OpenCloudOS-Kernel/sound/pci/oxygen/oxygen_io.c

279 lines
7.5 KiB
C

/*
* C-Media CMI8788 driver - helper functions
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
*
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this driver; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/delay.h>
#include <linux/sched.h>
#include <sound/core.h>
#include <sound/mpu401.h>
#include <asm/io.h>
#include "oxygen.h"
u8 oxygen_read8(struct oxygen *chip, unsigned int reg)
{
return inb(chip->addr + reg);
}
EXPORT_SYMBOL(oxygen_read8);
u16 oxygen_read16(struct oxygen *chip, unsigned int reg)
{
return inw(chip->addr + reg);
}
EXPORT_SYMBOL(oxygen_read16);
u32 oxygen_read32(struct oxygen *chip, unsigned int reg)
{
return inl(chip->addr + reg);
}
EXPORT_SYMBOL(oxygen_read32);
void oxygen_write8(struct oxygen *chip, unsigned int reg, u8 value)
{
outb(value, chip->addr + reg);
chip->saved_registers._8[reg] = value;
}
EXPORT_SYMBOL(oxygen_write8);
void oxygen_write16(struct oxygen *chip, unsigned int reg, u16 value)
{
outw(value, chip->addr + reg);
chip->saved_registers._16[reg / 2] = cpu_to_le16(value);
}
EXPORT_SYMBOL(oxygen_write16);
void oxygen_write32(struct oxygen *chip, unsigned int reg, u32 value)
{
outl(value, chip->addr + reg);
chip->saved_registers._32[reg / 4] = cpu_to_le32(value);
}
EXPORT_SYMBOL(oxygen_write32);
void oxygen_write8_masked(struct oxygen *chip, unsigned int reg,
u8 value, u8 mask)
{
u8 tmp = inb(chip->addr + reg);
tmp &= ~mask;
tmp |= value & mask;
outb(tmp, chip->addr + reg);
chip->saved_registers._8[reg] = tmp;
}
EXPORT_SYMBOL(oxygen_write8_masked);
void oxygen_write16_masked(struct oxygen *chip, unsigned int reg,
u16 value, u16 mask)
{
u16 tmp = inw(chip->addr + reg);
tmp &= ~mask;
tmp |= value & mask;
outw(tmp, chip->addr + reg);
chip->saved_registers._16[reg / 2] = cpu_to_le16(tmp);
}
EXPORT_SYMBOL(oxygen_write16_masked);
void oxygen_write32_masked(struct oxygen *chip, unsigned int reg,
u32 value, u32 mask)
{
u32 tmp = inl(chip->addr + reg);
tmp &= ~mask;
tmp |= value & mask;
outl(tmp, chip->addr + reg);
chip->saved_registers._32[reg / 4] = cpu_to_le32(tmp);
}
EXPORT_SYMBOL(oxygen_write32_masked);
static int oxygen_ac97_wait(struct oxygen *chip, unsigned int mask)
{
u8 status = 0;
/*
* Reading the status register also clears the bits, so we have to save
* the read bits in status.
*/
wait_event_timeout(chip->ac97_waitqueue,
({ status |= oxygen_read8(chip, OXYGEN_AC97_INTERRUPT_STATUS);
status & mask; }),
msecs_to_jiffies(1) + 1);
/*
* Check even after a timeout because this function should not require
* the AC'97 interrupt to be enabled.
*/
status |= oxygen_read8(chip, OXYGEN_AC97_INTERRUPT_STATUS);
return status & mask ? 0 : -EIO;
}
/*
* About 10% of AC'97 register reads or writes fail to complete, but even those
* where the controller indicates completion aren't guaranteed to have actually
* happened.
*
* It's hard to assign blame to either the controller or the codec because both
* were made by C-Media ...
*/
void oxygen_write_ac97(struct oxygen *chip, unsigned int codec,
unsigned int index, u16 data)
{
unsigned int count, succeeded;
u32 reg;
reg = data;
reg |= index << OXYGEN_AC97_REG_ADDR_SHIFT;
reg |= OXYGEN_AC97_REG_DIR_WRITE;
reg |= codec << OXYGEN_AC97_REG_CODEC_SHIFT;
succeeded = 0;
for (count = 5; count > 0; --count) {
udelay(5);
oxygen_write32(chip, OXYGEN_AC97_REGS, reg);
/* require two "completed" writes, just to be sure */
if (oxygen_ac97_wait(chip, OXYGEN_AC97_INT_WRITE_DONE) >= 0 &&
++succeeded >= 2) {
chip->saved_ac97_registers[codec][index / 2] = data;
return;
}
}
snd_printk(KERN_ERR "AC'97 write timeout\n");
}
EXPORT_SYMBOL(oxygen_write_ac97);
u16 oxygen_read_ac97(struct oxygen *chip, unsigned int codec,
unsigned int index)
{
unsigned int count;
unsigned int last_read = UINT_MAX;
u32 reg;
reg = index << OXYGEN_AC97_REG_ADDR_SHIFT;
reg |= OXYGEN_AC97_REG_DIR_READ;
reg |= codec << OXYGEN_AC97_REG_CODEC_SHIFT;
for (count = 5; count > 0; --count) {
udelay(5);
oxygen_write32(chip, OXYGEN_AC97_REGS, reg);
udelay(10);
if (oxygen_ac97_wait(chip, OXYGEN_AC97_INT_READ_DONE) >= 0) {
u16 value = oxygen_read16(chip, OXYGEN_AC97_REGS);
/* we require two consecutive reads of the same value */
if (value == last_read)
return value;
last_read = value;
/*
* Invert the register value bits to make sure that two
* consecutive unsuccessful reads do not return the same
* value.
*/
reg ^= 0xffff;
}
}
snd_printk(KERN_ERR "AC'97 read timeout on codec %u\n", codec);
return 0;
}
EXPORT_SYMBOL(oxygen_read_ac97);
void oxygen_write_ac97_masked(struct oxygen *chip, unsigned int codec,
unsigned int index, u16 data, u16 mask)
{
u16 value = oxygen_read_ac97(chip, codec, index);
value &= ~mask;
value |= data & mask;
oxygen_write_ac97(chip, codec, index, value);
}
EXPORT_SYMBOL(oxygen_write_ac97_masked);
void oxygen_write_spi(struct oxygen *chip, u8 control, unsigned int data)
{
unsigned int count;
/* should not need more than 30.72 us (24 * 1.28 us) */
count = 10;
while ((oxygen_read8(chip, OXYGEN_SPI_CONTROL) & OXYGEN_SPI_BUSY)
&& count > 0) {
udelay(4);
--count;
}
oxygen_write8(chip, OXYGEN_SPI_DATA1, data);
oxygen_write8(chip, OXYGEN_SPI_DATA2, data >> 8);
if (control & OXYGEN_SPI_DATA_LENGTH_3)
oxygen_write8(chip, OXYGEN_SPI_DATA3, data >> 16);
oxygen_write8(chip, OXYGEN_SPI_CONTROL, control);
}
EXPORT_SYMBOL(oxygen_write_spi);
void oxygen_write_i2c(struct oxygen *chip, u8 device, u8 map, u8 data)
{
/* should not need more than about 300 us */
msleep(1);
oxygen_write8(chip, OXYGEN_2WIRE_MAP, map);
oxygen_write8(chip, OXYGEN_2WIRE_DATA, data);
oxygen_write8(chip, OXYGEN_2WIRE_CONTROL,
device | OXYGEN_2WIRE_DIR_WRITE);
}
EXPORT_SYMBOL(oxygen_write_i2c);
static void _write_uart(struct oxygen *chip, unsigned int port, u8 data)
{
if (oxygen_read8(chip, OXYGEN_MPU401 + 1) & MPU401_TX_FULL)
msleep(1);
oxygen_write8(chip, OXYGEN_MPU401 + port, data);
}
void oxygen_reset_uart(struct oxygen *chip)
{
_write_uart(chip, 1, MPU401_RESET);
msleep(1); /* wait for ACK */
_write_uart(chip, 1, MPU401_ENTER_UART);
}
EXPORT_SYMBOL(oxygen_reset_uart);
void oxygen_write_uart(struct oxygen *chip, u8 data)
{
_write_uart(chip, 0, data);
}
EXPORT_SYMBOL(oxygen_write_uart);
u16 oxygen_read_eeprom(struct oxygen *chip, unsigned int index)
{
unsigned int timeout;
oxygen_write8(chip, OXYGEN_EEPROM_CONTROL,
index | OXYGEN_EEPROM_DIR_READ);
for (timeout = 0; timeout < 100; ++timeout) {
udelay(1);
if (!(oxygen_read8(chip, OXYGEN_EEPROM_STATUS)
& OXYGEN_EEPROM_BUSY))
break;
}
return oxygen_read16(chip, OXYGEN_EEPROM_DATA);
}
void oxygen_write_eeprom(struct oxygen *chip, unsigned int index, u16 value)
{
unsigned int timeout;
oxygen_write16(chip, OXYGEN_EEPROM_DATA, value);
oxygen_write8(chip, OXYGEN_EEPROM_CONTROL,
index | OXYGEN_EEPROM_DIR_WRITE);
for (timeout = 0; timeout < 10; ++timeout) {
msleep(1);
if (!(oxygen_read8(chip, OXYGEN_EEPROM_STATUS)
& OXYGEN_EEPROM_BUSY))
return;
}
snd_printk(KERN_ERR "EEPROM write timeout\n");
}