OpenCloudOS-Kernel/net/ceph/messenger.c

2165 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/ceph/ceph_debug.h>
#include <linux/crc32c.h>
#include <linux/ctype.h>
#include <linux/highmem.h>
#include <linux/inet.h>
#include <linux/kthread.h>
#include <linux/net.h>
#include <linux/nsproxy.h>
#include <linux/sched/mm.h>
#include <linux/slab.h>
#include <linux/socket.h>
#include <linux/string.h>
#ifdef CONFIG_BLOCK
#include <linux/bio.h>
#endif /* CONFIG_BLOCK */
#include <linux/dns_resolver.h>
#include <net/tcp.h>
#include <linux/ceph/ceph_features.h>
#include <linux/ceph/libceph.h>
#include <linux/ceph/messenger.h>
#include <linux/ceph/decode.h>
#include <linux/ceph/pagelist.h>
#include <linux/export.h>
/*
* Ceph uses the messenger to exchange ceph_msg messages with other
* hosts in the system. The messenger provides ordered and reliable
* delivery. We tolerate TCP disconnects by reconnecting (with
* exponential backoff) in the case of a fault (disconnection, bad
* crc, protocol error). Acks allow sent messages to be discarded by
* the sender.
*/
/*
* We track the state of the socket on a given connection using
* values defined below. The transition to a new socket state is
* handled by a function which verifies we aren't coming from an
* unexpected state.
*
* --------
* | NEW* | transient initial state
* --------
* | con_sock_state_init()
* v
* ----------
* | CLOSED | initialized, but no socket (and no
* ---------- TCP connection)
* ^ \
* | \ con_sock_state_connecting()
* | ----------------------
* | \
* + con_sock_state_closed() \
* |+--------------------------- \
* | \ \ \
* | ----------- \ \
* | | CLOSING | socket event; \ \
* | ----------- await close \ \
* | ^ \ |
* | | \ |
* | + con_sock_state_closing() \ |
* | / \ | |
* | / --------------- | |
* | / \ v v
* | / --------------
* | / -----------------| CONNECTING | socket created, TCP
* | | / -------------- connect initiated
* | | | con_sock_state_connected()
* | | v
* -------------
* | CONNECTED | TCP connection established
* -------------
*
* State values for ceph_connection->sock_state; NEW is assumed to be 0.
*/
#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
static bool con_flag_valid(unsigned long con_flag)
{
switch (con_flag) {
case CEPH_CON_F_LOSSYTX:
case CEPH_CON_F_KEEPALIVE_PENDING:
case CEPH_CON_F_WRITE_PENDING:
case CEPH_CON_F_SOCK_CLOSED:
case CEPH_CON_F_BACKOFF:
return true;
default:
return false;
}
}
void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
{
BUG_ON(!con_flag_valid(con_flag));
clear_bit(con_flag, &con->flags);
}
void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
{
BUG_ON(!con_flag_valid(con_flag));
set_bit(con_flag, &con->flags);
}
bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
{
BUG_ON(!con_flag_valid(con_flag));
return test_bit(con_flag, &con->flags);
}
bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
unsigned long con_flag)
{
BUG_ON(!con_flag_valid(con_flag));
return test_and_clear_bit(con_flag, &con->flags);
}
bool ceph_con_flag_test_and_set(struct ceph_connection *con,
unsigned long con_flag)
{
BUG_ON(!con_flag_valid(con_flag));
return test_and_set_bit(con_flag, &con->flags);
}
/* Slab caches for frequently-allocated structures */
static struct kmem_cache *ceph_msg_cache;
#ifdef CONFIG_LOCKDEP
static struct lock_class_key socket_class;
#endif
static void queue_con(struct ceph_connection *con);
static void cancel_con(struct ceph_connection *con);
static void ceph_con_workfn(struct work_struct *);
static void con_fault(struct ceph_connection *con);
/*
* Nicely render a sockaddr as a string. An array of formatted
* strings is used, to approximate reentrancy.
*/
#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
static atomic_t addr_str_seq = ATOMIC_INIT(0);
struct page *ceph_zero_page; /* used in certain error cases */
const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
{
int i;
char *s;
struct sockaddr_storage ss = addr->in_addr; /* align */
struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
s = addr_str[i];
switch (ss.ss_family) {
case AF_INET:
snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
le32_to_cpu(addr->type), &in4->sin_addr,
ntohs(in4->sin_port));
break;
case AF_INET6:
snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
le32_to_cpu(addr->type), &in6->sin6_addr,
ntohs(in6->sin6_port));
break;
default:
snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
ss.ss_family);
}
return s;
}
EXPORT_SYMBOL(ceph_pr_addr);
void ceph_encode_my_addr(struct ceph_messenger *msgr)
{
if (!ceph_msgr2(from_msgr(msgr))) {
memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
sizeof(msgr->my_enc_addr));
ceph_encode_banner_addr(&msgr->my_enc_addr);
}
}
/*
* work queue for all reading and writing to/from the socket.
*/
static struct workqueue_struct *ceph_msgr_wq;
static int ceph_msgr_slab_init(void)
{
BUG_ON(ceph_msg_cache);
ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
if (!ceph_msg_cache)
return -ENOMEM;
return 0;
}
static void ceph_msgr_slab_exit(void)
{
BUG_ON(!ceph_msg_cache);
kmem_cache_destroy(ceph_msg_cache);
ceph_msg_cache = NULL;
}
static void _ceph_msgr_exit(void)
{
if (ceph_msgr_wq) {
destroy_workqueue(ceph_msgr_wq);
ceph_msgr_wq = NULL;
}
BUG_ON(!ceph_zero_page);
put_page(ceph_zero_page);
ceph_zero_page = NULL;
ceph_msgr_slab_exit();
}
int __init ceph_msgr_init(void)
{
if (ceph_msgr_slab_init())
return -ENOMEM;
BUG_ON(ceph_zero_page);
ceph_zero_page = ZERO_PAGE(0);
get_page(ceph_zero_page);
/*
* The number of active work items is limited by the number of
* connections, so leave @max_active at default.
*/
ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
if (ceph_msgr_wq)
return 0;
pr_err("msgr_init failed to create workqueue\n");
_ceph_msgr_exit();
return -ENOMEM;
}
void ceph_msgr_exit(void)
{
BUG_ON(ceph_msgr_wq == NULL);
_ceph_msgr_exit();
}
void ceph_msgr_flush(void)
{
flush_workqueue(ceph_msgr_wq);
}
EXPORT_SYMBOL(ceph_msgr_flush);
/* Connection socket state transition functions */
static void con_sock_state_init(struct ceph_connection *con)
{
int old_state;
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
printk("%s: unexpected old state %d\n", __func__, old_state);
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
CON_SOCK_STATE_CLOSED);
}
static void con_sock_state_connecting(struct ceph_connection *con)
{
int old_state;
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
printk("%s: unexpected old state %d\n", __func__, old_state);
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
CON_SOCK_STATE_CONNECTING);
}
static void con_sock_state_connected(struct ceph_connection *con)
{
int old_state;
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
printk("%s: unexpected old state %d\n", __func__, old_state);
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
CON_SOCK_STATE_CONNECTED);
}
static void con_sock_state_closing(struct ceph_connection *con)
{
int old_state;
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
old_state != CON_SOCK_STATE_CONNECTED &&
old_state != CON_SOCK_STATE_CLOSING))
printk("%s: unexpected old state %d\n", __func__, old_state);
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
CON_SOCK_STATE_CLOSING);
}
static void con_sock_state_closed(struct ceph_connection *con)
{
int old_state;
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
old_state != CON_SOCK_STATE_CLOSING &&
old_state != CON_SOCK_STATE_CONNECTING &&
old_state != CON_SOCK_STATE_CLOSED))
printk("%s: unexpected old state %d\n", __func__, old_state);
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
CON_SOCK_STATE_CLOSED);
}
/*
* socket callback functions
*/
/* data available on socket, or listen socket received a connect */
static void ceph_sock_data_ready(struct sock *sk)
{
struct ceph_connection *con = sk->sk_user_data;
if (atomic_read(&con->msgr->stopping)) {
return;
}
if (sk->sk_state != TCP_CLOSE_WAIT) {
dout("%s %p state = %d, queueing work\n", __func__,
con, con->state);
queue_con(con);
}
}
/* socket has buffer space for writing */
static void ceph_sock_write_space(struct sock *sk)
{
struct ceph_connection *con = sk->sk_user_data;
/* only queue to workqueue if there is data we want to write,
* and there is sufficient space in the socket buffer to accept
* more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
* doesn't get called again until try_write() fills the socket
* buffer. See net/ipv4/tcp_input.c:tcp_check_space()
* and net/core/stream.c:sk_stream_write_space().
*/
if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
if (sk_stream_is_writeable(sk)) {
dout("%s %p queueing write work\n", __func__, con);
clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
queue_con(con);
}
} else {
dout("%s %p nothing to write\n", __func__, con);
}
}
/* socket's state has changed */
static void ceph_sock_state_change(struct sock *sk)
{
struct ceph_connection *con = sk->sk_user_data;
dout("%s %p state = %d sk_state = %u\n", __func__,
con, con->state, sk->sk_state);
switch (sk->sk_state) {
case TCP_CLOSE:
dout("%s TCP_CLOSE\n", __func__);
fallthrough;
case TCP_CLOSE_WAIT:
dout("%s TCP_CLOSE_WAIT\n", __func__);
con_sock_state_closing(con);
ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
queue_con(con);
break;
case TCP_ESTABLISHED:
dout("%s TCP_ESTABLISHED\n", __func__);
con_sock_state_connected(con);
queue_con(con);
break;
default: /* Everything else is uninteresting */
break;
}
}
/*
* set up socket callbacks
*/
static void set_sock_callbacks(struct socket *sock,
struct ceph_connection *con)
{
struct sock *sk = sock->sk;
sk->sk_user_data = con;
sk->sk_data_ready = ceph_sock_data_ready;
sk->sk_write_space = ceph_sock_write_space;
sk->sk_state_change = ceph_sock_state_change;
}
/*
* socket helpers
*/
/*
* initiate connection to a remote socket.
*/
int ceph_tcp_connect(struct ceph_connection *con)
{
struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
struct socket *sock;
unsigned int noio_flag;
int ret;
dout("%s con %p peer_addr %s\n", __func__, con,
ceph_pr_addr(&con->peer_addr));
BUG_ON(con->sock);
/* sock_create_kern() allocates with GFP_KERNEL */
noio_flag = memalloc_noio_save();
ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
SOCK_STREAM, IPPROTO_TCP, &sock);
memalloc_noio_restore(noio_flag);
if (ret)
return ret;
sock->sk->sk_allocation = GFP_NOFS;
#ifdef CONFIG_LOCKDEP
lockdep_set_class(&sock->sk->sk_lock, &socket_class);
#endif
set_sock_callbacks(sock, con);
con_sock_state_connecting(con);
ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
O_NONBLOCK);
if (ret == -EINPROGRESS) {
dout("connect %s EINPROGRESS sk_state = %u\n",
ceph_pr_addr(&con->peer_addr),
sock->sk->sk_state);
} else if (ret < 0) {
pr_err("connect %s error %d\n",
ceph_pr_addr(&con->peer_addr), ret);
sock_release(sock);
return ret;
}
if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
tcp_sock_set_nodelay(sock->sk);
con->sock = sock;
return 0;
}
/*
* Shutdown/close the socket for the given connection.
*/
int ceph_con_close_socket(struct ceph_connection *con)
{
int rc = 0;
dout("%s con %p sock %p\n", __func__, con, con->sock);
if (con->sock) {
rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
sock_release(con->sock);
con->sock = NULL;
}
/*
* Forcibly clear the SOCK_CLOSED flag. It gets set
* independent of the connection mutex, and we could have
* received a socket close event before we had the chance to
* shut the socket down.
*/
ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
con_sock_state_closed(con);
return rc;
}
static void ceph_con_reset_protocol(struct ceph_connection *con)
{
dout("%s con %p\n", __func__, con);
ceph_con_close_socket(con);
if (con->in_msg) {
WARN_ON(con->in_msg->con != con);
ceph_msg_put(con->in_msg);
con->in_msg = NULL;
}
if (con->out_msg) {
WARN_ON(con->out_msg->con != con);
ceph_msg_put(con->out_msg);
con->out_msg = NULL;
}
if (con->bounce_page) {
__free_page(con->bounce_page);
con->bounce_page = NULL;
}
if (ceph_msgr2(from_msgr(con->msgr)))
ceph_con_v2_reset_protocol(con);
else
ceph_con_v1_reset_protocol(con);
}
/*
* Reset a connection. Discard all incoming and outgoing messages
* and clear *_seq state.
*/
static void ceph_msg_remove(struct ceph_msg *msg)
{
list_del_init(&msg->list_head);
ceph_msg_put(msg);
}
static void ceph_msg_remove_list(struct list_head *head)
{
while (!list_empty(head)) {
struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
list_head);
ceph_msg_remove(msg);
}
}
void ceph_con_reset_session(struct ceph_connection *con)
{
dout("%s con %p\n", __func__, con);
WARN_ON(con->in_msg);
WARN_ON(con->out_msg);
ceph_msg_remove_list(&con->out_queue);
ceph_msg_remove_list(&con->out_sent);
con->out_seq = 0;
con->in_seq = 0;
con->in_seq_acked = 0;
if (ceph_msgr2(from_msgr(con->msgr)))
ceph_con_v2_reset_session(con);
else
ceph_con_v1_reset_session(con);
}
/*
* mark a peer down. drop any open connections.
*/
void ceph_con_close(struct ceph_connection *con)
{
mutex_lock(&con->mutex);
dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
con->state = CEPH_CON_S_CLOSED;
ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
connect */
ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
ceph_con_reset_protocol(con);
ceph_con_reset_session(con);
cancel_con(con);
mutex_unlock(&con->mutex);
}
EXPORT_SYMBOL(ceph_con_close);
/*
* Reopen a closed connection, with a new peer address.
*/
void ceph_con_open(struct ceph_connection *con,
__u8 entity_type, __u64 entity_num,
struct ceph_entity_addr *addr)
{
mutex_lock(&con->mutex);
dout("con_open %p %s\n", con, ceph_pr_addr(addr));
WARN_ON(con->state != CEPH_CON_S_CLOSED);
con->state = CEPH_CON_S_PREOPEN;
con->peer_name.type = (__u8) entity_type;
con->peer_name.num = cpu_to_le64(entity_num);
memcpy(&con->peer_addr, addr, sizeof(*addr));
con->delay = 0; /* reset backoff memory */
mutex_unlock(&con->mutex);
queue_con(con);
}
EXPORT_SYMBOL(ceph_con_open);
/*
* return true if this connection ever successfully opened
*/
bool ceph_con_opened(struct ceph_connection *con)
{
if (ceph_msgr2(from_msgr(con->msgr)))
return ceph_con_v2_opened(con);
return ceph_con_v1_opened(con);
}
/*
* initialize a new connection.
*/
void ceph_con_init(struct ceph_connection *con, void *private,
const struct ceph_connection_operations *ops,
struct ceph_messenger *msgr)
{
dout("con_init %p\n", con);
memset(con, 0, sizeof(*con));
con->private = private;
con->ops = ops;
con->msgr = msgr;
con_sock_state_init(con);
mutex_init(&con->mutex);
INIT_LIST_HEAD(&con->out_queue);
INIT_LIST_HEAD(&con->out_sent);
INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
con->state = CEPH_CON_S_CLOSED;
}
EXPORT_SYMBOL(ceph_con_init);
/*
* We maintain a global counter to order connection attempts. Get
* a unique seq greater than @gt.
*/
u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
{
u32 ret;
spin_lock(&msgr->global_seq_lock);
if (msgr->global_seq < gt)
msgr->global_seq = gt;
ret = ++msgr->global_seq;
spin_unlock(&msgr->global_seq_lock);
return ret;
}
/*
* Discard messages that have been acked by the server.
*/
void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
{
struct ceph_msg *msg;
u64 seq;
dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
while (!list_empty(&con->out_sent)) {
msg = list_first_entry(&con->out_sent, struct ceph_msg,
list_head);
WARN_ON(msg->needs_out_seq);
seq = le64_to_cpu(msg->hdr.seq);
if (seq > ack_seq)
break;
dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
msg, seq);
ceph_msg_remove(msg);
}
}
/*
* Discard messages that have been requeued in con_fault(), up to
* reconnect_seq. This avoids gratuitously resending messages that
* the server had received and handled prior to reconnect.
*/
void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
{
struct ceph_msg *msg;
u64 seq;
dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
while (!list_empty(&con->out_queue)) {
msg = list_first_entry(&con->out_queue, struct ceph_msg,
list_head);
if (msg->needs_out_seq)
break;
seq = le64_to_cpu(msg->hdr.seq);
if (seq > reconnect_seq)
break;
dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
msg, seq);
ceph_msg_remove(msg);
}
}
#ifdef CONFIG_BLOCK
/*
* For a bio data item, a piece is whatever remains of the next
* entry in the current bio iovec, or the first entry in the next
* bio in the list.
*/
static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
size_t length)
{
struct ceph_msg_data *data = cursor->data;
struct ceph_bio_iter *it = &cursor->bio_iter;
cursor->resid = min_t(size_t, length, data->bio_length);
*it = data->bio_pos;
if (cursor->resid < it->iter.bi_size)
it->iter.bi_size = cursor->resid;
BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
}
static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
size_t *page_offset,
size_t *length)
{
struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
cursor->bio_iter.iter);
*page_offset = bv.bv_offset;
*length = bv.bv_len;
return bv.bv_page;
}
static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
size_t bytes)
{
struct ceph_bio_iter *it = &cursor->bio_iter;
struct page *page = bio_iter_page(it->bio, it->iter);
BUG_ON(bytes > cursor->resid);
BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
cursor->resid -= bytes;
bio_advance_iter(it->bio, &it->iter, bytes);
if (!cursor->resid) {
BUG_ON(!cursor->last_piece);
return false; /* no more data */
}
if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
page == bio_iter_page(it->bio, it->iter)))
return false; /* more bytes to process in this segment */
if (!it->iter.bi_size) {
it->bio = it->bio->bi_next;
it->iter = it->bio->bi_iter;
if (cursor->resid < it->iter.bi_size)
it->iter.bi_size = cursor->resid;
}
BUG_ON(cursor->last_piece);
BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
return true;
}
#endif /* CONFIG_BLOCK */
static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
size_t length)
{
struct ceph_msg_data *data = cursor->data;
struct bio_vec *bvecs = data->bvec_pos.bvecs;
cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
cursor->bvec_iter = data->bvec_pos.iter;
cursor->bvec_iter.bi_size = cursor->resid;
BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
cursor->last_piece =
cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
}
static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
size_t *page_offset,
size_t *length)
{
struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
cursor->bvec_iter);
*page_offset = bv.bv_offset;
*length = bv.bv_len;
return bv.bv_page;
}
static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
size_t bytes)
{
struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
BUG_ON(bytes > cursor->resid);
BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
cursor->resid -= bytes;
bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
if (!cursor->resid) {
BUG_ON(!cursor->last_piece);
return false; /* no more data */
}
if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
page == bvec_iter_page(bvecs, cursor->bvec_iter)))
return false; /* more bytes to process in this segment */
BUG_ON(cursor->last_piece);
BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
cursor->last_piece =
cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
return true;
}
/*
* For a page array, a piece comes from the first page in the array
* that has not already been fully consumed.
*/
static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
size_t length)
{
struct ceph_msg_data *data = cursor->data;
int page_count;
BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
BUG_ON(!data->pages);
BUG_ON(!data->length);
cursor->resid = min(length, data->length);
page_count = calc_pages_for(data->alignment, (u64)data->length);
cursor->page_offset = data->alignment & ~PAGE_MASK;
cursor->page_index = 0;
BUG_ON(page_count > (int)USHRT_MAX);
cursor->page_count = (unsigned short)page_count;
BUG_ON(length > SIZE_MAX - cursor->page_offset);
cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
}
static struct page *
ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
size_t *page_offset, size_t *length)
{
struct ceph_msg_data *data = cursor->data;
BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
BUG_ON(cursor->page_index >= cursor->page_count);
BUG_ON(cursor->page_offset >= PAGE_SIZE);
*page_offset = cursor->page_offset;
if (cursor->last_piece)
*length = cursor->resid;
else
*length = PAGE_SIZE - *page_offset;
return data->pages[cursor->page_index];
}
static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
size_t bytes)
{
BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
/* Advance the cursor page offset */
cursor->resid -= bytes;
cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
if (!bytes || cursor->page_offset)
return false; /* more bytes to process in the current page */
if (!cursor->resid)
return false; /* no more data */
/* Move on to the next page; offset is already at 0 */
BUG_ON(cursor->page_index >= cursor->page_count);
cursor->page_index++;
cursor->last_piece = cursor->resid <= PAGE_SIZE;
return true;
}
/*
* For a pagelist, a piece is whatever remains to be consumed in the
* first page in the list, or the front of the next page.
*/
static void
ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
size_t length)
{
struct ceph_msg_data *data = cursor->data;
struct ceph_pagelist *pagelist;
struct page *page;
BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
pagelist = data->pagelist;
BUG_ON(!pagelist);
if (!length)
return; /* pagelist can be assigned but empty */
BUG_ON(list_empty(&pagelist->head));
page = list_first_entry(&pagelist->head, struct page, lru);
cursor->resid = min(length, pagelist->length);
cursor->page = page;
cursor->offset = 0;
cursor->last_piece = cursor->resid <= PAGE_SIZE;
}
static struct page *
ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
size_t *page_offset, size_t *length)
{
struct ceph_msg_data *data = cursor->data;
struct ceph_pagelist *pagelist;
BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
pagelist = data->pagelist;
BUG_ON(!pagelist);
BUG_ON(!cursor->page);
BUG_ON(cursor->offset + cursor->resid != pagelist->length);
/* offset of first page in pagelist is always 0 */
*page_offset = cursor->offset & ~PAGE_MASK;
if (cursor->last_piece)
*length = cursor->resid;
else
*length = PAGE_SIZE - *page_offset;
return cursor->page;
}
static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
size_t bytes)
{
struct ceph_msg_data *data = cursor->data;
struct ceph_pagelist *pagelist;
BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
pagelist = data->pagelist;
BUG_ON(!pagelist);
BUG_ON(cursor->offset + cursor->resid != pagelist->length);
BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
/* Advance the cursor offset */
cursor->resid -= bytes;
cursor->offset += bytes;
/* offset of first page in pagelist is always 0 */
if (!bytes || cursor->offset & ~PAGE_MASK)
return false; /* more bytes to process in the current page */
if (!cursor->resid)
return false; /* no more data */
/* Move on to the next page */
BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
cursor->page = list_next_entry(cursor->page, lru);
cursor->last_piece = cursor->resid <= PAGE_SIZE;
return true;
}
/*
* Message data is handled (sent or received) in pieces, where each
* piece resides on a single page. The network layer might not
* consume an entire piece at once. A data item's cursor keeps
* track of which piece is next to process and how much remains to
* be processed in that piece. It also tracks whether the current
* piece is the last one in the data item.
*/
static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
{
size_t length = cursor->total_resid;
switch (cursor->data->type) {
case CEPH_MSG_DATA_PAGELIST:
ceph_msg_data_pagelist_cursor_init(cursor, length);
break;
case CEPH_MSG_DATA_PAGES:
ceph_msg_data_pages_cursor_init(cursor, length);
break;
#ifdef CONFIG_BLOCK
case CEPH_MSG_DATA_BIO:
ceph_msg_data_bio_cursor_init(cursor, length);
break;
#endif /* CONFIG_BLOCK */
case CEPH_MSG_DATA_BVECS:
ceph_msg_data_bvecs_cursor_init(cursor, length);
break;
case CEPH_MSG_DATA_NONE:
default:
/* BUG(); */
break;
}
cursor->need_crc = true;
}
void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
struct ceph_msg *msg, size_t length)
{
BUG_ON(!length);
BUG_ON(length > msg->data_length);
BUG_ON(!msg->num_data_items);
cursor->total_resid = length;
cursor->data = msg->data;
__ceph_msg_data_cursor_init(cursor);
}
/*
* Return the page containing the next piece to process for a given
* data item, and supply the page offset and length of that piece.
* Indicate whether this is the last piece in this data item.
*/
struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
size_t *page_offset, size_t *length,
bool *last_piece)
{
struct page *page;
switch (cursor->data->type) {
case CEPH_MSG_DATA_PAGELIST:
page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
break;
case CEPH_MSG_DATA_PAGES:
page = ceph_msg_data_pages_next(cursor, page_offset, length);
break;
#ifdef CONFIG_BLOCK
case CEPH_MSG_DATA_BIO:
page = ceph_msg_data_bio_next(cursor, page_offset, length);
break;
#endif /* CONFIG_BLOCK */
case CEPH_MSG_DATA_BVECS:
page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
break;
case CEPH_MSG_DATA_NONE:
default:
page = NULL;
break;
}
BUG_ON(!page);
BUG_ON(*page_offset + *length > PAGE_SIZE);
BUG_ON(!*length);
BUG_ON(*length > cursor->resid);
if (last_piece)
*last_piece = cursor->last_piece;
return page;
}
/*
* Returns true if the result moves the cursor on to the next piece
* of the data item.
*/
void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
{
bool new_piece;
BUG_ON(bytes > cursor->resid);
switch (cursor->data->type) {
case CEPH_MSG_DATA_PAGELIST:
new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
break;
case CEPH_MSG_DATA_PAGES:
new_piece = ceph_msg_data_pages_advance(cursor, bytes);
break;
#ifdef CONFIG_BLOCK
case CEPH_MSG_DATA_BIO:
new_piece = ceph_msg_data_bio_advance(cursor, bytes);
break;
#endif /* CONFIG_BLOCK */
case CEPH_MSG_DATA_BVECS:
new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
break;
case CEPH_MSG_DATA_NONE:
default:
BUG();
break;
}
cursor->total_resid -= bytes;
if (!cursor->resid && cursor->total_resid) {
WARN_ON(!cursor->last_piece);
cursor->data++;
__ceph_msg_data_cursor_init(cursor);
new_piece = true;
}
cursor->need_crc = new_piece;
}
u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
unsigned int length)
{
char *kaddr;
kaddr = kmap(page);
BUG_ON(kaddr == NULL);
crc = crc32c(crc, kaddr + page_offset, length);
kunmap(page);
return crc;
}
bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
{
struct sockaddr_storage ss = addr->in_addr; /* align */
struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
switch (ss.ss_family) {
case AF_INET:
return addr4->s_addr == htonl(INADDR_ANY);
case AF_INET6:
return ipv6_addr_any(addr6);
default:
return true;
}
}
int ceph_addr_port(const struct ceph_entity_addr *addr)
{
switch (get_unaligned(&addr->in_addr.ss_family)) {
case AF_INET:
return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
case AF_INET6:
return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
}
return 0;
}
void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
{
switch (get_unaligned(&addr->in_addr.ss_family)) {
case AF_INET:
put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
break;
case AF_INET6:
put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
break;
}
}
/*
* Unlike other *_pton function semantics, zero indicates success.
*/
static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
char delim, const char **ipend)
{
memset(&addr->in_addr, 0, sizeof(addr->in_addr));
if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
put_unaligned(AF_INET, &addr->in_addr.ss_family);
return 0;
}
if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
put_unaligned(AF_INET6, &addr->in_addr.ss_family);
return 0;
}
return -EINVAL;
}
/*
* Extract hostname string and resolve using kernel DNS facility.
*/
#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
static int ceph_dns_resolve_name(const char *name, size_t namelen,
struct ceph_entity_addr *addr, char delim, const char **ipend)
{
const char *end, *delim_p;
char *colon_p, *ip_addr = NULL;
int ip_len, ret;
/*
* The end of the hostname occurs immediately preceding the delimiter or
* the port marker (':') where the delimiter takes precedence.
*/
delim_p = memchr(name, delim, namelen);
colon_p = memchr(name, ':', namelen);
if (delim_p && colon_p)
end = delim_p < colon_p ? delim_p : colon_p;
else if (!delim_p && colon_p)
end = colon_p;
else {
end = delim_p;
if (!end) /* case: hostname:/ */
end = name + namelen;
}
if (end <= name)
return -EINVAL;
/* do dns_resolve upcall */
ip_len = dns_query(current->nsproxy->net_ns,
NULL, name, end - name, NULL, &ip_addr, NULL, false);
if (ip_len > 0)
ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
else
ret = -ESRCH;
kfree(ip_addr);
*ipend = end;
pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
ret, ret ? "failed" : ceph_pr_addr(addr));
return ret;
}
#else
static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
struct ceph_entity_addr *addr, char delim, const char **ipend)
{
return -EINVAL;
}
#endif
/*
* Parse a server name (IP or hostname). If a valid IP address is not found
* then try to extract a hostname to resolve using userspace DNS upcall.
*/
static int ceph_parse_server_name(const char *name, size_t namelen,
struct ceph_entity_addr *addr, char delim, const char **ipend)
{
int ret;
ret = ceph_pton(name, namelen, addr, delim, ipend);
if (ret)
ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
return ret;
}
/*
* Parse an ip[:port] list into an addr array. Use the default
* monitor port if a port isn't specified.
*/
int ceph_parse_ips(const char *c, const char *end,
struct ceph_entity_addr *addr,
int max_count, int *count, char delim)
{
int i, ret = -EINVAL;
const char *p = c;
dout("parse_ips on '%.*s'\n", (int)(end-c), c);
for (i = 0; i < max_count; i++) {
char cur_delim = delim;
const char *ipend;
int port;
if (*p == '[') {
cur_delim = ']';
p++;
}
ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
&ipend);
if (ret)
goto bad;
ret = -EINVAL;
p = ipend;
if (cur_delim == ']') {
if (*p != ']') {
dout("missing matching ']'\n");
goto bad;
}
p++;
}
/* port? */
if (p < end && *p == ':') {
port = 0;
p++;
while (p < end && *p >= '0' && *p <= '9') {
port = (port * 10) + (*p - '0');
p++;
}
if (port == 0)
port = CEPH_MON_PORT;
else if (port > 65535)
goto bad;
} else {
port = CEPH_MON_PORT;
}
ceph_addr_set_port(&addr[i], port);
/*
* We want the type to be set according to ms_mode
* option, but options are normally parsed after mon
* addresses. Rather than complicating parsing, set
* to LEGACY and override in build_initial_monmap()
* for mon addresses and ceph_messenger_init() for
* ip option.
*/
addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
addr[i].nonce = 0;
dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
if (p == end)
break;
if (*p != delim)
goto bad;
p++;
}
if (p != end)
goto bad;
if (count)
*count = i + 1;
return 0;
bad:
return ret;
}
/*
* Process message. This happens in the worker thread. The callback should
* be careful not to do anything that waits on other incoming messages or it
* may deadlock.
*/
void ceph_con_process_message(struct ceph_connection *con)
{
struct ceph_msg *msg = con->in_msg;
BUG_ON(con->in_msg->con != con);
con->in_msg = NULL;
/* if first message, set peer_name */
if (con->peer_name.type == 0)
con->peer_name = msg->hdr.src;
con->in_seq++;
mutex_unlock(&con->mutex);
dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
msg, le64_to_cpu(msg->hdr.seq),
ENTITY_NAME(msg->hdr.src),
le16_to_cpu(msg->hdr.type),
ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
le32_to_cpu(msg->hdr.front_len),
le32_to_cpu(msg->hdr.middle_len),
le32_to_cpu(msg->hdr.data_len),
con->in_front_crc, con->in_middle_crc, con->in_data_crc);
con->ops->dispatch(con, msg);
mutex_lock(&con->mutex);
}
/*
* Atomically queue work on a connection after the specified delay.
* Bump @con reference to avoid races with connection teardown.
* Returns 0 if work was queued, or an error code otherwise.
*/
static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
{
if (!con->ops->get(con)) {
dout("%s %p ref count 0\n", __func__, con);
return -ENOENT;
}
if (delay >= HZ)
delay = round_jiffies_relative(delay);
dout("%s %p %lu\n", __func__, con, delay);
if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
dout("%s %p - already queued\n", __func__, con);
con->ops->put(con);
return -EBUSY;
}
return 0;
}
static void queue_con(struct ceph_connection *con)
{
(void) queue_con_delay(con, 0);
}
static void cancel_con(struct ceph_connection *con)
{
if (cancel_delayed_work(&con->work)) {
dout("%s %p\n", __func__, con);
con->ops->put(con);
}
}
static bool con_sock_closed(struct ceph_connection *con)
{
if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
return false;
#define CASE(x) \
case CEPH_CON_S_ ## x: \
con->error_msg = "socket closed (con state " #x ")"; \
break;
switch (con->state) {
CASE(CLOSED);
CASE(PREOPEN);
CASE(V1_BANNER);
CASE(V1_CONNECT_MSG);
CASE(V2_BANNER_PREFIX);
CASE(V2_BANNER_PAYLOAD);
CASE(V2_HELLO);
CASE(V2_AUTH);
CASE(V2_AUTH_SIGNATURE);
CASE(V2_SESSION_CONNECT);
CASE(V2_SESSION_RECONNECT);
CASE(OPEN);
CASE(STANDBY);
default:
BUG();
}
#undef CASE
return true;
}
static bool con_backoff(struct ceph_connection *con)
{
int ret;
if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
return false;
ret = queue_con_delay(con, con->delay);
if (ret) {
dout("%s: con %p FAILED to back off %lu\n", __func__,
con, con->delay);
BUG_ON(ret == -ENOENT);
ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
}
return true;
}
/* Finish fault handling; con->mutex must *not* be held here */
static void con_fault_finish(struct ceph_connection *con)
{
dout("%s %p\n", __func__, con);
/*
* in case we faulted due to authentication, invalidate our
* current tickets so that we can get new ones.
*/
if (con->v1.auth_retry) {
dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
if (con->ops->invalidate_authorizer)
con->ops->invalidate_authorizer(con);
con->v1.auth_retry = 0;
}
if (con->ops->fault)
con->ops->fault(con);
}
/*
* Do some work on a connection. Drop a connection ref when we're done.
*/
static void ceph_con_workfn(struct work_struct *work)
{
struct ceph_connection *con = container_of(work, struct ceph_connection,
work.work);
bool fault;
mutex_lock(&con->mutex);
while (true) {
int ret;
if ((fault = con_sock_closed(con))) {
dout("%s: con %p SOCK_CLOSED\n", __func__, con);
break;
}
if (con_backoff(con)) {
dout("%s: con %p BACKOFF\n", __func__, con);
break;
}
if (con->state == CEPH_CON_S_STANDBY) {
dout("%s: con %p STANDBY\n", __func__, con);
break;
}
if (con->state == CEPH_CON_S_CLOSED) {
dout("%s: con %p CLOSED\n", __func__, con);
BUG_ON(con->sock);
break;
}
if (con->state == CEPH_CON_S_PREOPEN) {
dout("%s: con %p PREOPEN\n", __func__, con);
BUG_ON(con->sock);
}
if (ceph_msgr2(from_msgr(con->msgr)))
ret = ceph_con_v2_try_read(con);
else
ret = ceph_con_v1_try_read(con);
if (ret < 0) {
if (ret == -EAGAIN)
continue;
if (!con->error_msg)
con->error_msg = "socket error on read";
fault = true;
break;
}
if (ceph_msgr2(from_msgr(con->msgr)))
ret = ceph_con_v2_try_write(con);
else
ret = ceph_con_v1_try_write(con);
if (ret < 0) {
if (ret == -EAGAIN)
continue;
if (!con->error_msg)
con->error_msg = "socket error on write";
fault = true;
}
break; /* If we make it to here, we're done */
}
if (fault)
con_fault(con);
mutex_unlock(&con->mutex);
if (fault)
con_fault_finish(con);
con->ops->put(con);
}
/*
* Generic error/fault handler. A retry mechanism is used with
* exponential backoff
*/
static void con_fault(struct ceph_connection *con)
{
dout("fault %p state %d to peer %s\n",
con, con->state, ceph_pr_addr(&con->peer_addr));
pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
ceph_pr_addr(&con->peer_addr), con->error_msg);
con->error_msg = NULL;
WARN_ON(con->state == CEPH_CON_S_STANDBY ||
con->state == CEPH_CON_S_CLOSED);
ceph_con_reset_protocol(con);
if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
dout("fault on LOSSYTX channel, marking CLOSED\n");
con->state = CEPH_CON_S_CLOSED;
return;
}
/* Requeue anything that hasn't been acked */
list_splice_init(&con->out_sent, &con->out_queue);
/* If there are no messages queued or keepalive pending, place
* the connection in a STANDBY state */
if (list_empty(&con->out_queue) &&
!ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
con->state = CEPH_CON_S_STANDBY;
} else {
/* retry after a delay. */
con->state = CEPH_CON_S_PREOPEN;
if (!con->delay) {
con->delay = BASE_DELAY_INTERVAL;
} else if (con->delay < MAX_DELAY_INTERVAL) {
con->delay *= 2;
if (con->delay > MAX_DELAY_INTERVAL)
con->delay = MAX_DELAY_INTERVAL;
}
ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
queue_con(con);
}
}
void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
{
u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
msgr->inst.addr.nonce = cpu_to_le32(nonce);
ceph_encode_my_addr(msgr);
}
/*
* initialize a new messenger instance
*/
void ceph_messenger_init(struct ceph_messenger *msgr,
struct ceph_entity_addr *myaddr)
{
spin_lock_init(&msgr->global_seq_lock);
if (myaddr) {
memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
sizeof(msgr->inst.addr.in_addr));
ceph_addr_set_port(&msgr->inst.addr, 0);
}
/*
* Since nautilus, clients are identified using type ANY.
* For msgr1, ceph_encode_banner_addr() munges it to NONE.
*/
msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
/* generate a random non-zero nonce */
do {
get_random_bytes(&msgr->inst.addr.nonce,
sizeof(msgr->inst.addr.nonce));
} while (!msgr->inst.addr.nonce);
ceph_encode_my_addr(msgr);
atomic_set(&msgr->stopping, 0);
write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
dout("%s %p\n", __func__, msgr);
}
void ceph_messenger_fini(struct ceph_messenger *msgr)
{
put_net(read_pnet(&msgr->net));
}
static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
{
if (msg->con)
msg->con->ops->put(msg->con);
msg->con = con ? con->ops->get(con) : NULL;
BUG_ON(msg->con != con);
}
static void clear_standby(struct ceph_connection *con)
{
/* come back from STANDBY? */
if (con->state == CEPH_CON_S_STANDBY) {
dout("clear_standby %p and ++connect_seq\n", con);
con->state = CEPH_CON_S_PREOPEN;
con->v1.connect_seq++;
WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
}
}
/*
* Queue up an outgoing message on the given connection.
*
* Consumes a ref on @msg.
*/
void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
{
/* set src+dst */
msg->hdr.src = con->msgr->inst.name;
BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
msg->needs_out_seq = true;
mutex_lock(&con->mutex);
if (con->state == CEPH_CON_S_CLOSED) {
dout("con_send %p closed, dropping %p\n", con, msg);
ceph_msg_put(msg);
mutex_unlock(&con->mutex);
return;
}
msg_con_set(msg, con);
BUG_ON(!list_empty(&msg->list_head));
list_add_tail(&msg->list_head, &con->out_queue);
dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
le32_to_cpu(msg->hdr.front_len),
le32_to_cpu(msg->hdr.middle_len),
le32_to_cpu(msg->hdr.data_len));
clear_standby(con);
mutex_unlock(&con->mutex);
/* if there wasn't anything waiting to send before, queue
* new work */
if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
queue_con(con);
}
EXPORT_SYMBOL(ceph_con_send);
/*
* Revoke a message that was previously queued for send
*/
void ceph_msg_revoke(struct ceph_msg *msg)
{
struct ceph_connection *con = msg->con;
if (!con) {
dout("%s msg %p null con\n", __func__, msg);
return; /* Message not in our possession */
}
mutex_lock(&con->mutex);
if (list_empty(&msg->list_head)) {
WARN_ON(con->out_msg == msg);
dout("%s con %p msg %p not linked\n", __func__, con, msg);
mutex_unlock(&con->mutex);
return;
}
dout("%s con %p msg %p was linked\n", __func__, con, msg);
msg->hdr.seq = 0;
ceph_msg_remove(msg);
if (con->out_msg == msg) {
WARN_ON(con->state != CEPH_CON_S_OPEN);
dout("%s con %p msg %p was sending\n", __func__, con, msg);
if (ceph_msgr2(from_msgr(con->msgr)))
ceph_con_v2_revoke(con);
else
ceph_con_v1_revoke(con);
ceph_msg_put(con->out_msg);
con->out_msg = NULL;
} else {
dout("%s con %p msg %p not current, out_msg %p\n", __func__,
con, msg, con->out_msg);
}
mutex_unlock(&con->mutex);
}
/*
* Revoke a message that we may be reading data into
*/
void ceph_msg_revoke_incoming(struct ceph_msg *msg)
{
struct ceph_connection *con = msg->con;
if (!con) {
dout("%s msg %p null con\n", __func__, msg);
return; /* Message not in our possession */
}
mutex_lock(&con->mutex);
if (con->in_msg == msg) {
WARN_ON(con->state != CEPH_CON_S_OPEN);
dout("%s con %p msg %p was recving\n", __func__, con, msg);
if (ceph_msgr2(from_msgr(con->msgr)))
ceph_con_v2_revoke_incoming(con);
else
ceph_con_v1_revoke_incoming(con);
ceph_msg_put(con->in_msg);
con->in_msg = NULL;
} else {
dout("%s con %p msg %p not current, in_msg %p\n", __func__,
con, msg, con->in_msg);
}
mutex_unlock(&con->mutex);
}
/*
* Queue a keepalive byte to ensure the tcp connection is alive.
*/
void ceph_con_keepalive(struct ceph_connection *con)
{
dout("con_keepalive %p\n", con);
mutex_lock(&con->mutex);
clear_standby(con);
ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
mutex_unlock(&con->mutex);
if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
queue_con(con);
}
EXPORT_SYMBOL(ceph_con_keepalive);
bool ceph_con_keepalive_expired(struct ceph_connection *con,
unsigned long interval)
{
if (interval > 0 &&
(con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
struct timespec64 now;
struct timespec64 ts;
ktime_get_real_ts64(&now);
jiffies_to_timespec64(interval, &ts);
ts = timespec64_add(con->last_keepalive_ack, ts);
return timespec64_compare(&now, &ts) >= 0;
}
return false;
}
static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
{
BUG_ON(msg->num_data_items >= msg->max_data_items);
return &msg->data[msg->num_data_items++];
}
static void ceph_msg_data_destroy(struct ceph_msg_data *data)
{
if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
int num_pages = calc_pages_for(data->alignment, data->length);
ceph_release_page_vector(data->pages, num_pages);
} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
ceph_pagelist_release(data->pagelist);
}
}
void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
size_t length, size_t alignment, bool own_pages)
{
struct ceph_msg_data *data;
BUG_ON(!pages);
BUG_ON(!length);
data = ceph_msg_data_add(msg);
data->type = CEPH_MSG_DATA_PAGES;
data->pages = pages;
data->length = length;
data->alignment = alignment & ~PAGE_MASK;
data->own_pages = own_pages;
msg->data_length += length;
}
EXPORT_SYMBOL(ceph_msg_data_add_pages);
void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
struct ceph_pagelist *pagelist)
{
struct ceph_msg_data *data;
BUG_ON(!pagelist);
BUG_ON(!pagelist->length);
data = ceph_msg_data_add(msg);
data->type = CEPH_MSG_DATA_PAGELIST;
refcount_inc(&pagelist->refcnt);
data->pagelist = pagelist;
msg->data_length += pagelist->length;
}
EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
#ifdef CONFIG_BLOCK
void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
u32 length)
{
struct ceph_msg_data *data;
data = ceph_msg_data_add(msg);
data->type = CEPH_MSG_DATA_BIO;
data->bio_pos = *bio_pos;
data->bio_length = length;
msg->data_length += length;
}
EXPORT_SYMBOL(ceph_msg_data_add_bio);
#endif /* CONFIG_BLOCK */
void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
struct ceph_bvec_iter *bvec_pos)
{
struct ceph_msg_data *data;
data = ceph_msg_data_add(msg);
data->type = CEPH_MSG_DATA_BVECS;
data->bvec_pos = *bvec_pos;
msg->data_length += bvec_pos->iter.bi_size;
}
EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
/*
* construct a new message with given type, size
* the new msg has a ref count of 1.
*/
struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
gfp_t flags, bool can_fail)
{
struct ceph_msg *m;
m = kmem_cache_zalloc(ceph_msg_cache, flags);
if (m == NULL)
goto out;
m->hdr.type = cpu_to_le16(type);
m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
m->hdr.front_len = cpu_to_le32(front_len);
INIT_LIST_HEAD(&m->list_head);
kref_init(&m->kref);
/* front */
if (front_len) {
m->front.iov_base = kvmalloc(front_len, flags);
if (m->front.iov_base == NULL) {
dout("ceph_msg_new can't allocate %d bytes\n",
front_len);
goto out2;
}
} else {
m->front.iov_base = NULL;
}
m->front_alloc_len = m->front.iov_len = front_len;
if (max_data_items) {
m->data = kmalloc_array(max_data_items, sizeof(*m->data),
flags);
if (!m->data)
goto out2;
m->max_data_items = max_data_items;
}
dout("ceph_msg_new %p front %d\n", m, front_len);
return m;
out2:
ceph_msg_put(m);
out:
if (!can_fail) {
pr_err("msg_new can't create type %d front %d\n", type,
front_len);
WARN_ON(1);
} else {
dout("msg_new can't create type %d front %d\n", type,
front_len);
}
return NULL;
}
EXPORT_SYMBOL(ceph_msg_new2);
struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
bool can_fail)
{
return ceph_msg_new2(type, front_len, 0, flags, can_fail);
}
EXPORT_SYMBOL(ceph_msg_new);
/*
* Allocate "middle" portion of a message, if it is needed and wasn't
* allocated by alloc_msg. This allows us to read a small fixed-size
* per-type header in the front and then gracefully fail (i.e.,
* propagate the error to the caller based on info in the front) when
* the middle is too large.
*/
static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
{
int type = le16_to_cpu(msg->hdr.type);
int middle_len = le32_to_cpu(msg->hdr.middle_len);
dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
ceph_msg_type_name(type), middle_len);
BUG_ON(!middle_len);
BUG_ON(msg->middle);
msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
if (!msg->middle)
return -ENOMEM;
return 0;
}
/*
* Allocate a message for receiving an incoming message on a
* connection, and save the result in con->in_msg. Uses the
* connection's private alloc_msg op if available.
*
* Returns 0 on success, or a negative error code.
*
* On success, if we set *skip = 1:
* - the next message should be skipped and ignored.
* - con->in_msg == NULL
* or if we set *skip = 0:
* - con->in_msg is non-null.
* On error (ENOMEM, EAGAIN, ...),
* - con->in_msg == NULL
*/
int ceph_con_in_msg_alloc(struct ceph_connection *con,
struct ceph_msg_header *hdr, int *skip)
{
int middle_len = le32_to_cpu(hdr->middle_len);
struct ceph_msg *msg;
int ret = 0;
BUG_ON(con->in_msg != NULL);
BUG_ON(!con->ops->alloc_msg);
mutex_unlock(&con->mutex);
msg = con->ops->alloc_msg(con, hdr, skip);
mutex_lock(&con->mutex);
if (con->state != CEPH_CON_S_OPEN) {
if (msg)
ceph_msg_put(msg);
return -EAGAIN;
}
if (msg) {
BUG_ON(*skip);
msg_con_set(msg, con);
con->in_msg = msg;
} else {
/*
* Null message pointer means either we should skip
* this message or we couldn't allocate memory. The
* former is not an error.
*/
if (*skip)
return 0;
con->error_msg = "error allocating memory for incoming message";
return -ENOMEM;
}
memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
if (middle_len && !con->in_msg->middle) {
ret = ceph_alloc_middle(con, con->in_msg);
if (ret < 0) {
ceph_msg_put(con->in_msg);
con->in_msg = NULL;
}
}
return ret;
}
void ceph_con_get_out_msg(struct ceph_connection *con)
{
struct ceph_msg *msg;
BUG_ON(list_empty(&con->out_queue));
msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
WARN_ON(msg->con != con);
/*
* Put the message on "sent" list using a ref from ceph_con_send().
* It is put when the message is acked or revoked.
*/
list_move_tail(&msg->list_head, &con->out_sent);
/*
* Only assign outgoing seq # if we haven't sent this message
* yet. If it is requeued, resend with it's original seq.
*/
if (msg->needs_out_seq) {
msg->hdr.seq = cpu_to_le64(++con->out_seq);
msg->needs_out_seq = false;
if (con->ops->reencode_message)
con->ops->reencode_message(msg);
}
/*
* Get a ref for out_msg. It is put when we are done sending the
* message or in case of a fault.
*/
WARN_ON(con->out_msg);
con->out_msg = ceph_msg_get(msg);
}
/*
* Free a generically kmalloc'd message.
*/
static void ceph_msg_free(struct ceph_msg *m)
{
dout("%s %p\n", __func__, m);
kvfree(m->front.iov_base);
kfree(m->data);
kmem_cache_free(ceph_msg_cache, m);
}
static void ceph_msg_release(struct kref *kref)
{
struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
int i;
dout("%s %p\n", __func__, m);
WARN_ON(!list_empty(&m->list_head));
msg_con_set(m, NULL);
/* drop middle, data, if any */
if (m->middle) {
ceph_buffer_put(m->middle);
m->middle = NULL;
}
for (i = 0; i < m->num_data_items; i++)
ceph_msg_data_destroy(&m->data[i]);
if (m->pool)
ceph_msgpool_put(m->pool, m);
else
ceph_msg_free(m);
}
struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
{
dout("%s %p (was %d)\n", __func__, msg,
kref_read(&msg->kref));
kref_get(&msg->kref);
return msg;
}
EXPORT_SYMBOL(ceph_msg_get);
void ceph_msg_put(struct ceph_msg *msg)
{
dout("%s %p (was %d)\n", __func__, msg,
kref_read(&msg->kref));
kref_put(&msg->kref, ceph_msg_release);
}
EXPORT_SYMBOL(ceph_msg_put);
void ceph_msg_dump(struct ceph_msg *msg)
{
pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
msg->front_alloc_len, msg->data_length);
print_hex_dump(KERN_DEBUG, "header: ",
DUMP_PREFIX_OFFSET, 16, 1,
&msg->hdr, sizeof(msg->hdr), true);
print_hex_dump(KERN_DEBUG, " front: ",
DUMP_PREFIX_OFFSET, 16, 1,
msg->front.iov_base, msg->front.iov_len, true);
if (msg->middle)
print_hex_dump(KERN_DEBUG, "middle: ",
DUMP_PREFIX_OFFSET, 16, 1,
msg->middle->vec.iov_base,
msg->middle->vec.iov_len, true);
print_hex_dump(KERN_DEBUG, "footer: ",
DUMP_PREFIX_OFFSET, 16, 1,
&msg->footer, sizeof(msg->footer), true);
}
EXPORT_SYMBOL(ceph_msg_dump);