1138 lines
26 KiB
C
1138 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Interconnect framework core driver
|
|
*
|
|
* Copyright (c) 2017-2019, Linaro Ltd.
|
|
* Author: Georgi Djakov <georgi.djakov@linaro.org>
|
|
*/
|
|
|
|
#include <linux/debugfs.h>
|
|
#include <linux/device.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interconnect.h>
|
|
#include <linux/interconnect-provider.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/of.h>
|
|
#include <linux/overflow.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace.h"
|
|
|
|
static DEFINE_IDR(icc_idr);
|
|
static LIST_HEAD(icc_providers);
|
|
static int providers_count;
|
|
static bool synced_state;
|
|
static DEFINE_MUTEX(icc_lock);
|
|
static struct dentry *icc_debugfs_dir;
|
|
|
|
static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
|
|
{
|
|
if (!n)
|
|
return;
|
|
|
|
seq_printf(s, "%-42s %12u %12u\n",
|
|
n->name, n->avg_bw, n->peak_bw);
|
|
}
|
|
|
|
static int icc_summary_show(struct seq_file *s, void *data)
|
|
{
|
|
struct icc_provider *provider;
|
|
|
|
seq_puts(s, " node tag avg peak\n");
|
|
seq_puts(s, "--------------------------------------------------------------------\n");
|
|
|
|
mutex_lock(&icc_lock);
|
|
|
|
list_for_each_entry(provider, &icc_providers, provider_list) {
|
|
struct icc_node *n;
|
|
|
|
list_for_each_entry(n, &provider->nodes, node_list) {
|
|
struct icc_req *r;
|
|
|
|
icc_summary_show_one(s, n);
|
|
hlist_for_each_entry(r, &n->req_list, req_node) {
|
|
u32 avg_bw = 0, peak_bw = 0;
|
|
|
|
if (!r->dev)
|
|
continue;
|
|
|
|
if (r->enabled) {
|
|
avg_bw = r->avg_bw;
|
|
peak_bw = r->peak_bw;
|
|
}
|
|
|
|
seq_printf(s, " %-27s %12u %12u %12u\n",
|
|
dev_name(r->dev), r->tag, avg_bw, peak_bw);
|
|
}
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&icc_lock);
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(icc_summary);
|
|
|
|
static void icc_graph_show_link(struct seq_file *s, int level,
|
|
struct icc_node *n, struct icc_node *m)
|
|
{
|
|
seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
|
|
level == 2 ? "\t\t" : "\t",
|
|
n->id, n->name, m->id, m->name);
|
|
}
|
|
|
|
static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
|
|
{
|
|
seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
|
|
n->id, n->name, n->id, n->name);
|
|
seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
|
|
seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
|
|
seq_puts(s, "\"]\n");
|
|
}
|
|
|
|
static int icc_graph_show(struct seq_file *s, void *data)
|
|
{
|
|
struct icc_provider *provider;
|
|
struct icc_node *n;
|
|
int cluster_index = 0;
|
|
int i;
|
|
|
|
seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
|
|
mutex_lock(&icc_lock);
|
|
|
|
/* draw providers as cluster subgraphs */
|
|
cluster_index = 0;
|
|
list_for_each_entry(provider, &icc_providers, provider_list) {
|
|
seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
|
|
if (provider->dev)
|
|
seq_printf(s, "\t\tlabel = \"%s\"\n",
|
|
dev_name(provider->dev));
|
|
|
|
/* draw nodes */
|
|
list_for_each_entry(n, &provider->nodes, node_list)
|
|
icc_graph_show_node(s, n);
|
|
|
|
/* draw internal links */
|
|
list_for_each_entry(n, &provider->nodes, node_list)
|
|
for (i = 0; i < n->num_links; ++i)
|
|
if (n->provider == n->links[i]->provider)
|
|
icc_graph_show_link(s, 2, n,
|
|
n->links[i]);
|
|
|
|
seq_puts(s, "\t}\n");
|
|
}
|
|
|
|
/* draw external links */
|
|
list_for_each_entry(provider, &icc_providers, provider_list)
|
|
list_for_each_entry(n, &provider->nodes, node_list)
|
|
for (i = 0; i < n->num_links; ++i)
|
|
if (n->provider != n->links[i]->provider)
|
|
icc_graph_show_link(s, 1, n,
|
|
n->links[i]);
|
|
|
|
mutex_unlock(&icc_lock);
|
|
seq_puts(s, "}");
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(icc_graph);
|
|
|
|
static struct icc_node *node_find(const int id)
|
|
{
|
|
return idr_find(&icc_idr, id);
|
|
}
|
|
|
|
static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
|
|
ssize_t num_nodes)
|
|
{
|
|
struct icc_node *node = dst;
|
|
struct icc_path *path;
|
|
int i;
|
|
|
|
path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
|
|
if (!path)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
path->num_nodes = num_nodes;
|
|
|
|
for (i = num_nodes - 1; i >= 0; i--) {
|
|
node->provider->users++;
|
|
hlist_add_head(&path->reqs[i].req_node, &node->req_list);
|
|
path->reqs[i].node = node;
|
|
path->reqs[i].dev = dev;
|
|
path->reqs[i].enabled = true;
|
|
/* reference to previous node was saved during path traversal */
|
|
node = node->reverse;
|
|
}
|
|
|
|
return path;
|
|
}
|
|
|
|
static struct icc_path *path_find(struct device *dev, struct icc_node *src,
|
|
struct icc_node *dst)
|
|
{
|
|
struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
|
|
struct icc_node *n, *node = NULL;
|
|
struct list_head traverse_list;
|
|
struct list_head edge_list;
|
|
struct list_head visited_list;
|
|
size_t i, depth = 1;
|
|
bool found = false;
|
|
|
|
INIT_LIST_HEAD(&traverse_list);
|
|
INIT_LIST_HEAD(&edge_list);
|
|
INIT_LIST_HEAD(&visited_list);
|
|
|
|
list_add(&src->search_list, &traverse_list);
|
|
src->reverse = NULL;
|
|
|
|
do {
|
|
list_for_each_entry_safe(node, n, &traverse_list, search_list) {
|
|
if (node == dst) {
|
|
found = true;
|
|
list_splice_init(&edge_list, &visited_list);
|
|
list_splice_init(&traverse_list, &visited_list);
|
|
break;
|
|
}
|
|
for (i = 0; i < node->num_links; i++) {
|
|
struct icc_node *tmp = node->links[i];
|
|
|
|
if (!tmp) {
|
|
path = ERR_PTR(-ENOENT);
|
|
goto out;
|
|
}
|
|
|
|
if (tmp->is_traversed)
|
|
continue;
|
|
|
|
tmp->is_traversed = true;
|
|
tmp->reverse = node;
|
|
list_add_tail(&tmp->search_list, &edge_list);
|
|
}
|
|
}
|
|
|
|
if (found)
|
|
break;
|
|
|
|
list_splice_init(&traverse_list, &visited_list);
|
|
list_splice_init(&edge_list, &traverse_list);
|
|
|
|
/* count the hops including the source */
|
|
depth++;
|
|
|
|
} while (!list_empty(&traverse_list));
|
|
|
|
out:
|
|
|
|
/* reset the traversed state */
|
|
list_for_each_entry_reverse(n, &visited_list, search_list)
|
|
n->is_traversed = false;
|
|
|
|
if (found)
|
|
path = path_init(dev, dst, depth);
|
|
|
|
return path;
|
|
}
|
|
|
|
/*
|
|
* We want the path to honor all bandwidth requests, so the average and peak
|
|
* bandwidth requirements from each consumer are aggregated at each node.
|
|
* The aggregation is platform specific, so each platform can customize it by
|
|
* implementing its own aggregate() function.
|
|
*/
|
|
|
|
static int aggregate_requests(struct icc_node *node)
|
|
{
|
|
struct icc_provider *p = node->provider;
|
|
struct icc_req *r;
|
|
u32 avg_bw, peak_bw;
|
|
|
|
node->avg_bw = 0;
|
|
node->peak_bw = 0;
|
|
|
|
if (p->pre_aggregate)
|
|
p->pre_aggregate(node);
|
|
|
|
hlist_for_each_entry(r, &node->req_list, req_node) {
|
|
if (r->enabled) {
|
|
avg_bw = r->avg_bw;
|
|
peak_bw = r->peak_bw;
|
|
} else {
|
|
avg_bw = 0;
|
|
peak_bw = 0;
|
|
}
|
|
p->aggregate(node, r->tag, avg_bw, peak_bw,
|
|
&node->avg_bw, &node->peak_bw);
|
|
|
|
/* during boot use the initial bandwidth as a floor value */
|
|
if (!synced_state) {
|
|
node->avg_bw = max(node->avg_bw, node->init_avg);
|
|
node->peak_bw = max(node->peak_bw, node->init_peak);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int apply_constraints(struct icc_path *path)
|
|
{
|
|
struct icc_node *next, *prev = NULL;
|
|
struct icc_provider *p;
|
|
int ret = -EINVAL;
|
|
int i;
|
|
|
|
for (i = 0; i < path->num_nodes; i++) {
|
|
next = path->reqs[i].node;
|
|
p = next->provider;
|
|
|
|
/* both endpoints should be valid master-slave pairs */
|
|
if (!prev || (p != prev->provider && !p->inter_set)) {
|
|
prev = next;
|
|
continue;
|
|
}
|
|
|
|
/* set the constraints */
|
|
ret = p->set(prev, next);
|
|
if (ret)
|
|
goto out;
|
|
|
|
prev = next;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
|
|
u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
|
|
{
|
|
*agg_avg += avg_bw;
|
|
*agg_peak = max(*agg_peak, peak_bw);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_std_aggregate);
|
|
|
|
/* of_icc_xlate_onecell() - Translate function using a single index.
|
|
* @spec: OF phandle args to map into an interconnect node.
|
|
* @data: private data (pointer to struct icc_onecell_data)
|
|
*
|
|
* This is a generic translate function that can be used to model simple
|
|
* interconnect providers that have one device tree node and provide
|
|
* multiple interconnect nodes. A single cell is used as an index into
|
|
* an array of icc nodes specified in the icc_onecell_data struct when
|
|
* registering the provider.
|
|
*/
|
|
struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
|
|
void *data)
|
|
{
|
|
struct icc_onecell_data *icc_data = data;
|
|
unsigned int idx = spec->args[0];
|
|
|
|
if (idx >= icc_data->num_nodes) {
|
|
pr_err("%s: invalid index %u\n", __func__, idx);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
return icc_data->nodes[idx];
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
|
|
|
|
/**
|
|
* of_icc_get_from_provider() - Look-up interconnect node
|
|
* @spec: OF phandle args to use for look-up
|
|
*
|
|
* Looks for interconnect provider under the node specified by @spec and if
|
|
* found, uses xlate function of the provider to map phandle args to node.
|
|
*
|
|
* Returns a valid pointer to struct icc_node_data on success or ERR_PTR()
|
|
* on failure.
|
|
*/
|
|
struct icc_node_data *of_icc_get_from_provider(struct of_phandle_args *spec)
|
|
{
|
|
struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
|
|
struct icc_node_data *data = NULL;
|
|
struct icc_provider *provider;
|
|
|
|
if (!spec)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
mutex_lock(&icc_lock);
|
|
list_for_each_entry(provider, &icc_providers, provider_list) {
|
|
if (provider->dev->of_node == spec->np) {
|
|
if (provider->xlate_extended) {
|
|
data = provider->xlate_extended(spec, provider->data);
|
|
if (!IS_ERR(data)) {
|
|
node = data->node;
|
|
break;
|
|
}
|
|
} else {
|
|
node = provider->xlate(spec, provider->data);
|
|
if (!IS_ERR(node))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
mutex_unlock(&icc_lock);
|
|
|
|
if (IS_ERR(node))
|
|
return ERR_CAST(node);
|
|
|
|
if (!data) {
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return ERR_PTR(-ENOMEM);
|
|
data->node = node;
|
|
}
|
|
|
|
return data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
|
|
|
|
static void devm_icc_release(struct device *dev, void *res)
|
|
{
|
|
icc_put(*(struct icc_path **)res);
|
|
}
|
|
|
|
struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
|
|
{
|
|
struct icc_path **ptr, *path;
|
|
|
|
ptr = devres_alloc(devm_icc_release, sizeof(**ptr), GFP_KERNEL);
|
|
if (!ptr)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
path = of_icc_get(dev, name);
|
|
if (!IS_ERR(path)) {
|
|
*ptr = path;
|
|
devres_add(dev, ptr);
|
|
} else {
|
|
devres_free(ptr);
|
|
}
|
|
|
|
return path;
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_of_icc_get);
|
|
|
|
/**
|
|
* of_icc_get_by_index() - get a path handle from a DT node based on index
|
|
* @dev: device pointer for the consumer device
|
|
* @idx: interconnect path index
|
|
*
|
|
* This function will search for a path between two endpoints and return an
|
|
* icc_path handle on success. Use icc_put() to release constraints when they
|
|
* are not needed anymore.
|
|
* If the interconnect API is disabled, NULL is returned and the consumer
|
|
* drivers will still build. Drivers are free to handle this specifically,
|
|
* but they don't have to.
|
|
*
|
|
* Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
|
|
* when the API is disabled or the "interconnects" DT property is missing.
|
|
*/
|
|
struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
|
|
{
|
|
struct icc_path *path;
|
|
struct icc_node_data *src_data, *dst_data;
|
|
struct device_node *np;
|
|
struct of_phandle_args src_args, dst_args;
|
|
int ret;
|
|
|
|
if (!dev || !dev->of_node)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
np = dev->of_node;
|
|
|
|
/*
|
|
* When the consumer DT node do not have "interconnects" property
|
|
* return a NULL path to skip setting constraints.
|
|
*/
|
|
if (!of_find_property(np, "interconnects", NULL))
|
|
return NULL;
|
|
|
|
/*
|
|
* We use a combination of phandle and specifier for endpoint. For now
|
|
* lets support only global ids and extend this in the future if needed
|
|
* without breaking DT compatibility.
|
|
*/
|
|
ret = of_parse_phandle_with_args(np, "interconnects",
|
|
"#interconnect-cells", idx * 2,
|
|
&src_args);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
of_node_put(src_args.np);
|
|
|
|
ret = of_parse_phandle_with_args(np, "interconnects",
|
|
"#interconnect-cells", idx * 2 + 1,
|
|
&dst_args);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
of_node_put(dst_args.np);
|
|
|
|
src_data = of_icc_get_from_provider(&src_args);
|
|
|
|
if (IS_ERR(src_data)) {
|
|
dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n");
|
|
return ERR_CAST(src_data);
|
|
}
|
|
|
|
dst_data = of_icc_get_from_provider(&dst_args);
|
|
|
|
if (IS_ERR(dst_data)) {
|
|
dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n");
|
|
kfree(src_data);
|
|
return ERR_CAST(dst_data);
|
|
}
|
|
|
|
mutex_lock(&icc_lock);
|
|
path = path_find(dev, src_data->node, dst_data->node);
|
|
mutex_unlock(&icc_lock);
|
|
if (IS_ERR(path)) {
|
|
dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
|
|
goto free_icc_data;
|
|
}
|
|
|
|
if (src_data->tag && src_data->tag == dst_data->tag)
|
|
icc_set_tag(path, src_data->tag);
|
|
|
|
path->name = kasprintf(GFP_KERNEL, "%s-%s",
|
|
src_data->node->name, dst_data->node->name);
|
|
if (!path->name) {
|
|
kfree(path);
|
|
path = ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
free_icc_data:
|
|
kfree(src_data);
|
|
kfree(dst_data);
|
|
return path;
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_icc_get_by_index);
|
|
|
|
/**
|
|
* of_icc_get() - get a path handle from a DT node based on name
|
|
* @dev: device pointer for the consumer device
|
|
* @name: interconnect path name
|
|
*
|
|
* This function will search for a path between two endpoints and return an
|
|
* icc_path handle on success. Use icc_put() to release constraints when they
|
|
* are not needed anymore.
|
|
* If the interconnect API is disabled, NULL is returned and the consumer
|
|
* drivers will still build. Drivers are free to handle this specifically,
|
|
* but they don't have to.
|
|
*
|
|
* Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
|
|
* when the API is disabled or the "interconnects" DT property is missing.
|
|
*/
|
|
struct icc_path *of_icc_get(struct device *dev, const char *name)
|
|
{
|
|
struct device_node *np;
|
|
int idx = 0;
|
|
|
|
if (!dev || !dev->of_node)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
np = dev->of_node;
|
|
|
|
/*
|
|
* When the consumer DT node do not have "interconnects" property
|
|
* return a NULL path to skip setting constraints.
|
|
*/
|
|
if (!of_find_property(np, "interconnects", NULL))
|
|
return NULL;
|
|
|
|
/*
|
|
* We use a combination of phandle and specifier for endpoint. For now
|
|
* lets support only global ids and extend this in the future if needed
|
|
* without breaking DT compatibility.
|
|
*/
|
|
if (name) {
|
|
idx = of_property_match_string(np, "interconnect-names", name);
|
|
if (idx < 0)
|
|
return ERR_PTR(idx);
|
|
}
|
|
|
|
return of_icc_get_by_index(dev, idx);
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_icc_get);
|
|
|
|
/**
|
|
* icc_set_tag() - set an optional tag on a path
|
|
* @path: the path we want to tag
|
|
* @tag: the tag value
|
|
*
|
|
* This function allows consumers to append a tag to the requests associated
|
|
* with a path, so that a different aggregation could be done based on this tag.
|
|
*/
|
|
void icc_set_tag(struct icc_path *path, u32 tag)
|
|
{
|
|
int i;
|
|
|
|
if (!path)
|
|
return;
|
|
|
|
mutex_lock(&icc_lock);
|
|
|
|
for (i = 0; i < path->num_nodes; i++)
|
|
path->reqs[i].tag = tag;
|
|
|
|
mutex_unlock(&icc_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_set_tag);
|
|
|
|
/**
|
|
* icc_get_name() - Get name of the icc path
|
|
* @path: reference to the path returned by icc_get()
|
|
*
|
|
* This function is used by an interconnect consumer to get the name of the icc
|
|
* path.
|
|
*
|
|
* Returns a valid pointer on success, or NULL otherwise.
|
|
*/
|
|
const char *icc_get_name(struct icc_path *path)
|
|
{
|
|
if (!path)
|
|
return NULL;
|
|
|
|
return path->name;
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_get_name);
|
|
|
|
/**
|
|
* icc_set_bw() - set bandwidth constraints on an interconnect path
|
|
* @path: reference to the path returned by icc_get()
|
|
* @avg_bw: average bandwidth in kilobytes per second
|
|
* @peak_bw: peak bandwidth in kilobytes per second
|
|
*
|
|
* This function is used by an interconnect consumer to express its own needs
|
|
* in terms of bandwidth for a previously requested path between two endpoints.
|
|
* The requests are aggregated and each node is updated accordingly. The entire
|
|
* path is locked by a mutex to ensure that the set() is completed.
|
|
* The @path can be NULL when the "interconnects" DT properties is missing,
|
|
* which will mean that no constraints will be set.
|
|
*
|
|
* Returns 0 on success, or an appropriate error code otherwise.
|
|
*/
|
|
int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
|
|
{
|
|
struct icc_node *node;
|
|
u32 old_avg, old_peak;
|
|
size_t i;
|
|
int ret;
|
|
|
|
if (!path)
|
|
return 0;
|
|
|
|
if (WARN_ON(IS_ERR(path) || !path->num_nodes))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&icc_lock);
|
|
|
|
old_avg = path->reqs[0].avg_bw;
|
|
old_peak = path->reqs[0].peak_bw;
|
|
|
|
for (i = 0; i < path->num_nodes; i++) {
|
|
node = path->reqs[i].node;
|
|
|
|
/* update the consumer request for this path */
|
|
path->reqs[i].avg_bw = avg_bw;
|
|
path->reqs[i].peak_bw = peak_bw;
|
|
|
|
/* aggregate requests for this node */
|
|
aggregate_requests(node);
|
|
|
|
trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
|
|
}
|
|
|
|
ret = apply_constraints(path);
|
|
if (ret) {
|
|
pr_debug("interconnect: error applying constraints (%d)\n",
|
|
ret);
|
|
|
|
for (i = 0; i < path->num_nodes; i++) {
|
|
node = path->reqs[i].node;
|
|
path->reqs[i].avg_bw = old_avg;
|
|
path->reqs[i].peak_bw = old_peak;
|
|
aggregate_requests(node);
|
|
}
|
|
apply_constraints(path);
|
|
}
|
|
|
|
mutex_unlock(&icc_lock);
|
|
|
|
trace_icc_set_bw_end(path, ret);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_set_bw);
|
|
|
|
static int __icc_enable(struct icc_path *path, bool enable)
|
|
{
|
|
int i;
|
|
|
|
if (!path)
|
|
return 0;
|
|
|
|
if (WARN_ON(IS_ERR(path) || !path->num_nodes))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&icc_lock);
|
|
|
|
for (i = 0; i < path->num_nodes; i++)
|
|
path->reqs[i].enabled = enable;
|
|
|
|
mutex_unlock(&icc_lock);
|
|
|
|
return icc_set_bw(path, path->reqs[0].avg_bw,
|
|
path->reqs[0].peak_bw);
|
|
}
|
|
|
|
int icc_enable(struct icc_path *path)
|
|
{
|
|
return __icc_enable(path, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_enable);
|
|
|
|
int icc_disable(struct icc_path *path)
|
|
{
|
|
return __icc_enable(path, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_disable);
|
|
|
|
/**
|
|
* icc_get() - return a handle for path between two endpoints
|
|
* @dev: the device requesting the path
|
|
* @src_id: source device port id
|
|
* @dst_id: destination device port id
|
|
*
|
|
* This function will search for a path between two endpoints and return an
|
|
* icc_path handle on success. Use icc_put() to release
|
|
* constraints when they are not needed anymore.
|
|
* If the interconnect API is disabled, NULL is returned and the consumer
|
|
* drivers will still build. Drivers are free to handle this specifically,
|
|
* but they don't have to.
|
|
*
|
|
* Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
|
|
* interconnect API is disabled.
|
|
*/
|
|
struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
|
|
{
|
|
struct icc_node *src, *dst;
|
|
struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
|
|
|
|
mutex_lock(&icc_lock);
|
|
|
|
src = node_find(src_id);
|
|
if (!src)
|
|
goto out;
|
|
|
|
dst = node_find(dst_id);
|
|
if (!dst)
|
|
goto out;
|
|
|
|
path = path_find(dev, src, dst);
|
|
if (IS_ERR(path)) {
|
|
dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
|
|
goto out;
|
|
}
|
|
|
|
path->name = kasprintf(GFP_KERNEL, "%s-%s", src->name, dst->name);
|
|
if (!path->name) {
|
|
kfree(path);
|
|
path = ERR_PTR(-ENOMEM);
|
|
}
|
|
out:
|
|
mutex_unlock(&icc_lock);
|
|
return path;
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_get);
|
|
|
|
/**
|
|
* icc_put() - release the reference to the icc_path
|
|
* @path: interconnect path
|
|
*
|
|
* Use this function to release the constraints on a path when the path is
|
|
* no longer needed. The constraints will be re-aggregated.
|
|
*/
|
|
void icc_put(struct icc_path *path)
|
|
{
|
|
struct icc_node *node;
|
|
size_t i;
|
|
int ret;
|
|
|
|
if (!path || WARN_ON(IS_ERR(path)))
|
|
return;
|
|
|
|
ret = icc_set_bw(path, 0, 0);
|
|
if (ret)
|
|
pr_err("%s: error (%d)\n", __func__, ret);
|
|
|
|
mutex_lock(&icc_lock);
|
|
for (i = 0; i < path->num_nodes; i++) {
|
|
node = path->reqs[i].node;
|
|
hlist_del(&path->reqs[i].req_node);
|
|
if (!WARN_ON(!node->provider->users))
|
|
node->provider->users--;
|
|
}
|
|
mutex_unlock(&icc_lock);
|
|
|
|
kfree_const(path->name);
|
|
kfree(path);
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_put);
|
|
|
|
static struct icc_node *icc_node_create_nolock(int id)
|
|
{
|
|
struct icc_node *node;
|
|
|
|
/* check if node already exists */
|
|
node = node_find(id);
|
|
if (node)
|
|
return node;
|
|
|
|
node = kzalloc(sizeof(*node), GFP_KERNEL);
|
|
if (!node)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
|
|
if (id < 0) {
|
|
WARN(1, "%s: couldn't get idr\n", __func__);
|
|
kfree(node);
|
|
return ERR_PTR(id);
|
|
}
|
|
|
|
node->id = id;
|
|
|
|
return node;
|
|
}
|
|
|
|
/**
|
|
* icc_node_create() - create a node
|
|
* @id: node id
|
|
*
|
|
* Return: icc_node pointer on success, or ERR_PTR() on error
|
|
*/
|
|
struct icc_node *icc_node_create(int id)
|
|
{
|
|
struct icc_node *node;
|
|
|
|
mutex_lock(&icc_lock);
|
|
|
|
node = icc_node_create_nolock(id);
|
|
|
|
mutex_unlock(&icc_lock);
|
|
|
|
return node;
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_node_create);
|
|
|
|
/**
|
|
* icc_node_destroy() - destroy a node
|
|
* @id: node id
|
|
*/
|
|
void icc_node_destroy(int id)
|
|
{
|
|
struct icc_node *node;
|
|
|
|
mutex_lock(&icc_lock);
|
|
|
|
node = node_find(id);
|
|
if (node) {
|
|
idr_remove(&icc_idr, node->id);
|
|
WARN_ON(!hlist_empty(&node->req_list));
|
|
}
|
|
|
|
mutex_unlock(&icc_lock);
|
|
|
|
kfree(node);
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_node_destroy);
|
|
|
|
/**
|
|
* icc_link_create() - create a link between two nodes
|
|
* @node: source node id
|
|
* @dst_id: destination node id
|
|
*
|
|
* Create a link between two nodes. The nodes might belong to different
|
|
* interconnect providers and the @dst_id node might not exist (if the
|
|
* provider driver has not probed yet). So just create the @dst_id node
|
|
* and when the actual provider driver is probed, the rest of the node
|
|
* data is filled.
|
|
*
|
|
* Return: 0 on success, or an error code otherwise
|
|
*/
|
|
int icc_link_create(struct icc_node *node, const int dst_id)
|
|
{
|
|
struct icc_node *dst;
|
|
struct icc_node **new;
|
|
int ret = 0;
|
|
|
|
if (!node->provider)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&icc_lock);
|
|
|
|
dst = node_find(dst_id);
|
|
if (!dst) {
|
|
dst = icc_node_create_nolock(dst_id);
|
|
|
|
if (IS_ERR(dst)) {
|
|
ret = PTR_ERR(dst);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
new = krealloc(node->links,
|
|
(node->num_links + 1) * sizeof(*node->links),
|
|
GFP_KERNEL);
|
|
if (!new) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
node->links = new;
|
|
node->links[node->num_links++] = dst;
|
|
|
|
out:
|
|
mutex_unlock(&icc_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_link_create);
|
|
|
|
/**
|
|
* icc_link_destroy() - destroy a link between two nodes
|
|
* @src: pointer to source node
|
|
* @dst: pointer to destination node
|
|
*
|
|
* Return: 0 on success, or an error code otherwise
|
|
*/
|
|
int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
|
|
{
|
|
struct icc_node **new;
|
|
size_t slot;
|
|
int ret = 0;
|
|
|
|
if (IS_ERR_OR_NULL(src))
|
|
return -EINVAL;
|
|
|
|
if (IS_ERR_OR_NULL(dst))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&icc_lock);
|
|
|
|
for (slot = 0; slot < src->num_links; slot++)
|
|
if (src->links[slot] == dst)
|
|
break;
|
|
|
|
if (WARN_ON(slot == src->num_links)) {
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
src->links[slot] = src->links[--src->num_links];
|
|
|
|
new = krealloc(src->links, src->num_links * sizeof(*src->links),
|
|
GFP_KERNEL);
|
|
if (new)
|
|
src->links = new;
|
|
else
|
|
ret = -ENOMEM;
|
|
|
|
out:
|
|
mutex_unlock(&icc_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_link_destroy);
|
|
|
|
/**
|
|
* icc_node_add() - add interconnect node to interconnect provider
|
|
* @node: pointer to the interconnect node
|
|
* @provider: pointer to the interconnect provider
|
|
*/
|
|
void icc_node_add(struct icc_node *node, struct icc_provider *provider)
|
|
{
|
|
mutex_lock(&icc_lock);
|
|
|
|
node->provider = provider;
|
|
list_add_tail(&node->node_list, &provider->nodes);
|
|
|
|
/* get the initial bandwidth values and sync them with hardware */
|
|
if (provider->get_bw) {
|
|
provider->get_bw(node, &node->init_avg, &node->init_peak);
|
|
} else {
|
|
node->init_avg = INT_MAX;
|
|
node->init_peak = INT_MAX;
|
|
}
|
|
node->avg_bw = node->init_avg;
|
|
node->peak_bw = node->init_peak;
|
|
if (provider->aggregate)
|
|
provider->aggregate(node, 0, node->init_avg, node->init_peak,
|
|
&node->avg_bw, &node->peak_bw);
|
|
provider->set(node, node);
|
|
node->avg_bw = 0;
|
|
node->peak_bw = 0;
|
|
|
|
mutex_unlock(&icc_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_node_add);
|
|
|
|
/**
|
|
* icc_node_del() - delete interconnect node from interconnect provider
|
|
* @node: pointer to the interconnect node
|
|
*/
|
|
void icc_node_del(struct icc_node *node)
|
|
{
|
|
mutex_lock(&icc_lock);
|
|
|
|
list_del(&node->node_list);
|
|
|
|
mutex_unlock(&icc_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_node_del);
|
|
|
|
/**
|
|
* icc_nodes_remove() - remove all previously added nodes from provider
|
|
* @provider: the interconnect provider we are removing nodes from
|
|
*
|
|
* Return: 0 on success, or an error code otherwise
|
|
*/
|
|
int icc_nodes_remove(struct icc_provider *provider)
|
|
{
|
|
struct icc_node *n, *tmp;
|
|
|
|
if (WARN_ON(IS_ERR_OR_NULL(provider)))
|
|
return -EINVAL;
|
|
|
|
list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
|
|
icc_node_del(n);
|
|
icc_node_destroy(n->id);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_nodes_remove);
|
|
|
|
/**
|
|
* icc_provider_add() - add a new interconnect provider
|
|
* @provider: the interconnect provider that will be added into topology
|
|
*
|
|
* Return: 0 on success, or an error code otherwise
|
|
*/
|
|
int icc_provider_add(struct icc_provider *provider)
|
|
{
|
|
if (WARN_ON(!provider->set))
|
|
return -EINVAL;
|
|
if (WARN_ON(!provider->xlate && !provider->xlate_extended))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&icc_lock);
|
|
|
|
INIT_LIST_HEAD(&provider->nodes);
|
|
list_add_tail(&provider->provider_list, &icc_providers);
|
|
|
|
mutex_unlock(&icc_lock);
|
|
|
|
dev_dbg(provider->dev, "interconnect provider added to topology\n");
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_provider_add);
|
|
|
|
/**
|
|
* icc_provider_del() - delete previously added interconnect provider
|
|
* @provider: the interconnect provider that will be removed from topology
|
|
*
|
|
* Return: 0 on success, or an error code otherwise
|
|
*/
|
|
int icc_provider_del(struct icc_provider *provider)
|
|
{
|
|
mutex_lock(&icc_lock);
|
|
if (provider->users) {
|
|
pr_warn("interconnect provider still has %d users\n",
|
|
provider->users);
|
|
mutex_unlock(&icc_lock);
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (!list_empty(&provider->nodes)) {
|
|
pr_warn("interconnect provider still has nodes\n");
|
|
mutex_unlock(&icc_lock);
|
|
return -EBUSY;
|
|
}
|
|
|
|
list_del(&provider->provider_list);
|
|
mutex_unlock(&icc_lock);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_provider_del);
|
|
|
|
static int of_count_icc_providers(struct device_node *np)
|
|
{
|
|
struct device_node *child;
|
|
int count = 0;
|
|
|
|
for_each_available_child_of_node(np, child) {
|
|
if (of_property_read_bool(child, "#interconnect-cells"))
|
|
count++;
|
|
count += of_count_icc_providers(child);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
void icc_sync_state(struct device *dev)
|
|
{
|
|
struct icc_provider *p;
|
|
struct icc_node *n;
|
|
static int count;
|
|
|
|
count++;
|
|
|
|
if (count < providers_count)
|
|
return;
|
|
|
|
mutex_lock(&icc_lock);
|
|
synced_state = true;
|
|
list_for_each_entry(p, &icc_providers, provider_list) {
|
|
dev_dbg(p->dev, "interconnect provider is in synced state\n");
|
|
list_for_each_entry(n, &p->nodes, node_list) {
|
|
if (n->init_avg || n->init_peak) {
|
|
aggregate_requests(n);
|
|
p->set(n, n);
|
|
}
|
|
}
|
|
}
|
|
mutex_unlock(&icc_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(icc_sync_state);
|
|
|
|
static int __init icc_init(void)
|
|
{
|
|
struct device_node *root = of_find_node_by_path("/");
|
|
|
|
providers_count = of_count_icc_providers(root);
|
|
of_node_put(root);
|
|
|
|
icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
|
|
debugfs_create_file("interconnect_summary", 0444,
|
|
icc_debugfs_dir, NULL, &icc_summary_fops);
|
|
debugfs_create_file("interconnect_graph", 0444,
|
|
icc_debugfs_dir, NULL, &icc_graph_fops);
|
|
return 0;
|
|
}
|
|
|
|
device_initcall(icc_init);
|
|
|
|
MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
|
|
MODULE_DESCRIPTION("Interconnect Driver Core");
|
|
MODULE_LICENSE("GPL v2");
|