OpenCloudOS-Kernel/sound/soc/codecs/nau8825.c

1440 lines
44 KiB
C

/*
* Nuvoton NAU8825 audio codec driver
*
* Copyright 2015 Google Chromium project.
* Author: Anatol Pomozov <anatol@chromium.org>
* Copyright 2015 Nuvoton Technology Corp.
* Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
*
* Licensed under the GPL-2.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/acpi.h>
#include <linux/math64.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/jack.h>
#include "nau8825.h"
#define NAU_FREF_MAX 13500000
#define NAU_FVCO_MAX 100000000
#define NAU_FVCO_MIN 90000000
struct nau8825_fll {
int mclk_src;
int ratio;
int fll_frac;
int fll_int;
int clk_ref_div;
};
struct nau8825_fll_attr {
unsigned int param;
unsigned int val;
};
/* scaling for mclk from sysclk_src output */
static const struct nau8825_fll_attr mclk_src_scaling[] = {
{ 1, 0x0 },
{ 2, 0x2 },
{ 4, 0x3 },
{ 8, 0x4 },
{ 16, 0x5 },
{ 32, 0x6 },
{ 3, 0x7 },
{ 6, 0xa },
{ 12, 0xb },
{ 24, 0xc },
{ 48, 0xd },
{ 96, 0xe },
{ 5, 0xf },
};
/* ratio for input clk freq */
static const struct nau8825_fll_attr fll_ratio[] = {
{ 512000, 0x01 },
{ 256000, 0x02 },
{ 128000, 0x04 },
{ 64000, 0x08 },
{ 32000, 0x10 },
{ 8000, 0x20 },
{ 4000, 0x40 },
};
static const struct nau8825_fll_attr fll_pre_scalar[] = {
{ 1, 0x0 },
{ 2, 0x1 },
{ 4, 0x2 },
{ 8, 0x3 },
};
static const struct reg_default nau8825_reg_defaults[] = {
{ NAU8825_REG_ENA_CTRL, 0x00ff },
{ NAU8825_REG_IIC_ADDR_SET, 0x0 },
{ NAU8825_REG_CLK_DIVIDER, 0x0050 },
{ NAU8825_REG_FLL1, 0x0 },
{ NAU8825_REG_FLL2, 0x3126 },
{ NAU8825_REG_FLL3, 0x0008 },
{ NAU8825_REG_FLL4, 0x0010 },
{ NAU8825_REG_FLL5, 0x0 },
{ NAU8825_REG_FLL6, 0x6000 },
{ NAU8825_REG_FLL_VCO_RSV, 0xf13c },
{ NAU8825_REG_HSD_CTRL, 0x000c },
{ NAU8825_REG_JACK_DET_CTRL, 0x0 },
{ NAU8825_REG_INTERRUPT_MASK, 0x0 },
{ NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
{ NAU8825_REG_SAR_CTRL, 0x0015 },
{ NAU8825_REG_KEYDET_CTRL, 0x0110 },
{ NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
{ NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
{ NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
{ NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
{ NAU8825_REG_GPIO34_CTRL, 0x0 },
{ NAU8825_REG_GPIO12_CTRL, 0x0 },
{ NAU8825_REG_TDM_CTRL, 0x0 },
{ NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
{ NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
{ NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
{ NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
{ NAU8825_REG_BIQ_CTRL, 0x0 },
{ NAU8825_REG_BIQ_COF1, 0x0 },
{ NAU8825_REG_BIQ_COF2, 0x0 },
{ NAU8825_REG_BIQ_COF3, 0x0 },
{ NAU8825_REG_BIQ_COF4, 0x0 },
{ NAU8825_REG_BIQ_COF5, 0x0 },
{ NAU8825_REG_BIQ_COF6, 0x0 },
{ NAU8825_REG_BIQ_COF7, 0x0 },
{ NAU8825_REG_BIQ_COF8, 0x0 },
{ NAU8825_REG_BIQ_COF9, 0x0 },
{ NAU8825_REG_BIQ_COF10, 0x0 },
{ NAU8825_REG_ADC_RATE, 0x0010 },
{ NAU8825_REG_DAC_CTRL1, 0x0001 },
{ NAU8825_REG_DAC_CTRL2, 0x0 },
{ NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
{ NAU8825_REG_MUTE_CTRL, 0x0 },
{ NAU8825_REG_HSVOL_CTRL, 0x0 },
{ NAU8825_REG_DACL_CTRL, 0x02cf },
{ NAU8825_REG_DACR_CTRL, 0x00cf },
{ NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
{ NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
{ NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
{ NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
{ NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
{ NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
{ NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
{ NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
{ NAU8825_REG_IMM_MODE_CTRL, 0x0 },
{ NAU8825_REG_CLASSG_CTRL, 0x0 },
{ NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
{ NAU8825_REG_MISC_CTRL, 0x0 },
{ NAU8825_REG_BIAS_ADJ, 0x0 },
{ NAU8825_REG_TRIM_SETTINGS, 0x0 },
{ NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
{ NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
{ NAU8825_REG_ANALOG_ADC_1, 0x0011 },
{ NAU8825_REG_ANALOG_ADC_2, 0x0020 },
{ NAU8825_REG_RDAC, 0x0008 },
{ NAU8825_REG_MIC_BIAS, 0x0006 },
{ NAU8825_REG_BOOST, 0x0 },
{ NAU8825_REG_FEPGA, 0x0 },
{ NAU8825_REG_POWER_UP_CONTROL, 0x0 },
{ NAU8825_REG_CHARGE_PUMP, 0x0 },
};
static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
case NAU8825_REG_MISC_CTRL:
case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
case NAU8825_REG_BIAS_ADJ:
case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
return true;
default:
return false;
}
}
static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
case NAU8825_REG_INTERRUPT_MASK:
case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
case NAU8825_REG_IMM_MODE_CTRL:
case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
case NAU8825_REG_MISC_CTRL:
case NAU8825_REG_BIAS_ADJ:
case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
return true;
default:
return false;
}
}
static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8825_REG_RESET:
case NAU8825_REG_IRQ_STATUS:
case NAU8825_REG_INT_CLR_KEY_STATUS:
case NAU8825_REG_IMM_RMS_L:
case NAU8825_REG_IMM_RMS_R:
case NAU8825_REG_I2C_DEVICE_ID:
case NAU8825_REG_SARDOUT_RAM_STATUS:
case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
case NAU8825_REG_GENERAL_STATUS:
return true;
default:
return false;
}
}
static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
/* Prevent startup click by letting charge pump to ramp up */
msleep(10);
regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
break;
case SND_SOC_DAPM_PRE_PMD:
regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
NAU8825_JAMNODCLOW, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
/* Disables the TESTDAC to let DAC signal pass through. */
regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
NAU8825_BIAS_TESTDAC_EN, 0);
break;
case SND_SOC_DAPM_POST_PMD:
regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
break;
default:
return -EINVAL;
}
return 0;
}
static const char * const nau8825_adc_decimation[] = {
"32", "64", "128", "256"
};
static const struct soc_enum nau8825_adc_decimation_enum =
SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
static const char * const nau8825_dac_oversampl[] = {
"64", "256", "128", "", "32"
};
static const struct soc_enum nau8825_dac_oversampl_enum =
SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
static const struct snd_kcontrol_new nau8825_controls[] = {
SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
0, 0xff, 0, adc_vol_tlv),
SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
12, 8, 0x0f, 0, sidetone_vol_tlv),
SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
6, 0, 0x3f, 1, dac_vol_tlv),
SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
8, 37, 0, fepga_gain_tlv),
SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
0, 8, 0xff, 0, crosstalk_vol_tlv),
SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
};
/* DAC Mux 0x33[9] and 0x34[9] */
static const char * const nau8825_dac_src[] = {
"DACL", "DACR",
};
static SOC_ENUM_SINGLE_DECL(
nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
static SOC_ENUM_SINGLE_DECL(
nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
static const struct snd_kcontrol_new nau8825_dacl_mux =
SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
static const struct snd_kcontrol_new nau8825_dacr_mux =
SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
15, 1),
SND_SOC_DAPM_INPUT("MIC"),
SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
NULL, 0),
SND_SOC_DAPM_ADC("ADC", NULL, NAU8825_REG_ENA_CTRL, 8, 0),
SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
0),
/* ADC for button press detection. A dapm supply widget is used to
* prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
* during suspend.
*/
SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
NAU8825_ENABLE_DACR_SFT, 0),
SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
NAU8825_ENABLE_DACL_SFT, 0),
SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
SND_SOC_DAPM_PGA_S("HP amp L", 0,
NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("HP amp R", 0,
NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Output DACL", 7,
NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_S("Output DACR", 7,
NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
/* High current HPOL/R boost driver */
SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
NAU8825_REG_BOOST, 9, 1, NULL, 0),
/* Class G operation control*/
SND_SOC_DAPM_PGA_S("Class G", 10,
NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
SND_SOC_DAPM_OUTPUT("HPOL"),
SND_SOC_DAPM_OUTPUT("HPOR"),
};
static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
{"Frontend PGA", NULL, "MIC"},
{"ADC", NULL, "Frontend PGA"},
{"ADC", NULL, "ADC Clock"},
{"ADC", NULL, "ADC Power"},
{"AIFTX", NULL, "ADC"},
{"DDACL", NULL, "Playback"},
{"DDACR", NULL, "Playback"},
{"DDACL", NULL, "DDAC Clock"},
{"DDACR", NULL, "DDAC Clock"},
{"DACL Mux", "DACL", "DDACL"},
{"DACL Mux", "DACR", "DDACR"},
{"DACR Mux", "DACL", "DDACL"},
{"DACR Mux", "DACR", "DDACR"},
{"HP amp L", NULL, "DACL Mux"},
{"HP amp R", NULL, "DACR Mux"},
{"Charge Pump", NULL, "HP amp L"},
{"Charge Pump", NULL, "HP amp R"},
{"ADACL", NULL, "Charge Pump"},
{"ADACR", NULL, "Charge Pump"},
{"ADACL Clock", NULL, "ADACL"},
{"ADACR Clock", NULL, "ADACR"},
{"Output Driver L Stage 1", NULL, "ADACL Clock"},
{"Output Driver R Stage 1", NULL, "ADACR Clock"},
{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
{"Output DACL", NULL, "Output Driver L Stage 3"},
{"Output DACR", NULL, "Output Driver R Stage 3"},
{"HPOL Pulldown", NULL, "Output DACL"},
{"HPOR Pulldown", NULL, "Output DACR"},
{"HP Boost Driver", NULL, "HPOL Pulldown"},
{"HP Boost Driver", NULL, "HPOR Pulldown"},
{"Class G", NULL, "HP Boost Driver"},
{"HPOL", NULL, "Class G"},
{"HPOR", NULL, "Class G"},
};
static int nau8825_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
unsigned int val_len = 0;
switch (params_width(params)) {
case 16:
val_len |= NAU8825_I2S_DL_16;
break;
case 20:
val_len |= NAU8825_I2S_DL_20;
break;
case 24:
val_len |= NAU8825_I2S_DL_24;
break;
case 32:
val_len |= NAU8825_I2S_DL_32;
break;
default:
return -EINVAL;
}
regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
NAU8825_I2S_DL_MASK, val_len);
return 0;
}
static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
{
struct snd_soc_codec *codec = codec_dai->codec;
struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
unsigned int ctrl1_val = 0, ctrl2_val = 0;
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
ctrl2_val |= NAU8825_I2S_MS_MASTER;
break;
case SND_SOC_DAIFMT_CBS_CFS:
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
ctrl1_val |= NAU8825_I2S_BP_INV;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
ctrl1_val |= NAU8825_I2S_DF_I2S;
break;
case SND_SOC_DAIFMT_LEFT_J:
ctrl1_val |= NAU8825_I2S_DF_LEFT;
break;
case SND_SOC_DAIFMT_RIGHT_J:
ctrl1_val |= NAU8825_I2S_DF_RIGTH;
break;
case SND_SOC_DAIFMT_DSP_A:
ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
break;
case SND_SOC_DAIFMT_DSP_B:
ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
ctrl1_val |= NAU8825_I2S_PCMB_EN;
break;
default:
return -EINVAL;
}
regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
ctrl1_val);
regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
NAU8825_I2S_MS_MASK, ctrl2_val);
return 0;
}
static const struct snd_soc_dai_ops nau8825_dai_ops = {
.hw_params = nau8825_hw_params,
.set_fmt = nau8825_set_dai_fmt,
};
#define NAU8825_RATES SNDRV_PCM_RATE_8000_192000
#define NAU8825_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
| SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_driver nau8825_dai = {
.name = "nau8825-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = NAU8825_RATES,
.formats = NAU8825_FORMATS,
},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 1,
.rates = NAU8825_RATES,
.formats = NAU8825_FORMATS,
},
.ops = &nau8825_dai_ops,
};
/**
* nau8825_enable_jack_detect - Specify a jack for event reporting
*
* @component: component to register the jack with
* @jack: jack to use to report headset and button events on
*
* After this function has been called the headset insert/remove and button
* events will be routed to the given jack. Jack can be null to stop
* reporting.
*/
int nau8825_enable_jack_detect(struct snd_soc_codec *codec,
struct snd_soc_jack *jack)
{
struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
struct regmap *regmap = nau8825->regmap;
nau8825->jack = jack;
/* Ground HP Outputs[1:0], needed for headset auto detection
* Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
*/
regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
return 0;
}
EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
static bool nau8825_is_jack_inserted(struct regmap *regmap)
{
int status;
regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
return !(status & NAU8825_GPIO2JD1);
}
static void nau8825_restart_jack_detection(struct regmap *regmap)
{
/* Chip needs one FSCLK cycle in order to generate interrupts,
* as we cannot guarantee one will be provided by the system. Turning
* master mode on then off enables us to generate that FSCLK cycle
* with a minimum of contention on the clock bus.
*/
regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
/* this will restart the entire jack detection process including MIC/GND
* switching and create interrupts. We have to go from 0 to 1 and back
* to 0 to restart.
*/
regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
NAU8825_JACK_DET_RESTART, 0);
}
static void nau8825_eject_jack(struct nau8825 *nau8825)
{
struct snd_soc_dapm_context *dapm = nau8825->dapm;
struct regmap *regmap = nau8825->regmap;
snd_soc_dapm_disable_pin(dapm, "SAR");
snd_soc_dapm_disable_pin(dapm, "MICBIAS");
/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
/* ground HPL/HPR, MICGRND1/2 */
regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
snd_soc_dapm_sync(dapm);
}
static int nau8825_button_decode(int value)
{
int buttons = 0;
/* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
if (value & BIT(0))
buttons |= SND_JACK_BTN_0;
if (value & BIT(1))
buttons |= SND_JACK_BTN_1;
if (value & BIT(2))
buttons |= SND_JACK_BTN_2;
if (value & BIT(3))
buttons |= SND_JACK_BTN_3;
if (value & BIT(4))
buttons |= SND_JACK_BTN_4;
if (value & BIT(5))
buttons |= SND_JACK_BTN_5;
return buttons;
}
static int nau8825_jack_insert(struct nau8825 *nau8825)
{
struct regmap *regmap = nau8825->regmap;
struct snd_soc_dapm_context *dapm = nau8825->dapm;
int jack_status_reg, mic_detected;
int type = 0;
regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
mic_detected = (jack_status_reg >> 10) & 3;
switch (mic_detected) {
case 0:
/* no mic */
type = SND_JACK_HEADPHONE;
break;
case 1:
dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
type = SND_JACK_HEADSET;
/* Unground MICGND1 */
regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1 << 2);
/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
NAU8825_MICBIAS_JKR2);
/* Attach SARADC to MICGND1 */
regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
NAU8825_SAR_INPUT_MASK,
NAU8825_SAR_INPUT_JKR2);
snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
snd_soc_dapm_force_enable_pin(dapm, "SAR");
snd_soc_dapm_sync(dapm);
break;
case 2:
case 3:
dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
type = SND_JACK_HEADSET;
/* Unground MICGND2 */
regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
2 << 2);
/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
NAU8825_MICBIAS_JKSLV);
/* Attach SARADC to MICGND2 */
regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
NAU8825_SAR_INPUT_MASK,
NAU8825_SAR_INPUT_JKSLV);
snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
snd_soc_dapm_force_enable_pin(dapm, "SAR");
snd_soc_dapm_sync(dapm);
break;
}
/* Leaving HPOL/R grounded after jack insert by default. They will be
* ungrounded as part of the widget power up sequence at the beginning
* of playback to reduce pop.
*/
return type;
}
#define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
SND_JACK_BTN_2 | SND_JACK_BTN_3)
static irqreturn_t nau8825_interrupt(int irq, void *data)
{
struct nau8825 *nau8825 = (struct nau8825 *)data;
struct regmap *regmap = nau8825->regmap;
int active_irq, clear_irq = 0, event = 0, event_mask = 0;
if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
dev_err(nau8825->dev, "failed to read irq status\n");
return IRQ_NONE;
}
if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
NAU8825_JACK_EJECTION_DETECTED) {
nau8825_eject_jack(nau8825);
event_mask |= SND_JACK_HEADSET;
clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
} else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
int key_status;
regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
&key_status);
/* upper 8 bits of the register are for short pressed keys,
* lower 8 bits - for long pressed buttons
*/
nau8825->button_pressed = nau8825_button_decode(
key_status >> 8);
event |= nau8825->button_pressed;
event_mask |= NAU8825_BUTTONS;
clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
} else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
event_mask = NAU8825_BUTTONS;
clear_irq = NAU8825_KEY_RELEASE_IRQ;
} else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
if (nau8825_is_jack_inserted(regmap)) {
event |= nau8825_jack_insert(nau8825);
} else {
dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
nau8825_eject_jack(nau8825);
}
event_mask |= SND_JACK_HEADSET;
clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
}
if (!clear_irq)
clear_irq = active_irq;
/* clears the rightmost interruption */
regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
if (event_mask)
snd_soc_jack_report(nau8825->jack, event, event_mask);
return IRQ_HANDLED;
}
static void nau8825_setup_buttons(struct nau8825 *nau8825)
{
struct regmap *regmap = nau8825->regmap;
regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
NAU8825_SAR_TRACKING_GAIN_MASK,
nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
NAU8825_SAR_COMPARE_TIME_MASK,
nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
NAU8825_SAR_SAMPLING_TIME_MASK,
nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
NAU8825_KEYDET_LEVELS_NR_MASK,
(nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
NAU8825_KEYDET_HYSTERESIS_MASK,
nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
(nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
(nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
(nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
(nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
/* Enable short press and release interruptions */
regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
0);
}
static void nau8825_init_regs(struct nau8825 *nau8825)
{
struct regmap *regmap = nau8825->regmap;
/* Latch IIC LSB value */
regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
/* Enable Bias/Vmid */
regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
/* VMID Tieoff */
regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
NAU8825_BIAS_VMID_SEL_MASK,
nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
/* Disable Boost Driver, Automatic Short circuit protection enable */
regmap_update_bits(regmap, NAU8825_REG_BOOST,
NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
NAU8825_JKDET_OUTPUT_EN,
nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
NAU8825_JKDET_PULL_EN,
nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
NAU8825_JKDET_PULL_UP,
nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
NAU8825_JACK_POLARITY,
/* jkdet_polarity - 1 is for active-low */
nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
NAU8825_JACK_INSERT_DEBOUNCE_MASK,
nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
NAU8825_JACK_EJECT_DEBOUNCE_MASK,
nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
/* Mask unneeded IRQs: 1 - disable, 0 - enable */
regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
if (nau8825->sar_threshold_num)
nau8825_setup_buttons(nau8825);
/* Default oversampling/decimations settings are unusable
* (audible hiss). Set it to something better.
*/
regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
NAU8825_ADC_SYNC_DOWN_MASK, NAU8825_ADC_SYNC_DOWN_128);
regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_128);
/* Disable DACR/L power */
regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
* signal to avoid any glitches due to power up transients in both
* the analog and digital DAC circuit.
*/
regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
/* CICCLP off */
regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
/* Class G timer 64ms */
regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
NAU8825_CLASSG_TIMER_MASK,
0x20 << NAU8825_CLASSG_TIMER_SFT);
/* DAC clock delay 2ns, VREF */
regmap_update_bits(regmap, NAU8825_REG_RDAC,
NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
(0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
(0x3 << NAU8825_RDAC_VREF_SFT));
}
static const struct regmap_config nau8825_regmap_config = {
.val_bits = 16,
.reg_bits = 16,
.max_register = NAU8825_REG_MAX,
.readable_reg = nau8825_readable_reg,
.writeable_reg = nau8825_writeable_reg,
.volatile_reg = nau8825_volatile_reg,
.cache_type = REGCACHE_RBTREE,
.reg_defaults = nau8825_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
};
static int nau8825_codec_probe(struct snd_soc_codec *codec)
{
struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec);
nau8825->dapm = dapm;
/* The interrupt clock is gated by x1[10:8],
* one of them needs to be enabled all the time for
* interrupts to happen.
*/
snd_soc_dapm_force_enable_pin(dapm, "DDACR");
snd_soc_dapm_sync(dapm);
/* Unmask interruptions. Handler uses dapm object so we can enable
* interruptions only after dapm is fully initialized.
*/
regmap_write(nau8825->regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
nau8825_restart_jack_detection(nau8825->regmap);
return 0;
}
/**
* nau8825_calc_fll_param - Calculate FLL parameters.
* @fll_in: external clock provided to codec.
* @fs: sampling rate.
* @fll_param: Pointer to structure of FLL parameters.
*
* Calculate FLL parameters to configure codec.
*
* Returns 0 for success or negative error code.
*/
static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
struct nau8825_fll *fll_param)
{
u64 fvco;
unsigned int fref, i;
/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
* freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
* FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
*/
for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
fref = fll_in / fll_pre_scalar[i].param;
if (fref <= NAU_FREF_MAX)
break;
}
if (i == ARRAY_SIZE(fll_pre_scalar))
return -EINVAL;
fll_param->clk_ref_div = fll_pre_scalar[i].val;
/* Choose the FLL ratio based on FREF */
for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
if (fref >= fll_ratio[i].param)
break;
}
if (i == ARRAY_SIZE(fll_ratio))
return -EINVAL;
fll_param->ratio = fll_ratio[i].val;
/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
* FDCO must be within the 90MHz - 100MHz or the FFL cannot be
* guaranteed across the full range of operation.
* FDCO = freq_out * 2 * mclk_src_scaling
*/
for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
fvco = 256 * fs * 2 * mclk_src_scaling[i].param;
if (NAU_FVCO_MIN < fvco && fvco < NAU_FVCO_MAX)
break;
}
if (i == ARRAY_SIZE(mclk_src_scaling))
return -EINVAL;
fll_param->mclk_src = mclk_src_scaling[i].val;
/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
* input based on FDCO, FREF and FLL ratio.
*/
fvco = div_u64(fvco << 16, fref * fll_param->ratio);
fll_param->fll_int = (fvco >> 16) & 0x3FF;
fll_param->fll_frac = fvco & 0xFFFF;
return 0;
}
static void nau8825_fll_apply(struct nau8825 *nau8825,
struct nau8825_fll *fll_param)
{
regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
NAU8825_CLK_MCLK_SRC_MASK, fll_param->mclk_src);
regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
NAU8825_FLL_RATIO_MASK, fll_param->ratio);
/* FLL 16-bit fractional input */
regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
/* FLL 10-bit integer input */
regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
/* FLL pre-scaler */
regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
NAU8825_FLL_REF_DIV_MASK, fll_param->clk_ref_div);
/* select divided VCO input */
regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
NAU8825_FLL_FILTER_SW_MASK, 0x0000);
/* FLL sigma delta modulator enable */
regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
NAU8825_SDM_EN_MASK, NAU8825_SDM_EN);
}
/* freq_out must be 256*Fs in order to achieve the best performance */
static int nau8825_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
unsigned int freq_in, unsigned int freq_out)
{
struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
struct nau8825_fll fll_param;
int ret, fs;
fs = freq_out / 256;
ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
if (ret < 0) {
dev_err(codec->dev, "Unsupported input clock %d\n", freq_in);
return ret;
}
dev_dbg(codec->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
fll_param.fll_int, fll_param.clk_ref_div);
nau8825_fll_apply(nau8825, &fll_param);
mdelay(2);
regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
return 0;
}
static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
unsigned int freq)
{
struct regmap *regmap = nau8825->regmap;
int ret;
switch (clk_id) {
case NAU8825_CLK_MCLK:
regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
regmap_update_bits(regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
/* We selected MCLK source but the clock itself managed externally */
if (!nau8825->mclk)
break;
if (!nau8825->mclk_freq) {
ret = clk_prepare_enable(nau8825->mclk);
if (ret) {
dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
return ret;
}
}
if (nau8825->mclk_freq != freq) {
nau8825->mclk_freq = freq;
freq = clk_round_rate(nau8825->mclk, freq);
ret = clk_set_rate(nau8825->mclk, freq);
if (ret) {
dev_err(nau8825->dev, "Unable to set mclk rate\n");
return ret;
}
}
break;
case NAU8825_CLK_INTERNAL:
regmap_update_bits(regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
NAU8825_DCO_EN);
regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
if (nau8825->mclk_freq) {
clk_disable_unprepare(nau8825->mclk);
nau8825->mclk_freq = 0;
}
break;
default:
dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
return -EINVAL;
}
dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
clk_id);
return 0;
}
static int nau8825_set_sysclk(struct snd_soc_codec *codec, int clk_id,
int source, unsigned int freq, int dir)
{
struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
return nau8825_configure_sysclk(nau8825, clk_id, freq);
}
static int nau8825_set_bias_level(struct snd_soc_codec *codec,
enum snd_soc_bias_level level)
{
struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
int ret;
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
break;
case SND_SOC_BIAS_STANDBY:
if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
if (nau8825->mclk_freq) {
ret = clk_prepare_enable(nau8825->mclk);
if (ret) {
dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
return ret;
}
}
}
break;
case SND_SOC_BIAS_OFF:
if (nau8825->mclk_freq)
clk_disable_unprepare(nau8825->mclk);
break;
}
return 0;
}
#ifdef CONFIG_PM
static int nau8825_suspend(struct snd_soc_codec *codec)
{
struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
disable_irq(nau8825->irq);
regcache_cache_only(nau8825->regmap, true);
regcache_mark_dirty(nau8825->regmap);
return 0;
}
static int nau8825_resume(struct snd_soc_codec *codec)
{
struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
/* The chip may lose power and reset in S3. regcache_sync restores
* register values including configurations for sysclk, irq, and
* jack/button detection.
*/
regcache_cache_only(nau8825->regmap, false);
regcache_sync(nau8825->regmap);
/* Check the jack plug status directly. If the headset is unplugged
* during S3 when the chip has no power, there will be no jack
* detection irq even after the nau8825_restart_jack_detection below,
* because the chip just thinks no headset has ever been plugged in.
*/
if (!nau8825_is_jack_inserted(nau8825->regmap)) {
nau8825_eject_jack(nau8825);
snd_soc_jack_report(nau8825->jack, 0, SND_JACK_HEADSET);
}
enable_irq(nau8825->irq);
/* Run jack detection to check the type (OMTP or CTIA) of the headset
* if there is one. This handles the case where a different type of
* headset is plugged in during S3. This triggers an IRQ iff a headset
* is already plugged in.
*/
nau8825_restart_jack_detection(nau8825->regmap);
return 0;
}
#else
#define nau8825_suspend NULL
#define nau8825_resume NULL
#endif
static struct snd_soc_codec_driver nau8825_codec_driver = {
.probe = nau8825_codec_probe,
.set_sysclk = nau8825_set_sysclk,
.set_pll = nau8825_set_pll,
.set_bias_level = nau8825_set_bias_level,
.suspend_bias_off = true,
.suspend = nau8825_suspend,
.resume = nau8825_resume,
.controls = nau8825_controls,
.num_controls = ARRAY_SIZE(nau8825_controls),
.dapm_widgets = nau8825_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(nau8825_dapm_widgets),
.dapm_routes = nau8825_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(nau8825_dapm_routes),
};
static void nau8825_reset_chip(struct regmap *regmap)
{
regmap_write(regmap, NAU8825_REG_RESET, 0x00);
regmap_write(regmap, NAU8825_REG_RESET, 0x00);
}
static void nau8825_print_device_properties(struct nau8825 *nau8825)
{
int i;
struct device *dev = nau8825->dev;
dev_dbg(dev, "jkdet-enable: %d\n", nau8825->jkdet_enable);
dev_dbg(dev, "jkdet-pull-enable: %d\n", nau8825->jkdet_pull_enable);
dev_dbg(dev, "jkdet-pull-up: %d\n", nau8825->jkdet_pull_up);
dev_dbg(dev, "jkdet-polarity: %d\n", nau8825->jkdet_polarity);
dev_dbg(dev, "micbias-voltage: %d\n", nau8825->micbias_voltage);
dev_dbg(dev, "vref-impedance: %d\n", nau8825->vref_impedance);
dev_dbg(dev, "sar-threshold-num: %d\n", nau8825->sar_threshold_num);
for (i = 0; i < nau8825->sar_threshold_num; i++)
dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
nau8825->sar_threshold[i]);
dev_dbg(dev, "sar-hysteresis: %d\n", nau8825->sar_hysteresis);
dev_dbg(dev, "sar-voltage: %d\n", nau8825->sar_voltage);
dev_dbg(dev, "sar-compare-time: %d\n", nau8825->sar_compare_time);
dev_dbg(dev, "sar-sampling-time: %d\n", nau8825->sar_sampling_time);
dev_dbg(dev, "short-key-debounce: %d\n", nau8825->key_debounce);
dev_dbg(dev, "jack-insert-debounce: %d\n",
nau8825->jack_insert_debounce);
dev_dbg(dev, "jack-eject-debounce: %d\n",
nau8825->jack_eject_debounce);
}
static int nau8825_read_device_properties(struct device *dev,
struct nau8825 *nau8825) {
nau8825->jkdet_enable = device_property_read_bool(dev,
"nuvoton,jkdet-enable");
nau8825->jkdet_pull_enable = device_property_read_bool(dev,
"nuvoton,jkdet-pull-enable");
nau8825->jkdet_pull_up = device_property_read_bool(dev,
"nuvoton,jkdet-pull-up");
device_property_read_u32(dev, "nuvoton,jkdet-polarity",
&nau8825->jkdet_polarity);
device_property_read_u32(dev, "nuvoton,micbias-voltage",
&nau8825->micbias_voltage);
device_property_read_u32(dev, "nuvoton,vref-impedance",
&nau8825->vref_impedance);
device_property_read_u32(dev, "nuvoton,sar-threshold-num",
&nau8825->sar_threshold_num);
device_property_read_u32_array(dev, "nuvoton,sar-threshold",
nau8825->sar_threshold, nau8825->sar_threshold_num);
device_property_read_u32(dev, "nuvoton,sar-hysteresis",
&nau8825->sar_hysteresis);
device_property_read_u32(dev, "nuvoton,sar-voltage",
&nau8825->sar_voltage);
device_property_read_u32(dev, "nuvoton,sar-compare-time",
&nau8825->sar_compare_time);
device_property_read_u32(dev, "nuvoton,sar-sampling-time",
&nau8825->sar_sampling_time);
device_property_read_u32(dev, "nuvoton,short-key-debounce",
&nau8825->key_debounce);
device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
&nau8825->jack_insert_debounce);
device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
&nau8825->jack_eject_debounce);
nau8825->mclk = devm_clk_get(dev, "mclk");
if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
return -EPROBE_DEFER;
} else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
/* The MCLK is managed externally or not used at all */
nau8825->mclk = NULL;
dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
} else if (IS_ERR(nau8825->mclk)) {
return -EINVAL;
}
return 0;
}
static int nau8825_setup_irq(struct nau8825 *nau8825)
{
struct regmap *regmap = nau8825->regmap;
int ret;
/* IRQ Output Enable */
regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
NAU8825_IRQ_OUTPUT_EN, NAU8825_IRQ_OUTPUT_EN);
/* Enable internal VCO needed for interruptions */
nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
/* Enable DDACR needed for interrupts
* It is the same as force_enable_pin("DDACR") we do later
*/
regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
NAU8825_ENABLE_DACR, NAU8825_ENABLE_DACR);
ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
"nau8825", nau8825);
if (ret) {
dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
nau8825->irq, ret);
return ret;
}
return 0;
}
static int nau8825_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct device *dev = &i2c->dev;
struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
int ret, value;
if (!nau8825) {
nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
if (!nau8825)
return -ENOMEM;
ret = nau8825_read_device_properties(dev, nau8825);
if (ret)
return ret;
}
i2c_set_clientdata(i2c, nau8825);
nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
if (IS_ERR(nau8825->regmap))
return PTR_ERR(nau8825->regmap);
nau8825->dev = dev;
nau8825->irq = i2c->irq;
nau8825_print_device_properties(nau8825);
nau8825_reset_chip(nau8825->regmap);
ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
if (ret < 0) {
dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
ret);
return ret;
}
if ((value & NAU8825_SOFTWARE_ID_MASK) !=
NAU8825_SOFTWARE_ID_NAU8825) {
dev_err(dev, "Not a NAU8825 chip\n");
return -ENODEV;
}
nau8825_init_regs(nau8825);
if (i2c->irq)
nau8825_setup_irq(nau8825);
return snd_soc_register_codec(&i2c->dev, &nau8825_codec_driver,
&nau8825_dai, 1);
}
static int nau8825_i2c_remove(struct i2c_client *client)
{
snd_soc_unregister_codec(&client->dev);
return 0;
}
static const struct i2c_device_id nau8825_i2c_ids[] = {
{ "nau8825", 0 },
{ }
};
#ifdef CONFIG_OF
static const struct of_device_id nau8825_of_ids[] = {
{ .compatible = "nuvoton,nau8825", },
{}
};
MODULE_DEVICE_TABLE(of, nau8825_of_ids);
#endif
#ifdef CONFIG_ACPI
static const struct acpi_device_id nau8825_acpi_match[] = {
{ "10508825", 0 },
{},
};
MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
#endif
static struct i2c_driver nau8825_driver = {
.driver = {
.name = "nau8825",
.of_match_table = of_match_ptr(nau8825_of_ids),
.acpi_match_table = ACPI_PTR(nau8825_acpi_match),
},
.probe = nau8825_i2c_probe,
.remove = nau8825_i2c_remove,
.id_table = nau8825_i2c_ids,
};
module_i2c_driver(nau8825_driver);
MODULE_DESCRIPTION("ASoC nau8825 driver");
MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
MODULE_LICENSE("GPL");