2488 lines
68 KiB
C
2488 lines
68 KiB
C
/*
|
|
* Copyright 2002-2005, Instant802 Networks, Inc.
|
|
* Copyright 2005-2006, Devicescape Software, Inc.
|
|
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
|
|
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*
|
|
* Transmit and frame generation functions.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <net/net_namespace.h>
|
|
#include <net/ieee80211_radiotap.h>
|
|
#include <net/cfg80211.h>
|
|
#include <net/mac80211.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include "ieee80211_i.h"
|
|
#include "driver-ops.h"
|
|
#include "led.h"
|
|
#include "mesh.h"
|
|
#include "wep.h"
|
|
#include "wpa.h"
|
|
#include "wme.h"
|
|
#include "rate.h"
|
|
|
|
#define IEEE80211_TX_OK 0
|
|
#define IEEE80211_TX_AGAIN 1
|
|
#define IEEE80211_TX_PENDING 2
|
|
|
|
/* misc utils */
|
|
|
|
static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
|
|
int next_frag_len)
|
|
{
|
|
int rate, mrate, erp, dur, i;
|
|
struct ieee80211_rate *txrate;
|
|
struct ieee80211_local *local = tx->local;
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_hdr *hdr;
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
|
|
|
/* assume HW handles this */
|
|
if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
|
|
return 0;
|
|
|
|
/* uh huh? */
|
|
if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
|
|
return 0;
|
|
|
|
sband = local->hw.wiphy->bands[tx->channel->band];
|
|
txrate = &sband->bitrates[info->control.rates[0].idx];
|
|
|
|
erp = txrate->flags & IEEE80211_RATE_ERP_G;
|
|
|
|
/*
|
|
* data and mgmt (except PS Poll):
|
|
* - during CFP: 32768
|
|
* - during contention period:
|
|
* if addr1 is group address: 0
|
|
* if more fragments = 0 and addr1 is individual address: time to
|
|
* transmit one ACK plus SIFS
|
|
* if more fragments = 1 and addr1 is individual address: time to
|
|
* transmit next fragment plus 2 x ACK plus 3 x SIFS
|
|
*
|
|
* IEEE 802.11, 9.6:
|
|
* - control response frame (CTS or ACK) shall be transmitted using the
|
|
* same rate as the immediately previous frame in the frame exchange
|
|
* sequence, if this rate belongs to the PHY mandatory rates, or else
|
|
* at the highest possible rate belonging to the PHY rates in the
|
|
* BSSBasicRateSet
|
|
*/
|
|
hdr = (struct ieee80211_hdr *)tx->skb->data;
|
|
if (ieee80211_is_ctl(hdr->frame_control)) {
|
|
/* TODO: These control frames are not currently sent by
|
|
* mac80211, but should they be implemented, this function
|
|
* needs to be updated to support duration field calculation.
|
|
*
|
|
* RTS: time needed to transmit pending data/mgmt frame plus
|
|
* one CTS frame plus one ACK frame plus 3 x SIFS
|
|
* CTS: duration of immediately previous RTS minus time
|
|
* required to transmit CTS and its SIFS
|
|
* ACK: 0 if immediately previous directed data/mgmt had
|
|
* more=0, with more=1 duration in ACK frame is duration
|
|
* from previous frame minus time needed to transmit ACK
|
|
* and its SIFS
|
|
* PS Poll: BIT(15) | BIT(14) | aid
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* data/mgmt */
|
|
if (0 /* FIX: data/mgmt during CFP */)
|
|
return cpu_to_le16(32768);
|
|
|
|
if (group_addr) /* Group address as the destination - no ACK */
|
|
return 0;
|
|
|
|
/* Individual destination address:
|
|
* IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
|
|
* CTS and ACK frames shall be transmitted using the highest rate in
|
|
* basic rate set that is less than or equal to the rate of the
|
|
* immediately previous frame and that is using the same modulation
|
|
* (CCK or OFDM). If no basic rate set matches with these requirements,
|
|
* the highest mandatory rate of the PHY that is less than or equal to
|
|
* the rate of the previous frame is used.
|
|
* Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
|
|
*/
|
|
rate = -1;
|
|
/* use lowest available if everything fails */
|
|
mrate = sband->bitrates[0].bitrate;
|
|
for (i = 0; i < sband->n_bitrates; i++) {
|
|
struct ieee80211_rate *r = &sband->bitrates[i];
|
|
|
|
if (r->bitrate > txrate->bitrate)
|
|
break;
|
|
|
|
if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
|
|
rate = r->bitrate;
|
|
|
|
switch (sband->band) {
|
|
case IEEE80211_BAND_2GHZ: {
|
|
u32 flag;
|
|
if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
|
|
flag = IEEE80211_RATE_MANDATORY_G;
|
|
else
|
|
flag = IEEE80211_RATE_MANDATORY_B;
|
|
if (r->flags & flag)
|
|
mrate = r->bitrate;
|
|
break;
|
|
}
|
|
case IEEE80211_BAND_5GHZ:
|
|
if (r->flags & IEEE80211_RATE_MANDATORY_A)
|
|
mrate = r->bitrate;
|
|
break;
|
|
case IEEE80211_NUM_BANDS:
|
|
WARN_ON(1);
|
|
break;
|
|
}
|
|
}
|
|
if (rate == -1) {
|
|
/* No matching basic rate found; use highest suitable mandatory
|
|
* PHY rate */
|
|
rate = mrate;
|
|
}
|
|
|
|
/* Time needed to transmit ACK
|
|
* (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
|
|
* to closest integer */
|
|
|
|
dur = ieee80211_frame_duration(local, 10, rate, erp,
|
|
tx->sdata->vif.bss_conf.use_short_preamble);
|
|
|
|
if (next_frag_len) {
|
|
/* Frame is fragmented: duration increases with time needed to
|
|
* transmit next fragment plus ACK and 2 x SIFS. */
|
|
dur *= 2; /* ACK + SIFS */
|
|
/* next fragment */
|
|
dur += ieee80211_frame_duration(local, next_frag_len,
|
|
txrate->bitrate, erp,
|
|
tx->sdata->vif.bss_conf.use_short_preamble);
|
|
}
|
|
|
|
return cpu_to_le16(dur);
|
|
}
|
|
|
|
static int inline is_ieee80211_device(struct ieee80211_local *local,
|
|
struct net_device *dev)
|
|
{
|
|
return local == wdev_priv(dev->ieee80211_ptr);
|
|
}
|
|
|
|
/* tx handlers */
|
|
static ieee80211_tx_result debug_noinline
|
|
ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx)
|
|
{
|
|
struct ieee80211_local *local = tx->local;
|
|
struct ieee80211_if_managed *ifmgd;
|
|
|
|
/* driver doesn't support power save */
|
|
if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
|
|
return TX_CONTINUE;
|
|
|
|
/* hardware does dynamic power save */
|
|
if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
|
|
return TX_CONTINUE;
|
|
|
|
/* dynamic power save disabled */
|
|
if (local->hw.conf.dynamic_ps_timeout <= 0)
|
|
return TX_CONTINUE;
|
|
|
|
/* we are scanning, don't enable power save */
|
|
if (local->scanning)
|
|
return TX_CONTINUE;
|
|
|
|
if (!local->ps_sdata)
|
|
return TX_CONTINUE;
|
|
|
|
/* No point if we're going to suspend */
|
|
if (local->quiescing)
|
|
return TX_CONTINUE;
|
|
|
|
/* dynamic ps is supported only in managed mode */
|
|
if (tx->sdata->vif.type != NL80211_IFTYPE_STATION)
|
|
return TX_CONTINUE;
|
|
|
|
ifmgd = &tx->sdata->u.mgd;
|
|
|
|
/*
|
|
* Don't wakeup from power save if u-apsd is enabled, voip ac has
|
|
* u-apsd enabled and the frame is in voip class. This effectively
|
|
* means that even if all access categories have u-apsd enabled, in
|
|
* practise u-apsd is only used with the voip ac. This is a
|
|
* workaround for the case when received voip class packets do not
|
|
* have correct qos tag for some reason, due the network or the
|
|
* peer application.
|
|
*
|
|
* Note: local->uapsd_queues access is racy here. If the value is
|
|
* changed via debugfs, user needs to reassociate manually to have
|
|
* everything in sync.
|
|
*/
|
|
if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED)
|
|
&& (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
|
|
&& skb_get_queue_mapping(tx->skb) == 0)
|
|
return TX_CONTINUE;
|
|
|
|
if (local->hw.conf.flags & IEEE80211_CONF_PS) {
|
|
ieee80211_stop_queues_by_reason(&local->hw,
|
|
IEEE80211_QUEUE_STOP_REASON_PS);
|
|
ieee80211_queue_work(&local->hw,
|
|
&local->dynamic_ps_disable_work);
|
|
}
|
|
|
|
mod_timer(&local->dynamic_ps_timer, jiffies +
|
|
msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
|
|
|
|
return TX_CONTINUE;
|
|
}
|
|
|
|
static ieee80211_tx_result debug_noinline
|
|
ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
|
|
{
|
|
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
|
u32 sta_flags;
|
|
|
|
if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
|
|
return TX_CONTINUE;
|
|
|
|
if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) &&
|
|
!ieee80211_is_probe_req(hdr->frame_control) &&
|
|
!ieee80211_is_nullfunc(hdr->frame_control))
|
|
/*
|
|
* When software scanning only nullfunc frames (to notify
|
|
* the sleep state to the AP) and probe requests (for the
|
|
* active scan) are allowed, all other frames should not be
|
|
* sent and we should not get here, but if we do
|
|
* nonetheless, drop them to avoid sending them
|
|
* off-channel. See the link below and
|
|
* ieee80211_start_scan() for more.
|
|
*
|
|
* http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
|
|
*/
|
|
return TX_DROP;
|
|
|
|
if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
|
|
return TX_CONTINUE;
|
|
|
|
if (tx->flags & IEEE80211_TX_PS_BUFFERED)
|
|
return TX_CONTINUE;
|
|
|
|
sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
|
|
|
|
if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
|
|
if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
|
|
tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
|
|
ieee80211_is_data(hdr->frame_control))) {
|
|
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
|
|
printk(KERN_DEBUG "%s: dropped data frame to not "
|
|
"associated station %pM\n",
|
|
tx->sdata->name, hdr->addr1);
|
|
#endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
|
|
I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
|
|
return TX_DROP;
|
|
}
|
|
} else {
|
|
if (unlikely(ieee80211_is_data(hdr->frame_control) &&
|
|
tx->local->num_sta == 0 &&
|
|
tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
|
|
/*
|
|
* No associated STAs - no need to send multicast
|
|
* frames.
|
|
*/
|
|
return TX_DROP;
|
|
}
|
|
return TX_CONTINUE;
|
|
}
|
|
|
|
return TX_CONTINUE;
|
|
}
|
|
|
|
/* This function is called whenever the AP is about to exceed the maximum limit
|
|
* of buffered frames for power saving STAs. This situation should not really
|
|
* happen often during normal operation, so dropping the oldest buffered packet
|
|
* from each queue should be OK to make some room for new frames. */
|
|
static void purge_old_ps_buffers(struct ieee80211_local *local)
|
|
{
|
|
int total = 0, purged = 0;
|
|
struct sk_buff *skb;
|
|
struct ieee80211_sub_if_data *sdata;
|
|
struct sta_info *sta;
|
|
|
|
/*
|
|
* virtual interfaces are protected by RCU
|
|
*/
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
|
|
struct ieee80211_if_ap *ap;
|
|
if (sdata->vif.type != NL80211_IFTYPE_AP)
|
|
continue;
|
|
ap = &sdata->u.ap;
|
|
skb = skb_dequeue(&ap->ps_bc_buf);
|
|
if (skb) {
|
|
purged++;
|
|
dev_kfree_skb(skb);
|
|
}
|
|
total += skb_queue_len(&ap->ps_bc_buf);
|
|
}
|
|
|
|
list_for_each_entry_rcu(sta, &local->sta_list, list) {
|
|
skb = skb_dequeue(&sta->ps_tx_buf);
|
|
if (skb) {
|
|
purged++;
|
|
dev_kfree_skb(skb);
|
|
}
|
|
total += skb_queue_len(&sta->ps_tx_buf);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
local->total_ps_buffered = total;
|
|
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
|
|
printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
|
|
wiphy_name(local->hw.wiphy), purged);
|
|
#endif
|
|
}
|
|
|
|
static ieee80211_tx_result
|
|
ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
|
|
{
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
|
|
|
|
/*
|
|
* broadcast/multicast frame
|
|
*
|
|
* If any of the associated stations is in power save mode,
|
|
* the frame is buffered to be sent after DTIM beacon frame.
|
|
* This is done either by the hardware or us.
|
|
*/
|
|
|
|
/* powersaving STAs only in AP/VLAN mode */
|
|
if (!tx->sdata->bss)
|
|
return TX_CONTINUE;
|
|
|
|
/* no buffering for ordered frames */
|
|
if (ieee80211_has_order(hdr->frame_control))
|
|
return TX_CONTINUE;
|
|
|
|
/* no stations in PS mode */
|
|
if (!atomic_read(&tx->sdata->bss->num_sta_ps))
|
|
return TX_CONTINUE;
|
|
|
|
info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
|
|
|
|
/* device releases frame after DTIM beacon */
|
|
if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING))
|
|
return TX_CONTINUE;
|
|
|
|
/* buffered in mac80211 */
|
|
if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
|
|
purge_old_ps_buffers(tx->local);
|
|
|
|
if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) {
|
|
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
|
|
if (net_ratelimit())
|
|
printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n",
|
|
tx->sdata->name);
|
|
#endif
|
|
dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
|
|
} else
|
|
tx->local->total_ps_buffered++;
|
|
|
|
skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
|
|
|
|
return TX_QUEUED;
|
|
}
|
|
|
|
static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
|
|
struct sk_buff *skb)
|
|
{
|
|
if (!ieee80211_is_mgmt(fc))
|
|
return 0;
|
|
|
|
if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
|
|
return 0;
|
|
|
|
if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
|
|
skb->data))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static ieee80211_tx_result
|
|
ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
|
|
{
|
|
struct sta_info *sta = tx->sta;
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
|
|
u32 staflags;
|
|
|
|
if (unlikely(!sta ||
|
|
ieee80211_is_probe_resp(hdr->frame_control) ||
|
|
ieee80211_is_auth(hdr->frame_control) ||
|
|
ieee80211_is_assoc_resp(hdr->frame_control) ||
|
|
ieee80211_is_reassoc_resp(hdr->frame_control)))
|
|
return TX_CONTINUE;
|
|
|
|
staflags = get_sta_flags(sta);
|
|
|
|
if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) &&
|
|
!(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) {
|
|
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
|
|
printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
|
|
"before %d)\n",
|
|
sta->sta.addr, sta->sta.aid,
|
|
skb_queue_len(&sta->ps_tx_buf));
|
|
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
|
|
if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
|
|
purge_old_ps_buffers(tx->local);
|
|
if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
|
|
struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
|
|
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
|
|
if (net_ratelimit()) {
|
|
printk(KERN_DEBUG "%s: STA %pM TX "
|
|
"buffer full - dropping oldest frame\n",
|
|
tx->sdata->name, sta->sta.addr);
|
|
}
|
|
#endif
|
|
dev_kfree_skb(old);
|
|
} else
|
|
tx->local->total_ps_buffered++;
|
|
|
|
/*
|
|
* Queue frame to be sent after STA wakes up/polls,
|
|
* but don't set the TIM bit if the driver is blocking
|
|
* wakeup or poll response transmissions anyway.
|
|
*/
|
|
if (skb_queue_empty(&sta->ps_tx_buf) &&
|
|
!(staflags & WLAN_STA_PS_DRIVER))
|
|
sta_info_set_tim_bit(sta);
|
|
|
|
info->control.jiffies = jiffies;
|
|
info->control.vif = &tx->sdata->vif;
|
|
info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
|
|
skb_queue_tail(&sta->ps_tx_buf, tx->skb);
|
|
return TX_QUEUED;
|
|
}
|
|
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
|
|
else if (unlikely(staflags & WLAN_STA_PS_STA)) {
|
|
printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
|
|
"set -> send frame\n", tx->sdata->name,
|
|
sta->sta.addr);
|
|
}
|
|
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
|
|
|
|
return TX_CONTINUE;
|
|
}
|
|
|
|
static ieee80211_tx_result debug_noinline
|
|
ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
|
|
{
|
|
if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
|
|
return TX_CONTINUE;
|
|
|
|
if (tx->flags & IEEE80211_TX_UNICAST)
|
|
return ieee80211_tx_h_unicast_ps_buf(tx);
|
|
else
|
|
return ieee80211_tx_h_multicast_ps_buf(tx);
|
|
}
|
|
|
|
static ieee80211_tx_result debug_noinline
|
|
ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
|
|
{
|
|
struct ieee80211_key *key = NULL;
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
|
|
|
|
if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
|
|
tx->key = NULL;
|
|
else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
|
|
tx->key = key;
|
|
else if (ieee80211_is_mgmt(hdr->frame_control) &&
|
|
(key = rcu_dereference(tx->sdata->default_mgmt_key)))
|
|
tx->key = key;
|
|
else if ((key = rcu_dereference(tx->sdata->default_key)))
|
|
tx->key = key;
|
|
else if (tx->sdata->drop_unencrypted &&
|
|
(tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
|
|
!(info->flags & IEEE80211_TX_CTL_INJECTED) &&
|
|
(!ieee80211_is_robust_mgmt_frame(hdr) ||
|
|
(ieee80211_is_action(hdr->frame_control) &&
|
|
tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
|
|
I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
|
|
return TX_DROP;
|
|
} else
|
|
tx->key = NULL;
|
|
|
|
if (tx->key) {
|
|
bool skip_hw = false;
|
|
|
|
tx->key->tx_rx_count++;
|
|
/* TODO: add threshold stuff again */
|
|
|
|
switch (tx->key->conf.alg) {
|
|
case ALG_WEP:
|
|
if (ieee80211_is_auth(hdr->frame_control))
|
|
break;
|
|
case ALG_TKIP:
|
|
if (!ieee80211_is_data_present(hdr->frame_control))
|
|
tx->key = NULL;
|
|
break;
|
|
case ALG_CCMP:
|
|
if (!ieee80211_is_data_present(hdr->frame_control) &&
|
|
!ieee80211_use_mfp(hdr->frame_control, tx->sta,
|
|
tx->skb))
|
|
tx->key = NULL;
|
|
else
|
|
skip_hw = (tx->key->conf.flags &
|
|
IEEE80211_KEY_FLAG_SW_MGMT) &&
|
|
ieee80211_is_mgmt(hdr->frame_control);
|
|
break;
|
|
case ALG_AES_CMAC:
|
|
if (!ieee80211_is_mgmt(hdr->frame_control))
|
|
tx->key = NULL;
|
|
break;
|
|
}
|
|
|
|
if (!skip_hw && tx->key &&
|
|
tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
|
|
info->control.hw_key = &tx->key->conf;
|
|
}
|
|
|
|
return TX_CONTINUE;
|
|
}
|
|
|
|
static ieee80211_tx_result debug_noinline
|
|
ieee80211_tx_h_sta(struct ieee80211_tx_data *tx)
|
|
{
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
|
|
|
if (tx->sta && tx->sta->uploaded)
|
|
info->control.sta = &tx->sta->sta;
|
|
|
|
return TX_CONTINUE;
|
|
}
|
|
|
|
static ieee80211_tx_result debug_noinline
|
|
ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
|
|
{
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
|
struct ieee80211_hdr *hdr = (void *)tx->skb->data;
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_rate *rate;
|
|
int i, len;
|
|
bool inval = false, rts = false, short_preamble = false;
|
|
struct ieee80211_tx_rate_control txrc;
|
|
u32 sta_flags;
|
|
|
|
memset(&txrc, 0, sizeof(txrc));
|
|
|
|
sband = tx->local->hw.wiphy->bands[tx->channel->band];
|
|
|
|
len = min_t(int, tx->skb->len + FCS_LEN,
|
|
tx->local->hw.wiphy->frag_threshold);
|
|
|
|
/* set up the tx rate control struct we give the RC algo */
|
|
txrc.hw = local_to_hw(tx->local);
|
|
txrc.sband = sband;
|
|
txrc.bss_conf = &tx->sdata->vif.bss_conf;
|
|
txrc.skb = tx->skb;
|
|
txrc.reported_rate.idx = -1;
|
|
txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band];
|
|
if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
|
|
txrc.max_rate_idx = -1;
|
|
else
|
|
txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
|
|
txrc.ap = tx->sdata->vif.type == NL80211_IFTYPE_AP;
|
|
|
|
/* set up RTS protection if desired */
|
|
if (len > tx->local->hw.wiphy->rts_threshold) {
|
|
txrc.rts = rts = true;
|
|
}
|
|
|
|
/*
|
|
* Use short preamble if the BSS can handle it, but not for
|
|
* management frames unless we know the receiver can handle
|
|
* that -- the management frame might be to a station that
|
|
* just wants a probe response.
|
|
*/
|
|
if (tx->sdata->vif.bss_conf.use_short_preamble &&
|
|
(ieee80211_is_data(hdr->frame_control) ||
|
|
(tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
|
|
txrc.short_preamble = short_preamble = true;
|
|
|
|
sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
|
|
|
|
/*
|
|
* Lets not bother rate control if we're associated and cannot
|
|
* talk to the sta. This should not happen.
|
|
*/
|
|
if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) &&
|
|
(sta_flags & WLAN_STA_ASSOC) &&
|
|
!rate_usable_index_exists(sband, &tx->sta->sta),
|
|
"%s: Dropped data frame as no usable bitrate found while "
|
|
"scanning and associated. Target station: "
|
|
"%pM on %d GHz band\n",
|
|
tx->sdata->name, hdr->addr1,
|
|
tx->channel->band ? 5 : 2))
|
|
return TX_DROP;
|
|
|
|
/*
|
|
* If we're associated with the sta at this point we know we can at
|
|
* least send the frame at the lowest bit rate.
|
|
*/
|
|
rate_control_get_rate(tx->sdata, tx->sta, &txrc);
|
|
|
|
if (unlikely(info->control.rates[0].idx < 0))
|
|
return TX_DROP;
|
|
|
|
if (txrc.reported_rate.idx < 0)
|
|
txrc.reported_rate = info->control.rates[0];
|
|
|
|
if (tx->sta)
|
|
tx->sta->last_tx_rate = txrc.reported_rate;
|
|
|
|
if (unlikely(!info->control.rates[0].count))
|
|
info->control.rates[0].count = 1;
|
|
|
|
if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
|
|
(info->flags & IEEE80211_TX_CTL_NO_ACK)))
|
|
info->control.rates[0].count = 1;
|
|
|
|
if (is_multicast_ether_addr(hdr->addr1)) {
|
|
/*
|
|
* XXX: verify the rate is in the basic rateset
|
|
*/
|
|
return TX_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* set up the RTS/CTS rate as the fastest basic rate
|
|
* that is not faster than the data rate
|
|
*
|
|
* XXX: Should this check all retry rates?
|
|
*/
|
|
if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
|
|
s8 baserate = 0;
|
|
|
|
rate = &sband->bitrates[info->control.rates[0].idx];
|
|
|
|
for (i = 0; i < sband->n_bitrates; i++) {
|
|
/* must be a basic rate */
|
|
if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
|
|
continue;
|
|
/* must not be faster than the data rate */
|
|
if (sband->bitrates[i].bitrate > rate->bitrate)
|
|
continue;
|
|
/* maximum */
|
|
if (sband->bitrates[baserate].bitrate <
|
|
sband->bitrates[i].bitrate)
|
|
baserate = i;
|
|
}
|
|
|
|
info->control.rts_cts_rate_idx = baserate;
|
|
}
|
|
|
|
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
|
|
/*
|
|
* make sure there's no valid rate following
|
|
* an invalid one, just in case drivers don't
|
|
* take the API seriously to stop at -1.
|
|
*/
|
|
if (inval) {
|
|
info->control.rates[i].idx = -1;
|
|
continue;
|
|
}
|
|
if (info->control.rates[i].idx < 0) {
|
|
inval = true;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* For now assume MCS is already set up correctly, this
|
|
* needs to be fixed.
|
|
*/
|
|
if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
|
|
WARN_ON(info->control.rates[i].idx > 76);
|
|
continue;
|
|
}
|
|
|
|
/* set up RTS protection if desired */
|
|
if (rts)
|
|
info->control.rates[i].flags |=
|
|
IEEE80211_TX_RC_USE_RTS_CTS;
|
|
|
|
/* RC is busted */
|
|
if (WARN_ON_ONCE(info->control.rates[i].idx >=
|
|
sband->n_bitrates)) {
|
|
info->control.rates[i].idx = -1;
|
|
continue;
|
|
}
|
|
|
|
rate = &sband->bitrates[info->control.rates[i].idx];
|
|
|
|
/* set up short preamble */
|
|
if (short_preamble &&
|
|
rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
|
|
info->control.rates[i].flags |=
|
|
IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
|
|
|
|
/* set up G protection */
|
|
if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
|
|
rate->flags & IEEE80211_RATE_ERP_G)
|
|
info->control.rates[i].flags |=
|
|
IEEE80211_TX_RC_USE_CTS_PROTECT;
|
|
}
|
|
|
|
return TX_CONTINUE;
|
|
}
|
|
|
|
static ieee80211_tx_result debug_noinline
|
|
ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
|
|
{
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
|
|
u16 *seq;
|
|
u8 *qc;
|
|
int tid;
|
|
|
|
/*
|
|
* Packet injection may want to control the sequence
|
|
* number, if we have no matching interface then we
|
|
* neither assign one ourselves nor ask the driver to.
|
|
*/
|
|
if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
|
|
return TX_CONTINUE;
|
|
|
|
if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
|
|
return TX_CONTINUE;
|
|
|
|
if (ieee80211_hdrlen(hdr->frame_control) < 24)
|
|
return TX_CONTINUE;
|
|
|
|
/*
|
|
* Anything but QoS data that has a sequence number field
|
|
* (is long enough) gets a sequence number from the global
|
|
* counter.
|
|
*/
|
|
if (!ieee80211_is_data_qos(hdr->frame_control)) {
|
|
/* driver should assign sequence number */
|
|
info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
|
|
/* for pure STA mode without beacons, we can do it */
|
|
hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
|
|
tx->sdata->sequence_number += 0x10;
|
|
return TX_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* This should be true for injected/management frames only, for
|
|
* management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
|
|
* above since they are not QoS-data frames.
|
|
*/
|
|
if (!tx->sta)
|
|
return TX_CONTINUE;
|
|
|
|
/* include per-STA, per-TID sequence counter */
|
|
|
|
qc = ieee80211_get_qos_ctl(hdr);
|
|
tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
|
|
seq = &tx->sta->tid_seq[tid];
|
|
|
|
hdr->seq_ctrl = cpu_to_le16(*seq);
|
|
|
|
/* Increase the sequence number. */
|
|
*seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
|
|
|
|
return TX_CONTINUE;
|
|
}
|
|
|
|
static int ieee80211_fragment(struct ieee80211_local *local,
|
|
struct sk_buff *skb, int hdrlen,
|
|
int frag_threshold)
|
|
{
|
|
struct sk_buff *tail = skb, *tmp;
|
|
int per_fragm = frag_threshold - hdrlen - FCS_LEN;
|
|
int pos = hdrlen + per_fragm;
|
|
int rem = skb->len - hdrlen - per_fragm;
|
|
|
|
if (WARN_ON(rem < 0))
|
|
return -EINVAL;
|
|
|
|
while (rem) {
|
|
int fraglen = per_fragm;
|
|
|
|
if (fraglen > rem)
|
|
fraglen = rem;
|
|
rem -= fraglen;
|
|
tmp = dev_alloc_skb(local->tx_headroom +
|
|
frag_threshold +
|
|
IEEE80211_ENCRYPT_HEADROOM +
|
|
IEEE80211_ENCRYPT_TAILROOM);
|
|
if (!tmp)
|
|
return -ENOMEM;
|
|
tail->next = tmp;
|
|
tail = tmp;
|
|
skb_reserve(tmp, local->tx_headroom +
|
|
IEEE80211_ENCRYPT_HEADROOM);
|
|
/* copy control information */
|
|
memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
|
|
skb_copy_queue_mapping(tmp, skb);
|
|
tmp->priority = skb->priority;
|
|
tmp->dev = skb->dev;
|
|
|
|
/* copy header and data */
|
|
memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
|
|
memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
|
|
|
|
pos += fraglen;
|
|
}
|
|
|
|
skb->len = hdrlen + per_fragm;
|
|
return 0;
|
|
}
|
|
|
|
static ieee80211_tx_result debug_noinline
|
|
ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
|
|
{
|
|
struct sk_buff *skb = tx->skb;
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
struct ieee80211_hdr *hdr = (void *)skb->data;
|
|
int frag_threshold = tx->local->hw.wiphy->frag_threshold;
|
|
int hdrlen;
|
|
int fragnum;
|
|
|
|
if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
|
|
return TX_CONTINUE;
|
|
|
|
/*
|
|
* Warn when submitting a fragmented A-MPDU frame and drop it.
|
|
* This scenario is handled in ieee80211_tx_prepare but extra
|
|
* caution taken here as fragmented ampdu may cause Tx stop.
|
|
*/
|
|
if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
|
|
return TX_DROP;
|
|
|
|
hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
|
|
|
/* internal error, why is TX_FRAGMENTED set? */
|
|
if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
|
|
return TX_DROP;
|
|
|
|
/*
|
|
* Now fragment the frame. This will allocate all the fragments and
|
|
* chain them (using skb as the first fragment) to skb->next.
|
|
* During transmission, we will remove the successfully transmitted
|
|
* fragments from this list. When the low-level driver rejects one
|
|
* of the fragments then we will simply pretend to accept the skb
|
|
* but store it away as pending.
|
|
*/
|
|
if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
|
|
return TX_DROP;
|
|
|
|
/* update duration/seq/flags of fragments */
|
|
fragnum = 0;
|
|
do {
|
|
int next_len;
|
|
const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
|
|
|
|
hdr = (void *)skb->data;
|
|
info = IEEE80211_SKB_CB(skb);
|
|
|
|
if (skb->next) {
|
|
hdr->frame_control |= morefrags;
|
|
next_len = skb->next->len;
|
|
/*
|
|
* No multi-rate retries for fragmented frames, that
|
|
* would completely throw off the NAV at other STAs.
|
|
*/
|
|
info->control.rates[1].idx = -1;
|
|
info->control.rates[2].idx = -1;
|
|
info->control.rates[3].idx = -1;
|
|
info->control.rates[4].idx = -1;
|
|
BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
|
|
info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
|
|
} else {
|
|
hdr->frame_control &= ~morefrags;
|
|
next_len = 0;
|
|
}
|
|
hdr->duration_id = ieee80211_duration(tx, 0, next_len);
|
|
hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
|
|
fragnum++;
|
|
} while ((skb = skb->next));
|
|
|
|
return TX_CONTINUE;
|
|
}
|
|
|
|
static ieee80211_tx_result debug_noinline
|
|
ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
|
|
{
|
|
struct sk_buff *skb = tx->skb;
|
|
|
|
if (!tx->sta)
|
|
return TX_CONTINUE;
|
|
|
|
tx->sta->tx_packets++;
|
|
do {
|
|
tx->sta->tx_fragments++;
|
|
tx->sta->tx_bytes += skb->len;
|
|
} while ((skb = skb->next));
|
|
|
|
return TX_CONTINUE;
|
|
}
|
|
|
|
static ieee80211_tx_result debug_noinline
|
|
ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
|
|
{
|
|
if (!tx->key)
|
|
return TX_CONTINUE;
|
|
|
|
switch (tx->key->conf.alg) {
|
|
case ALG_WEP:
|
|
return ieee80211_crypto_wep_encrypt(tx);
|
|
case ALG_TKIP:
|
|
return ieee80211_crypto_tkip_encrypt(tx);
|
|
case ALG_CCMP:
|
|
return ieee80211_crypto_ccmp_encrypt(tx);
|
|
case ALG_AES_CMAC:
|
|
return ieee80211_crypto_aes_cmac_encrypt(tx);
|
|
}
|
|
|
|
/* not reached */
|
|
WARN_ON(1);
|
|
return TX_DROP;
|
|
}
|
|
|
|
static ieee80211_tx_result debug_noinline
|
|
ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
|
|
{
|
|
struct sk_buff *skb = tx->skb;
|
|
struct ieee80211_hdr *hdr;
|
|
int next_len;
|
|
bool group_addr;
|
|
|
|
do {
|
|
hdr = (void *) skb->data;
|
|
if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
|
|
break; /* must not overwrite AID */
|
|
next_len = skb->next ? skb->next->len : 0;
|
|
group_addr = is_multicast_ether_addr(hdr->addr1);
|
|
|
|
hdr->duration_id =
|
|
ieee80211_duration(tx, group_addr, next_len);
|
|
} while ((skb = skb->next));
|
|
|
|
return TX_CONTINUE;
|
|
}
|
|
|
|
/* actual transmit path */
|
|
|
|
/*
|
|
* deal with packet injection down monitor interface
|
|
* with Radiotap Header -- only called for monitor mode interface
|
|
*/
|
|
static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
|
|
struct sk_buff *skb)
|
|
{
|
|
/*
|
|
* this is the moment to interpret and discard the radiotap header that
|
|
* must be at the start of the packet injected in Monitor mode
|
|
*
|
|
* Need to take some care with endian-ness since radiotap
|
|
* args are little-endian
|
|
*/
|
|
|
|
struct ieee80211_radiotap_iterator iterator;
|
|
struct ieee80211_radiotap_header *rthdr =
|
|
(struct ieee80211_radiotap_header *) skb->data;
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len,
|
|
NULL);
|
|
|
|
sband = tx->local->hw.wiphy->bands[tx->channel->band];
|
|
|
|
info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
|
|
tx->flags &= ~IEEE80211_TX_FRAGMENTED;
|
|
|
|
/*
|
|
* for every radiotap entry that is present
|
|
* (ieee80211_radiotap_iterator_next returns -ENOENT when no more
|
|
* entries present, or -EINVAL on error)
|
|
*/
|
|
|
|
while (!ret) {
|
|
ret = ieee80211_radiotap_iterator_next(&iterator);
|
|
|
|
if (ret)
|
|
continue;
|
|
|
|
/* see if this argument is something we can use */
|
|
switch (iterator.this_arg_index) {
|
|
/*
|
|
* You must take care when dereferencing iterator.this_arg
|
|
* for multibyte types... the pointer is not aligned. Use
|
|
* get_unaligned((type *)iterator.this_arg) to dereference
|
|
* iterator.this_arg for type "type" safely on all arches.
|
|
*/
|
|
case IEEE80211_RADIOTAP_FLAGS:
|
|
if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
|
|
/*
|
|
* this indicates that the skb we have been
|
|
* handed has the 32-bit FCS CRC at the end...
|
|
* we should react to that by snipping it off
|
|
* because it will be recomputed and added
|
|
* on transmission
|
|
*/
|
|
if (skb->len < (iterator._max_length + FCS_LEN))
|
|
return false;
|
|
|
|
skb_trim(skb, skb->len - FCS_LEN);
|
|
}
|
|
if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
|
|
info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
|
|
if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
|
|
tx->flags |= IEEE80211_TX_FRAGMENTED;
|
|
break;
|
|
|
|
/*
|
|
* Please update the file
|
|
* Documentation/networking/mac80211-injection.txt
|
|
* when parsing new fields here.
|
|
*/
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
|
|
return false;
|
|
|
|
/*
|
|
* remove the radiotap header
|
|
* iterator->_max_length was sanity-checked against
|
|
* skb->len by iterator init
|
|
*/
|
|
skb_pull(skb, iterator._max_length);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* initialises @tx
|
|
*/
|
|
static ieee80211_tx_result
|
|
ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
|
|
struct ieee80211_tx_data *tx,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_local *local = sdata->local;
|
|
struct ieee80211_hdr *hdr;
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
int hdrlen, tid;
|
|
u8 *qc, *state;
|
|
bool queued = false;
|
|
|
|
memset(tx, 0, sizeof(*tx));
|
|
tx->skb = skb;
|
|
tx->local = local;
|
|
tx->sdata = sdata;
|
|
tx->channel = local->hw.conf.channel;
|
|
/*
|
|
* Set this flag (used below to indicate "automatic fragmentation"),
|
|
* it will be cleared/left by radiotap as desired.
|
|
*/
|
|
tx->flags |= IEEE80211_TX_FRAGMENTED;
|
|
|
|
/* process and remove the injection radiotap header */
|
|
if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) {
|
|
if (!__ieee80211_parse_tx_radiotap(tx, skb))
|
|
return TX_DROP;
|
|
|
|
/*
|
|
* __ieee80211_parse_tx_radiotap has now removed
|
|
* the radiotap header that was present and pre-filled
|
|
* 'tx' with tx control information.
|
|
*/
|
|
info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP;
|
|
}
|
|
|
|
/*
|
|
* If this flag is set to true anywhere, and we get here,
|
|
* we are doing the needed processing, so remove the flag
|
|
* now.
|
|
*/
|
|
info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
|
|
|
|
hdr = (struct ieee80211_hdr *) skb->data;
|
|
|
|
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
|
|
tx->sta = rcu_dereference(sdata->u.vlan.sta);
|
|
if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr)
|
|
return TX_DROP;
|
|
} else if (info->flags & IEEE80211_TX_CTL_INJECTED) {
|
|
tx->sta = sta_info_get_bss(sdata, hdr->addr1);
|
|
}
|
|
if (!tx->sta)
|
|
tx->sta = sta_info_get(sdata, hdr->addr1);
|
|
|
|
if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
|
|
(local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
|
|
unsigned long flags;
|
|
struct tid_ampdu_tx *tid_tx;
|
|
|
|
qc = ieee80211_get_qos_ctl(hdr);
|
|
tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
|
|
|
|
spin_lock_irqsave(&tx->sta->lock, flags);
|
|
/*
|
|
* XXX: This spinlock could be fairly expensive, but see the
|
|
* comment in agg-tx.c:ieee80211_agg_tx_operational().
|
|
* One way to solve this would be to do something RCU-like
|
|
* for managing the tid_tx struct and using atomic bitops
|
|
* for the actual state -- by introducing an actual
|
|
* 'operational' bit that would be possible. It would
|
|
* require changing ieee80211_agg_tx_operational() to
|
|
* set that bit, and changing the way tid_tx is managed
|
|
* everywhere, including races between that bit and
|
|
* tid_tx going away (tid_tx being added can be easily
|
|
* committed to memory before the 'operational' bit).
|
|
*/
|
|
tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
|
|
state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
|
|
if (*state == HT_AGG_STATE_OPERATIONAL) {
|
|
info->flags |= IEEE80211_TX_CTL_AMPDU;
|
|
} else if (*state != HT_AGG_STATE_IDLE) {
|
|
/* in progress */
|
|
queued = true;
|
|
info->control.vif = &sdata->vif;
|
|
info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
|
|
__skb_queue_tail(&tid_tx->pending, skb);
|
|
}
|
|
spin_unlock_irqrestore(&tx->sta->lock, flags);
|
|
|
|
if (unlikely(queued))
|
|
return TX_QUEUED;
|
|
}
|
|
|
|
if (is_multicast_ether_addr(hdr->addr1)) {
|
|
tx->flags &= ~IEEE80211_TX_UNICAST;
|
|
info->flags |= IEEE80211_TX_CTL_NO_ACK;
|
|
} else {
|
|
tx->flags |= IEEE80211_TX_UNICAST;
|
|
if (unlikely(local->wifi_wme_noack_test))
|
|
info->flags |= IEEE80211_TX_CTL_NO_ACK;
|
|
else
|
|
info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
|
|
}
|
|
|
|
if (tx->flags & IEEE80211_TX_FRAGMENTED) {
|
|
if ((tx->flags & IEEE80211_TX_UNICAST) &&
|
|
skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
|
|
!(info->flags & IEEE80211_TX_CTL_AMPDU))
|
|
tx->flags |= IEEE80211_TX_FRAGMENTED;
|
|
else
|
|
tx->flags &= ~IEEE80211_TX_FRAGMENTED;
|
|
}
|
|
|
|
if (!tx->sta)
|
|
info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
|
|
else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
|
|
info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
|
|
|
|
hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
|
if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
|
|
u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
|
|
tx->ethertype = (pos[0] << 8) | pos[1];
|
|
}
|
|
info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
|
|
|
|
return TX_CONTINUE;
|
|
}
|
|
|
|
static int __ieee80211_tx(struct ieee80211_local *local,
|
|
struct sk_buff **skbp,
|
|
struct sta_info *sta,
|
|
bool txpending)
|
|
{
|
|
struct sk_buff *skb = *skbp, *next;
|
|
struct ieee80211_tx_info *info;
|
|
struct ieee80211_sub_if_data *sdata;
|
|
unsigned long flags;
|
|
int ret, len;
|
|
bool fragm = false;
|
|
|
|
while (skb) {
|
|
int q = skb_get_queue_mapping(skb);
|
|
|
|
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
|
|
ret = IEEE80211_TX_OK;
|
|
if (local->queue_stop_reasons[q] ||
|
|
(!txpending && !skb_queue_empty(&local->pending[q])))
|
|
ret = IEEE80211_TX_PENDING;
|
|
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
|
|
if (ret != IEEE80211_TX_OK)
|
|
return ret;
|
|
|
|
info = IEEE80211_SKB_CB(skb);
|
|
|
|
if (fragm)
|
|
info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
|
|
IEEE80211_TX_CTL_FIRST_FRAGMENT);
|
|
|
|
next = skb->next;
|
|
len = skb->len;
|
|
|
|
if (next)
|
|
info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
|
|
|
|
sdata = vif_to_sdata(info->control.vif);
|
|
|
|
switch (sdata->vif.type) {
|
|
case NL80211_IFTYPE_MONITOR:
|
|
info->control.vif = NULL;
|
|
break;
|
|
case NL80211_IFTYPE_AP_VLAN:
|
|
info->control.vif = &container_of(sdata->bss,
|
|
struct ieee80211_sub_if_data, u.ap)->vif;
|
|
break;
|
|
default:
|
|
/* keep */
|
|
break;
|
|
}
|
|
|
|
ret = drv_tx(local, skb);
|
|
if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
|
|
dev_kfree_skb(skb);
|
|
ret = NETDEV_TX_OK;
|
|
}
|
|
if (ret != NETDEV_TX_OK) {
|
|
info->control.vif = &sdata->vif;
|
|
return IEEE80211_TX_AGAIN;
|
|
}
|
|
|
|
*skbp = skb = next;
|
|
ieee80211_led_tx(local, 1);
|
|
fragm = true;
|
|
}
|
|
|
|
return IEEE80211_TX_OK;
|
|
}
|
|
|
|
/*
|
|
* Invoke TX handlers, return 0 on success and non-zero if the
|
|
* frame was dropped or queued.
|
|
*/
|
|
static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
|
|
{
|
|
struct sk_buff *skb = tx->skb;
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
ieee80211_tx_result res = TX_DROP;
|
|
|
|
#define CALL_TXH(txh) \
|
|
do { \
|
|
res = txh(tx); \
|
|
if (res != TX_CONTINUE) \
|
|
goto txh_done; \
|
|
} while (0)
|
|
|
|
CALL_TXH(ieee80211_tx_h_dynamic_ps);
|
|
CALL_TXH(ieee80211_tx_h_check_assoc);
|
|
CALL_TXH(ieee80211_tx_h_ps_buf);
|
|
CALL_TXH(ieee80211_tx_h_select_key);
|
|
CALL_TXH(ieee80211_tx_h_sta);
|
|
if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
|
|
CALL_TXH(ieee80211_tx_h_rate_ctrl);
|
|
|
|
if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION))
|
|
goto txh_done;
|
|
|
|
CALL_TXH(ieee80211_tx_h_michael_mic_add);
|
|
CALL_TXH(ieee80211_tx_h_sequence);
|
|
CALL_TXH(ieee80211_tx_h_fragment);
|
|
/* handlers after fragment must be aware of tx info fragmentation! */
|
|
CALL_TXH(ieee80211_tx_h_stats);
|
|
CALL_TXH(ieee80211_tx_h_encrypt);
|
|
CALL_TXH(ieee80211_tx_h_calculate_duration);
|
|
#undef CALL_TXH
|
|
|
|
txh_done:
|
|
if (unlikely(res == TX_DROP)) {
|
|
I802_DEBUG_INC(tx->local->tx_handlers_drop);
|
|
while (skb) {
|
|
struct sk_buff *next;
|
|
|
|
next = skb->next;
|
|
dev_kfree_skb(skb);
|
|
skb = next;
|
|
}
|
|
return -1;
|
|
} else if (unlikely(res == TX_QUEUED)) {
|
|
I802_DEBUG_INC(tx->local->tx_handlers_queued);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ieee80211_tx(struct ieee80211_sub_if_data *sdata,
|
|
struct sk_buff *skb, bool txpending)
|
|
{
|
|
struct ieee80211_local *local = sdata->local;
|
|
struct ieee80211_tx_data tx;
|
|
ieee80211_tx_result res_prepare;
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
struct sk_buff *next;
|
|
unsigned long flags;
|
|
int ret, retries;
|
|
u16 queue;
|
|
|
|
queue = skb_get_queue_mapping(skb);
|
|
|
|
if (unlikely(skb->len < 10)) {
|
|
dev_kfree_skb(skb);
|
|
return;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
|
|
/* initialises tx */
|
|
res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
|
|
|
|
if (unlikely(res_prepare == TX_DROP)) {
|
|
dev_kfree_skb(skb);
|
|
rcu_read_unlock();
|
|
return;
|
|
} else if (unlikely(res_prepare == TX_QUEUED)) {
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
|
|
tx.channel = local->hw.conf.channel;
|
|
info->band = tx.channel->band;
|
|
|
|
if (invoke_tx_handlers(&tx))
|
|
goto out;
|
|
|
|
retries = 0;
|
|
retry:
|
|
ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
|
|
switch (ret) {
|
|
case IEEE80211_TX_OK:
|
|
break;
|
|
case IEEE80211_TX_AGAIN:
|
|
/*
|
|
* Since there are no fragmented frames on A-MPDU
|
|
* queues, there's no reason for a driver to reject
|
|
* a frame there, warn and drop it.
|
|
*/
|
|
if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
|
|
goto drop;
|
|
/* fall through */
|
|
case IEEE80211_TX_PENDING:
|
|
skb = tx.skb;
|
|
|
|
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
|
|
|
|
if (local->queue_stop_reasons[queue] ||
|
|
!skb_queue_empty(&local->pending[queue])) {
|
|
/*
|
|
* if queue is stopped, queue up frames for later
|
|
* transmission from the tasklet
|
|
*/
|
|
do {
|
|
next = skb->next;
|
|
skb->next = NULL;
|
|
if (unlikely(txpending))
|
|
__skb_queue_head(&local->pending[queue],
|
|
skb);
|
|
else
|
|
__skb_queue_tail(&local->pending[queue],
|
|
skb);
|
|
} while ((skb = next));
|
|
|
|
spin_unlock_irqrestore(&local->queue_stop_reason_lock,
|
|
flags);
|
|
} else {
|
|
/*
|
|
* otherwise retry, but this is a race condition or
|
|
* a driver bug (which we warn about if it persists)
|
|
*/
|
|
spin_unlock_irqrestore(&local->queue_stop_reason_lock,
|
|
flags);
|
|
|
|
retries++;
|
|
if (WARN(retries > 10, "tx refused but queue active\n"))
|
|
goto drop;
|
|
goto retry;
|
|
}
|
|
}
|
|
out:
|
|
rcu_read_unlock();
|
|
return;
|
|
|
|
drop:
|
|
rcu_read_unlock();
|
|
|
|
skb = tx.skb;
|
|
while (skb) {
|
|
next = skb->next;
|
|
dev_kfree_skb(skb);
|
|
skb = next;
|
|
}
|
|
}
|
|
|
|
/* device xmit handlers */
|
|
|
|
static int ieee80211_skb_resize(struct ieee80211_local *local,
|
|
struct sk_buff *skb,
|
|
int head_need, bool may_encrypt)
|
|
{
|
|
int tail_need = 0;
|
|
|
|
/*
|
|
* This could be optimised, devices that do full hardware
|
|
* crypto (including TKIP MMIC) need no tailroom... But we
|
|
* have no drivers for such devices currently.
|
|
*/
|
|
if (may_encrypt) {
|
|
tail_need = IEEE80211_ENCRYPT_TAILROOM;
|
|
tail_need -= skb_tailroom(skb);
|
|
tail_need = max_t(int, tail_need, 0);
|
|
}
|
|
|
|
if (head_need || tail_need) {
|
|
/* Sorry. Can't account for this any more */
|
|
skb_orphan(skb);
|
|
}
|
|
|
|
if (skb_header_cloned(skb))
|
|
I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
|
|
else
|
|
I802_DEBUG_INC(local->tx_expand_skb_head);
|
|
|
|
if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
|
|
printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
|
|
wiphy_name(local->hw.wiphy));
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* update truesize too */
|
|
skb->truesize += head_need + tail_need;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_local *local = sdata->local;
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
struct ieee80211_sub_if_data *tmp_sdata;
|
|
int headroom;
|
|
bool may_encrypt;
|
|
|
|
rcu_read_lock();
|
|
|
|
if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
|
|
int hdrlen;
|
|
u16 len_rthdr;
|
|
|
|
info->flags |= IEEE80211_TX_CTL_INJECTED |
|
|
IEEE80211_TX_INTFL_HAS_RADIOTAP;
|
|
|
|
len_rthdr = ieee80211_get_radiotap_len(skb->data);
|
|
hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
|
|
hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
|
|
|
/* check the header is complete in the frame */
|
|
if (likely(skb->len >= len_rthdr + hdrlen)) {
|
|
/*
|
|
* We process outgoing injected frames that have a
|
|
* local address we handle as though they are our
|
|
* own frames.
|
|
* This code here isn't entirely correct, the local
|
|
* MAC address is not necessarily enough to find
|
|
* the interface to use; for that proper VLAN/WDS
|
|
* support we will need a different mechanism.
|
|
*/
|
|
|
|
list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
|
|
list) {
|
|
if (!ieee80211_sdata_running(tmp_sdata))
|
|
continue;
|
|
if (tmp_sdata->vif.type != NL80211_IFTYPE_AP)
|
|
continue;
|
|
if (compare_ether_addr(tmp_sdata->vif.addr,
|
|
hdr->addr2) == 0) {
|
|
sdata = tmp_sdata;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
|
|
|
|
headroom = local->tx_headroom;
|
|
if (may_encrypt)
|
|
headroom += IEEE80211_ENCRYPT_HEADROOM;
|
|
headroom -= skb_headroom(skb);
|
|
headroom = max_t(int, 0, headroom);
|
|
|
|
if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) {
|
|
dev_kfree_skb(skb);
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
|
|
info->control.vif = &sdata->vif;
|
|
|
|
if (ieee80211_vif_is_mesh(&sdata->vif) &&
|
|
ieee80211_is_data(hdr->frame_control) &&
|
|
!is_multicast_ether_addr(hdr->addr1))
|
|
if (mesh_nexthop_lookup(skb, sdata)) {
|
|
/* skb queued: don't free */
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
|
|
ieee80211_set_qos_hdr(local, skb);
|
|
ieee80211_tx(sdata, skb, false);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
|
|
struct net_device *dev)
|
|
{
|
|
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
|
|
struct ieee80211_channel *chan = local->hw.conf.channel;
|
|
struct ieee80211_radiotap_header *prthdr =
|
|
(struct ieee80211_radiotap_header *)skb->data;
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
u16 len_rthdr;
|
|
|
|
/*
|
|
* Frame injection is not allowed if beaconing is not allowed
|
|
* or if we need radar detection. Beaconing is usually not allowed when
|
|
* the mode or operation (Adhoc, AP, Mesh) does not support DFS.
|
|
* Passive scan is also used in world regulatory domains where
|
|
* your country is not known and as such it should be treated as
|
|
* NO TX unless the channel is explicitly allowed in which case
|
|
* your current regulatory domain would not have the passive scan
|
|
* flag.
|
|
*
|
|
* Since AP mode uses monitor interfaces to inject/TX management
|
|
* frames we can make AP mode the exception to this rule once it
|
|
* supports radar detection as its implementation can deal with
|
|
* radar detection by itself. We can do that later by adding a
|
|
* monitor flag interfaces used for AP support.
|
|
*/
|
|
if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
|
|
IEEE80211_CHAN_PASSIVE_SCAN)))
|
|
goto fail;
|
|
|
|
/* check for not even having the fixed radiotap header part */
|
|
if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
|
|
goto fail; /* too short to be possibly valid */
|
|
|
|
/* is it a header version we can trust to find length from? */
|
|
if (unlikely(prthdr->it_version))
|
|
goto fail; /* only version 0 is supported */
|
|
|
|
/* then there must be a radiotap header with a length we can use */
|
|
len_rthdr = ieee80211_get_radiotap_len(skb->data);
|
|
|
|
/* does the skb contain enough to deliver on the alleged length? */
|
|
if (unlikely(skb->len < len_rthdr))
|
|
goto fail; /* skb too short for claimed rt header extent */
|
|
|
|
/*
|
|
* fix up the pointers accounting for the radiotap
|
|
* header still being in there. We are being given
|
|
* a precooked IEEE80211 header so no need for
|
|
* normal processing
|
|
*/
|
|
skb_set_mac_header(skb, len_rthdr);
|
|
/*
|
|
* these are just fixed to the end of the rt area since we
|
|
* don't have any better information and at this point, nobody cares
|
|
*/
|
|
skb_set_network_header(skb, len_rthdr);
|
|
skb_set_transport_header(skb, len_rthdr);
|
|
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
|
|
|
|
/* pass the radiotap header up to xmit */
|
|
ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
|
|
return NETDEV_TX_OK;
|
|
|
|
fail:
|
|
dev_kfree_skb(skb);
|
|
return NETDEV_TX_OK; /* meaning, we dealt with the skb */
|
|
}
|
|
|
|
/**
|
|
* ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
|
|
* subinterfaces (wlan#, WDS, and VLAN interfaces)
|
|
* @skb: packet to be sent
|
|
* @dev: incoming interface
|
|
*
|
|
* Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
|
|
* not be freed, and caller is responsible for either retrying later or freeing
|
|
* skb).
|
|
*
|
|
* This function takes in an Ethernet header and encapsulates it with suitable
|
|
* IEEE 802.11 header based on which interface the packet is coming in. The
|
|
* encapsulated packet will then be passed to master interface, wlan#.11, for
|
|
* transmission (through low-level driver).
|
|
*/
|
|
netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
|
|
struct net_device *dev)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
|
|
struct ieee80211_local *local = sdata->local;
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
int ret = NETDEV_TX_BUSY, head_need;
|
|
u16 ethertype, hdrlen, meshhdrlen = 0;
|
|
__le16 fc;
|
|
struct ieee80211_hdr hdr;
|
|
struct ieee80211s_hdr mesh_hdr;
|
|
const u8 *encaps_data;
|
|
int encaps_len, skip_header_bytes;
|
|
int nh_pos, h_pos;
|
|
struct sta_info *sta = NULL;
|
|
u32 sta_flags = 0;
|
|
|
|
if (unlikely(skb->len < ETH_HLEN)) {
|
|
ret = NETDEV_TX_OK;
|
|
goto fail;
|
|
}
|
|
|
|
nh_pos = skb_network_header(skb) - skb->data;
|
|
h_pos = skb_transport_header(skb) - skb->data;
|
|
|
|
/* convert Ethernet header to proper 802.11 header (based on
|
|
* operation mode) */
|
|
ethertype = (skb->data[12] << 8) | skb->data[13];
|
|
fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
|
|
|
|
switch (sdata->vif.type) {
|
|
case NL80211_IFTYPE_AP_VLAN:
|
|
rcu_read_lock();
|
|
sta = rcu_dereference(sdata->u.vlan.sta);
|
|
if (sta) {
|
|
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
|
|
/* RA TA DA SA */
|
|
memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
|
|
memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
|
|
memcpy(hdr.addr3, skb->data, ETH_ALEN);
|
|
memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
|
|
hdrlen = 30;
|
|
sta_flags = get_sta_flags(sta);
|
|
}
|
|
rcu_read_unlock();
|
|
if (sta)
|
|
break;
|
|
/* fall through */
|
|
case NL80211_IFTYPE_AP:
|
|
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
|
|
/* DA BSSID SA */
|
|
memcpy(hdr.addr1, skb->data, ETH_ALEN);
|
|
memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
|
|
memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
|
|
hdrlen = 24;
|
|
break;
|
|
case NL80211_IFTYPE_WDS:
|
|
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
|
|
/* RA TA DA SA */
|
|
memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
|
|
memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
|
|
memcpy(hdr.addr3, skb->data, ETH_ALEN);
|
|
memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
|
|
hdrlen = 30;
|
|
break;
|
|
#ifdef CONFIG_MAC80211_MESH
|
|
case NL80211_IFTYPE_MESH_POINT:
|
|
if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
|
|
/* Do not send frames with mesh_ttl == 0 */
|
|
sdata->u.mesh.mshstats.dropped_frames_ttl++;
|
|
ret = NETDEV_TX_OK;
|
|
goto fail;
|
|
}
|
|
|
|
if (compare_ether_addr(sdata->vif.addr,
|
|
skb->data + ETH_ALEN) == 0) {
|
|
hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
|
|
skb->data, skb->data + ETH_ALEN);
|
|
meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
|
|
sdata, NULL, NULL, NULL);
|
|
} else {
|
|
/* packet from other interface */
|
|
struct mesh_path *mppath;
|
|
int is_mesh_mcast = 1;
|
|
const u8 *mesh_da;
|
|
|
|
rcu_read_lock();
|
|
if (is_multicast_ether_addr(skb->data))
|
|
/* DA TA mSA AE:SA */
|
|
mesh_da = skb->data;
|
|
else {
|
|
static const u8 bcast[ETH_ALEN] =
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
|
|
|
|
mppath = mpp_path_lookup(skb->data, sdata);
|
|
if (mppath) {
|
|
/* RA TA mDA mSA AE:DA SA */
|
|
mesh_da = mppath->mpp;
|
|
is_mesh_mcast = 0;
|
|
} else {
|
|
/* DA TA mSA AE:SA */
|
|
mesh_da = bcast;
|
|
}
|
|
}
|
|
hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
|
|
mesh_da, sdata->vif.addr);
|
|
rcu_read_unlock();
|
|
if (is_mesh_mcast)
|
|
meshhdrlen =
|
|
ieee80211_new_mesh_header(&mesh_hdr,
|
|
sdata,
|
|
skb->data + ETH_ALEN,
|
|
NULL,
|
|
NULL);
|
|
else
|
|
meshhdrlen =
|
|
ieee80211_new_mesh_header(&mesh_hdr,
|
|
sdata,
|
|
NULL,
|
|
skb->data,
|
|
skb->data + ETH_ALEN);
|
|
|
|
}
|
|
break;
|
|
#endif
|
|
case NL80211_IFTYPE_STATION:
|
|
memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
|
|
if (sdata->u.mgd.use_4addr && ethertype != ETH_P_PAE) {
|
|
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
|
|
/* RA TA DA SA */
|
|
memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
|
|
memcpy(hdr.addr3, skb->data, ETH_ALEN);
|
|
memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
|
|
hdrlen = 30;
|
|
} else {
|
|
fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
|
|
/* BSSID SA DA */
|
|
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
|
|
memcpy(hdr.addr3, skb->data, ETH_ALEN);
|
|
hdrlen = 24;
|
|
}
|
|
break;
|
|
case NL80211_IFTYPE_ADHOC:
|
|
/* DA SA BSSID */
|
|
memcpy(hdr.addr1, skb->data, ETH_ALEN);
|
|
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
|
|
memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
|
|
hdrlen = 24;
|
|
break;
|
|
default:
|
|
ret = NETDEV_TX_OK;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* There's no need to try to look up the destination
|
|
* if it is a multicast address (which can only happen
|
|
* in AP mode)
|
|
*/
|
|
if (!is_multicast_ether_addr(hdr.addr1)) {
|
|
rcu_read_lock();
|
|
sta = sta_info_get(sdata, hdr.addr1);
|
|
if (sta)
|
|
sta_flags = get_sta_flags(sta);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* receiver and we are QoS enabled, use a QoS type frame */
|
|
if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
|
|
fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
|
|
hdrlen += 2;
|
|
}
|
|
|
|
/*
|
|
* Drop unicast frames to unauthorised stations unless they are
|
|
* EAPOL frames from the local station.
|
|
*/
|
|
if (!ieee80211_vif_is_mesh(&sdata->vif) &&
|
|
unlikely(!is_multicast_ether_addr(hdr.addr1) &&
|
|
!(sta_flags & WLAN_STA_AUTHORIZED) &&
|
|
!(ethertype == ETH_P_PAE &&
|
|
compare_ether_addr(sdata->vif.addr,
|
|
skb->data + ETH_ALEN) == 0))) {
|
|
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
|
|
if (net_ratelimit())
|
|
printk(KERN_DEBUG "%s: dropped frame to %pM"
|
|
" (unauthorized port)\n", dev->name,
|
|
hdr.addr1);
|
|
#endif
|
|
|
|
I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
|
|
|
|
ret = NETDEV_TX_OK;
|
|
goto fail;
|
|
}
|
|
|
|
hdr.frame_control = fc;
|
|
hdr.duration_id = 0;
|
|
hdr.seq_ctrl = 0;
|
|
|
|
skip_header_bytes = ETH_HLEN;
|
|
if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
|
|
encaps_data = bridge_tunnel_header;
|
|
encaps_len = sizeof(bridge_tunnel_header);
|
|
skip_header_bytes -= 2;
|
|
} else if (ethertype >= 0x600) {
|
|
encaps_data = rfc1042_header;
|
|
encaps_len = sizeof(rfc1042_header);
|
|
skip_header_bytes -= 2;
|
|
} else {
|
|
encaps_data = NULL;
|
|
encaps_len = 0;
|
|
}
|
|
|
|
skb_pull(skb, skip_header_bytes);
|
|
nh_pos -= skip_header_bytes;
|
|
h_pos -= skip_header_bytes;
|
|
|
|
head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
|
|
|
|
/*
|
|
* So we need to modify the skb header and hence need a copy of
|
|
* that. The head_need variable above doesn't, so far, include
|
|
* the needed header space that we don't need right away. If we
|
|
* can, then we don't reallocate right now but only after the
|
|
* frame arrives at the master device (if it does...)
|
|
*
|
|
* If we cannot, however, then we will reallocate to include all
|
|
* the ever needed space. Also, if we need to reallocate it anyway,
|
|
* make it big enough for everything we may ever need.
|
|
*/
|
|
|
|
if (head_need > 0 || skb_cloned(skb)) {
|
|
head_need += IEEE80211_ENCRYPT_HEADROOM;
|
|
head_need += local->tx_headroom;
|
|
head_need = max_t(int, 0, head_need);
|
|
if (ieee80211_skb_resize(local, skb, head_need, true))
|
|
goto fail;
|
|
}
|
|
|
|
if (encaps_data) {
|
|
memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
|
|
nh_pos += encaps_len;
|
|
h_pos += encaps_len;
|
|
}
|
|
|
|
if (meshhdrlen > 0) {
|
|
memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
|
|
nh_pos += meshhdrlen;
|
|
h_pos += meshhdrlen;
|
|
}
|
|
|
|
if (ieee80211_is_data_qos(fc)) {
|
|
__le16 *qos_control;
|
|
|
|
qos_control = (__le16*) skb_push(skb, 2);
|
|
memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
|
|
/*
|
|
* Maybe we could actually set some fields here, for now just
|
|
* initialise to zero to indicate no special operation.
|
|
*/
|
|
*qos_control = 0;
|
|
} else
|
|
memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
|
|
|
|
nh_pos += hdrlen;
|
|
h_pos += hdrlen;
|
|
|
|
dev->stats.tx_packets++;
|
|
dev->stats.tx_bytes += skb->len;
|
|
|
|
/* Update skb pointers to various headers since this modified frame
|
|
* is going to go through Linux networking code that may potentially
|
|
* need things like pointer to IP header. */
|
|
skb_set_mac_header(skb, 0);
|
|
skb_set_network_header(skb, nh_pos);
|
|
skb_set_transport_header(skb, h_pos);
|
|
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
dev->trans_start = jiffies;
|
|
ieee80211_xmit(sdata, skb);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
fail:
|
|
if (ret == NETDEV_TX_OK)
|
|
dev_kfree_skb(skb);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* ieee80211_clear_tx_pending may not be called in a context where
|
|
* it is possible that it packets could come in again.
|
|
*/
|
|
void ieee80211_clear_tx_pending(struct ieee80211_local *local)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < local->hw.queues; i++)
|
|
skb_queue_purge(&local->pending[i]);
|
|
}
|
|
|
|
static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
struct ieee80211_sub_if_data *sdata;
|
|
struct sta_info *sta;
|
|
struct ieee80211_hdr *hdr;
|
|
int ret;
|
|
bool result = true;
|
|
|
|
sdata = vif_to_sdata(info->control.vif);
|
|
|
|
if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
|
|
ieee80211_tx(sdata, skb, true);
|
|
} else {
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
sta = sta_info_get(sdata, hdr->addr1);
|
|
|
|
ret = __ieee80211_tx(local, &skb, sta, true);
|
|
if (ret != IEEE80211_TX_OK)
|
|
result = false;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Transmit all pending packets. Called from tasklet.
|
|
*/
|
|
void ieee80211_tx_pending(unsigned long data)
|
|
{
|
|
struct ieee80211_local *local = (struct ieee80211_local *)data;
|
|
unsigned long flags;
|
|
int i;
|
|
bool txok;
|
|
|
|
rcu_read_lock();
|
|
|
|
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
|
|
for (i = 0; i < local->hw.queues; i++) {
|
|
/*
|
|
* If queue is stopped by something other than due to pending
|
|
* frames, or we have no pending frames, proceed to next queue.
|
|
*/
|
|
if (local->queue_stop_reasons[i] ||
|
|
skb_queue_empty(&local->pending[i]))
|
|
continue;
|
|
|
|
while (!skb_queue_empty(&local->pending[i])) {
|
|
struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
struct ieee80211_sub_if_data *sdata;
|
|
|
|
if (WARN_ON(!info->control.vif)) {
|
|
kfree_skb(skb);
|
|
continue;
|
|
}
|
|
|
|
sdata = vif_to_sdata(info->control.vif);
|
|
spin_unlock_irqrestore(&local->queue_stop_reason_lock,
|
|
flags);
|
|
|
|
txok = ieee80211_tx_pending_skb(local, skb);
|
|
if (!txok)
|
|
__skb_queue_head(&local->pending[i], skb);
|
|
spin_lock_irqsave(&local->queue_stop_reason_lock,
|
|
flags);
|
|
if (!txok)
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* functions for drivers to get certain frames */
|
|
|
|
static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
|
|
struct sk_buff *skb,
|
|
struct beacon_data *beacon)
|
|
{
|
|
u8 *pos, *tim;
|
|
int aid0 = 0;
|
|
int i, have_bits = 0, n1, n2;
|
|
|
|
/* Generate bitmap for TIM only if there are any STAs in power save
|
|
* mode. */
|
|
if (atomic_read(&bss->num_sta_ps) > 0)
|
|
/* in the hope that this is faster than
|
|
* checking byte-for-byte */
|
|
have_bits = !bitmap_empty((unsigned long*)bss->tim,
|
|
IEEE80211_MAX_AID+1);
|
|
|
|
if (bss->dtim_count == 0)
|
|
bss->dtim_count = beacon->dtim_period - 1;
|
|
else
|
|
bss->dtim_count--;
|
|
|
|
tim = pos = (u8 *) skb_put(skb, 6);
|
|
*pos++ = WLAN_EID_TIM;
|
|
*pos++ = 4;
|
|
*pos++ = bss->dtim_count;
|
|
*pos++ = beacon->dtim_period;
|
|
|
|
if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
|
|
aid0 = 1;
|
|
|
|
if (have_bits) {
|
|
/* Find largest even number N1 so that bits numbered 1 through
|
|
* (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
|
|
* (N2 + 1) x 8 through 2007 are 0. */
|
|
n1 = 0;
|
|
for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
|
|
if (bss->tim[i]) {
|
|
n1 = i & 0xfe;
|
|
break;
|
|
}
|
|
}
|
|
n2 = n1;
|
|
for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
|
|
if (bss->tim[i]) {
|
|
n2 = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Bitmap control */
|
|
*pos++ = n1 | aid0;
|
|
/* Part Virt Bitmap */
|
|
memcpy(pos, bss->tim + n1, n2 - n1 + 1);
|
|
|
|
tim[1] = n2 - n1 + 4;
|
|
skb_put(skb, n2 - n1);
|
|
} else {
|
|
*pos++ = aid0; /* Bitmap control */
|
|
*pos++ = 0; /* Part Virt Bitmap */
|
|
}
|
|
}
|
|
|
|
struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
u16 *tim_offset, u16 *tim_length)
|
|
{
|
|
struct ieee80211_local *local = hw_to_local(hw);
|
|
struct sk_buff *skb = NULL;
|
|
struct ieee80211_tx_info *info;
|
|
struct ieee80211_sub_if_data *sdata = NULL;
|
|
struct ieee80211_if_ap *ap = NULL;
|
|
struct beacon_data *beacon;
|
|
struct ieee80211_supported_band *sband;
|
|
enum ieee80211_band band = local->hw.conf.channel->band;
|
|
struct ieee80211_tx_rate_control txrc;
|
|
|
|
sband = local->hw.wiphy->bands[band];
|
|
|
|
rcu_read_lock();
|
|
|
|
sdata = vif_to_sdata(vif);
|
|
|
|
if (tim_offset)
|
|
*tim_offset = 0;
|
|
if (tim_length)
|
|
*tim_length = 0;
|
|
|
|
if (sdata->vif.type == NL80211_IFTYPE_AP) {
|
|
ap = &sdata->u.ap;
|
|
beacon = rcu_dereference(ap->beacon);
|
|
if (ap && beacon) {
|
|
/*
|
|
* headroom, head length,
|
|
* tail length and maximum TIM length
|
|
*/
|
|
skb = dev_alloc_skb(local->tx_headroom +
|
|
beacon->head_len +
|
|
beacon->tail_len + 256);
|
|
if (!skb)
|
|
goto out;
|
|
|
|
skb_reserve(skb, local->tx_headroom);
|
|
memcpy(skb_put(skb, beacon->head_len), beacon->head,
|
|
beacon->head_len);
|
|
|
|
/*
|
|
* Not very nice, but we want to allow the driver to call
|
|
* ieee80211_beacon_get() as a response to the set_tim()
|
|
* callback. That, however, is already invoked under the
|
|
* sta_lock to guarantee consistent and race-free update
|
|
* of the tim bitmap in mac80211 and the driver.
|
|
*/
|
|
if (local->tim_in_locked_section) {
|
|
ieee80211_beacon_add_tim(ap, skb, beacon);
|
|
} else {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&local->sta_lock, flags);
|
|
ieee80211_beacon_add_tim(ap, skb, beacon);
|
|
spin_unlock_irqrestore(&local->sta_lock, flags);
|
|
}
|
|
|
|
if (tim_offset)
|
|
*tim_offset = beacon->head_len;
|
|
if (tim_length)
|
|
*tim_length = skb->len - beacon->head_len;
|
|
|
|
if (beacon->tail)
|
|
memcpy(skb_put(skb, beacon->tail_len),
|
|
beacon->tail, beacon->tail_len);
|
|
} else
|
|
goto out;
|
|
} else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
|
|
struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
|
|
struct ieee80211_hdr *hdr;
|
|
struct sk_buff *presp = rcu_dereference(ifibss->presp);
|
|
|
|
if (!presp)
|
|
goto out;
|
|
|
|
skb = skb_copy(presp, GFP_ATOMIC);
|
|
if (!skb)
|
|
goto out;
|
|
|
|
hdr = (struct ieee80211_hdr *) skb->data;
|
|
hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
|
|
IEEE80211_STYPE_BEACON);
|
|
} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
|
|
struct ieee80211_mgmt *mgmt;
|
|
u8 *pos;
|
|
|
|
/* headroom, head length, tail length and maximum TIM length */
|
|
skb = dev_alloc_skb(local->tx_headroom + 400);
|
|
if (!skb)
|
|
goto out;
|
|
|
|
skb_reserve(skb, local->hw.extra_tx_headroom);
|
|
mgmt = (struct ieee80211_mgmt *)
|
|
skb_put(skb, 24 + sizeof(mgmt->u.beacon));
|
|
memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
|
|
mgmt->frame_control =
|
|
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
|
|
memset(mgmt->da, 0xff, ETH_ALEN);
|
|
memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
|
|
memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
|
|
mgmt->u.beacon.beacon_int =
|
|
cpu_to_le16(sdata->vif.bss_conf.beacon_int);
|
|
mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
|
|
|
|
pos = skb_put(skb, 2);
|
|
*pos++ = WLAN_EID_SSID;
|
|
*pos++ = 0x0;
|
|
|
|
mesh_mgmt_ies_add(skb, sdata);
|
|
} else {
|
|
WARN_ON(1);
|
|
goto out;
|
|
}
|
|
|
|
info = IEEE80211_SKB_CB(skb);
|
|
|
|
info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
|
|
info->flags |= IEEE80211_TX_CTL_NO_ACK;
|
|
info->band = band;
|
|
|
|
memset(&txrc, 0, sizeof(txrc));
|
|
txrc.hw = hw;
|
|
txrc.sband = sband;
|
|
txrc.bss_conf = &sdata->vif.bss_conf;
|
|
txrc.skb = skb;
|
|
txrc.reported_rate.idx = -1;
|
|
txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
|
|
if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
|
|
txrc.max_rate_idx = -1;
|
|
else
|
|
txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
|
|
txrc.ap = true;
|
|
rate_control_get_rate(sdata, NULL, &txrc);
|
|
|
|
info->control.vif = vif;
|
|
|
|
info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
|
|
info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
|
|
out:
|
|
rcu_read_unlock();
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_beacon_get_tim);
|
|
|
|
struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata;
|
|
struct ieee80211_if_managed *ifmgd;
|
|
struct ieee80211_pspoll *pspoll;
|
|
struct ieee80211_local *local;
|
|
struct sk_buff *skb;
|
|
|
|
if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
|
|
return NULL;
|
|
|
|
sdata = vif_to_sdata(vif);
|
|
ifmgd = &sdata->u.mgd;
|
|
local = sdata->local;
|
|
|
|
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
|
|
if (!skb) {
|
|
printk(KERN_DEBUG "%s: failed to allocate buffer for "
|
|
"pspoll template\n", sdata->name);
|
|
return NULL;
|
|
}
|
|
skb_reserve(skb, local->hw.extra_tx_headroom);
|
|
|
|
pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll));
|
|
memset(pspoll, 0, sizeof(*pspoll));
|
|
pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
|
|
IEEE80211_STYPE_PSPOLL);
|
|
pspoll->aid = cpu_to_le16(ifmgd->aid);
|
|
|
|
/* aid in PS-Poll has its two MSBs each set to 1 */
|
|
pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
|
|
|
|
memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
|
|
memcpy(pspoll->ta, vif->addr, ETH_ALEN);
|
|
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_pspoll_get);
|
|
|
|
struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct ieee80211_hdr_3addr *nullfunc;
|
|
struct ieee80211_sub_if_data *sdata;
|
|
struct ieee80211_if_managed *ifmgd;
|
|
struct ieee80211_local *local;
|
|
struct sk_buff *skb;
|
|
|
|
if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
|
|
return NULL;
|
|
|
|
sdata = vif_to_sdata(vif);
|
|
ifmgd = &sdata->u.mgd;
|
|
local = sdata->local;
|
|
|
|
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc));
|
|
if (!skb) {
|
|
printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
|
|
"template\n", sdata->name);
|
|
return NULL;
|
|
}
|
|
skb_reserve(skb, local->hw.extra_tx_headroom);
|
|
|
|
nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb,
|
|
sizeof(*nullfunc));
|
|
memset(nullfunc, 0, sizeof(*nullfunc));
|
|
nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
|
|
IEEE80211_STYPE_NULLFUNC |
|
|
IEEE80211_FCTL_TODS);
|
|
memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
|
|
memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
|
|
memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
|
|
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_nullfunc_get);
|
|
|
|
struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
const u8 *ssid, size_t ssid_len,
|
|
const u8 *ie, size_t ie_len)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata;
|
|
struct ieee80211_local *local;
|
|
struct ieee80211_hdr_3addr *hdr;
|
|
struct sk_buff *skb;
|
|
size_t ie_ssid_len;
|
|
u8 *pos;
|
|
|
|
sdata = vif_to_sdata(vif);
|
|
local = sdata->local;
|
|
ie_ssid_len = 2 + ssid_len;
|
|
|
|
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) +
|
|
ie_ssid_len + ie_len);
|
|
if (!skb) {
|
|
printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
|
|
"request template\n", sdata->name);
|
|
return NULL;
|
|
}
|
|
|
|
skb_reserve(skb, local->hw.extra_tx_headroom);
|
|
|
|
hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr));
|
|
memset(hdr, 0, sizeof(*hdr));
|
|
hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
|
|
IEEE80211_STYPE_PROBE_REQ);
|
|
memset(hdr->addr1, 0xff, ETH_ALEN);
|
|
memcpy(hdr->addr2, vif->addr, ETH_ALEN);
|
|
memset(hdr->addr3, 0xff, ETH_ALEN);
|
|
|
|
pos = skb_put(skb, ie_ssid_len);
|
|
*pos++ = WLAN_EID_SSID;
|
|
*pos++ = ssid_len;
|
|
if (ssid)
|
|
memcpy(pos, ssid, ssid_len);
|
|
pos += ssid_len;
|
|
|
|
if (ie) {
|
|
pos = skb_put(skb, ie_len);
|
|
memcpy(pos, ie, ie_len);
|
|
}
|
|
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_probereq_get);
|
|
|
|
void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
|
|
const void *frame, size_t frame_len,
|
|
const struct ieee80211_tx_info *frame_txctl,
|
|
struct ieee80211_rts *rts)
|
|
{
|
|
const struct ieee80211_hdr *hdr = frame;
|
|
|
|
rts->frame_control =
|
|
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
|
|
rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
|
|
frame_txctl);
|
|
memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
|
|
memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_rts_get);
|
|
|
|
void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
|
|
const void *frame, size_t frame_len,
|
|
const struct ieee80211_tx_info *frame_txctl,
|
|
struct ieee80211_cts *cts)
|
|
{
|
|
const struct ieee80211_hdr *hdr = frame;
|
|
|
|
cts->frame_control =
|
|
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
|
|
cts->duration = ieee80211_ctstoself_duration(hw, vif,
|
|
frame_len, frame_txctl);
|
|
memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_ctstoself_get);
|
|
|
|
struct sk_buff *
|
|
ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct ieee80211_local *local = hw_to_local(hw);
|
|
struct sk_buff *skb = NULL;
|
|
struct sta_info *sta;
|
|
struct ieee80211_tx_data tx;
|
|
struct ieee80211_sub_if_data *sdata;
|
|
struct ieee80211_if_ap *bss = NULL;
|
|
struct beacon_data *beacon;
|
|
struct ieee80211_tx_info *info;
|
|
|
|
sdata = vif_to_sdata(vif);
|
|
bss = &sdata->u.ap;
|
|
|
|
rcu_read_lock();
|
|
beacon = rcu_dereference(bss->beacon);
|
|
|
|
if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
|
|
goto out;
|
|
|
|
if (bss->dtim_count != 0)
|
|
goto out; /* send buffered bc/mc only after DTIM beacon */
|
|
|
|
while (1) {
|
|
skb = skb_dequeue(&bss->ps_bc_buf);
|
|
if (!skb)
|
|
goto out;
|
|
local->total_ps_buffered--;
|
|
|
|
if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
|
|
struct ieee80211_hdr *hdr =
|
|
(struct ieee80211_hdr *) skb->data;
|
|
/* more buffered multicast/broadcast frames ==> set
|
|
* MoreData flag in IEEE 802.11 header to inform PS
|
|
* STAs */
|
|
hdr->frame_control |=
|
|
cpu_to_le16(IEEE80211_FCTL_MOREDATA);
|
|
}
|
|
|
|
if (!ieee80211_tx_prepare(sdata, &tx, skb))
|
|
break;
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
info = IEEE80211_SKB_CB(skb);
|
|
|
|
sta = tx.sta;
|
|
tx.flags |= IEEE80211_TX_PS_BUFFERED;
|
|
tx.channel = local->hw.conf.channel;
|
|
info->band = tx.channel->band;
|
|
|
|
if (invoke_tx_handlers(&tx))
|
|
skb = NULL;
|
|
out:
|
|
rcu_read_unlock();
|
|
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_get_buffered_bc);
|
|
|
|
void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
|
|
{
|
|
skb_set_mac_header(skb, 0);
|
|
skb_set_network_header(skb, 0);
|
|
skb_set_transport_header(skb, 0);
|
|
|
|
/* send all internal mgmt frames on VO */
|
|
skb_set_queue_mapping(skb, 0);
|
|
|
|
/*
|
|
* The other path calling ieee80211_xmit is from the tasklet,
|
|
* and while we can handle concurrent transmissions locking
|
|
* requirements are that we do not come into tx with bhs on.
|
|
*/
|
|
local_bh_disable();
|
|
ieee80211_xmit(sdata, skb);
|
|
local_bh_enable();
|
|
}
|