nothing here.
*/
/* 3. Disable DPLL through DPLL_ENABLE. */
val = intel_de_read(dev_priv, CNL_DPLL_ENABLE(id));
val &= ~PLL_ENABLE;
intel_de_write(dev_priv, CNL_DPLL_ENABLE(id), val);
/* 4. Wait for PLL not locked status in DPLL_ENABLE. */
if (intel_de_wait_for_clear(dev_priv, CNL_DPLL_ENABLE(id), PLL_LOCK, 5))
drm_err(&dev_priv->drm, "PLL %d locked\n", id);
/*
* 5. If the frequency will result in a change to the voltage
* requirement, follow the Display Voltage Frequency Switching
* Sequence After Frequency Change
*
* Note: DVFS is actually handled via the cdclk code paths,
* hence we do nothing here.
*/
/* 6. Disable DPLL power in DPLL_ENABLE. */
val = intel_de_read(dev_priv, CNL_DPLL_ENABLE(id));
val &= ~PLL_POWER_ENABLE;
intel_de_write(dev_priv, CNL_DPLL_ENABLE(id), val);
/* 7. Wait for DPLL power state disabled in DPLL_ENABLE. */
if (intel_de_wait_for_clear(dev_priv, CNL_DPLL_ENABLE(id),
PLL_POWER_STATE, 5))
drm_err(&dev_priv->drm, "PLL %d Power not disabled\n", id);
}
static bool cnl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
const enum intel_dpll_id id = pll->info->id;
intel_wakeref_t wakeref;
u32 val;
bool ret;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_DISPLAY_CORE);
if (!wakeref)
return false;
ret = false;
val = intel_de_read(dev_priv, CNL_DPLL_ENABLE(id));
if (!(val & PLL_ENABLE))
goto out;
val = intel_de_read(dev_priv, CNL_DPLL_CFGCR0(id));
hw_state->cfgcr0 = val;
/* avoid reading back stale values if HDMI mode is not enabled */
if (val & DPLL_CFGCR0_HDMI_MODE) {
hw_state->cfgcr1 = intel_de_read(dev_priv,
CNL_DPLL_CFGCR1(id));
}
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
return ret;
}
static void cnl_wrpll_get_multipliers(int bestdiv, int *pdiv,
int *qdiv, int *kdiv)
{
/* even dividers */
if (bestdiv % 2 == 0) {
if (bestdiv == 2) {
*pdiv = 2;
*qdiv = 1;
*kdiv = 1;
} else if (bestdiv % 4 == 0) {
*pdiv = 2;
*qdiv = bestdiv / 4;
*kdiv = 2;
} else if (bestdiv % 6 == 0) {
*pdiv = 3;
*qdiv = bestdiv / 6;
*kdiv = 2;
} else if (bestdiv % 5 == 0) {
*pdiv = 5;
*qdiv = bestdiv / 10;
*kdiv = 2;
} else if (bestdiv % 14 == 0) {
*pdiv = 7;
*qdiv = bestdiv / 14;
*kdiv = 2;
}
} else {
if (bestdiv == 3 || bestdiv == 5 || bestdiv == 7) {
*pdiv = bestdiv;
*qdiv = 1;
*kdiv = 1;
} else { /* 9, 15, 21 */
*pdiv = bestdiv / 3;
*qdiv = 1;
*kdiv = 3;
}
}
}
static void cnl_wrpll_params_populate(struct skl_wrpll_params *params,
u32 dco_freq, u32 ref_freq,
int pdiv, int qdiv, int kdiv)
{
u32 dco;
switch (kdiv) {
case 1:
params->kdiv = 1;
break;
case 2:
params->kdiv = 2;
break;
case 3:
params->kdiv = 4;
break;
default:
WARN(1, "Incorrect KDiv\n");
}
switch (pdiv) {
case 2:
params->pdiv = 1;
break;
case 3:
params->pdiv = 2;
break;
case 5:
params->pdiv = 4;
break;
case 7:
params->pdiv = 8;
break;
default:
WARN(1, "Incorrect PDiv\n");
}
WARN_ON(kdiv != 2 && qdiv != 1);
params->qdiv_ratio = qdiv;
params->qdiv_mode = (qdiv == 1) ? 0 : 1;
dco = div_u64((u64)dco_freq << 15, ref_freq);
params->dco_integer = dco >> 15;
params->dco_fraction = dco & 0x7fff;
}
static bool
__cnl_ddi_calculate_wrpll(struct intel_crtc_state *crtc_state,
struct skl_wrpll_params *wrpll_params,
int ref_clock)
{
u32 afe_clock = crtc_state->port_clock * 5;
u32 dco_min = 7998000;
u32 dco_max = 10000000;
u32 dco_mid = (dco_min + dco_max) / 2;
static const int dividers[] = { 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 24, 28, 30, 32, 36, 40,
42, 44, 48, 50, 52, 54, 56, 60,
64, 66, 68, 70, 72, 76, 78, 80,
84, 88, 90, 92, 96, 98, 100, 102,
3, 5, 7, 9, 15, 21 };
u32 dco, best_dco = 0, dco_centrality = 0;
u32 best_dco_centrality = U32_MAX; /* Spec meaning of 999999 MHz */
int d, best_div = 0, pdiv = 0, qdiv = 0, kdiv = 0;
for (d = 0; d < ARRAY_SIZE(dividers); d++) {
dco = afe_clock * dividers[d];
if ((dco <= dco_max) && (dco >= dco_min)) {
dco_centrality = abs(dco - dco_mid);
if (dco_centrality < best_dco_centrality) {
best_dco_centrality = dco_centrality;
best_div = dividers[d];
best_dco = dco;
}
}
}
if (best_div == 0)
return false;
cnl_wrpll_get_multipliers(best_div, &pdiv, &qdiv, &kdiv);
cnl_wrpll_params_populate(wrpll_params, best_dco, ref_clock,
pdiv, qdiv, kdiv);
return true;
}
static bool
cnl_ddi_calculate_wrpll(struct intel_crtc_state *crtc_state,
struct skl_wrpll_params *wrpll_params)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
return __cnl_ddi_calculate_wrpll(crtc_state, wrpll_params,
i915->dpll.ref_clks.nssc);
}
static bool cnl_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state)
{
u32 cfgcr0, cfgcr1;
struct skl_wrpll_params wrpll_params = { 0, };
cfgcr0 = DPLL_CFGCR0_HDMI_MODE;
if (!cnl_ddi_calculate_wrpll(crtc_state, &wrpll_params))
return false;
cfgcr0 |= DPLL_CFGCR0_DCO_FRACTION(wrpll_params.dco_fraction) |
wrpll_params.dco_integer;
cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(wrpll_params.qdiv_ratio) |
DPLL_CFGCR1_QDIV_MODE(wrpll_params.qdiv_mode) |
DPLL_CFGCR1_KDIV(wrpll_params.kdiv) |
DPLL_CFGCR1_PDIV(wrpll_params.pdiv) |
DPLL_CFGCR1_CENTRAL_FREQ;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
crtc_state->dpll_hw_state.cfgcr0 = cfgcr0;
crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
return true;
}
static int __cnl_ddi_wrpll_get_freq(struct drm_i915_private *dev_priv,
const struct intel_shared_dpll *pll,
int ref_clock)
{
const struct intel_dpll_hw_state *pll_state = &pll->state.hw_state;
u32 p0, p1, p2, dco_freq;
p0 = pll_state->cfgcr1 & DPLL_CFGCR1_PDIV_MASK;
p2 = pll_state->cfgcr1 & DPLL_CFGCR1_KDIV_MASK;
if (pll_state->cfgcr1 & DPLL_CFGCR1_QDIV_MODE(1))
p1 = (pll_state->cfgcr1 & DPLL_CFGCR1_QDIV_RATIO_MASK) >>
DPLL_CFGCR1_QDIV_RATIO_SHIFT;
else
p1 = 1;
switch (p0) {
case DPLL_CFGCR1_PDIV_2:
p0 = 2;
break;
case DPLL_CFGCR1_PDIV_3:
p0 = 3;
break;
case DPLL_CFGCR1_PDIV_5:
p0 = 5;
break;
case DPLL_CFGCR1_PDIV_7:
p0 = 7;
break;
}
switch (p2) {
case DPLL_CFGCR1_KDIV_1:
p2 = 1;
break;
case DPLL_CFGCR1_KDIV_2:
p2 = 2;
break;
case DPLL_CFGCR1_KDIV_3:
p2 = 3;
break;
}
dco_freq = (pll_state->cfgcr0 & DPLL_CFGCR0_DCO_INTEGER_MASK) *
ref_clock;
dco_freq += (((pll_state->cfgcr0 & DPLL_CFGCR0_DCO_FRACTION_MASK) >>
DPLL_CFGCR0_DCO_FRACTION_SHIFT) * ref_clock) / 0x8000;
if (drm_WARN_ON(&dev_priv->drm, p0 == 0 || p1 == 0 || p2 == 0))
return 0;
return dco_freq / (p0 * p1 * p2 * 5);
}
static int cnl_ddi_wrpll_get_freq(struct drm_i915_private *i915,
const struct intel_shared_dpll *pll)
{
return __cnl_ddi_wrpll_get_freq(i915, pll, i915->dpll.ref_clks.nssc);
}
static bool
cnl_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state)
{
u32 cfgcr0;
cfgcr0 = DPLL_CFGCR0_SSC_ENABLE;
switch (crtc_state->port_clock / 2) {
case 81000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_810;
break;
case 135000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1350;
break;
case 270000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2700;
break;
/* eDP 1.4 rates */
case 162000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1620;
break;
case 108000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1080;
break;
case 216000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2160;
break;
case 324000:
/* Some SKUs may require elevated I/O voltage to support this */
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_3240;
break;
case 405000:
/* Some SKUs may require elevated I/O voltage to support this */
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_4050;
break;
}
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
crtc_state->dpll_hw_state.cfgcr0 = cfgcr0;
return true;
}
static int cnl_ddi_lcpll_get_freq(struct drm_i915_private *i915,
const struct intel_shared_dpll *pll)
{
int link_clock = 0;
switch (pll->state.hw_state.cfgcr0 & DPLL_CFGCR0_LINK_RATE_MASK) {
case DPLL_CFGCR0_LINK_RATE_810:
link_clock = 81000;
break;
case DPLL_CFGCR0_LINK_RATE_1080:
link_clock = 108000;
break;
case DPLL_CFGCR0_LINK_RATE_1350:
link_clock = 135000;
break;
case DPLL_CFGCR0_LINK_RATE_1620:
link_clock = 162000;
break;
case DPLL_CFGCR0_LINK_RATE_2160:
link_clock = 216000;
break;
case DPLL_CFGCR0_LINK_RATE_2700:
link_clock = 270000;
break;
case DPLL_CFGCR0_LINK_RATE_3240:
link_clock = 324000;
break;
case DPLL_CFGCR0_LINK_RATE_4050:
link_clock = 405000;
break;
default:
drm_WARN(&i915->drm, 1, "Unsupported link rate\n");
break;
}
return link_clock * 2;
}
static bool cnl_get_dpll(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
struct intel_shared_dpll *pll;
bool bret;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
bret = cnl_ddi_hdmi_pll_dividers(crtc_state);
if (!bret) {
drm_dbg_kms(&i915->drm,
"Could not get HDMI pll dividers.\n");
return false;
}
} else if (intel_crtc_has_dp_encoder(crtc_state)) {
bret = cnl_ddi_dp_set_dpll_hw_state(crtc_state);
if (!bret) {
drm_dbg_kms(&i915->drm,
"Could not set DP dpll HW state.\n");
return false;
}
} else {
drm_dbg_kms(&i915->drm,
"Skip DPLL setup for output_types 0x%x\n",
crtc_state->output_types);
return false;
}
pll = intel_find_shared_dpll(state, crtc,
&crtc_state->dpll_hw_state,
BIT(DPLL_ID_SKL_DPLL2) |
BIT(DPLL_ID_SKL_DPLL1) |
BIT(DPLL_ID_SKL_DPLL0));
if (!pll) {
drm_dbg_kms(&i915->drm, "No PLL selected\n");
return false;
}
intel_reference_shared_dpll(state, crtc,
pll, &crtc_state->dpll_hw_state);
crtc_state->shared_dpll = pll;
return true;
}
static int cnl_ddi_pll_get_freq(struct drm_i915_private *i915,
const struct intel_shared_dpll *pll)
{
if (pll->state.hw_state.cfgcr0 & DPLL_CFGCR0_HDMI_MODE)
return cnl_ddi_wrpll_get_freq(i915, pll);
else
return cnl_ddi_lcpll_get_freq(i915, pll);
}
static void cnl_update_dpll_ref_clks(struct drm_i915_private *i915)
{
/* No SSC reference */
i915->dpll.ref_clks.nssc = i915->cdclk.hw.ref;
}
static void cnl_dump_hw_state(struct drm_i915_private *dev_priv,
const struct intel_dpll_hw_state *hw_state)
{
drm_dbg_kms(&dev_priv->drm, "dpll_hw_state: "
"cfgcr0: 0x%x, cfgcr1: 0x%x\n",
hw_state->cfgcr0,
hw_state->cfgcr1);
}
static const struct intel_shared_dpll_funcs cnl_ddi_pll_funcs = {
.enable = cnl_ddi_pll_enable,
.disable = cnl_ddi_pll_disable,
.get_hw_state = cnl_ddi_pll_get_hw_state,
.get_freq = cnl_ddi_pll_get_freq,
};
static const struct dpll_info cnl_plls[] = {
{ "DPLL 0", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 },
{ "DPLL 1", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
{ "DPLL 2", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
{ },
};
static const struct intel_dpll_mgr cnl_pll_mgr = {
.dpll_info = cnl_plls,
.get_dplls = cnl_get_dpll,
.put_dplls = intel_put_dpll,
.update_ref_clks = cnl_update_dpll_ref_clks,
.dump_hw_state = cnl_dump_hw_state,
};
struct icl_combo_pll_params {
int clock;
struct skl_wrpll_params wrpll;
};
/*
* These values alrea already adjusted: they're the bits we write to the
* registers, not the logical values.
*/
static const struct icl_combo_pll_params icl_dp_combo_pll_24MHz_values[] = {
{ 540000,
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [0]: 5.4 */
.pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
{ 270000,
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [1]: 2.7 */
.pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
{ 162000,
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [2]: 1.62 */
.pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
{ 324000,
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [3]: 3.24 */
.pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
{ 216000,
{ .dco_integer = 0x168, .dco_fraction = 0x0000, /* [4]: 2.16 */
.pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2, }, },
{ 432000,
{ .dco_integer = 0x168, .dco_fraction = 0x0000, /* [5]: 4.32 */
.pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
{ 648000,
{ .dco_integer = 0x195, .dco_fraction = 0x0000, /* [6]: 6.48 */
.pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
{ 810000,
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [7]: 8.1 */
.pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
};
/* Also used for 38.4 MHz values. */
static const struct icl_combo_pll_params icl_dp_combo_pll_19_2MHz_values[] = {
{ 540000,
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [0]: 5.4 */
.pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
{ 270000,
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [1]: 2.7 */
.pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
{ 162000,
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [2]: 1.62 */
.pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
{ 324000,
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [3]: 3.24 */
.pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
{ 216000,
{ .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [4]: 2.16 */
.pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2, }, },
{ 432000,
{ .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [5]: 4.32 */
.pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
{ 648000,
{ .dco_integer = 0x1FA, .dco_fraction = 0x2000, /* [6]: 6.48 */
.pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
{ 810000,
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [7]: 8.1 */
.pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
};
static const struct skl_wrpll_params icl_tbt_pll_24MHz_values = {
.dco_integer = 0x151, .dco_fraction = 0x4000,
.pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0,
};
static const struct skl_wrpll_params icl_tbt_pll_19_2MHz_values = {
.dco_integer = 0x1A5, .dco_fraction = 0x7000,
.pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0,
};
static const struct skl_wrpll_params tgl_tbt_pll_19_2MHz_values = {
.dco_integer = 0x54, .dco_fraction = 0x3000,
/* the following params are unused */
.pdiv = 0, .kdiv = 0, .qdiv_mode = 0, .qdiv_ratio = 0,
};
static const struct skl_wrpll_params tgl_tbt_pll_24MHz_values = {
.dco_integer = 0x43, .dco_fraction = 0x4000,
/* the following params are unused */
.pdiv = 0, .kdiv = 0, .qdiv_mode = 0, .qdiv_ratio = 0,
};
static bool icl_calc_dp_combo_pll(struct intel_crtc_state *crtc_state,
struct skl_wrpll_params *pll_params)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
const struct icl_combo_pll_params *params =
dev_priv->dpll.ref_clks.nssc == 24000 ?
icl_dp_combo_pll_24MHz_values :
icl_dp_combo_pll_19_2MHz_values;
int clock = crtc_state->port_clock;
int i;
for (i = 0; i < ARRAY_SIZE(icl_dp_combo_pll_24MHz_values); i++) {
if (clock == params[i].clock) {
*pll_params = params[i].wrpll;
return true;
}
}
MISSING_CASE(clock);
return false;
}
static bool icl_calc_tbt_pll(struct intel_crtc_state *crtc_state,
struct skl_wrpll_params *pll_params)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
if (INTEL_GEN(dev_priv) >= 12) {
switch (dev_priv->dpll.ref_clks.nssc) {
default:
MISSING_CASE(dev_priv->dpll.ref_clks.nssc);
/* fall-through */
case 19200:
case 38400:
*pll_params = tgl_tbt_pll_19_2MHz_values;
break;
case 24000:
*pll_params = tgl_tbt_pll_24MHz_values;
break;
}
} else {
switch (dev_priv->dpll.ref_clks.nssc) {
default:
MISSING_CASE(dev_priv->dpll.ref_clks.nssc);
/* fall-through */
case 19200:
case 38400:
*pll_params = icl_tbt_pll_19_2MHz_values;
break;
case 24000:
*pll_params = icl_tbt_pll_24MHz_values;
break;
}
}
return true;
}
static int icl_ddi_tbt_pll_get_freq(struct drm_i915_private *i915,
const struct intel_shared_dpll *pll)
{
/*
* The PLL outputs multiple frequencies at the same time, selection is
* made at DDI clock mux level.
*/
drm_WARN_ON(&i915->drm, 1);
return 0;
}
static int icl_wrpll_ref_clock(struct drm_i915_private *i915)
{
int ref_clock = i915->dpll.ref_clks.nssc;
/*
* For ICL+, the spec states: if reference frequency is 38.4,
* use 19.2 because the DPLL automatically divides that by 2.
*/
if (ref_clock == 38400)
ref_clock = 19200;
return ref_clock;
}
static bool
icl_calc_wrpll(struct intel_crtc_state *crtc_state,
struct skl_wrpll_params *wrpll_params)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
return __cnl_ddi_calculate_wrpll(crtc_state, wrpll_params,
icl_wrpll_ref_clock(i915));
}
static int icl_ddi_combo_pll_get_freq(struct drm_i915_private *i915,
const struct intel_shared_dpll *pll)
{
return __cnl_ddi_wrpll_get_freq(i915, pll,
icl_wrpll_ref_clock(i915));
}
static bool icl_calc_dpll_state(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder,
struct intel_dpll_hw_state *pll_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
u32 cfgcr0, cfgcr1;
struct skl_wrpll_params pll_params = { 0 };
bool ret;
if (intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv,
encoder->port)))
ret = icl_calc_tbt_pll(crtc_state, &pll_params);
else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
ret = icl_calc_wrpll(crtc_state, &pll_params);
else
ret = icl_calc_dp_combo_pll(crtc_state, &pll_params);
if (!ret)
return false;
cfgcr0 = DPLL_CFGCR0_DCO_FRACTION(pll_params.dco_fraction) |
pll_params.dco_integer;
cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(pll_params.qdiv_ratio) |
DPLL_CFGCR1_QDIV_MODE(pll_params.qdiv_mode) |
DPLL_CFGCR1_KDIV(pll_params.kdiv) |
DPLL_CFGCR1_PDIV(pll_params.pdiv);
if (INTEL_GEN(dev_priv) >= 12)
cfgcr1 |= TGL_DPLL_CFGCR1_CFSELOVRD_NORMAL_XTAL;
else
cfgcr1 |= DPLL_CFGCR1_CENTRAL_FREQ_8400;
memset(pll_state, 0, sizeof(*pll_state));
pll_state->cfgcr0 = cfgcr0;
pll_state->cfgcr1 = cfgcr1;
return true;
}
static enum tc_port icl_pll_id_to_tc_port(enum intel_dpll_id id)
{
return id - DPLL_ID_ICL_MGPLL1;
}
enum intel_dpll_id icl_tc_port_to_pll_id(enum tc_port tc_port)
{
return tc_port + DPLL_ID_ICL_MGPLL1;
}
static bool icl_mg_pll_find_divisors(int clock_khz, bool is_dp, bool use_ssc,
u32 *target_dco_khz,
struct intel_dpll_hw_state *state,
bool is_dkl)
{
u32 dco_min_freq, dco_max_freq;
int div1_vals[] = {7, 5, 3, 2};
unsigned int i;
int div2;
dco_min_freq = is_dp ? 8100000 : use_ssc ? 8000000 : 7992000;
dco_max_freq = is_dp ? 8100000 : 10000000;
for (i = 0; i < ARRAY_SIZE(div1_vals); i++) {
int div1 = div1_vals[i];
for (div2 = 10; div2 > 0; div2--) {
int dco = div1 * div2 * clock_khz * 5;
int a_divratio, tlinedrv, inputsel;
u32 hsdiv;
if (dco < dco_min_freq || dco > dco_max_freq)
continue;
if (div2 >= 2) {
/*
* Note: a_divratio not matching TGL BSpec
* algorithm but matching hardcoded values and
* working on HW for DP alt-mode at least
*/
a_divratio = is_dp ? 10 : 5;
tlinedrv = is_dkl ? 1 : 2;
} else {
a_divratio = 5;
tlinedrv = 0;
}
inputsel = is_dp ? 0 : 1;
switch (div1) {
default:
MISSING_CASE(div1);
/* fall through */
case 2:
hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_2;
break;
case 3:
hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_3;
break;
case 5:
hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_5;
break;
case 7:
hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_7;
break;
}
*target_dco_khz = dco;
state->mg_refclkin_ctl = MG_REFCLKIN_CTL_OD_2_MUX(1);
state->mg_clktop2_coreclkctl1 =
MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO(a_divratio);
state->mg_clktop2_hsclkctl =
MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL(tlinedrv) |
MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL(inputsel) |
hsdiv |
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO(div2);
return true;
}
}
return false;
}
/*
* The specification for this function uses real numbers, so the math had to be
* adapted to integer-only calculation, that's why it looks so different.
*/
static bool icl_calc_mg_pll_state(struct intel_crtc_state *crtc_state,
struct intel_dpll_hw_state *pll_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
int refclk_khz = dev_priv->dpll.ref_clks.nssc;
int clock = crtc_state->port_clock;
u32 dco_khz, m1div, m2div_int, m2div_rem, m2div_frac;
u32 iref_ndiv, iref_trim, iref_pulse_w;
u32 prop_coeff, int_coeff;
u32 tdc_targetcnt, feedfwgain;
u64 ssc_stepsize, ssc_steplen, ssc_steplog;
u64 tmp;
bool use_ssc = false;
bool is_dp = !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI);
bool is_dkl = INTEL_GEN(dev_priv) >= 12;
memset(pll_state, 0, sizeof(*pll_state));
if (!icl_mg_pll_find_divisors(clock, is_dp, use_ssc, &dco_khz,
pll_state, is_dkl)) {
drm_dbg_kms(&dev_priv->drm,
"Failed to find divisors for clock %d\n", clock);
return false;
}
m1div = 2;
m2div_int = dco_khz / (refclk_khz * m1div);
if (m2div_int > 255) {
if (!is_dkl) {
m1div = 4;
m2div_int = dco_khz / (refclk_khz * m1div);
}
if (m2div_int > 255) {
drm_dbg_kms(&dev_priv->drm,
"Failed to find mdiv for clock %d\n",
clock);
return false;
}
}
m2div_rem = dco_khz % (refclk_khz * m1div);
tmp = (u64)m2div_rem * (1 << 22);
do_div(tmp, refclk_khz * m1div);
m2div_frac = tmp;
switch (refclk_khz) {
case 19200:
iref_ndiv = 1;
iref_trim = 28;
iref_pulse_w = 1;
break;
case 24000:
iref_ndiv = 1;
iref_trim = 25;
iref_pulse_w = 2;
break;
case 38400:
iref_ndiv = 2;
iref_trim = 28;
iref_pulse_w = 1;
break;
default:
MISSING_CASE(refclk_khz);
return false;
}
/*
* tdc_res = 0.000003
* tdc_targetcnt = int(2 / (tdc_res * 8 * 50 * 1.1) / refclk_mhz + 0.5)
*
* The multiplication by 1000 is due to refclk MHz to KHz conversion. It
* was supposed to be a division, but we rearranged the operations of
* the formula to avoid early divisions so we don't multiply the
* rounding errors.
*
* 0.000003 * 8 * 50 * 1.1 = 0.00132, also known as 132 / 100000, which
* we also rearrange to work with integers.
*
* The 0.5 transformed to 5 results in a multiplication by 10 and the
* last division by 10.
*/
tdc_targetcnt = (2 * 1000 * 100000 * 10 / (132 * refclk_khz) + 5) / 10;
/*
* Here we divide dco_khz by 10 in order to allow the dividend to fit in
* 32 bits. That's not a problem since we round the division down
* anyway.
*/
feedfwgain = (use_ssc || m2div_rem > 0) ?
m1div * 1000000 * 100 / (dco_khz * 3 / 10) : 0;
if (dco_khz >= 9000000) {
prop_coeff = 5;
int_coeff = 10;
} else {
prop_coeff = 4;
int_coeff = 8;
}
if (use_ssc) {
tmp = mul_u32_u32(dco_khz, 47 * 32);
do_div(tmp, refclk_khz * m1div * 10000);
ssc_stepsize = tmp;
tmp = mul_u32_u32(dco_khz, 1000);
ssc_steplen = DIV_ROUND_UP_ULL(tmp, 32 * 2 * 32);
} else {
ssc_stepsize = 0;
ssc_steplen = 0;
}
ssc_steplog = 4;
/* write pll_state calculations */
if (is_dkl) {
pll_state->mg_pll_div0 = DKL_PLL_DIV0_INTEG_COEFF(int_coeff) |
DKL_PLL_DIV0_PROP_COEFF(prop_coeff) |
DKL_PLL_DIV0_FBPREDIV(m1div) |
DKL_PLL_DIV0_FBDIV_INT(m2div_int);
pll_state->mg_pll_div1 = DKL_PLL_DIV1_IREF_TRIM(iref_trim) |
DKL_PLL_DIV1_TDC_TARGET_CNT(tdc_targetcnt);
pll_state->mg_pll_ssc = DKL_PLL_SSC_IREF_NDIV_RATIO(iref_ndiv) |
DKL_PLL_SSC_STEP_LEN(ssc_steplen) |
DKL_PLL_SSC_STEP_NUM(ssc_steplog) |
(use_ssc ? DKL_PLL_SSC_EN : 0);
pll_state->mg_pll_bias = (m2div_frac ? DKL_PLL_BIAS_FRAC_EN_H : 0) |
DKL_PLL_BIAS_FBDIV_FRAC(m2div_frac);
pll_state->mg_pll_tdc_coldst_bias =
DKL_PLL_TDC_SSC_STEP_SIZE(ssc_stepsize) |
DKL_PLL_TDC_FEED_FWD_GAIN(feedfwgain);
} else {
pll_state->mg_pll_div0 =
(m2div_rem > 0 ? MG_PLL_DIV0_FRACNEN_H : 0) |
MG_PLL_DIV0_FBDIV_FRAC(m2div_frac) |
MG_PLL_DIV0_FBDIV_INT(m2div_int);
pll_state->mg_pll_div1 =
MG_PLL_DIV1_IREF_NDIVRATIO(iref_ndiv) |
MG_PLL_DIV1_DITHER_DIV_2 |
MG_PLL_DIV1_NDIVRATIO(1) |
MG_PLL_DIV1_FBPREDIV(m1div);
pll_state->mg_pll_lf =
MG_PLL_LF_TDCTARGETCNT(tdc_targetcnt) |
MG_PLL_LF_AFCCNTSEL_512 |
MG_PLL_LF_GAINCTRL(1) |
MG_PLL_LF_INT_COEFF(int_coeff) |
MG_PLL_LF_PROP_COEFF(prop_coeff);
pll_state->mg_pll_frac_lock =
MG_PLL_FRAC_LOCK_TRUELOCK_CRIT_32 |
MG_PLL_FRAC_LOCK_EARLYLOCK_CRIT_32 |
MG_PLL_FRAC_LOCK_LOCKTHRESH(10) |
MG_PLL_FRAC_LOCK_DCODITHEREN |
MG_PLL_FRAC_LOCK_FEEDFWRDGAIN(feedfwgain);
if (use_ssc || m2div_rem > 0)
pll_state->mg_pll_frac_lock |=
MG_PLL_FRAC_LOCK_FEEDFWRDCAL_EN;
pll_state->mg_pll_ssc =
(use_ssc ? MG_PLL_SSC_EN : 0) |
MG_PLL_SSC_TYPE(2) |
MG_PLL_SSC_STEPLENGTH(ssc_steplen) |
MG_PLL_SSC_STEPNUM(ssc_steplog) |
MG_PLL_SSC_FLLEN |
MG_PLL_SSC_STEPSIZE(ssc_stepsize);
pll_state->mg_pll_tdc_coldst_bias =
MG_PLL_TDC_COLDST_COLDSTART |
MG_PLL_TDC_COLDST_IREFINT_EN |
MG_PLL_TDC_COLDST_REFBIAS_START_PULSE_W(iref_pulse_w) |
MG_PLL_TDC_TDCOVCCORR_EN |
MG_PLL_TDC_TDCSEL(3);
pll_state->mg_pll_bias =
MG_PLL_BIAS_BIAS_GB_SEL(3) |
MG_PLL_BIAS_INIT_DCOAMP(0x3F) |
MG_PLL_BIAS_BIAS_BONUS(10) |
MG_PLL_BIAS_BIASCAL_EN |
MG_PLL_BIAS_CTRIM(12) |
MG_PLL_BIAS_VREF_RDAC(4) |
MG_PLL_BIAS_IREFTRIM(iref_trim);
if (refclk_khz == 38400) {
pll_state->mg_pll_tdc_coldst_bias_mask =
MG_PLL_TDC_COLDST_COLDSTART;
pll_state->mg_pll_bias_mask = 0;
} else {
pll_state->mg_pll_tdc_coldst_bias_mask = -1U;
pll_state->mg_pll_bias_mask = -1U;
}
pll_state->mg_pll_tdc_coldst_bias &=
pll_state->mg_pll_tdc_coldst_bias_mask;
pll_state->mg_pll_bias &= pll_state->mg_pll_bias_mask;
}
return true;
}
static int icl_ddi_mg_pll_get_freq(struct drm_i915_private *dev_priv,
const struct intel_shared_dpll *pll)
{
const struct intel_dpll_hw_state *pll_state = &pll->state.hw_state;
u32 m1, m2_int, m2_frac, div1, div2, ref_clock;
u64 tmp;
ref_clock = dev_priv->dpll.ref_clks.nssc;
if (INTEL_GEN(dev_priv) >= 12) {
m1 = pll_state->mg_pll_div0 & DKL_PLL_DIV0_FBPREDIV_MASK;
m1 = m1 >> DKL_PLL_DIV0_FBPREDIV_SHIFT;
m2_int = pll_state->mg_pll_div0 & DKL_PLL_DIV0_FBDIV_INT_MASK;
if (pll_state->mg_pll_bias & DKL_PLL_BIAS_FRAC_EN_H) {
m2_frac = pll_state->mg_pll_bias &
DKL_PLL_BIAS_FBDIV_FRAC_MASK;
m2_frac = m2_frac >> DKL_PLL_BIAS_FBDIV_SHIFT;
} else {
m2_frac = 0;
}
} else {
m1 = pll_state->mg_pll_div1 & MG_PLL_DIV1_FBPREDIV_MASK;
m2_int = pll_state->mg_pll_div0 & MG_PLL_DIV0_FBDIV_INT_MASK;
if (pll_state->mg_pll_div0 & MG_PLL_DIV0_FRACNEN_H) {
m2_frac = pll_state->mg_pll_div0 &
MG_PLL_DIV0_FBDIV_FRAC_MASK;
m2_frac = m2_frac >> MG_PLL_DIV0_FBDIV_FRAC_SHIFT;
} else {
m2_frac = 0;
}
}
switch (pll_state->mg_clktop2_hsclkctl &
MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK) {
case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_2:
div1 = 2;
break;
case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_3:
div1 = 3;
break;
case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_5:
div1 = 5;
break;
case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_7:
div1 = 7;
break;
default:
MISSING_CASE(pll_state->mg_clktop2_hsclkctl);
return 0;
}
div2 = (pll_state->mg_clktop2_hsclkctl &
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK) >>
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_SHIFT;
/* div2 value of 0 is same as 1 means no div */
if (div2 == 0)
div2 = 1;
/*
* Adjust the original formula to delay the division by 2^22 in order to
* minimize possible rounding errors.
*/
tmp = (u64)m1 * m2_int * ref_clock +
(((u64)m1 * m2_frac * ref_clock) >> 22);
tmp = div_u64(tmp, 5 * div1 * div2);
return tmp;
}
/**
* icl_set_active_port_dpll - select the active port DPLL for a given CRTC
* @crtc_state: state for the CRTC to select the DPLL for
* @port_dpll_id: the active @port_dpll_id to select
*
* Select the given @port_dpll_id instance from the DPLLs reserved for the
* CRTC.
*/
void icl_set_active_port_dpll(struct intel_crtc_state *crtc_state,
enum icl_port_dpll_id port_dpll_id)
{
struct icl_port_dpll *port_dpll =
&crtc_state->icl_port_dplls[port_dpll_id];
crtc_state->shared_dpll = port_dpll->pll;
crtc_state->dpll_hw_state = port_dpll->hw_state;
}
static void icl_update_active_dpll(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_digital_port *primary_port;
enum icl_port_dpll_id port_dpll_id = ICL_PORT_DPLL_DEFAULT;
primary_port = encoder->type == INTEL_OUTPUT_DP_MST ?
enc_to_mst(encoder)->primary :
enc_to_dig_port(encoder);
if (primary_port &&
(primary_port->tc_mode == TC_PORT_DP_ALT ||
primary_port->tc_mode == TC_PORT_LEGACY))
port_dpll_id = ICL_PORT_DPLL_MG_PHY;
icl_set_active_port_dpll(crtc_state, port_dpll_id);
}
static bool icl_get_combo_phy_dpll(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct icl_port_dpll *port_dpll =
&crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT];
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum port port = encoder->port;
unsigned long dpll_mask;
if (!icl_calc_dpll_state(crtc_state, encoder, &port_dpll->hw_state)) {
drm_dbg_kms(&dev_priv->drm,
"Could not calculate combo PHY PLL state.\n");
return false;
}
if (IS_ELKHARTLAKE(dev_priv) && port != PORT_A)
dpll_mask =
BIT(DPLL_ID_EHL_DPLL4) |
BIT(DPLL_ID_ICL_DPLL1) |
BIT(DPLL_ID_ICL_DPLL0);
else
dpll_mask = BIT(DPLL_ID_ICL_DPLL1) | BIT(DPLL_ID_ICL_DPLL0);
port_dpll->pll = intel_find_shared_dpll(state, crtc,
&port_dpll->hw_state,
dpll_mask);
if (!port_dpll->pll) {
drm_dbg_kms(&dev_priv->drm,
"No combo PHY PLL found for [ENCODER:%d:%s]\n",
encoder->base.base.id, encoder->base.name);
return false;
}
intel_reference_shared_dpll(state, crtc,
port_dpll->pll, &port_dpll->hw_state);
icl_update_active_dpll(state, crtc, encoder);
return true;
}
static bool icl_get_tc_phy_dplls(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct icl_port_dpll *port_dpll;
enum intel_dpll_id dpll_id;
port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT];
if (!icl_calc_dpll_state(crtc_state, encoder, &port_dpll->hw_state)) {
drm_dbg_kms(&dev_priv->drm,
"Could not calculate TBT PLL state.\n");
return false;
}
port_dpll->pll = intel_find_shared_dpll(state, crtc,
&port_dpll->hw_state,
BIT(DPLL_ID_ICL_TBTPLL));
if (!port_dpll->pll) {
drm_dbg_kms(&dev_priv->drm, "No TBT-ALT PLL found\n");
return false;
}
intel_reference_shared_dpll(state, crtc,
port_dpll->pll, &port_dpll->hw_state);
port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_MG_PHY];
if (!icl_calc_mg_pll_state(crtc_state, &port_dpll->hw_state)) {
drm_dbg_kms(&dev_priv->drm,
"Could not calculate MG PHY PLL state.\n");
goto err_unreference_tbt_pll;
}
dpll_id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
encoder->port));
port_dpll->pll = intel_find_shared_dpll(state, crtc,
&port_dpll->hw_state,
BIT(dpll_id));
if (!port_dpll->pll) {
drm_dbg_kms(&dev_priv->drm, "No MG PHY PLL found\n");
goto err_unreference_tbt_pll;
}
intel_reference_shared_dpll(state, crtc,
port_dpll->pll, &port_dpll->hw_state);
icl_update_active_dpll(state, crtc, encoder);
return true;
err_unreference_tbt_pll:
port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT];
intel_unreference_shared_dpll(state, crtc, port_dpll->pll);
return false;
}
static bool icl_get_dplls(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
if (intel_phy_is_combo(dev_priv, phy))
return icl_get_combo_phy_dpll(state, crtc, encoder);
else if (intel_phy_is_tc(dev_priv, phy))
return icl_get_tc_phy_dplls(state, crtc, encoder);
MISSING_CASE(phy);
return false;
}
static void icl_put_dplls(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
enum icl_port_dpll_id id;
new_crtc_state->shared_dpll = NULL;
for (id = ICL_PORT_DPLL_DEFAULT; id < ICL_PORT_DPLL_COUNT; id++) {
const struct icl_port_dpll *old_port_dpll =
&old_crtc_state->icl_port_dplls[id];
struct icl_port_dpll *new_port_dpll =
&new_crtc_state->icl_port_dplls[id];
new_port_dpll->pll = NULL;
if (!old_port_dpll->pll)
continue;
intel_unreference_shared_dpll(state, crtc, old_port_dpll->pll);
}
}
static bool mg_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
const enum intel_dpll_id id = pll->info->id;
enum tc_port tc_port = icl_pll_id_to_tc_port(id);
intel_wakeref_t wakeref;
bool ret = false;
u32 val;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_DISPLAY_CORE);
if (!wakeref)
return false;
val = intel_de_read(dev_priv, MG_PLL_ENABLE(tc_port));
if (!(val & PLL_ENABLE))
goto out;
hw_state->mg_refclkin_ctl = intel_de_read(dev_priv,
MG_REFCLKIN_CTL(tc_port));
hw_state->mg_refclkin_ctl &= MG_REFCLKIN_CTL_OD_2_MUX_MASK;
hw_state->mg_clktop2_coreclkctl1 =
intel_de_read(dev_priv, MG_CLKTOP2_CORECLKCTL1(tc_port));
hw_state->mg_clktop2_coreclkctl1 &=
MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK;
hw_state->mg_clktop2_hsclkctl =
intel_de_read(dev_priv, MG_CLKTOP2_HSCLKCTL(tc_port));
hw_state->mg_clktop2_hsclkctl &=
MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK |
MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK |
MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK |
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK;
hw_state->mg_pll_div0 = intel_de_read(dev_priv, MG_PLL_DIV0(tc_port));
hw_state->mg_pll_div1 = intel_de_read(dev_priv, MG_PLL_DIV1(tc_port));
hw_state->mg_pll_lf = intel_de_read(dev_priv, MG_PLL_LF(tc_port));
hw_state->mg_pll_frac_lock = intel_de_read(dev_priv,
MG_PLL_FRAC_LOCK(tc_port));
hw_state->mg_pll_ssc = intel_de_read(dev_priv, MG_PLL_SSC(tc_port));
hw_state->mg_pll_bias = intel_de_read(dev_priv, MG_PLL_BIAS(tc_port));
hw_state->mg_pll_tdc_coldst_bias =
intel_de_read(dev_priv, MG_PLL_TDC_COLDST_BIAS(tc_port));
if (dev_priv->dpll.ref_clks.nssc == 38400) {
hw_state->mg_pll_tdc_coldst_bias_mask = MG_PLL_TDC_COLDST_COLDSTART;
hw_state->mg_pll_bias_mask = 0;
} else {
hw_state->mg_pll_tdc_coldst_bias_mask = -1U;
hw_state->mg_pll_bias_mask = -1U;
}
hw_state->mg_pll_tdc_coldst_bias &= hw_state->mg_pll_tdc_coldst_bias_mask;
hw_state->mg_pll_bias &= hw_state->mg_pll_bias_mask;
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
return ret;
}
static bool dkl_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
const enum intel_dpll_id id = pll->info->id;
enum tc_port tc_port = icl_pll_id_to_tc_port(id);
intel_wakeref_t wakeref;
bool ret = false;
u32 val;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_DISPLAY_CORE);
if (!wakeref)
return false;
val = intel_de_read(dev_priv, MG_PLL_ENABLE(tc_port));
if (!(val & PLL_ENABLE))
goto out;
/*
* All registers read here have the same HIP_INDEX_REG even though
* they are on different building blocks
*/
intel_de_write(dev_priv, HIP_INDEX_REG(tc_port),
HIP_INDEX_VAL(tc_port, 0x2));
hw_state->mg_refclkin_ctl = intel_de_read(dev_priv,
DKL_REFCLKIN_CTL(tc_port));
hw_state->mg_refclkin_ctl &= MG_REFCLKIN_CTL_OD_2_MUX_MASK;
hw_state->mg_clktop2_hsclkctl =
intel_de_read(dev_priv, DKL_CLKTOP2_HSCLKCTL(tc_port));
hw_state->mg_clktop2_hsclkctl &=
MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK |
MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK |
MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK |
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK;
hw_state->mg_clktop2_coreclkctl1 =
intel_de_read(dev_priv, DKL_CLKTOP2_CORECLKCTL1(tc_port));
hw_state->mg_clktop2_coreclkctl1 &=
MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK;
hw_state->mg_pll_div0 = intel_de_read(dev_priv, DKL_PLL_DIV0(tc_port));
hw_state->mg_pll_div0 &= (DKL_PLL_DIV0_INTEG_COEFF_MASK |
DKL_PLL_DIV0_PROP_COEFF_MASK |
DKL_PLL_DIV0_FBPREDIV_MASK |
DKL_PLL_DIV0_FBDIV_INT_MASK);
hw_state->mg_pll_div1 = intel_de_read(dev_priv, DKL_PLL_DIV1(tc_port));
hw_state->mg_pll_div1 &= (DKL_PLL_DIV1_IREF_TRIM_MASK |
DKL_PLL_DIV1_TDC_TARGET_CNT_MASK);
hw_state->mg_pll_ssc = intel_de_read(dev_priv, DKL_PLL_SSC(tc_port));
hw_state->mg_pll_ssc &= (DKL_PLL_SSC_IREF_NDIV_RATIO_MASK |
DKL_PLL_SSC_STEP_LEN_MASK |
DKL_PLL_SSC_STEP_NUM_MASK |
DKL_PLL_SSC_EN);
hw_state->mg_pll_bias = intel_de_read(dev_priv, DKL_PLL_BIAS(tc_port));
hw_state->mg_pll_bias &= (DKL_PLL_BIAS_FRAC_EN_H |
DKL_PLL_BIAS_FBDIV_FRAC_MASK);
hw_state->mg_pll_tdc_coldst_bias =
intel_de_read(dev_priv, DKL_PLL_TDC_COLDST_BIAS(tc_port));
hw_state->mg_pll_tdc_coldst_bias &= (DKL_PLL_TDC_SSC_STEP_SIZE_MASK |
DKL_PLL_TDC_FEED_FWD_GAIN_MASK);
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
return ret;
}
static bool icl_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state,
i915_reg_t enable_reg)
{
const enum intel_dpll_id id = pll->info->id;
intel_wakeref_t wakeref;
bool ret = false;
u32 val;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_DISPLAY_CORE);
if (!wakeref)
return false;
val = intel_de_read(dev_priv, enable_reg);
if (!(val & PLL_ENABLE))
goto out;
if (INTEL_GEN(dev_priv) >= 12) {
hw_state->cfgcr0 = intel_de_read(dev_priv,
TGL_DPLL_CFGCR0(id));
hw_state->cfgcr1 = intel_de_read(dev_priv,
TGL_DPLL_CFGCR1(id));
} else {
if (IS_ELKHARTLAKE(dev_priv) && id == DPLL_ID_EHL_DPLL4) {
hw_state->cfgcr0 = intel_de_read(dev_priv,
ICL_DPLL_CFGCR0(4));
hw_state->cfgcr1 = intel_de_read(dev_priv,
ICL_DPLL_CFGCR1(4));
} else {
hw_state->cfgcr0 = intel_de_read(dev_priv,
ICL_DPLL_CFGCR0(id));
hw_state->cfgcr1 = intel_de_read(dev_priv,
ICL_DPLL_CFGCR1(id));
}
}
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
return ret;
}
static bool combo_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
i915_reg_t enable_reg = CNL_DPLL_ENABLE(pll->info->id);
if (IS_ELKHARTLAKE(dev_priv) &&
pll->info->id == DPLL_ID_EHL_DPLL4) {
enable_reg = MG_PLL_ENABLE(0);
}
return icl_pll_get_hw_state(dev_priv, pll, hw_state, enable_reg);
}
static bool tbt_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
return icl_pll_get_hw_state(dev_priv, pll, hw_state, TBT_PLL_ENABLE);
}
static void icl_dpll_write(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
struct intel_dpll_hw_state *hw_state = &pll->state.hw_state;
const enum intel_dpll_id id = pll->info->id;
i915_reg_t cfgcr0_reg, cfgcr1_reg;
if (INTEL_GEN(dev_priv) >= 12) {
cfgcr0_reg = TGL_DPLL_CFGCR0(id);
cfgcr1_reg = TGL_DPLL_CFGCR1(id);
} else {
if (IS_ELKHARTLAKE(dev_priv) && id == DPLL_ID_EHL_DPLL4) {
cfgcr0_reg = ICL_DPLL_CFGCR0(4);
cfgcr1_reg = ICL_DPLL_CFGCR1(4);
} else {
cfgcr0_reg = ICL_DPLL_CFGCR0(id);
cfgcr1_reg = ICL_DPLL_CFGCR1(id);
}
}
intel_de_write(dev_priv, cfgcr0_reg, hw_state->cfgcr0);
intel_de_write(dev_priv, cfgcr1_reg, hw_state->cfgcr1);
intel_de_posting_read(dev_priv, cfgcr1_reg);
}
static void icl_mg_pll_write(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
struct intel_dpll_hw_state *hw_state = &pll->state.hw_state;
enum tc_port tc_port = icl_pll_id_to_tc_port(pll->info->id);
u32 val;
/*
* Some of the following registers have reserved fields, so program
* these with RMW based on a mask. The mask can be fixed or generated
* during the calc/readout phase if the mask depends on some other HW
* state like refclk, see icl_calc_mg_pll_state().
*/
val = intel_de_read(dev_priv, MG_REFCLKIN_CTL(tc_port));
val &= ~MG_REFCLKIN_CTL_OD_2_MUX_MASK;
val |= hw_state->mg_refclkin_ctl;
intel_de_write(dev_priv, MG_REFCLKIN_CTL(tc_port), val);
val = intel_de_read(dev_priv, MG_CLKTOP2_CORECLKCTL1(tc_port));
val &= ~MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK;
val |= hw_state->mg_clktop2_coreclkctl1;
intel_de_write(dev_priv, MG_CLKTOP2_CORECLKCTL1(tc_port), val);
val = intel_de_read(dev_priv, MG_CLKTOP2_HSCLKCTL(tc_port));
val &= ~(MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK |
MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK |
MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK |
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK);
val |= hw_state->mg_clktop2_hsclkctl;
intel_de_write(dev_priv, MG_CLKTOP2_HSCLKCTL(tc_port), val);
intel_de_write(dev_priv, MG_PLL_DIV0(tc_port), hw_state->mg_pll_div0);
intel_de_write(dev_priv, MG_PLL_DIV1(tc_port), hw_state->mg_pll_div1);
intel_de_write(dev_priv, MG_PLL_LF(tc_port), hw_state->mg_pll_lf);
intel_de_write(dev_priv, MG_PLL_FRAC_LOCK(tc_port),
hw_state->mg_pll_frac_lock);
intel_de_write(dev_priv, MG_PLL_SSC(tc_port), hw_state->mg_pll_ssc);
val = intel_de_read(dev_priv, MG_PLL_BIAS(tc_port));
val &= ~hw_state->mg_pll_bias_mask;
val |= hw_state->mg_pll_bias;
intel_de_write(dev_priv, MG_PLL_BIAS(tc_port), val);
val = intel_de_read(dev_priv, MG_PLL_TDC_COLDST_BIAS(tc_port));
val &= ~hw_state->mg_pll_tdc_coldst_bias_mask;
val |= hw_state->mg_pll_tdc_coldst_bias;
intel_de_write(dev_priv, MG_PLL_TDC_COLDST_BIAS(tc_port), val);
intel_de_posting_read(dev_priv, MG_PLL_TDC_COLDST_BIAS(tc_port));
}
static void dkl_pll_write(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
struct intel_dpll_hw_state *hw_state = &pll->state.hw_state;
enum tc_port tc_port = icl_pll_id_to_tc_port(pll->info->id);
u32 val;
/*
* All registers programmed here have the same HIP_INDEX_REG even
* though on different building block
*/
intel_de_write(dev_priv, HIP_INDEX_REG(tc_port),
HIP_INDEX_VAL(tc_port, 0x2));
/* All the registers are RMW */
val = intel_de_read(dev_priv, DKL_REFCLKIN_CTL(tc_port));
val &= ~MG_REFCLKIN_CTL_OD_2_MUX_MASK;
val |= hw_state->mg_refclkin_ctl;
intel_de_write(dev_priv, DKL_REFCLKIN_CTL(tc_port), val);
val = intel_de_read(dev_priv, DKL_CLKTOP2_CORECLKCTL1(tc_port));
val &= ~MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK;
val |= hw_state->mg_clktop2_coreclkctl1;
intel_de_write(dev_priv, DKL_CLKTOP2_CORECLKCTL1(tc_port), val);
val = intel_de_read(dev_priv, DKL_CLKTOP2_HSCLKCTL(tc_port));
val &= ~(MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK |
MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK |
MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK |
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK);
val |= hw_state->mg_clktop2_hsclkctl;
intel_de_write(dev_priv, DKL_CLKTOP2_HSCLKCTL(tc_port), val);
val = intel_de_read(dev_priv, DKL_PLL_DIV0(tc_port));
val &= ~(DKL_PLL_DIV0_INTEG_COEFF_MASK |
DKL_PLL_DIV0_PROP_COEFF_MASK |
DKL_PLL_DIV0_FBPREDIV_MASK |
DKL_PLL_DIV0_FBDIV_INT_MASK);
val |= hw_state->mg_pll_div0;
intel_de_write(dev_priv, DKL_PLL_DIV0(tc_port), val);
val = intel_de_read(dev_priv, DKL_PLL_DIV1(tc_port));
val &= ~(DKL_PLL_DIV1_IREF_TRIM_MASK |
DKL_PLL_DIV1_TDC_TARGET_CNT_MASK);
val |= hw_state->mg_pll_div1;
intel_de_write(dev_priv, DKL_PLL_DIV1(tc_port), val);
val = intel_de_read(dev_priv, DKL_PLL_SSC(tc_port));
val &= ~(DKL_PLL_SSC_IREF_NDIV_RATIO_MASK |
DKL_PLL_SSC_STEP_LEN_MASK |
DKL_PLL_SSC_STEP_NUM_MASK |
DKL_PLL_SSC_EN);
val |= hw_state->mg_pll_ssc;
intel_de_write(dev_priv, DKL_PLL_SSC(tc_port), val);
val = intel_de_read(dev_priv, DKL_PLL_BIAS(tc_port));
val &= ~(DKL_PLL_BIAS_FRAC_EN_H |
DKL_PLL_BIAS_FBDIV_FRAC_MASK);
val |= hw_state->mg_pll_bias;
intel_de_write(dev_priv, DKL_PLL_BIAS(tc_port), val);
val = intel_de_read(dev_priv, DKL_PLL_TDC_COLDST_BIAS(tc_port));
val &= ~(DKL_PLL_TDC_SSC_STEP_SIZE_MASK |
DKL_PLL_TDC_FEED_FWD_GAIN_MASK);
val |= hw_state->mg_pll_tdc_coldst_bias;
intel_de_write(dev_priv, DKL_PLL_TDC_COLDST_BIAS(tc_port), val);
intel_de_posting_read(dev_priv, DKL_PLL_TDC_COLDST_BIAS(tc_port));
}
static void icl_pll_power_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
i915_reg_t enable_reg)
{
u32 val;
val = intel_de_read(dev_priv, enable_reg);
val |= PLL_POWER_ENABLE;
intel_de_write(dev_priv, enable_reg, val);
/*
* The spec says we need to "wait" but it also says it should be
* immediate.
*/
if (intel_de_wait_for_set(dev_priv, enable_reg, PLL_POWER_STATE, 1))
drm_err(&dev_priv->drm, "PLL %d Power not enabled\n",
pll->info->id);
}
static void icl_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
i915_reg_t enable_reg)
{
u32 val;
val = intel_de_read(dev_priv, enable_reg);
val |= PLL_ENABLE;
intel_de_write(dev_priv, enable_reg, val);
/* Timeout is actually 600us. */
if (intel_de_wait_for_set(dev_priv, enable_reg, PLL_LOCK, 1))
drm_err(&dev_priv->drm, "PLL %d not locked\n", pll->info->id);
}
static void combo_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
i915_reg_t enable_reg = CNL_DPLL_ENABLE(pll->info->id);
if (IS_ELKHARTLAKE(dev_priv) &&
pll->info->id == DPLL_ID_EHL_DPLL4) {
enable_reg = MG_PLL_ENABLE(0);
/*
* We need to disable DC states when this DPLL is enabled.
* This can be done by taking a reference on DPLL4 power
* domain.
*/
pll->wakeref = intel_display_power_get(dev_priv,
POWER_DOMAIN_DPLL_DC_OFF);
}
icl_pll_power_enable(dev_priv, pll, enable_reg);
icl_dpll_write(dev_priv, pll);
/*
* DVFS pre sequence would be here, but in our driver the cdclk code
* paths should already be setting the appropriate voltage, hence we do
* nothing here.
*/
icl_pll_enable(dev_priv, pll, enable_reg);
/* DVFS post sequence would be here. See the comment above. */
}
static void tbt_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
icl_pll_power_enable(dev_priv, pll, TBT_PLL_ENABLE);
icl_dpll_write(dev_priv, pll);
/*
* DVFS pre sequence would be here, but in our driver the cdclk code
* paths should already be setting the appropriate voltage, hence we do
* nothing here.
*/
icl_pll_enable(dev_priv, pll, TBT_PLL_ENABLE);
/* DVFS post sequence would be here. See the comment above. */
}
static void mg_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
i915_reg_t enable_reg =
MG_PLL_ENABLE(icl_pll_id_to_tc_port(pll->info->id));
icl_pll_power_enable(dev_priv, pll, enable_reg);
if (INTEL_GEN(dev_priv) >= 12)
dkl_pll_write(dev_priv, pll);
else
icl_mg_pll_write(dev_priv, pll);
/*
* DVFS pre sequence would be here, but in our driver the cdclk code
* paths should already be setting the appropriate voltage, hence we do
* nothing here.
*/
icl_pll_enable(dev_priv, pll, enable_reg);
/* DVFS post sequence would be here. See the comment above. */
}
static void icl_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
i915_reg_t enable_reg)
{
u32 val;
/* The first steps are done by intel_ddi_post_disable(). */
/*
* DVFS pre sequence would be here, but in our driver the cdclk code
* paths should already be setting the appropriate voltage, hence we do
* nothign here.
*/
val = intel_de_read(dev_priv, enable_reg);
val &= ~PLL_ENABLE;
intel_de_write(dev_priv, enable_reg, val);
/* Timeout is actually 1us. */
if (intel_de_wait_for_clear(dev_priv, enable_reg, PLL_LOCK, 1))
drm_err(&dev_priv->drm, "PLL %d locked\n", pll->info->id);
/* DVFS post sequence would be here. See the comment above. */
val = intel_de_read(dev_priv, enable_reg);
val &= ~PLL_POWER_ENABLE;
intel_de_write(dev_priv, enable_reg, val);
/*
* The spec says we need to "wait" but it also says it should be
* immediate.
*/
if (intel_de_wait_for_clear(dev_priv, enable_reg, PLL_POWER_STATE, 1))
drm_err(&dev_priv->drm, "PLL %d Power not disabled\n",
pll->info->id);
}
static void combo_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
i915_reg_t enable_reg = CNL_DPLL_ENABLE(pll->info->id);
if (IS_ELKHARTLAKE(dev_priv) &&
pll->info->id == DPLL_ID_EHL_DPLL4) {
enable_reg = MG_PLL_ENABLE(0);
icl_pll_disable(dev_priv, pll, enable_reg);
intel_display_power_put(dev_priv, POWER_DOMAIN_DPLL_DC_OFF,
pll->wakeref);
return;
}
icl_pll_disable(dev_priv, pll, enable_reg);
}
static void tbt_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
icl_pll_disable(dev_priv, pll, TBT_PLL_ENABLE);
}
static void mg_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
i915_reg_t enable_reg =
MG_PLL_ENABLE(icl_pll_id_to_tc_port(pll->info->id));
icl_pll_disable(dev_priv, pll, enable_reg);
}
static void icl_update_dpll_ref_clks(struct drm_i915_private *i915)
{
/* No SSC ref */
i915->dpll.ref_clks.nssc = i915->cdclk.hw.ref;
}
static void icl_dump_hw_state(struct drm_i915_private *dev_priv,
const struct intel_dpll_hw_state *hw_state)
{
drm_dbg_kms(&dev_priv->drm,
"dpll_hw_state: cfgcr0: 0x%x, cfgcr1: 0x%x, "
"mg_refclkin_ctl: 0x%x, hg_clktop2_coreclkctl1: 0x%x, "
"mg_clktop2_hsclkctl: 0x%x, mg_pll_div0: 0x%x, "
"mg_pll_div2: 0x%x, mg_pll_lf: 0x%x, "
"mg_pll_frac_lock: 0x%x, mg_pll_ssc: 0x%x, "
"mg_pll_bias: 0x%x, mg_pll_tdc_coldst_bias: 0x%x\n",
hw_state->cfgcr0, hw_state->cfgcr1,
hw_state->mg_refclkin_ctl,
hw_state->mg_clktop2_coreclkctl1,
hw_state->mg_clktop2_hsclkctl,
hw_state->mg_pll_div0,
hw_state->mg_pll_div1,
hw_state->mg_pll_lf,
hw_state->mg_pll_frac_lock,
hw_state->mg_pll_ssc,
hw_state->mg_pll_bias,
hw_state->mg_pll_tdc_coldst_bias);
}
static const struct intel_shared_dpll_funcs combo_pll_funcs = {
.enable = combo_pll_enable,
.disable = combo_pll_disable,
.get_hw_state = combo_pll_get_hw_state,
.get_freq = icl_ddi_combo_pll_get_freq,
};
static const struct intel_shared_dpll_funcs tbt_pll_funcs = {
.enable = tbt_pll_enable,
.disable = tbt_pll_disable,
.get_hw_state = tbt_pll_get_hw_state,
.get_freq = icl_ddi_tbt_pll_get_freq,
};
static const struct intel_shared_dpll_funcs mg_pll_funcs = {
.enable = mg_pll_enable,
.disable = mg_pll_disable,
.get_hw_state = mg_pll_get_hw_state,
.get_freq = icl_ddi_mg_pll_get_freq,
};
static const struct dpll_info icl_plls[] = {
{ "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 },
{ "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 },
{ "TBT PLL", &tbt_pll_funcs, DPLL_ID_ICL_TBTPLL, 0 },
{ "MG PLL 1", &mg_pll_funcs, DPLL_ID_ICL_MGPLL1, 0 },
{ "MG PLL 2", &mg_pll_funcs, DPLL_ID_ICL_MGPLL2, 0 },
{ "MG PLL 3", &mg_pll_funcs, DPLL_ID_ICL_MGPLL3, 0 },
{ "MG PLL 4", &mg_pll_funcs, DPLL_ID_ICL_MGPLL4, 0 },
{ },
};
static const struct intel_dpll_mgr icl_pll_mgr = {
.dpll_info = icl_plls,
.get_dplls = icl_get_dplls,
.put_dplls = icl_put_dplls,
.update_active_dpll = icl_update_active_dpll,
.update_ref_clks = icl_update_dpll_ref_clks,
.dump_hw_state = icl_dump_hw_state,
};
static const struct dpll_info ehl_plls[] = {
{ "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 },
{ "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 },
{ "DPLL 4", &combo_pll_funcs, DPLL_ID_EHL_DPLL4, 0 },
{ },
};
static const struct intel_dpll_mgr ehl_pll_mgr = {
.dpll_info = ehl_plls,
.get_dplls = icl_get_dplls,
.put_dplls = icl_put_dplls,
.update_ref_clks = icl_update_dpll_ref_clks,
.dump_hw_state = icl_dump_hw_state,
};
static const struct intel_shared_dpll_funcs dkl_pll_funcs = {
.enable = mg_pll_enable,
.disable = mg_pll_disable,
.get_hw_state = dkl_pll_get_hw_state,
.get_freq = icl_ddi_mg_pll_get_freq,
};
static const struct dpll_info tgl_plls[] = {
{ "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 },
{ "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 },
{ "TBT PLL", &tbt_pll_funcs, DPLL_ID_ICL_TBTPLL, 0 },
{ "TC PLL 1", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL1, 0 },
{ "TC PLL 2", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL2, 0 },
{ "TC PLL 3", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL3, 0 },
{ "TC PLL 4", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL4, 0 },
{ "TC PLL 5", &dkl_pll_funcs, DPLL_ID_TGL_MGPLL5, 0 },
{ "TC PLL 6", &dkl_pll_funcs, DPLL_ID_TGL_MGPLL6, 0 },
{ },
};
static const struct intel_dpll_mgr tgl_pll_mgr = {
.dpll_info = tgl_plls,
.get_dplls = icl_get_dplls,
.put_dplls = icl_put_dplls,
.update_active_dpll = icl_update_active_dpll,
.update_ref_clks = icl_update_dpll_ref_clks,
.dump_hw_state = icl_dump_hw_state,
};
/**
* intel_shared_dpll_init - Initialize shared DPLLs
* @dev: drm device
*
* Initialize shared DPLLs for @dev.
*/
void intel_shared_dpll_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
const struct intel_dpll_mgr *dpll_mgr = NULL;
const struct dpll_info *dpll_info;
int i;
if (INTEL_GEN(dev_priv) >= 12)
dpll_mgr = &tgl_pll_mgr;
else if (IS_ELKHARTLAKE(dev_priv))
dpll_mgr = &ehl_pll_mgr;
else if (INTEL_GEN(dev_priv) >= 11)
dpll_mgr = &icl_pll_mgr;
else if (IS_CANNONLAKE(dev_priv))
dpll_mgr = &cnl_pll_mgr;
else if (IS_GEN9_BC(dev_priv))
dpll_mgr = &skl_pll_mgr;
else if (IS_GEN9_LP(dev_priv))
dpll_mgr = &bxt_pll_mgr;
else if (HAS_DDI(dev_priv))
dpll_mgr = &hsw_pll_mgr;
else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
dpll_mgr = &pch_pll_mgr;
if (!dpll_mgr) {
dev_priv->dpll.num_shared_dpll = 0;
return;
}
dpll_info = dpll_mgr->dpll_info;
for (i = 0; dpll_info[i].name; i++) {
drm_WARN_ON(dev, i != dpll_info[i].id);
dev_priv->dpll.shared_dplls[i].info = &dpll_info[i];
}
dev_priv->dpll.mgr = dpll_mgr;
dev_priv->dpll.num_shared_dpll = i;
mutex_init(&dev_priv->dpll.lock);
BUG_ON(dev_priv->dpll.num_shared_dpll > I915_NUM_PLLS);
}
/**
* intel_reserve_shared_dplls - reserve DPLLs for CRTC and encoder combination
* @state: atomic state
* @crtc: CRTC to reserve DPLLs for
* @encoder: encoder
*
* This function reserves all required DPLLs for the given CRTC and encoder
* combination in the current atomic commit @state and the new @crtc atomic
* state.
*
* The new configuration in the atomic commit @state is made effective by
* calling intel_shared_dpll_swap_state().
*
* The reserved DPLLs should be released by calling
* intel_release_shared_dplls().
*
* Returns:
* True if all required DPLLs were successfully reserved.
*/
bool intel_reserve_shared_dplls(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll.mgr;
if (drm_WARN_ON(&dev_priv->drm, !dpll_mgr))
return false;
return dpll_mgr->get_dplls(state, crtc, encoder);
}
/**
* intel_release_shared_dplls - end use of DPLLs by CRTC in atomic state
* @state: atomic state
* @crtc: crtc from which the DPLLs are to be released
*
* This function releases all DPLLs reserved by intel_reserve_shared_dplls()
* from the current atomic commit @state and the old @crtc atomic state.
*
* The new configuration in the atomic commit @state is made effective by
* calling intel_shared_dpll_swap_state().
*/
void intel_release_shared_dplls(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll.mgr;
/*
* FIXME: this function is called for every platform having a
* compute_clock hook, even though the platform doesn't yet support
* the shared DPLL framework and intel_reserve_shared_dplls() is not
* called on those.
*/
if (!dpll_mgr)
return;
dpll_mgr->put_dplls(state, crtc);
}
/**
* intel_update_active_dpll - update the active DPLL for a CRTC/encoder
* @state: atomic state
* @crtc: the CRTC for which to update the active DPLL
* @encoder: encoder determining the type of port DPLL
*
* Update the active DPLL for the given @crtc/@encoder in @crtc's atomic state,
* from the port DPLLs reserved previously by intel_reserve_shared_dplls(). The
* DPLL selected will be based on the current mode of the encoder's port.
*/
void intel_update_active_dpll(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll.mgr;
if (drm_WARN_ON(&dev_priv->drm, !dpll_mgr))
return;
dpll_mgr->update_active_dpll(state, crtc, encoder);
}
/**
* intel_dpll_get_freq - calculate the DPLL's output frequency
* @i915: i915 device
* @pll: DPLL for which to calculate the output frequency
*
* Return the output frequency corresponding to @pll's current state.
*/
int intel_dpll_get_freq(struct drm_i915_private *i915,
const struct intel_shared_dpll *pll)
{
if (drm_WARN_ON(&i915->drm, !pll->info->funcs->get_freq))
return 0;
return pll->info->funcs->get_freq(i915, pll);
}
static void readout_dpll_hw_state(struct drm_i915_private *i915,
struct intel_shared_dpll *pll)
{
struct intel_crtc *crtc;
pll->on = pll->info->funcs->get_hw_state(i915, pll,
&pll->state.hw_state);
if (IS_ELKHARTLAKE(i915) && pll->on &&
pll->info->id == DPLL_ID_EHL_DPLL4) {
pll->wakeref = intel_display_power_get(i915,
POWER_DOMAIN_DPLL_DC_OFF);
}
pll->state.crtc_mask = 0;
for_each_intel_crtc(&i915->drm, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
if (crtc_state->hw.active && crtc_state->shared_dpll == pll)
pll->state.crtc_mask |= 1 << crtc->pipe;
}
pll->active_mask = pll->state.crtc_mask;
drm_dbg_kms(&i915->drm,
"%s hw state readout: crtc_mask 0x%08x, on %i\n",
pll->info->name, pll->state.crtc_mask, pll->on);
}
void intel_dpll_readout_hw_state(struct drm_i915_private *i915)
{
int i;
if (i915->dpll.mgr && i915->dpll.mgr->update_ref_clks)
i915->dpll.mgr->update_ref_clks(i915);
for (i = 0; i < i915->dpll.num_shared_dpll; i++)
readout_dpll_hw_state(i915, &i915->dpll.shared_dplls[i]);
}
static void sanitize_dpll_state(struct drm_i915_private *i915,
struct intel_shared_dpll *pll)
{
if (!pll->on || pll->active_mask)
return;
drm_dbg_kms(&i915->drm,
"%s enabled but not in use, disabling\n",
pll->info->name);
pll->info->funcs->disable(i915, pll);
pll->on = false;
}
void intel_dpll_sanitize_state(struct drm_i915_private *i915)
{
int i;
for (i = 0; i < i915->dpll.num_shared_dpll; i++)
sanitize_dpll_state(i915, &i915->dpll.shared_dplls[i]);
}
/**
* intel_shared_dpll_dump_hw_state - write hw_state to dmesg
* @dev_priv: i915 drm device
* @hw_state: hw state to be written to the log
*
* Write the relevant values in @hw_state to dmesg using drm_dbg_kms.
*/
void intel_dpll_dump_hw_state(struct drm_i915_private *dev_priv,
const struct intel_dpll_hw_state *hw_state)
{
if (dev_priv->dpll.mgr) {
dev_priv->dpll.mgr->dump_hw_state(dev_priv, hw_state);
} else {
/* fallback for platforms that don't use the shared dpll
* infrastructure
*/
drm_dbg_kms(&dev_priv->drm,
"dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
"fp0: 0x%x, fp1: 0x%x\n",
hw_state->dpll,
hw_state->dpll_md,
hw_state->fp0,
hw_state->fp1);
}
}