436 lines
11 KiB
C
436 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */
|
|
|
|
#include <linux/completion.h>
|
|
#include <linux/circ_buf.h>
|
|
#include <linux/list.h>
|
|
|
|
#include "a6xx_gmu.h"
|
|
#include "a6xx_gmu.xml.h"
|
|
|
|
#define HFI_MSG_ID(val) [val] = #val
|
|
|
|
static const char * const a6xx_hfi_msg_id[] = {
|
|
HFI_MSG_ID(HFI_H2F_MSG_INIT),
|
|
HFI_MSG_ID(HFI_H2F_MSG_FW_VERSION),
|
|
HFI_MSG_ID(HFI_H2F_MSG_BW_TABLE),
|
|
HFI_MSG_ID(HFI_H2F_MSG_PERF_TABLE),
|
|
HFI_MSG_ID(HFI_H2F_MSG_TEST),
|
|
};
|
|
|
|
static int a6xx_hfi_queue_read(struct a6xx_hfi_queue *queue, u32 *data,
|
|
u32 dwords)
|
|
{
|
|
struct a6xx_hfi_queue_header *header = queue->header;
|
|
u32 i, hdr, index = header->read_index;
|
|
|
|
if (header->read_index == header->write_index) {
|
|
header->rx_request = 1;
|
|
return 0;
|
|
}
|
|
|
|
hdr = queue->data[index];
|
|
|
|
/*
|
|
* If we are to assume that the GMU firmware is in fact a rational actor
|
|
* and is programmed to not send us a larger response than we expect
|
|
* then we can also assume that if the header size is unexpectedly large
|
|
* that it is due to memory corruption and/or hardware failure. In this
|
|
* case the only reasonable course of action is to BUG() to help harden
|
|
* the failure.
|
|
*/
|
|
|
|
BUG_ON(HFI_HEADER_SIZE(hdr) > dwords);
|
|
|
|
for (i = 0; i < HFI_HEADER_SIZE(hdr); i++) {
|
|
data[i] = queue->data[index];
|
|
index = (index + 1) % header->size;
|
|
}
|
|
|
|
header->read_index = index;
|
|
return HFI_HEADER_SIZE(hdr);
|
|
}
|
|
|
|
static int a6xx_hfi_queue_write(struct a6xx_gmu *gmu,
|
|
struct a6xx_hfi_queue *queue, u32 *data, u32 dwords)
|
|
{
|
|
struct a6xx_hfi_queue_header *header = queue->header;
|
|
u32 i, space, index = header->write_index;
|
|
|
|
spin_lock(&queue->lock);
|
|
|
|
space = CIRC_SPACE(header->write_index, header->read_index,
|
|
header->size);
|
|
if (space < dwords) {
|
|
header->dropped++;
|
|
spin_unlock(&queue->lock);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
for (i = 0; i < dwords; i++) {
|
|
queue->data[index] = data[i];
|
|
index = (index + 1) % header->size;
|
|
}
|
|
|
|
header->write_index = index;
|
|
spin_unlock(&queue->lock);
|
|
|
|
gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 0x01);
|
|
return 0;
|
|
}
|
|
|
|
struct a6xx_hfi_response {
|
|
u32 id;
|
|
u32 seqnum;
|
|
struct list_head node;
|
|
struct completion complete;
|
|
|
|
u32 error;
|
|
u32 payload[16];
|
|
};
|
|
|
|
/*
|
|
* Incoming HFI ack messages can come in out of order so we need to store all
|
|
* the pending messages on a list until they are handled.
|
|
*/
|
|
static spinlock_t hfi_ack_lock = __SPIN_LOCK_UNLOCKED(message_lock);
|
|
static LIST_HEAD(hfi_ack_list);
|
|
|
|
static void a6xx_hfi_handle_ack(struct a6xx_gmu *gmu,
|
|
struct a6xx_hfi_msg_response *msg)
|
|
{
|
|
struct a6xx_hfi_response *resp;
|
|
u32 id, seqnum;
|
|
|
|
/* msg->ret_header contains the header of the message being acked */
|
|
id = HFI_HEADER_ID(msg->ret_header);
|
|
seqnum = HFI_HEADER_SEQNUM(msg->ret_header);
|
|
|
|
spin_lock(&hfi_ack_lock);
|
|
list_for_each_entry(resp, &hfi_ack_list, node) {
|
|
if (resp->id == id && resp->seqnum == seqnum) {
|
|
resp->error = msg->error;
|
|
memcpy(resp->payload, msg->payload,
|
|
sizeof(resp->payload));
|
|
|
|
complete(&resp->complete);
|
|
spin_unlock(&hfi_ack_lock);
|
|
return;
|
|
}
|
|
}
|
|
spin_unlock(&hfi_ack_lock);
|
|
|
|
dev_err(gmu->dev, "Nobody was waiting for HFI message %d\n", seqnum);
|
|
}
|
|
|
|
static void a6xx_hfi_handle_error(struct a6xx_gmu *gmu,
|
|
struct a6xx_hfi_msg_response *msg)
|
|
{
|
|
struct a6xx_hfi_msg_error *error = (struct a6xx_hfi_msg_error *) msg;
|
|
|
|
dev_err(gmu->dev, "GMU firmware error %d\n", error->code);
|
|
}
|
|
|
|
void a6xx_hfi_task(unsigned long data)
|
|
{
|
|
struct a6xx_gmu *gmu = (struct a6xx_gmu *) data;
|
|
struct a6xx_hfi_queue *queue = &gmu->queues[HFI_RESPONSE_QUEUE];
|
|
struct a6xx_hfi_msg_response resp;
|
|
|
|
for (;;) {
|
|
u32 id;
|
|
int ret = a6xx_hfi_queue_read(queue, (u32 *) &resp,
|
|
sizeof(resp) >> 2);
|
|
|
|
/* Returns the number of bytes copied or negative on error */
|
|
if (ret <= 0) {
|
|
if (ret < 0)
|
|
dev_err(gmu->dev,
|
|
"Unable to read the HFI message queue\n");
|
|
break;
|
|
}
|
|
|
|
id = HFI_HEADER_ID(resp.header);
|
|
|
|
if (id == HFI_F2H_MSG_ACK)
|
|
a6xx_hfi_handle_ack(gmu, &resp);
|
|
else if (id == HFI_F2H_MSG_ERROR)
|
|
a6xx_hfi_handle_error(gmu, &resp);
|
|
}
|
|
}
|
|
|
|
static int a6xx_hfi_send_msg(struct a6xx_gmu *gmu, int id,
|
|
void *data, u32 size, u32 *payload, u32 payload_size)
|
|
{
|
|
struct a6xx_hfi_queue *queue = &gmu->queues[HFI_COMMAND_QUEUE];
|
|
struct a6xx_hfi_response resp = { 0 };
|
|
int ret, dwords = size >> 2;
|
|
u32 seqnum;
|
|
|
|
seqnum = atomic_inc_return(&queue->seqnum) % 0xfff;
|
|
|
|
/* First dword of the message is the message header - fill it in */
|
|
*((u32 *) data) = (seqnum << 20) | (HFI_MSG_CMD << 16) |
|
|
(dwords << 8) | id;
|
|
|
|
init_completion(&resp.complete);
|
|
resp.id = id;
|
|
resp.seqnum = seqnum;
|
|
|
|
spin_lock_bh(&hfi_ack_lock);
|
|
list_add_tail(&resp.node, &hfi_ack_list);
|
|
spin_unlock_bh(&hfi_ack_lock);
|
|
|
|
ret = a6xx_hfi_queue_write(gmu, queue, data, dwords);
|
|
if (ret) {
|
|
dev_err(gmu->dev, "Unable to send message %s id %d\n",
|
|
a6xx_hfi_msg_id[id], seqnum);
|
|
goto out;
|
|
}
|
|
|
|
/* Wait up to 5 seconds for the response */
|
|
ret = wait_for_completion_timeout(&resp.complete,
|
|
msecs_to_jiffies(5000));
|
|
if (!ret) {
|
|
dev_err(gmu->dev,
|
|
"Message %s id %d timed out waiting for response\n",
|
|
a6xx_hfi_msg_id[id], seqnum);
|
|
ret = -ETIMEDOUT;
|
|
} else
|
|
ret = 0;
|
|
|
|
out:
|
|
spin_lock_bh(&hfi_ack_lock);
|
|
list_del(&resp.node);
|
|
spin_unlock_bh(&hfi_ack_lock);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (resp.error) {
|
|
dev_err(gmu->dev, "Message %s id %d returned error %d\n",
|
|
a6xx_hfi_msg_id[id], seqnum, resp.error);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (payload && payload_size) {
|
|
int copy = min_t(u32, payload_size, sizeof(resp.payload));
|
|
|
|
memcpy(payload, resp.payload, copy);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int a6xx_hfi_send_gmu_init(struct a6xx_gmu *gmu, int boot_state)
|
|
{
|
|
struct a6xx_hfi_msg_gmu_init_cmd msg = { 0 };
|
|
|
|
msg.dbg_buffer_addr = (u32) gmu->debug->iova;
|
|
msg.dbg_buffer_size = (u32) gmu->debug->size;
|
|
msg.boot_state = boot_state;
|
|
|
|
return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_INIT, &msg, sizeof(msg),
|
|
NULL, 0);
|
|
}
|
|
|
|
static int a6xx_hfi_get_fw_version(struct a6xx_gmu *gmu, u32 *version)
|
|
{
|
|
struct a6xx_hfi_msg_fw_version msg = { 0 };
|
|
|
|
/* Currently supporting version 1.1 */
|
|
msg.supported_version = (1 << 28) | (1 << 16);
|
|
|
|
return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_FW_VERSION, &msg, sizeof(msg),
|
|
version, sizeof(*version));
|
|
}
|
|
|
|
static int a6xx_hfi_send_perf_table(struct a6xx_gmu *gmu)
|
|
{
|
|
struct a6xx_hfi_msg_perf_table msg = { 0 };
|
|
int i;
|
|
|
|
msg.num_gpu_levels = gmu->nr_gpu_freqs;
|
|
msg.num_gmu_levels = gmu->nr_gmu_freqs;
|
|
|
|
for (i = 0; i < gmu->nr_gpu_freqs; i++) {
|
|
msg.gx_votes[i].vote = gmu->gx_arc_votes[i];
|
|
msg.gx_votes[i].freq = gmu->gpu_freqs[i] / 1000;
|
|
}
|
|
|
|
for (i = 0; i < gmu->nr_gmu_freqs; i++) {
|
|
msg.cx_votes[i].vote = gmu->cx_arc_votes[i];
|
|
msg.cx_votes[i].freq = gmu->gmu_freqs[i] / 1000;
|
|
}
|
|
|
|
return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_PERF_TABLE, &msg, sizeof(msg),
|
|
NULL, 0);
|
|
}
|
|
|
|
static int a6xx_hfi_send_bw_table(struct a6xx_gmu *gmu)
|
|
{
|
|
struct a6xx_hfi_msg_bw_table msg = { 0 };
|
|
|
|
/*
|
|
* The sdm845 GMU doesn't do bus frequency scaling on its own but it
|
|
* does need at least one entry in the list because it might be accessed
|
|
* when the GMU is shutting down. Send a single "off" entry.
|
|
*/
|
|
|
|
msg.bw_level_num = 1;
|
|
|
|
msg.ddr_cmds_num = 3;
|
|
msg.ddr_wait_bitmask = 0x07;
|
|
|
|
msg.ddr_cmds_addrs[0] = 0x50000;
|
|
msg.ddr_cmds_addrs[1] = 0x5005c;
|
|
msg.ddr_cmds_addrs[2] = 0x5000c;
|
|
|
|
msg.ddr_cmds_data[0][0] = 0x40000000;
|
|
msg.ddr_cmds_data[0][1] = 0x40000000;
|
|
msg.ddr_cmds_data[0][2] = 0x40000000;
|
|
|
|
/*
|
|
* These are the CX (CNOC) votes. This is used but the values for the
|
|
* sdm845 GMU are known and fixed so we can hard code them.
|
|
*/
|
|
|
|
msg.cnoc_cmds_num = 3;
|
|
msg.cnoc_wait_bitmask = 0x05;
|
|
|
|
msg.cnoc_cmds_addrs[0] = 0x50034;
|
|
msg.cnoc_cmds_addrs[1] = 0x5007c;
|
|
msg.cnoc_cmds_addrs[2] = 0x5004c;
|
|
|
|
msg.cnoc_cmds_data[0][0] = 0x40000000;
|
|
msg.cnoc_cmds_data[0][1] = 0x00000000;
|
|
msg.cnoc_cmds_data[0][2] = 0x40000000;
|
|
|
|
msg.cnoc_cmds_data[1][0] = 0x60000001;
|
|
msg.cnoc_cmds_data[1][1] = 0x20000001;
|
|
msg.cnoc_cmds_data[1][2] = 0x60000001;
|
|
|
|
return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_BW_TABLE, &msg, sizeof(msg),
|
|
NULL, 0);
|
|
}
|
|
|
|
static int a6xx_hfi_send_test(struct a6xx_gmu *gmu)
|
|
{
|
|
struct a6xx_hfi_msg_test msg = { 0 };
|
|
|
|
return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_TEST, &msg, sizeof(msg),
|
|
NULL, 0);
|
|
}
|
|
|
|
int a6xx_hfi_start(struct a6xx_gmu *gmu, int boot_state)
|
|
{
|
|
int ret;
|
|
|
|
ret = a6xx_hfi_send_gmu_init(gmu, boot_state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = a6xx_hfi_get_fw_version(gmu, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* We have to get exchange version numbers per the sequence but at this
|
|
* point th kernel driver doesn't need to know the exact version of
|
|
* the GMU firmware
|
|
*/
|
|
|
|
ret = a6xx_hfi_send_perf_table(gmu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = a6xx_hfi_send_bw_table(gmu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Let the GMU know that there won't be any more HFI messages until next
|
|
* boot
|
|
*/
|
|
a6xx_hfi_send_test(gmu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void a6xx_hfi_stop(struct a6xx_gmu *gmu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(gmu->queues); i++) {
|
|
struct a6xx_hfi_queue *queue = &gmu->queues[i];
|
|
|
|
if (!queue->header)
|
|
continue;
|
|
|
|
if (queue->header->read_index != queue->header->write_index)
|
|
dev_err(gmu->dev, "HFI queue %d is not empty\n", i);
|
|
|
|
queue->header->read_index = 0;
|
|
queue->header->write_index = 0;
|
|
}
|
|
}
|
|
|
|
static void a6xx_hfi_queue_init(struct a6xx_hfi_queue *queue,
|
|
struct a6xx_hfi_queue_header *header, void *virt, u64 iova,
|
|
u32 id)
|
|
{
|
|
spin_lock_init(&queue->lock);
|
|
queue->header = header;
|
|
queue->data = virt;
|
|
atomic_set(&queue->seqnum, 0);
|
|
|
|
/* Set up the shared memory header */
|
|
header->iova = iova;
|
|
header->type = 10 << 8 | id;
|
|
header->status = 1;
|
|
header->size = SZ_4K >> 2;
|
|
header->msg_size = 0;
|
|
header->dropped = 0;
|
|
header->rx_watermark = 1;
|
|
header->tx_watermark = 1;
|
|
header->rx_request = 1;
|
|
header->tx_request = 0;
|
|
header->read_index = 0;
|
|
header->write_index = 0;
|
|
}
|
|
|
|
void a6xx_hfi_init(struct a6xx_gmu *gmu)
|
|
{
|
|
struct a6xx_gmu_bo *hfi = gmu->hfi;
|
|
struct a6xx_hfi_queue_table_header *table = hfi->virt;
|
|
struct a6xx_hfi_queue_header *headers = hfi->virt + sizeof(*table);
|
|
u64 offset;
|
|
int table_size;
|
|
|
|
/*
|
|
* The table size is the size of the table header plus all of the queue
|
|
* headers
|
|
*/
|
|
table_size = sizeof(*table);
|
|
table_size += (ARRAY_SIZE(gmu->queues) *
|
|
sizeof(struct a6xx_hfi_queue_header));
|
|
|
|
table->version = 0;
|
|
table->size = table_size;
|
|
/* First queue header is located immediately after the table header */
|
|
table->qhdr0_offset = sizeof(*table) >> 2;
|
|
table->qhdr_size = sizeof(struct a6xx_hfi_queue_header) >> 2;
|
|
table->num_queues = ARRAY_SIZE(gmu->queues);
|
|
table->active_queues = ARRAY_SIZE(gmu->queues);
|
|
|
|
/* Command queue */
|
|
offset = SZ_4K;
|
|
a6xx_hfi_queue_init(&gmu->queues[0], &headers[0], hfi->virt + offset,
|
|
hfi->iova + offset, 0);
|
|
|
|
/* GMU response queue */
|
|
offset += SZ_4K;
|
|
a6xx_hfi_queue_init(&gmu->queues[1], &headers[1], hfi->virt + offset,
|
|
hfi->iova + offset, 4);
|
|
}
|