OpenCloudOS-Kernel/arch/powerpc/include/asm/pgtable-ppc64.h

563 lines
16 KiB
C

#ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
#define _ASM_POWERPC_PGTABLE_PPC64_H_
/*
* This file contains the functions and defines necessary to modify and use
* the ppc64 hashed page table.
*/
#ifdef CONFIG_PPC_64K_PAGES
#include <asm/pgtable-ppc64-64k.h>
#else
#include <asm/pgtable-ppc64-4k.h>
#endif
#include <asm/barrier.h>
#define FIRST_USER_ADDRESS 0
/*
* Size of EA range mapped by our pagetables.
*/
#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
#define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define PMD_CACHE_INDEX (PMD_INDEX_SIZE + 1)
#else
#define PMD_CACHE_INDEX PMD_INDEX_SIZE
#endif
/*
* Define the address range of the kernel non-linear virtual area
*/
#ifdef CONFIG_PPC_BOOK3E
#define KERN_VIRT_START ASM_CONST(0x8000000000000000)
#else
#define KERN_VIRT_START ASM_CONST(0xD000000000000000)
#endif
#define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000)
/*
* The vmalloc space starts at the beginning of that region, and
* occupies half of it on hash CPUs and a quarter of it on Book3E
* (we keep a quarter for the virtual memmap)
*/
#define VMALLOC_START KERN_VIRT_START
#ifdef CONFIG_PPC_BOOK3E
#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2)
#else
#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
#endif
#define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
/*
* The second half of the kernel virtual space is used for IO mappings,
* it's itself carved into the PIO region (ISA and PHB IO space) and
* the ioremap space
*
* ISA_IO_BASE = KERN_IO_START, 64K reserved area
* PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
* IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
*/
#define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
#define FULL_IO_SIZE 0x80000000ul
#define ISA_IO_BASE (KERN_IO_START)
#define ISA_IO_END (KERN_IO_START + 0x10000ul)
#define PHB_IO_BASE (ISA_IO_END)
#define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
#define IOREMAP_BASE (PHB_IO_END)
#define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
/*
* Region IDs
*/
#define REGION_SHIFT 60UL
#define REGION_MASK (0xfUL << REGION_SHIFT)
#define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
#define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
#define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
#define VMEMMAP_REGION_ID (0xfUL) /* Server only */
#define USER_REGION_ID (0UL)
/*
* Defines the address of the vmemap area, in its own region on
* hash table CPUs and after the vmalloc space on Book3E
*/
#ifdef CONFIG_PPC_BOOK3E
#define VMEMMAP_BASE VMALLOC_END
#define VMEMMAP_END KERN_IO_START
#else
#define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT)
#endif
#define vmemmap ((struct page *)VMEMMAP_BASE)
/*
* Include the PTE bits definitions
*/
#ifdef CONFIG_PPC_BOOK3S
#include <asm/pte-hash64.h>
#else
#include <asm/pte-book3e.h>
#endif
#include <asm/pte-common.h>
#ifdef CONFIG_PPC_MM_SLICES
#define HAVE_ARCH_UNMAPPED_AREA
#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
#endif /* CONFIG_PPC_MM_SLICES */
#ifndef __ASSEMBLY__
/*
* This is the default implementation of various PTE accessors, it's
* used in all cases except Book3S with 64K pages where we have a
* concept of sub-pages
*/
#ifndef __real_pte
#ifdef STRICT_MM_TYPECHECKS
#define __real_pte(e,p) ((real_pte_t){(e)})
#define __rpte_to_pte(r) ((r).pte)
#else
#define __real_pte(e,p) (e)
#define __rpte_to_pte(r) (__pte(r))
#endif
#define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> 12)
#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
do { \
index = 0; \
shift = mmu_psize_defs[psize].shift; \
#define pte_iterate_hashed_end() } while(0)
#ifdef CONFIG_PPC_HAS_HASH_64K
#define pte_pagesize_index(mm, addr, pte) get_slice_psize(mm, addr)
#else
#define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
#endif
#endif /* __real_pte */
/* pte_clear moved to later in this file */
#define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
#define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
#define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
|| (pmd_val(pmd) & PMD_BAD_BITS))
#define pmd_present(pmd) (pmd_val(pmd) != 0)
#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
#define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
extern struct page *pmd_page(pmd_t pmd);
#define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
#define pud_none(pud) (!pud_val(pud))
#define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
|| (pud_val(pud) & PUD_BAD_BITS))
#define pud_present(pud) (pud_val(pud) != 0)
#define pud_clear(pudp) (pud_val(*(pudp)) = 0)
#define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
#define pud_page(pud) virt_to_page(pud_page_vaddr(pud))
#define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
/*
* Find an entry in a page-table-directory. We combine the address region
* (the high order N bits) and the pgd portion of the address.
*/
#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
#define pmd_offset(pudp,addr) \
(((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
#define pte_offset_kernel(dir,addr) \
(((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
#define pte_unmap(pte) do { } while(0)
/* to find an entry in a kernel page-table-directory */
/* This now only contains the vmalloc pages */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned long pte, int huge);
/* Atomic PTE updates */
static inline unsigned long pte_update(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, unsigned long clr,
int huge)
{
#ifdef PTE_ATOMIC_UPDATES
unsigned long old, tmp;
__asm__ __volatile__(
"1: ldarx %0,0,%3 # pte_update\n\
andi. %1,%0,%6\n\
bne- 1b \n\
andc %1,%0,%4 \n\
stdcx. %1,0,%3 \n\
bne- 1b"
: "=&r" (old), "=&r" (tmp), "=m" (*ptep)
: "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY)
: "cc" );
#else
unsigned long old = pte_val(*ptep);
*ptep = __pte(old & ~clr);
#endif
/* huge pages use the old page table lock */
if (!huge)
assert_pte_locked(mm, addr);
#ifdef CONFIG_PPC_STD_MMU_64
if (old & _PAGE_HASHPTE)
hpte_need_flush(mm, addr, ptep, old, huge);
#endif
return old;
}
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old;
if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
return 0;
old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0);
return (old & _PAGE_ACCESSED) != 0;
}
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
({ \
int __r; \
__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
__r; \
})
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
if ((pte_val(*ptep) & _PAGE_RW) == 0)
return;
pte_update(mm, addr, ptep, _PAGE_RW, 0);
}
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
if ((pte_val(*ptep) & _PAGE_RW) == 0)
return;
pte_update(mm, addr, ptep, _PAGE_RW, 1);
}
/*
* We currently remove entries from the hashtable regardless of whether
* the entry was young or dirty. The generic routines only flush if the
* entry was young or dirty which is not good enough.
*
* We should be more intelligent about this but for the moment we override
* these functions and force a tlb flush unconditionally
*/
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
#define ptep_clear_flush_young(__vma, __address, __ptep) \
({ \
int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
__ptep); \
__young; \
})
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0);
return __pte(old);
}
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
pte_t * ptep)
{
pte_update(mm, addr, ptep, ~0UL, 0);
}
/* Set the dirty and/or accessed bits atomically in a linux PTE, this
* function doesn't need to flush the hash entry
*/
static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
{
unsigned long bits = pte_val(entry) &
(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
#ifdef PTE_ATOMIC_UPDATES
unsigned long old, tmp;
__asm__ __volatile__(
"1: ldarx %0,0,%4\n\
andi. %1,%0,%6\n\
bne- 1b \n\
or %0,%3,%0\n\
stdcx. %0,0,%4\n\
bne- 1b"
:"=&r" (old), "=&r" (tmp), "=m" (*ptep)
:"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
:"cc");
#else
unsigned long old = pte_val(*ptep);
*ptep = __pte(old | bits);
#endif
}
#define __HAVE_ARCH_PTE_SAME
#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
#define pte_ERROR(e) \
printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
/* Encode and de-code a swap entry */
#define __swp_type(entry) (((entry).val >> 1) & 0x3f)
#define __swp_offset(entry) ((entry).val >> 8)
#define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
#define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
#define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
#define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
void pgtable_cache_init(void);
#endif /* __ASSEMBLY__ */
/*
* THP pages can't be special. So use the _PAGE_SPECIAL
*/
#define _PAGE_SPLITTING _PAGE_SPECIAL
/*
* We need to differentiate between explicit huge page and THP huge
* page, since THP huge page also need to track real subpage details
*/
#define _PAGE_THP_HUGE _PAGE_4K_PFN
/*
* set of bits not changed in pmd_modify.
*/
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \
_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
_PAGE_THP_HUGE)
#ifndef __ASSEMBLY__
/*
* The linux hugepage PMD now include the pmd entries followed by the address
* to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
* [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
* each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
* with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
*
* The last three bits are intentionally left to zero. This memory location
* are also used as normal page PTE pointers. So if we have any pointers
* left around while we collapse a hugepage, we need to make sure
* _PAGE_PRESENT and _PAGE_FILE bits of that are zero when we look at them
*/
static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
{
return (hpte_slot_array[index] >> 3) & 0x1;
}
static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
int index)
{
return hpte_slot_array[index] >> 4;
}
static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
unsigned int index, unsigned int hidx)
{
hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
}
struct page *realmode_pfn_to_page(unsigned long pfn);
static inline char *get_hpte_slot_array(pmd_t *pmdp)
{
/*
* The hpte hindex is stored in the pgtable whose address is in the
* second half of the PMD
*
* Order this load with the test for pmd_trans_huge in the caller
*/
smp_rmb();
return *(char **)(pmdp + PTRS_PER_PMD);
}
extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd);
extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd);
static inline int pmd_trans_huge(pmd_t pmd)
{
/*
* leaf pte for huge page, bottom two bits != 00
*/
return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
}
static inline int pmd_large(pmd_t pmd)
{
/*
* leaf pte for huge page, bottom two bits != 00
*/
if (pmd_trans_huge(pmd))
return pmd_val(pmd) & _PAGE_PRESENT;
return 0;
}
static inline int pmd_trans_splitting(pmd_t pmd)
{
if (pmd_trans_huge(pmd))
return pmd_val(pmd) & _PAGE_SPLITTING;
return 0;
}
extern int has_transparent_hugepage(void);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline pte_t pmd_pte(pmd_t pmd)
{
return __pte(pmd_val(pmd));
}
static inline pmd_t pte_pmd(pte_t pte)
{
return __pmd(pte_val(pte));
}
static inline pte_t *pmdp_ptep(pmd_t *pmd)
{
return (pte_t *)pmd;
}
#define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
#define __HAVE_ARCH_PMD_WRITE
#define pmd_write(pmd) pte_write(pmd_pte(pmd))
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
/* Do nothing, mk_pmd() does this part. */
return pmd;
}
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
pmd_val(pmd) &= ~_PAGE_PRESENT;
return pmd;
}
static inline pmd_t pmd_mksplitting(pmd_t pmd)
{
pmd_val(pmd) |= _PAGE_SPLITTING;
return pmd;
}
#define __HAVE_ARCH_PMD_SAME
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
}
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty);
extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
unsigned long addr,
pmd_t *pmdp, unsigned long clr);
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
unsigned long old;
if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
return 0;
old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED);
return ((old & _PAGE_ACCESSED) != 0);
}
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
extern pmd_t pmdp_get_and_clear(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp)
{
if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
return;
pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW);
}
#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define __HAVE_ARCH_PGTABLE_DEPOSIT
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable);
#define __HAVE_ARCH_PGTABLE_WITHDRAW
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_INVALIDATE
extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp);
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */