1807 lines
47 KiB
C
1807 lines
47 KiB
C
/*
|
|
* Copyright IBM Corporation 2001, 2005, 2006
|
|
* Copyright Dave Engebretsen & Todd Inglett 2001
|
|
* Copyright Linas Vepstas 2005, 2006
|
|
* Copyright 2001-2012 IBM Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/export.h>
|
|
#include <linux/of.h>
|
|
|
|
#include <linux/atomic.h>
|
|
#include <asm/debugfs.h>
|
|
#include <asm/eeh.h>
|
|
#include <asm/eeh_event.h>
|
|
#include <asm/io.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/ppc-pci.h>
|
|
#include <asm/rtas.h>
|
|
|
|
|
|
/** Overview:
|
|
* EEH, or "Enhanced Error Handling" is a PCI bridge technology for
|
|
* dealing with PCI bus errors that can't be dealt with within the
|
|
* usual PCI framework, except by check-stopping the CPU. Systems
|
|
* that are designed for high-availability/reliability cannot afford
|
|
* to crash due to a "mere" PCI error, thus the need for EEH.
|
|
* An EEH-capable bridge operates by converting a detected error
|
|
* into a "slot freeze", taking the PCI adapter off-line, making
|
|
* the slot behave, from the OS'es point of view, as if the slot
|
|
* were "empty": all reads return 0xff's and all writes are silently
|
|
* ignored. EEH slot isolation events can be triggered by parity
|
|
* errors on the address or data busses (e.g. during posted writes),
|
|
* which in turn might be caused by low voltage on the bus, dust,
|
|
* vibration, humidity, radioactivity or plain-old failed hardware.
|
|
*
|
|
* Note, however, that one of the leading causes of EEH slot
|
|
* freeze events are buggy device drivers, buggy device microcode,
|
|
* or buggy device hardware. This is because any attempt by the
|
|
* device to bus-master data to a memory address that is not
|
|
* assigned to the device will trigger a slot freeze. (The idea
|
|
* is to prevent devices-gone-wild from corrupting system memory).
|
|
* Buggy hardware/drivers will have a miserable time co-existing
|
|
* with EEH.
|
|
*
|
|
* Ideally, a PCI device driver, when suspecting that an isolation
|
|
* event has occurred (e.g. by reading 0xff's), will then ask EEH
|
|
* whether this is the case, and then take appropriate steps to
|
|
* reset the PCI slot, the PCI device, and then resume operations.
|
|
* However, until that day, the checking is done here, with the
|
|
* eeh_check_failure() routine embedded in the MMIO macros. If
|
|
* the slot is found to be isolated, an "EEH Event" is synthesized
|
|
* and sent out for processing.
|
|
*/
|
|
|
|
/* If a device driver keeps reading an MMIO register in an interrupt
|
|
* handler after a slot isolation event, it might be broken.
|
|
* This sets the threshold for how many read attempts we allow
|
|
* before printing an error message.
|
|
*/
|
|
#define EEH_MAX_FAILS 2100000
|
|
|
|
/* Time to wait for a PCI slot to report status, in milliseconds */
|
|
#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
|
|
|
|
/*
|
|
* EEH probe mode support, which is part of the flags,
|
|
* is to support multiple platforms for EEH. Some platforms
|
|
* like pSeries do PCI emunation based on device tree.
|
|
* However, other platforms like powernv probe PCI devices
|
|
* from hardware. The flag is used to distinguish that.
|
|
* In addition, struct eeh_ops::probe would be invoked for
|
|
* particular OF node or PCI device so that the corresponding
|
|
* PE would be created there.
|
|
*/
|
|
int eeh_subsystem_flags;
|
|
EXPORT_SYMBOL(eeh_subsystem_flags);
|
|
|
|
/*
|
|
* EEH allowed maximal frozen times. If one particular PE's
|
|
* frozen count in last hour exceeds this limit, the PE will
|
|
* be forced to be offline permanently.
|
|
*/
|
|
int eeh_max_freezes = 5;
|
|
|
|
/* Platform dependent EEH operations */
|
|
struct eeh_ops *eeh_ops = NULL;
|
|
|
|
/* Lock to avoid races due to multiple reports of an error */
|
|
DEFINE_RAW_SPINLOCK(confirm_error_lock);
|
|
EXPORT_SYMBOL_GPL(confirm_error_lock);
|
|
|
|
/* Lock to protect passed flags */
|
|
static DEFINE_MUTEX(eeh_dev_mutex);
|
|
|
|
/* Buffer for reporting pci register dumps. Its here in BSS, and
|
|
* not dynamically alloced, so that it ends up in RMO where RTAS
|
|
* can access it.
|
|
*/
|
|
#define EEH_PCI_REGS_LOG_LEN 8192
|
|
static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
|
|
|
|
/*
|
|
* The struct is used to maintain the EEH global statistic
|
|
* information. Besides, the EEH global statistics will be
|
|
* exported to user space through procfs
|
|
*/
|
|
struct eeh_stats {
|
|
u64 no_device; /* PCI device not found */
|
|
u64 no_dn; /* OF node not found */
|
|
u64 no_cfg_addr; /* Config address not found */
|
|
u64 ignored_check; /* EEH check skipped */
|
|
u64 total_mmio_ffs; /* Total EEH checks */
|
|
u64 false_positives; /* Unnecessary EEH checks */
|
|
u64 slot_resets; /* PE reset */
|
|
};
|
|
|
|
static struct eeh_stats eeh_stats;
|
|
|
|
static int __init eeh_setup(char *str)
|
|
{
|
|
if (!strcmp(str, "off"))
|
|
eeh_add_flag(EEH_FORCE_DISABLED);
|
|
else if (!strcmp(str, "early_log"))
|
|
eeh_add_flag(EEH_EARLY_DUMP_LOG);
|
|
|
|
return 1;
|
|
}
|
|
__setup("eeh=", eeh_setup);
|
|
|
|
/*
|
|
* This routine captures assorted PCI configuration space data
|
|
* for the indicated PCI device, and puts them into a buffer
|
|
* for RTAS error logging.
|
|
*/
|
|
static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
|
|
{
|
|
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
|
|
u32 cfg;
|
|
int cap, i;
|
|
int n = 0, l = 0;
|
|
char buffer[128];
|
|
|
|
n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
|
|
edev->phb->global_number, pdn->busno,
|
|
PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
|
|
pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
|
|
edev->phb->global_number, pdn->busno,
|
|
PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
|
|
|
|
eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
|
|
n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
|
|
pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
|
|
|
|
eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
|
|
n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
|
|
pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
|
|
|
|
/* Gather bridge-specific registers */
|
|
if (edev->mode & EEH_DEV_BRIDGE) {
|
|
eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
|
|
n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
|
|
pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
|
|
|
|
eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
|
|
n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
|
|
pr_warn("EEH: Bridge control: %04x\n", cfg);
|
|
}
|
|
|
|
/* Dump out the PCI-X command and status regs */
|
|
cap = edev->pcix_cap;
|
|
if (cap) {
|
|
eeh_ops->read_config(pdn, cap, 4, &cfg);
|
|
n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
|
|
pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
|
|
|
|
eeh_ops->read_config(pdn, cap+4, 4, &cfg);
|
|
n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
|
|
pr_warn("EEH: PCI-X status: %08x\n", cfg);
|
|
}
|
|
|
|
/* If PCI-E capable, dump PCI-E cap 10 */
|
|
cap = edev->pcie_cap;
|
|
if (cap) {
|
|
n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
|
|
pr_warn("EEH: PCI-E capabilities and status follow:\n");
|
|
|
|
for (i=0; i<=8; i++) {
|
|
eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
|
|
n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
|
|
|
|
if ((i % 4) == 0) {
|
|
if (i != 0)
|
|
pr_warn("%s\n", buffer);
|
|
|
|
l = scnprintf(buffer, sizeof(buffer),
|
|
"EEH: PCI-E %02x: %08x ",
|
|
4*i, cfg);
|
|
} else {
|
|
l += scnprintf(buffer+l, sizeof(buffer)-l,
|
|
"%08x ", cfg);
|
|
}
|
|
|
|
}
|
|
|
|
pr_warn("%s\n", buffer);
|
|
}
|
|
|
|
/* If AER capable, dump it */
|
|
cap = edev->aer_cap;
|
|
if (cap) {
|
|
n += scnprintf(buf+n, len-n, "pci-e AER:\n");
|
|
pr_warn("EEH: PCI-E AER capability register set follows:\n");
|
|
|
|
for (i=0; i<=13; i++) {
|
|
eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
|
|
n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
|
|
|
|
if ((i % 4) == 0) {
|
|
if (i != 0)
|
|
pr_warn("%s\n", buffer);
|
|
|
|
l = scnprintf(buffer, sizeof(buffer),
|
|
"EEH: PCI-E AER %02x: %08x ",
|
|
4*i, cfg);
|
|
} else {
|
|
l += scnprintf(buffer+l, sizeof(buffer)-l,
|
|
"%08x ", cfg);
|
|
}
|
|
}
|
|
|
|
pr_warn("%s\n", buffer);
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static void *eeh_dump_pe_log(void *data, void *flag)
|
|
{
|
|
struct eeh_pe *pe = data;
|
|
struct eeh_dev *edev, *tmp;
|
|
size_t *plen = flag;
|
|
|
|
eeh_pe_for_each_dev(pe, edev, tmp)
|
|
*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
|
|
EEH_PCI_REGS_LOG_LEN - *plen);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_slot_error_detail - Generate combined log including driver log and error log
|
|
* @pe: EEH PE
|
|
* @severity: temporary or permanent error log
|
|
*
|
|
* This routine should be called to generate the combined log, which
|
|
* is comprised of driver log and error log. The driver log is figured
|
|
* out from the config space of the corresponding PCI device, while
|
|
* the error log is fetched through platform dependent function call.
|
|
*/
|
|
void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
|
|
{
|
|
size_t loglen = 0;
|
|
|
|
/*
|
|
* When the PHB is fenced or dead, it's pointless to collect
|
|
* the data from PCI config space because it should return
|
|
* 0xFF's. For ER, we still retrieve the data from the PCI
|
|
* config space.
|
|
*
|
|
* For pHyp, we have to enable IO for log retrieval. Otherwise,
|
|
* 0xFF's is always returned from PCI config space.
|
|
*
|
|
* When the @severity is EEH_LOG_PERM, the PE is going to be
|
|
* removed. Prior to that, the drivers for devices included in
|
|
* the PE will be closed. The drivers rely on working IO path
|
|
* to bring the devices to quiet state. Otherwise, PCI traffic
|
|
* from those devices after they are removed is like to cause
|
|
* another unexpected EEH error.
|
|
*/
|
|
if (!(pe->type & EEH_PE_PHB)) {
|
|
if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
|
|
severity == EEH_LOG_PERM)
|
|
eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
|
|
|
|
/*
|
|
* The config space of some PCI devices can't be accessed
|
|
* when their PEs are in frozen state. Otherwise, fenced
|
|
* PHB might be seen. Those PEs are identified with flag
|
|
* EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
|
|
* is set automatically when the PE is put to EEH_PE_ISOLATED.
|
|
*
|
|
* Restoring BARs possibly triggers PCI config access in
|
|
* (OPAL) firmware and then causes fenced PHB. If the
|
|
* PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
|
|
* pointless to restore BARs and dump config space.
|
|
*/
|
|
eeh_ops->configure_bridge(pe);
|
|
if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
|
|
eeh_pe_restore_bars(pe);
|
|
|
|
pci_regs_buf[0] = 0;
|
|
eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
|
|
}
|
|
}
|
|
|
|
eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
|
|
}
|
|
|
|
/**
|
|
* eeh_token_to_phys - Convert EEH address token to phys address
|
|
* @token: I/O token, should be address in the form 0xA....
|
|
*
|
|
* This routine should be called to convert virtual I/O address
|
|
* to physical one.
|
|
*/
|
|
static inline unsigned long eeh_token_to_phys(unsigned long token)
|
|
{
|
|
pte_t *ptep;
|
|
unsigned long pa;
|
|
int hugepage_shift;
|
|
|
|
/*
|
|
* We won't find hugepages here(this is iomem). Hence we are not
|
|
* worried about _PAGE_SPLITTING/collapse. Also we will not hit
|
|
* page table free, because of init_mm.
|
|
*/
|
|
ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token,
|
|
NULL, &hugepage_shift);
|
|
if (!ptep)
|
|
return token;
|
|
WARN_ON(hugepage_shift);
|
|
pa = pte_pfn(*ptep) << PAGE_SHIFT;
|
|
|
|
return pa | (token & (PAGE_SIZE-1));
|
|
}
|
|
|
|
/*
|
|
* On PowerNV platform, we might already have fenced PHB there.
|
|
* For that case, it's meaningless to recover frozen PE. Intead,
|
|
* We have to handle fenced PHB firstly.
|
|
*/
|
|
static int eeh_phb_check_failure(struct eeh_pe *pe)
|
|
{
|
|
struct eeh_pe *phb_pe;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
|
|
return -EPERM;
|
|
|
|
/* Find the PHB PE */
|
|
phb_pe = eeh_phb_pe_get(pe->phb);
|
|
if (!phb_pe) {
|
|
pr_warn("%s Can't find PE for PHB#%x\n",
|
|
__func__, pe->phb->global_number);
|
|
return -EEXIST;
|
|
}
|
|
|
|
/* If the PHB has been in problematic state */
|
|
eeh_serialize_lock(&flags);
|
|
if (phb_pe->state & EEH_PE_ISOLATED) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* Check PHB state */
|
|
ret = eeh_ops->get_state(phb_pe, NULL);
|
|
if ((ret < 0) ||
|
|
(ret == EEH_STATE_NOT_SUPPORT) ||
|
|
(ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
|
|
(EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* Isolate the PHB and send event */
|
|
eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
|
|
eeh_serialize_unlock(flags);
|
|
|
|
pr_err("EEH: PHB#%x failure detected, location: %s\n",
|
|
phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
|
|
dump_stack();
|
|
eeh_send_failure_event(phb_pe);
|
|
|
|
return 1;
|
|
out:
|
|
eeh_serialize_unlock(flags);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
|
|
* @edev: eeh device
|
|
*
|
|
* Check for an EEH failure for the given device node. Call this
|
|
* routine if the result of a read was all 0xff's and you want to
|
|
* find out if this is due to an EEH slot freeze. This routine
|
|
* will query firmware for the EEH status.
|
|
*
|
|
* Returns 0 if there has not been an EEH error; otherwise returns
|
|
* a non-zero value and queues up a slot isolation event notification.
|
|
*
|
|
* It is safe to call this routine in an interrupt context.
|
|
*/
|
|
int eeh_dev_check_failure(struct eeh_dev *edev)
|
|
{
|
|
int ret;
|
|
int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
|
|
unsigned long flags;
|
|
struct pci_dn *pdn;
|
|
struct pci_dev *dev;
|
|
struct eeh_pe *pe, *parent_pe, *phb_pe;
|
|
int rc = 0;
|
|
const char *location = NULL;
|
|
|
|
eeh_stats.total_mmio_ffs++;
|
|
|
|
if (!eeh_enabled())
|
|
return 0;
|
|
|
|
if (!edev) {
|
|
eeh_stats.no_dn++;
|
|
return 0;
|
|
}
|
|
dev = eeh_dev_to_pci_dev(edev);
|
|
pe = eeh_dev_to_pe(edev);
|
|
|
|
/* Access to IO BARs might get this far and still not want checking. */
|
|
if (!pe) {
|
|
eeh_stats.ignored_check++;
|
|
pr_debug("EEH: Ignored check for %s\n",
|
|
eeh_pci_name(dev));
|
|
return 0;
|
|
}
|
|
|
|
if (!pe->addr && !pe->config_addr) {
|
|
eeh_stats.no_cfg_addr++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* On PowerNV platform, we might already have fenced PHB
|
|
* there and we need take care of that firstly.
|
|
*/
|
|
ret = eeh_phb_check_failure(pe);
|
|
if (ret > 0)
|
|
return ret;
|
|
|
|
/*
|
|
* If the PE isn't owned by us, we shouldn't check the
|
|
* state. Instead, let the owner handle it if the PE has
|
|
* been frozen.
|
|
*/
|
|
if (eeh_pe_passed(pe))
|
|
return 0;
|
|
|
|
/* If we already have a pending isolation event for this
|
|
* slot, we know it's bad already, we don't need to check.
|
|
* Do this checking under a lock; as multiple PCI devices
|
|
* in one slot might report errors simultaneously, and we
|
|
* only want one error recovery routine running.
|
|
*/
|
|
eeh_serialize_lock(&flags);
|
|
rc = 1;
|
|
if (pe->state & EEH_PE_ISOLATED) {
|
|
pe->check_count++;
|
|
if (pe->check_count % EEH_MAX_FAILS == 0) {
|
|
pdn = eeh_dev_to_pdn(edev);
|
|
if (pdn->node)
|
|
location = of_get_property(pdn->node, "ibm,loc-code", NULL);
|
|
printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
|
|
"location=%s driver=%s pci addr=%s\n",
|
|
pe->check_count,
|
|
location ? location : "unknown",
|
|
eeh_driver_name(dev), eeh_pci_name(dev));
|
|
printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
|
|
eeh_driver_name(dev));
|
|
dump_stack();
|
|
}
|
|
goto dn_unlock;
|
|
}
|
|
|
|
/*
|
|
* Now test for an EEH failure. This is VERY expensive.
|
|
* Note that the eeh_config_addr may be a parent device
|
|
* in the case of a device behind a bridge, or it may be
|
|
* function zero of a multi-function device.
|
|
* In any case they must share a common PHB.
|
|
*/
|
|
ret = eeh_ops->get_state(pe, NULL);
|
|
|
|
/* Note that config-io to empty slots may fail;
|
|
* they are empty when they don't have children.
|
|
* We will punt with the following conditions: Failure to get
|
|
* PE's state, EEH not support and Permanently unavailable
|
|
* state, PE is in good state.
|
|
*/
|
|
if ((ret < 0) ||
|
|
(ret == EEH_STATE_NOT_SUPPORT) ||
|
|
((ret & active_flags) == active_flags)) {
|
|
eeh_stats.false_positives++;
|
|
pe->false_positives++;
|
|
rc = 0;
|
|
goto dn_unlock;
|
|
}
|
|
|
|
/*
|
|
* It should be corner case that the parent PE has been
|
|
* put into frozen state as well. We should take care
|
|
* that at first.
|
|
*/
|
|
parent_pe = pe->parent;
|
|
while (parent_pe) {
|
|
/* Hit the ceiling ? */
|
|
if (parent_pe->type & EEH_PE_PHB)
|
|
break;
|
|
|
|
/* Frozen parent PE ? */
|
|
ret = eeh_ops->get_state(parent_pe, NULL);
|
|
if (ret > 0 &&
|
|
(ret & active_flags) != active_flags)
|
|
pe = parent_pe;
|
|
|
|
/* Next parent level */
|
|
parent_pe = parent_pe->parent;
|
|
}
|
|
|
|
eeh_stats.slot_resets++;
|
|
|
|
/* Avoid repeated reports of this failure, including problems
|
|
* with other functions on this device, and functions under
|
|
* bridges.
|
|
*/
|
|
eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
|
|
eeh_serialize_unlock(flags);
|
|
|
|
/* Most EEH events are due to device driver bugs. Having
|
|
* a stack trace will help the device-driver authors figure
|
|
* out what happened. So print that out.
|
|
*/
|
|
phb_pe = eeh_phb_pe_get(pe->phb);
|
|
pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
|
|
pe->phb->global_number, pe->addr);
|
|
pr_err("EEH: PE location: %s, PHB location: %s\n",
|
|
eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
|
|
dump_stack();
|
|
|
|
eeh_send_failure_event(pe);
|
|
|
|
return 1;
|
|
|
|
dn_unlock:
|
|
eeh_serialize_unlock(flags);
|
|
return rc;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
|
|
|
|
/**
|
|
* eeh_check_failure - Check if all 1's data is due to EEH slot freeze
|
|
* @token: I/O address
|
|
*
|
|
* Check for an EEH failure at the given I/O address. Call this
|
|
* routine if the result of a read was all 0xff's and you want to
|
|
* find out if this is due to an EEH slot freeze event. This routine
|
|
* will query firmware for the EEH status.
|
|
*
|
|
* Note this routine is safe to call in an interrupt context.
|
|
*/
|
|
int eeh_check_failure(const volatile void __iomem *token)
|
|
{
|
|
unsigned long addr;
|
|
struct eeh_dev *edev;
|
|
|
|
/* Finding the phys addr + pci device; this is pretty quick. */
|
|
addr = eeh_token_to_phys((unsigned long __force) token);
|
|
edev = eeh_addr_cache_get_dev(addr);
|
|
if (!edev) {
|
|
eeh_stats.no_device++;
|
|
return 0;
|
|
}
|
|
|
|
return eeh_dev_check_failure(edev);
|
|
}
|
|
EXPORT_SYMBOL(eeh_check_failure);
|
|
|
|
|
|
/**
|
|
* eeh_pci_enable - Enable MMIO or DMA transfers for this slot
|
|
* @pe: EEH PE
|
|
*
|
|
* This routine should be called to reenable frozen MMIO or DMA
|
|
* so that it would work correctly again. It's useful while doing
|
|
* recovery or log collection on the indicated device.
|
|
*/
|
|
int eeh_pci_enable(struct eeh_pe *pe, int function)
|
|
{
|
|
int active_flag, rc;
|
|
|
|
/*
|
|
* pHyp doesn't allow to enable IO or DMA on unfrozen PE.
|
|
* Also, it's pointless to enable them on unfrozen PE. So
|
|
* we have to check before enabling IO or DMA.
|
|
*/
|
|
switch (function) {
|
|
case EEH_OPT_THAW_MMIO:
|
|
active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
|
|
break;
|
|
case EEH_OPT_THAW_DMA:
|
|
active_flag = EEH_STATE_DMA_ACTIVE;
|
|
break;
|
|
case EEH_OPT_DISABLE:
|
|
case EEH_OPT_ENABLE:
|
|
case EEH_OPT_FREEZE_PE:
|
|
active_flag = 0;
|
|
break;
|
|
default:
|
|
pr_warn("%s: Invalid function %d\n",
|
|
__func__, function);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Check if IO or DMA has been enabled before
|
|
* enabling them.
|
|
*/
|
|
if (active_flag) {
|
|
rc = eeh_ops->get_state(pe, NULL);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Needn't enable it at all */
|
|
if (rc == EEH_STATE_NOT_SUPPORT)
|
|
return 0;
|
|
|
|
/* It's already enabled */
|
|
if (rc & active_flag)
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Issue the request */
|
|
rc = eeh_ops->set_option(pe, function);
|
|
if (rc)
|
|
pr_warn("%s: Unexpected state change %d on "
|
|
"PHB#%x-PE#%x, err=%d\n",
|
|
__func__, function, pe->phb->global_number,
|
|
pe->addr, rc);
|
|
|
|
/* Check if the request is finished successfully */
|
|
if (active_flag) {
|
|
rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
if (rc & active_flag)
|
|
return 0;
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
|
|
{
|
|
struct eeh_dev *edev = data;
|
|
struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
|
|
struct pci_dev *dev = userdata;
|
|
|
|
/*
|
|
* The caller should have disabled and saved the
|
|
* state for the specified device
|
|
*/
|
|
if (!pdev || pdev == dev)
|
|
return NULL;
|
|
|
|
/* Ensure we have D0 power state */
|
|
pci_set_power_state(pdev, PCI_D0);
|
|
|
|
/* Save device state */
|
|
pci_save_state(pdev);
|
|
|
|
/*
|
|
* Disable device to avoid any DMA traffic and
|
|
* interrupt from the device
|
|
*/
|
|
pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void *eeh_restore_dev_state(void *data, void *userdata)
|
|
{
|
|
struct eeh_dev *edev = data;
|
|
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
|
|
struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
|
|
struct pci_dev *dev = userdata;
|
|
|
|
if (!pdev)
|
|
return NULL;
|
|
|
|
/* Apply customization from firmware */
|
|
if (pdn && eeh_ops->restore_config)
|
|
eeh_ops->restore_config(pdn);
|
|
|
|
/* The caller should restore state for the specified device */
|
|
if (pdev != dev)
|
|
pci_restore_state(pdev);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* pcibios_set_pcie_reset_state - Set PCI-E reset state
|
|
* @dev: pci device struct
|
|
* @state: reset state to enter
|
|
*
|
|
* Return value:
|
|
* 0 if success
|
|
*/
|
|
int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
|
|
{
|
|
struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
|
|
struct eeh_pe *pe = eeh_dev_to_pe(edev);
|
|
|
|
if (!pe) {
|
|
pr_err("%s: No PE found on PCI device %s\n",
|
|
__func__, pci_name(dev));
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (state) {
|
|
case pcie_deassert_reset:
|
|
eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
|
|
eeh_unfreeze_pe(pe, false);
|
|
if (!(pe->type & EEH_PE_VF))
|
|
eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
|
|
eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
|
|
eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
|
|
break;
|
|
case pcie_hot_reset:
|
|
eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
|
|
eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
|
|
eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
|
|
if (!(pe->type & EEH_PE_VF))
|
|
eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
|
|
eeh_ops->reset(pe, EEH_RESET_HOT);
|
|
break;
|
|
case pcie_warm_reset:
|
|
eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
|
|
eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
|
|
eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
|
|
if (!(pe->type & EEH_PE_VF))
|
|
eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
|
|
eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
|
|
break;
|
|
default:
|
|
eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
|
|
return -EINVAL;
|
|
};
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* eeh_set_pe_freset - Check the required reset for the indicated device
|
|
* @data: EEH device
|
|
* @flag: return value
|
|
*
|
|
* Each device might have its preferred reset type: fundamental or
|
|
* hot reset. The routine is used to collected the information for
|
|
* the indicated device and its children so that the bunch of the
|
|
* devices could be reset properly.
|
|
*/
|
|
static void *eeh_set_dev_freset(void *data, void *flag)
|
|
{
|
|
struct pci_dev *dev;
|
|
unsigned int *freset = (unsigned int *)flag;
|
|
struct eeh_dev *edev = (struct eeh_dev *)data;
|
|
|
|
dev = eeh_dev_to_pci_dev(edev);
|
|
if (dev)
|
|
*freset |= dev->needs_freset;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_reset_full - Complete a full reset process on the indicated PE
|
|
* @pe: EEH PE
|
|
*
|
|
* This function executes a full reset procedure on a PE, including setting
|
|
* the appropriate flags, performing a fundamental or hot reset, and then
|
|
* deactivating the reset status. It is designed to be used within the EEH
|
|
* subsystem, as opposed to eeh_pe_reset which is exported to drivers and
|
|
* only performs a single operation at a time.
|
|
*
|
|
* This function will attempt to reset a PE three times before failing.
|
|
*/
|
|
int eeh_pe_reset_full(struct eeh_pe *pe)
|
|
{
|
|
int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
|
|
int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
|
|
int type = EEH_RESET_HOT;
|
|
unsigned int freset = 0;
|
|
int i, state, ret;
|
|
|
|
/*
|
|
* Determine the type of reset to perform - hot or fundamental.
|
|
* Hot reset is the default operation, unless any device under the
|
|
* PE requires a fundamental reset.
|
|
*/
|
|
eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
|
|
|
|
if (freset)
|
|
type = EEH_RESET_FUNDAMENTAL;
|
|
|
|
/* Mark the PE as in reset state and block config space accesses */
|
|
eeh_pe_state_mark(pe, reset_state);
|
|
|
|
/* Make three attempts at resetting the bus */
|
|
for (i = 0; i < 3; i++) {
|
|
ret = eeh_pe_reset(pe, type);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE);
|
|
if (ret)
|
|
break;
|
|
|
|
/* Wait until the PE is in a functioning state */
|
|
state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
|
|
if ((state & active_flags) == active_flags)
|
|
break;
|
|
|
|
if (state < 0) {
|
|
pr_warn("%s: Unrecoverable slot failure on PHB#%x-PE#%x",
|
|
__func__, pe->phb->global_number, pe->addr);
|
|
ret = -ENOTRECOVERABLE;
|
|
break;
|
|
}
|
|
|
|
/* Set error in case this is our last attempt */
|
|
ret = -EIO;
|
|
pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
|
|
__func__, state, pe->phb->global_number, pe->addr, (i + 1));
|
|
}
|
|
|
|
eeh_pe_state_clear(pe, reset_state);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* eeh_save_bars - Save device bars
|
|
* @edev: PCI device associated EEH device
|
|
*
|
|
* Save the values of the device bars. Unlike the restore
|
|
* routine, this routine is *not* recursive. This is because
|
|
* PCI devices are added individually; but, for the restore,
|
|
* an entire slot is reset at a time.
|
|
*/
|
|
void eeh_save_bars(struct eeh_dev *edev)
|
|
{
|
|
struct pci_dn *pdn;
|
|
int i;
|
|
|
|
pdn = eeh_dev_to_pdn(edev);
|
|
if (!pdn)
|
|
return;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
|
|
|
|
/*
|
|
* For PCI bridges including root port, we need enable bus
|
|
* master explicitly. Otherwise, it can't fetch IODA table
|
|
* entries correctly. So we cache the bit in advance so that
|
|
* we can restore it after reset, either PHB range or PE range.
|
|
*/
|
|
if (edev->mode & EEH_DEV_BRIDGE)
|
|
edev->config_space[1] |= PCI_COMMAND_MASTER;
|
|
}
|
|
|
|
/**
|
|
* eeh_ops_register - Register platform dependent EEH operations
|
|
* @ops: platform dependent EEH operations
|
|
*
|
|
* Register the platform dependent EEH operation callback
|
|
* functions. The platform should call this function before
|
|
* any other EEH operations.
|
|
*/
|
|
int __init eeh_ops_register(struct eeh_ops *ops)
|
|
{
|
|
if (!ops->name) {
|
|
pr_warn("%s: Invalid EEH ops name for %p\n",
|
|
__func__, ops);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (eeh_ops && eeh_ops != ops) {
|
|
pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
|
|
__func__, eeh_ops->name, ops->name);
|
|
return -EEXIST;
|
|
}
|
|
|
|
eeh_ops = ops;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* eeh_ops_unregister - Unreigster platform dependent EEH operations
|
|
* @name: name of EEH platform operations
|
|
*
|
|
* Unregister the platform dependent EEH operation callback
|
|
* functions.
|
|
*/
|
|
int __exit eeh_ops_unregister(const char *name)
|
|
{
|
|
if (!name || !strlen(name)) {
|
|
pr_warn("%s: Invalid EEH ops name\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (eeh_ops && !strcmp(eeh_ops->name, name)) {
|
|
eeh_ops = NULL;
|
|
return 0;
|
|
}
|
|
|
|
return -EEXIST;
|
|
}
|
|
|
|
static int eeh_reboot_notifier(struct notifier_block *nb,
|
|
unsigned long action, void *unused)
|
|
{
|
|
eeh_clear_flag(EEH_ENABLED);
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block eeh_reboot_nb = {
|
|
.notifier_call = eeh_reboot_notifier,
|
|
};
|
|
|
|
/**
|
|
* eeh_init - EEH initialization
|
|
*
|
|
* Initialize EEH by trying to enable it for all of the adapters in the system.
|
|
* As a side effect we can determine here if eeh is supported at all.
|
|
* Note that we leave EEH on so failed config cycles won't cause a machine
|
|
* check. If a user turns off EEH for a particular adapter they are really
|
|
* telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
|
|
* grant access to a slot if EEH isn't enabled, and so we always enable
|
|
* EEH for all slots/all devices.
|
|
*
|
|
* The eeh-force-off option disables EEH checking globally, for all slots.
|
|
* Even if force-off is set, the EEH hardware is still enabled, so that
|
|
* newer systems can boot.
|
|
*/
|
|
int eeh_init(void)
|
|
{
|
|
struct pci_controller *hose, *tmp;
|
|
struct pci_dn *pdn;
|
|
static int cnt = 0;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We have to delay the initialization on PowerNV after
|
|
* the PCI hierarchy tree has been built because the PEs
|
|
* are figured out based on PCI devices instead of device
|
|
* tree nodes
|
|
*/
|
|
if (machine_is(powernv) && cnt++ <= 0)
|
|
return ret;
|
|
|
|
/* Register reboot notifier */
|
|
ret = register_reboot_notifier(&eeh_reboot_nb);
|
|
if (ret) {
|
|
pr_warn("%s: Failed to register notifier (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* call platform initialization function */
|
|
if (!eeh_ops) {
|
|
pr_warn("%s: Platform EEH operation not found\n",
|
|
__func__);
|
|
return -EEXIST;
|
|
} else if ((ret = eeh_ops->init()))
|
|
return ret;
|
|
|
|
/* Initialize EEH event */
|
|
ret = eeh_event_init();
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Enable EEH for all adapters */
|
|
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
|
|
pdn = hose->pci_data;
|
|
traverse_pci_dn(pdn, eeh_ops->probe, NULL);
|
|
}
|
|
|
|
/*
|
|
* Call platform post-initialization. Actually, It's good chance
|
|
* to inform platform that EEH is ready to supply service if the
|
|
* I/O cache stuff has been built up.
|
|
*/
|
|
if (eeh_ops->post_init) {
|
|
ret = eeh_ops->post_init();
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (eeh_enabled())
|
|
pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
|
|
else
|
|
pr_info("EEH: No capable adapters found\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
core_initcall_sync(eeh_init);
|
|
|
|
/**
|
|
* eeh_add_device_early - Enable EEH for the indicated device node
|
|
* @pdn: PCI device node for which to set up EEH
|
|
*
|
|
* This routine must be used to perform EEH initialization for PCI
|
|
* devices that were added after system boot (e.g. hotplug, dlpar).
|
|
* This routine must be called before any i/o is performed to the
|
|
* adapter (inluding any config-space i/o).
|
|
* Whether this actually enables EEH or not for this device depends
|
|
* on the CEC architecture, type of the device, on earlier boot
|
|
* command-line arguments & etc.
|
|
*/
|
|
void eeh_add_device_early(struct pci_dn *pdn)
|
|
{
|
|
struct pci_controller *phb;
|
|
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
|
|
|
|
if (!edev)
|
|
return;
|
|
|
|
if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
|
|
return;
|
|
|
|
/* USB Bus children of PCI devices will not have BUID's */
|
|
phb = edev->phb;
|
|
if (NULL == phb ||
|
|
(eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
|
|
return;
|
|
|
|
eeh_ops->probe(pdn, NULL);
|
|
}
|
|
|
|
/**
|
|
* eeh_add_device_tree_early - Enable EEH for the indicated device
|
|
* @pdn: PCI device node
|
|
*
|
|
* This routine must be used to perform EEH initialization for the
|
|
* indicated PCI device that was added after system boot (e.g.
|
|
* hotplug, dlpar).
|
|
*/
|
|
void eeh_add_device_tree_early(struct pci_dn *pdn)
|
|
{
|
|
struct pci_dn *n;
|
|
|
|
if (!pdn)
|
|
return;
|
|
|
|
list_for_each_entry(n, &pdn->child_list, list)
|
|
eeh_add_device_tree_early(n);
|
|
eeh_add_device_early(pdn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
|
|
|
|
/**
|
|
* eeh_add_device_late - Perform EEH initialization for the indicated pci device
|
|
* @dev: pci device for which to set up EEH
|
|
*
|
|
* This routine must be used to complete EEH initialization for PCI
|
|
* devices that were added after system boot (e.g. hotplug, dlpar).
|
|
*/
|
|
void eeh_add_device_late(struct pci_dev *dev)
|
|
{
|
|
struct pci_dn *pdn;
|
|
struct eeh_dev *edev;
|
|
|
|
if (!dev || !eeh_enabled())
|
|
return;
|
|
|
|
pr_debug("EEH: Adding device %s\n", pci_name(dev));
|
|
|
|
pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
|
|
edev = pdn_to_eeh_dev(pdn);
|
|
if (edev->pdev == dev) {
|
|
pr_debug("EEH: Already referenced !\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The EEH cache might not be removed correctly because of
|
|
* unbalanced kref to the device during unplug time, which
|
|
* relies on pcibios_release_device(). So we have to remove
|
|
* that here explicitly.
|
|
*/
|
|
if (edev->pdev) {
|
|
eeh_rmv_from_parent_pe(edev);
|
|
eeh_addr_cache_rmv_dev(edev->pdev);
|
|
eeh_sysfs_remove_device(edev->pdev);
|
|
edev->mode &= ~EEH_DEV_SYSFS;
|
|
|
|
/*
|
|
* We definitely should have the PCI device removed
|
|
* though it wasn't correctly. So we needn't call
|
|
* into error handler afterwards.
|
|
*/
|
|
edev->mode |= EEH_DEV_NO_HANDLER;
|
|
|
|
edev->pdev = NULL;
|
|
dev->dev.archdata.edev = NULL;
|
|
}
|
|
|
|
if (eeh_has_flag(EEH_PROBE_MODE_DEV))
|
|
eeh_ops->probe(pdn, NULL);
|
|
|
|
edev->pdev = dev;
|
|
dev->dev.archdata.edev = edev;
|
|
|
|
eeh_addr_cache_insert_dev(dev);
|
|
}
|
|
|
|
/**
|
|
* eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
|
|
* @bus: PCI bus
|
|
*
|
|
* This routine must be used to perform EEH initialization for PCI
|
|
* devices which are attached to the indicated PCI bus. The PCI bus
|
|
* is added after system boot through hotplug or dlpar.
|
|
*/
|
|
void eeh_add_device_tree_late(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
eeh_add_device_late(dev);
|
|
if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
|
|
struct pci_bus *subbus = dev->subordinate;
|
|
if (subbus)
|
|
eeh_add_device_tree_late(subbus);
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
|
|
|
|
/**
|
|
* eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
|
|
* @bus: PCI bus
|
|
*
|
|
* This routine must be used to add EEH sysfs files for PCI
|
|
* devices which are attached to the indicated PCI bus. The PCI bus
|
|
* is added after system boot through hotplug or dlpar.
|
|
*/
|
|
void eeh_add_sysfs_files(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
eeh_sysfs_add_device(dev);
|
|
if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
|
|
struct pci_bus *subbus = dev->subordinate;
|
|
if (subbus)
|
|
eeh_add_sysfs_files(subbus);
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
|
|
|
|
/**
|
|
* eeh_remove_device - Undo EEH setup for the indicated pci device
|
|
* @dev: pci device to be removed
|
|
*
|
|
* This routine should be called when a device is removed from
|
|
* a running system (e.g. by hotplug or dlpar). It unregisters
|
|
* the PCI device from the EEH subsystem. I/O errors affecting
|
|
* this device will no longer be detected after this call; thus,
|
|
* i/o errors affecting this slot may leave this device unusable.
|
|
*/
|
|
void eeh_remove_device(struct pci_dev *dev)
|
|
{
|
|
struct eeh_dev *edev;
|
|
|
|
if (!dev || !eeh_enabled())
|
|
return;
|
|
edev = pci_dev_to_eeh_dev(dev);
|
|
|
|
/* Unregister the device with the EEH/PCI address search system */
|
|
pr_debug("EEH: Removing device %s\n", pci_name(dev));
|
|
|
|
if (!edev || !edev->pdev || !edev->pe) {
|
|
pr_debug("EEH: Not referenced !\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* During the hotplug for EEH error recovery, we need the EEH
|
|
* device attached to the parent PE in order for BAR restore
|
|
* a bit later. So we keep it for BAR restore and remove it
|
|
* from the parent PE during the BAR resotre.
|
|
*/
|
|
edev->pdev = NULL;
|
|
|
|
/*
|
|
* The flag "in_error" is used to trace EEH devices for VFs
|
|
* in error state or not. It's set in eeh_report_error(). If
|
|
* it's not set, eeh_report_{reset,resume}() won't be called
|
|
* for the VF EEH device.
|
|
*/
|
|
edev->in_error = false;
|
|
dev->dev.archdata.edev = NULL;
|
|
if (!(edev->pe->state & EEH_PE_KEEP))
|
|
eeh_rmv_from_parent_pe(edev);
|
|
else
|
|
edev->mode |= EEH_DEV_DISCONNECTED;
|
|
|
|
/*
|
|
* We're removing from the PCI subsystem, that means
|
|
* the PCI device driver can't support EEH or not
|
|
* well. So we rely on hotplug completely to do recovery
|
|
* for the specific PCI device.
|
|
*/
|
|
edev->mode |= EEH_DEV_NO_HANDLER;
|
|
|
|
eeh_addr_cache_rmv_dev(dev);
|
|
eeh_sysfs_remove_device(dev);
|
|
edev->mode &= ~EEH_DEV_SYSFS;
|
|
}
|
|
|
|
int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
|
|
{
|
|
int ret;
|
|
|
|
ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
|
|
if (ret) {
|
|
pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
|
|
__func__, ret, pe->phb->global_number, pe->addr);
|
|
return ret;
|
|
}
|
|
|
|
ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
|
|
if (ret) {
|
|
pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
|
|
__func__, ret, pe->phb->global_number, pe->addr);
|
|
return ret;
|
|
}
|
|
|
|
/* Clear software isolated state */
|
|
if (sw_state && (pe->state & EEH_PE_ISOLATED))
|
|
eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static struct pci_device_id eeh_reset_ids[] = {
|
|
{ PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
|
|
{ PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
|
|
{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
|
|
{ 0 }
|
|
};
|
|
|
|
static int eeh_pe_change_owner(struct eeh_pe *pe)
|
|
{
|
|
struct eeh_dev *edev, *tmp;
|
|
struct pci_dev *pdev;
|
|
struct pci_device_id *id;
|
|
int flags, ret;
|
|
|
|
/* Check PE state */
|
|
flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
|
|
ret = eeh_ops->get_state(pe, NULL);
|
|
if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
|
|
return 0;
|
|
|
|
/* Unfrozen PE, nothing to do */
|
|
if ((ret & flags) == flags)
|
|
return 0;
|
|
|
|
/* Frozen PE, check if it needs PE level reset */
|
|
eeh_pe_for_each_dev(pe, edev, tmp) {
|
|
pdev = eeh_dev_to_pci_dev(edev);
|
|
if (!pdev)
|
|
continue;
|
|
|
|
for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
|
|
if (id->vendor != PCI_ANY_ID &&
|
|
id->vendor != pdev->vendor)
|
|
continue;
|
|
if (id->device != PCI_ANY_ID &&
|
|
id->device != pdev->device)
|
|
continue;
|
|
if (id->subvendor != PCI_ANY_ID &&
|
|
id->subvendor != pdev->subsystem_vendor)
|
|
continue;
|
|
if (id->subdevice != PCI_ANY_ID &&
|
|
id->subdevice != pdev->subsystem_device)
|
|
continue;
|
|
|
|
return eeh_pe_reset_and_recover(pe);
|
|
}
|
|
}
|
|
|
|
return eeh_unfreeze_pe(pe, true);
|
|
}
|
|
|
|
/**
|
|
* eeh_dev_open - Increase count of pass through devices for PE
|
|
* @pdev: PCI device
|
|
*
|
|
* Increase count of passed through devices for the indicated
|
|
* PE. In the result, the EEH errors detected on the PE won't be
|
|
* reported. The PE owner will be responsible for detection
|
|
* and recovery.
|
|
*/
|
|
int eeh_dev_open(struct pci_dev *pdev)
|
|
{
|
|
struct eeh_dev *edev;
|
|
int ret = -ENODEV;
|
|
|
|
mutex_lock(&eeh_dev_mutex);
|
|
|
|
/* No PCI device ? */
|
|
if (!pdev)
|
|
goto out;
|
|
|
|
/* No EEH device or PE ? */
|
|
edev = pci_dev_to_eeh_dev(pdev);
|
|
if (!edev || !edev->pe)
|
|
goto out;
|
|
|
|
/*
|
|
* The PE might have been put into frozen state, but we
|
|
* didn't detect that yet. The passed through PCI devices
|
|
* in frozen PE won't work properly. Clear the frozen state
|
|
* in advance.
|
|
*/
|
|
ret = eeh_pe_change_owner(edev->pe);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Increase PE's pass through count */
|
|
atomic_inc(&edev->pe->pass_dev_cnt);
|
|
mutex_unlock(&eeh_dev_mutex);
|
|
|
|
return 0;
|
|
out:
|
|
mutex_unlock(&eeh_dev_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_dev_open);
|
|
|
|
/**
|
|
* eeh_dev_release - Decrease count of pass through devices for PE
|
|
* @pdev: PCI device
|
|
*
|
|
* Decrease count of pass through devices for the indicated PE. If
|
|
* there is no passed through device in PE, the EEH errors detected
|
|
* on the PE will be reported and handled as usual.
|
|
*/
|
|
void eeh_dev_release(struct pci_dev *pdev)
|
|
{
|
|
struct eeh_dev *edev;
|
|
|
|
mutex_lock(&eeh_dev_mutex);
|
|
|
|
/* No PCI device ? */
|
|
if (!pdev)
|
|
goto out;
|
|
|
|
/* No EEH device ? */
|
|
edev = pci_dev_to_eeh_dev(pdev);
|
|
if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
|
|
goto out;
|
|
|
|
/* Decrease PE's pass through count */
|
|
WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
|
|
eeh_pe_change_owner(edev->pe);
|
|
out:
|
|
mutex_unlock(&eeh_dev_mutex);
|
|
}
|
|
EXPORT_SYMBOL(eeh_dev_release);
|
|
|
|
#ifdef CONFIG_IOMMU_API
|
|
|
|
static int dev_has_iommu_table(struct device *dev, void *data)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct pci_dev **ppdev = data;
|
|
|
|
if (!dev)
|
|
return 0;
|
|
|
|
if (dev->iommu_group) {
|
|
*ppdev = pdev;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
|
|
* @group: IOMMU group
|
|
*
|
|
* The routine is called to convert IOMMU group to EEH PE.
|
|
*/
|
|
struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
struct eeh_dev *edev;
|
|
int ret;
|
|
|
|
/* No IOMMU group ? */
|
|
if (!group)
|
|
return NULL;
|
|
|
|
ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
|
|
if (!ret || !pdev)
|
|
return NULL;
|
|
|
|
/* No EEH device or PE ? */
|
|
edev = pci_dev_to_eeh_dev(pdev);
|
|
if (!edev || !edev->pe)
|
|
return NULL;
|
|
|
|
return edev->pe;
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
|
|
|
|
#endif /* CONFIG_IOMMU_API */
|
|
|
|
/**
|
|
* eeh_pe_set_option - Set options for the indicated PE
|
|
* @pe: EEH PE
|
|
* @option: requested option
|
|
*
|
|
* The routine is called to enable or disable EEH functionality
|
|
* on the indicated PE, to enable IO or DMA for the frozen PE.
|
|
*/
|
|
int eeh_pe_set_option(struct eeh_pe *pe, int option)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Invalid PE ? */
|
|
if (!pe)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* EEH functionality could possibly be disabled, just
|
|
* return error for the case. And the EEH functinality
|
|
* isn't expected to be disabled on one specific PE.
|
|
*/
|
|
switch (option) {
|
|
case EEH_OPT_ENABLE:
|
|
if (eeh_enabled()) {
|
|
ret = eeh_pe_change_owner(pe);
|
|
break;
|
|
}
|
|
ret = -EIO;
|
|
break;
|
|
case EEH_OPT_DISABLE:
|
|
break;
|
|
case EEH_OPT_THAW_MMIO:
|
|
case EEH_OPT_THAW_DMA:
|
|
case EEH_OPT_FREEZE_PE:
|
|
if (!eeh_ops || !eeh_ops->set_option) {
|
|
ret = -ENOENT;
|
|
break;
|
|
}
|
|
|
|
ret = eeh_pci_enable(pe, option);
|
|
break;
|
|
default:
|
|
pr_debug("%s: Option %d out of range (%d, %d)\n",
|
|
__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_pe_set_option);
|
|
|
|
/**
|
|
* eeh_pe_get_state - Retrieve PE's state
|
|
* @pe: EEH PE
|
|
*
|
|
* Retrieve the PE's state, which includes 3 aspects: enabled
|
|
* DMA, enabled IO and asserted reset.
|
|
*/
|
|
int eeh_pe_get_state(struct eeh_pe *pe)
|
|
{
|
|
int result, ret = 0;
|
|
bool rst_active, dma_en, mmio_en;
|
|
|
|
/* Existing PE ? */
|
|
if (!pe)
|
|
return -ENODEV;
|
|
|
|
if (!eeh_ops || !eeh_ops->get_state)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* If the parent PE is owned by the host kernel and is undergoing
|
|
* error recovery, we should return the PE state as temporarily
|
|
* unavailable so that the error recovery on the guest is suspended
|
|
* until the recovery completes on the host.
|
|
*/
|
|
if (pe->parent &&
|
|
!(pe->state & EEH_PE_REMOVED) &&
|
|
(pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
|
|
return EEH_PE_STATE_UNAVAIL;
|
|
|
|
result = eeh_ops->get_state(pe, NULL);
|
|
rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
|
|
dma_en = !!(result & EEH_STATE_DMA_ENABLED);
|
|
mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
|
|
|
|
if (rst_active)
|
|
ret = EEH_PE_STATE_RESET;
|
|
else if (dma_en && mmio_en)
|
|
ret = EEH_PE_STATE_NORMAL;
|
|
else if (!dma_en && !mmio_en)
|
|
ret = EEH_PE_STATE_STOPPED_IO_DMA;
|
|
else if (!dma_en && mmio_en)
|
|
ret = EEH_PE_STATE_STOPPED_DMA;
|
|
else
|
|
ret = EEH_PE_STATE_UNAVAIL;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_pe_get_state);
|
|
|
|
static int eeh_pe_reenable_devices(struct eeh_pe *pe)
|
|
{
|
|
struct eeh_dev *edev, *tmp;
|
|
struct pci_dev *pdev;
|
|
int ret = 0;
|
|
|
|
/* Restore config space */
|
|
eeh_pe_restore_bars(pe);
|
|
|
|
/*
|
|
* Reenable PCI devices as the devices passed
|
|
* through are always enabled before the reset.
|
|
*/
|
|
eeh_pe_for_each_dev(pe, edev, tmp) {
|
|
pdev = eeh_dev_to_pci_dev(edev);
|
|
if (!pdev)
|
|
continue;
|
|
|
|
ret = pci_reenable_device(pdev);
|
|
if (ret) {
|
|
pr_warn("%s: Failure %d reenabling %s\n",
|
|
__func__, ret, pci_name(pdev));
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* The PE is still in frozen state */
|
|
return eeh_unfreeze_pe(pe, true);
|
|
}
|
|
|
|
|
|
/**
|
|
* eeh_pe_reset - Issue PE reset according to specified type
|
|
* @pe: EEH PE
|
|
* @option: reset type
|
|
*
|
|
* The routine is called to reset the specified PE with the
|
|
* indicated type, either fundamental reset or hot reset.
|
|
* PE reset is the most important part for error recovery.
|
|
*/
|
|
int eeh_pe_reset(struct eeh_pe *pe, int option)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Invalid PE ? */
|
|
if (!pe)
|
|
return -ENODEV;
|
|
|
|
if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
|
|
return -ENOENT;
|
|
|
|
switch (option) {
|
|
case EEH_RESET_DEACTIVATE:
|
|
ret = eeh_ops->reset(pe, option);
|
|
eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = eeh_pe_reenable_devices(pe);
|
|
break;
|
|
case EEH_RESET_HOT:
|
|
case EEH_RESET_FUNDAMENTAL:
|
|
/*
|
|
* Proactively freeze the PE to drop all MMIO access
|
|
* during reset, which should be banned as it's always
|
|
* cause recursive EEH error.
|
|
*/
|
|
eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
|
|
|
|
eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
|
|
ret = eeh_ops->reset(pe, option);
|
|
break;
|
|
default:
|
|
pr_debug("%s: Unsupported option %d\n",
|
|
__func__, option);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_pe_reset);
|
|
|
|
/**
|
|
* eeh_pe_configure - Configure PCI bridges after PE reset
|
|
* @pe: EEH PE
|
|
*
|
|
* The routine is called to restore the PCI config space for
|
|
* those PCI devices, especially PCI bridges affected by PE
|
|
* reset issued previously.
|
|
*/
|
|
int eeh_pe_configure(struct eeh_pe *pe)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Invalid PE ? */
|
|
if (!pe)
|
|
return -ENODEV;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_pe_configure);
|
|
|
|
/**
|
|
* eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
|
|
* @pe: the indicated PE
|
|
* @type: error type
|
|
* @function: error function
|
|
* @addr: address
|
|
* @mask: address mask
|
|
*
|
|
* The routine is called to inject the specified PCI error, which
|
|
* is determined by @type and @function, to the indicated PE for
|
|
* testing purpose.
|
|
*/
|
|
int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
|
|
unsigned long addr, unsigned long mask)
|
|
{
|
|
/* Invalid PE ? */
|
|
if (!pe)
|
|
return -ENODEV;
|
|
|
|
/* Unsupported operation ? */
|
|
if (!eeh_ops || !eeh_ops->err_inject)
|
|
return -ENOENT;
|
|
|
|
/* Check on PCI error type */
|
|
if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
|
|
return -EINVAL;
|
|
|
|
/* Check on PCI error function */
|
|
if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
|
|
return -EINVAL;
|
|
|
|
return eeh_ops->err_inject(pe, type, func, addr, mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
|
|
|
|
static int proc_eeh_show(struct seq_file *m, void *v)
|
|
{
|
|
if (!eeh_enabled()) {
|
|
seq_printf(m, "EEH Subsystem is globally disabled\n");
|
|
seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
|
|
} else {
|
|
seq_printf(m, "EEH Subsystem is enabled\n");
|
|
seq_printf(m,
|
|
"no device=%llu\n"
|
|
"no device node=%llu\n"
|
|
"no config address=%llu\n"
|
|
"check not wanted=%llu\n"
|
|
"eeh_total_mmio_ffs=%llu\n"
|
|
"eeh_false_positives=%llu\n"
|
|
"eeh_slot_resets=%llu\n",
|
|
eeh_stats.no_device,
|
|
eeh_stats.no_dn,
|
|
eeh_stats.no_cfg_addr,
|
|
eeh_stats.ignored_check,
|
|
eeh_stats.total_mmio_ffs,
|
|
eeh_stats.false_positives,
|
|
eeh_stats.slot_resets);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int proc_eeh_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, proc_eeh_show, NULL);
|
|
}
|
|
|
|
static const struct file_operations proc_eeh_operations = {
|
|
.open = proc_eeh_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static int eeh_enable_dbgfs_set(void *data, u64 val)
|
|
{
|
|
if (val)
|
|
eeh_clear_flag(EEH_FORCE_DISABLED);
|
|
else
|
|
eeh_add_flag(EEH_FORCE_DISABLED);
|
|
|
|
/* Notify the backend */
|
|
if (eeh_ops->post_init)
|
|
eeh_ops->post_init();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int eeh_enable_dbgfs_get(void *data, u64 *val)
|
|
{
|
|
if (eeh_enabled())
|
|
*val = 0x1ul;
|
|
else
|
|
*val = 0x0ul;
|
|
return 0;
|
|
}
|
|
|
|
static int eeh_freeze_dbgfs_set(void *data, u64 val)
|
|
{
|
|
eeh_max_freezes = val;
|
|
return 0;
|
|
}
|
|
|
|
static int eeh_freeze_dbgfs_get(void *data, u64 *val)
|
|
{
|
|
*val = eeh_max_freezes;
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
|
|
eeh_enable_dbgfs_set, "0x%llx\n");
|
|
DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
|
|
eeh_freeze_dbgfs_set, "0x%llx\n");
|
|
#endif
|
|
|
|
static int __init eeh_init_proc(void)
|
|
{
|
|
if (machine_is(pseries) || machine_is(powernv)) {
|
|
proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
|
|
#ifdef CONFIG_DEBUG_FS
|
|
debugfs_create_file("eeh_enable", 0600,
|
|
powerpc_debugfs_root, NULL,
|
|
&eeh_enable_dbgfs_ops);
|
|
debugfs_create_file("eeh_max_freezes", 0600,
|
|
powerpc_debugfs_root, NULL,
|
|
&eeh_freeze_dbgfs_ops);
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
__initcall(eeh_init_proc);
|