OpenCloudOS-Kernel/drivers/mmc/host/omap_hsmmc.c

2512 lines
63 KiB
C

/*
* drivers/mmc/host/omap_hsmmc.c
*
* Driver for OMAP2430/3430 MMC controller.
*
* Copyright (C) 2007 Texas Instruments.
*
* Authors:
* Syed Mohammed Khasim <x0khasim@ti.com>
* Madhusudhan <madhu.cr@ti.com>
* Mohit Jalori <mjalori@ti.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/debugfs.h>
#include <linux/dmaengine.h>
#include <linux/seq_file.h>
#include <linux/sizes.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/timer.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_gpio.h>
#include <linux/of_device.h>
#include <linux/omap-dmaengine.h>
#include <linux/mmc/host.h>
#include <linux/mmc/core.h>
#include <linux/mmc/mmc.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/platform_data/mmc-omap.h>
/* OMAP HSMMC Host Controller Registers */
#define OMAP_HSMMC_SYSSTATUS 0x0014
#define OMAP_HSMMC_CON 0x002C
#define OMAP_HSMMC_SDMASA 0x0100
#define OMAP_HSMMC_BLK 0x0104
#define OMAP_HSMMC_ARG 0x0108
#define OMAP_HSMMC_CMD 0x010C
#define OMAP_HSMMC_RSP10 0x0110
#define OMAP_HSMMC_RSP32 0x0114
#define OMAP_HSMMC_RSP54 0x0118
#define OMAP_HSMMC_RSP76 0x011C
#define OMAP_HSMMC_DATA 0x0120
#define OMAP_HSMMC_PSTATE 0x0124
#define OMAP_HSMMC_HCTL 0x0128
#define OMAP_HSMMC_SYSCTL 0x012C
#define OMAP_HSMMC_STAT 0x0130
#define OMAP_HSMMC_IE 0x0134
#define OMAP_HSMMC_ISE 0x0138
#define OMAP_HSMMC_AC12 0x013C
#define OMAP_HSMMC_CAPA 0x0140
#define VS18 (1 << 26)
#define VS30 (1 << 25)
#define HSS (1 << 21)
#define SDVS18 (0x5 << 9)
#define SDVS30 (0x6 << 9)
#define SDVS33 (0x7 << 9)
#define SDVS_MASK 0x00000E00
#define SDVSCLR 0xFFFFF1FF
#define SDVSDET 0x00000400
#define AUTOIDLE 0x1
#define SDBP (1 << 8)
#define DTO 0xe
#define ICE 0x1
#define ICS 0x2
#define CEN (1 << 2)
#define CLKD_MAX 0x3FF /* max clock divisor: 1023 */
#define CLKD_MASK 0x0000FFC0
#define CLKD_SHIFT 6
#define DTO_MASK 0x000F0000
#define DTO_SHIFT 16
#define INIT_STREAM (1 << 1)
#define ACEN_ACMD23 (2 << 2)
#define DP_SELECT (1 << 21)
#define DDIR (1 << 4)
#define DMAE 0x1
#define MSBS (1 << 5)
#define BCE (1 << 1)
#define FOUR_BIT (1 << 1)
#define HSPE (1 << 2)
#define IWE (1 << 24)
#define DDR (1 << 19)
#define CLKEXTFREE (1 << 16)
#define CTPL (1 << 11)
#define DW8 (1 << 5)
#define OD 0x1
#define STAT_CLEAR 0xFFFFFFFF
#define INIT_STREAM_CMD 0x00000000
#define DUAL_VOLT_OCR_BIT 7
#define SRC (1 << 25)
#define SRD (1 << 26)
#define SOFTRESET (1 << 1)
/* PSTATE */
#define DLEV_DAT(x) (1 << (20 + (x)))
/* Interrupt masks for IE and ISE register */
#define CC_EN (1 << 0)
#define TC_EN (1 << 1)
#define BWR_EN (1 << 4)
#define BRR_EN (1 << 5)
#define CIRQ_EN (1 << 8)
#define ERR_EN (1 << 15)
#define CTO_EN (1 << 16)
#define CCRC_EN (1 << 17)
#define CEB_EN (1 << 18)
#define CIE_EN (1 << 19)
#define DTO_EN (1 << 20)
#define DCRC_EN (1 << 21)
#define DEB_EN (1 << 22)
#define ACE_EN (1 << 24)
#define CERR_EN (1 << 28)
#define BADA_EN (1 << 29)
#define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
BRR_EN | BWR_EN | TC_EN | CC_EN)
#define CNI (1 << 7)
#define ACIE (1 << 4)
#define ACEB (1 << 3)
#define ACCE (1 << 2)
#define ACTO (1 << 1)
#define ACNE (1 << 0)
#define MMC_AUTOSUSPEND_DELAY 100
#define MMC_TIMEOUT_MS 20 /* 20 mSec */
#define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */
#define OMAP_MMC_MIN_CLOCK 400000
#define OMAP_MMC_MAX_CLOCK 52000000
#define DRIVER_NAME "omap_hsmmc"
#define VDD_1V8 1800000 /* 180000 uV */
#define VDD_3V0 3000000 /* 300000 uV */
#define VDD_165_195 (ffs(MMC_VDD_165_195) - 1)
/*
* One controller can have multiple slots, like on some omap boards using
* omap.c controller driver. Luckily this is not currently done on any known
* omap_hsmmc.c device.
*/
#define mmc_slot(host) (host->pdata->slots[host->slot_id])
/*
* MMC Host controller read/write API's
*/
#define OMAP_HSMMC_READ(base, reg) \
__raw_readl((base) + OMAP_HSMMC_##reg)
#define OMAP_HSMMC_WRITE(base, reg, val) \
__raw_writel((val), (base) + OMAP_HSMMC_##reg)
struct omap_hsmmc_next {
unsigned int dma_len;
s32 cookie;
};
struct omap_hsmmc_host {
struct device *dev;
struct mmc_host *mmc;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
struct clk *fclk;
struct clk *dbclk;
/*
* vcc == configured supply
* vcc_aux == optional
* - MMC1, supply for DAT4..DAT7
* - MMC2/MMC2, external level shifter voltage supply, for
* chip (SDIO, eMMC, etc) or transceiver (MMC2 only)
*/
struct regulator *vcc;
struct regulator *vcc_aux;
struct regulator *pbias;
bool pbias_enabled;
void __iomem *base;
resource_size_t mapbase;
spinlock_t irq_lock; /* Prevent races with irq handler */
unsigned int dma_len;
unsigned int dma_sg_idx;
unsigned char bus_mode;
unsigned char power_mode;
int suspended;
u32 con;
u32 hctl;
u32 sysctl;
u32 capa;
int irq;
int wake_irq;
int use_dma, dma_ch;
struct dma_chan *tx_chan;
struct dma_chan *rx_chan;
int slot_id;
int response_busy;
int context_loss;
int protect_card;
int reqs_blocked;
int use_reg;
int req_in_progress;
unsigned long clk_rate;
unsigned int flags;
#define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */
#define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */
#define HSMMC_WAKE_IRQ_ENABLED (1 << 2)
struct omap_hsmmc_next next_data;
struct omap_mmc_platform_data *pdata;
};
struct omap_mmc_of_data {
u32 reg_offset;
u8 controller_flags;
};
static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
static int omap_hsmmc_card_detect(struct device *dev, int slot)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
struct omap_mmc_platform_data *mmc = host->pdata;
/* NOTE: assumes card detect signal is active-low */
return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
}
static int omap_hsmmc_get_wp(struct device *dev, int slot)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
struct omap_mmc_platform_data *mmc = host->pdata;
/* NOTE: assumes write protect signal is active-high */
return gpio_get_value_cansleep(mmc->slots[0].gpio_wp);
}
static int omap_hsmmc_get_cover_state(struct device *dev, int slot)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
struct omap_mmc_platform_data *mmc = host->pdata;
/* NOTE: assumes card detect signal is active-low */
return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
}
#ifdef CONFIG_PM
static int omap_hsmmc_suspend_cdirq(struct device *dev, int slot)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
struct omap_mmc_platform_data *mmc = host->pdata;
disable_irq(mmc->slots[0].card_detect_irq);
return 0;
}
static int omap_hsmmc_resume_cdirq(struct device *dev, int slot)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
struct omap_mmc_platform_data *mmc = host->pdata;
enable_irq(mmc->slots[0].card_detect_irq);
return 0;
}
#else
#define omap_hsmmc_suspend_cdirq NULL
#define omap_hsmmc_resume_cdirq NULL
#endif
#ifdef CONFIG_REGULATOR
static int omap_hsmmc_set_power(struct device *dev, int slot, int power_on,
int vdd)
{
struct omap_hsmmc_host *host =
platform_get_drvdata(to_platform_device(dev));
int ret = 0;
/*
* If we don't see a Vcc regulator, assume it's a fixed
* voltage always-on regulator.
*/
if (!host->vcc)
return 0;
if (mmc_slot(host).before_set_reg)
mmc_slot(host).before_set_reg(dev, slot, power_on, vdd);
if (host->pbias) {
if (host->pbias_enabled == 1) {
ret = regulator_disable(host->pbias);
if (!ret)
host->pbias_enabled = 0;
}
regulator_set_voltage(host->pbias, VDD_3V0, VDD_3V0);
}
/*
* Assume Vcc regulator is used only to power the card ... OMAP
* VDDS is used to power the pins, optionally with a transceiver to
* support cards using voltages other than VDDS (1.8V nominal). When a
* transceiver is used, DAT3..7 are muxed as transceiver control pins.
*
* In some cases this regulator won't support enable/disable;
* e.g. it's a fixed rail for a WLAN chip.
*
* In other cases vcc_aux switches interface power. Example, for
* eMMC cards it represents VccQ. Sometimes transceivers or SDIO
* chips/cards need an interface voltage rail too.
*/
if (power_on) {
if (host->vcc)
ret = mmc_regulator_set_ocr(host->mmc, host->vcc, vdd);
/* Enable interface voltage rail, if needed */
if (ret == 0 && host->vcc_aux) {
ret = regulator_enable(host->vcc_aux);
if (ret < 0 && host->vcc)
ret = mmc_regulator_set_ocr(host->mmc,
host->vcc, 0);
}
} else {
/* Shut down the rail */
if (host->vcc_aux)
ret = regulator_disable(host->vcc_aux);
if (host->vcc) {
/* Then proceed to shut down the local regulator */
ret = mmc_regulator_set_ocr(host->mmc,
host->vcc, 0);
}
}
if (host->pbias) {
if (vdd <= VDD_165_195)
ret = regulator_set_voltage(host->pbias, VDD_1V8,
VDD_1V8);
else
ret = regulator_set_voltage(host->pbias, VDD_3V0,
VDD_3V0);
if (ret < 0)
goto error_set_power;
if (host->pbias_enabled == 0) {
ret = regulator_enable(host->pbias);
if (!ret)
host->pbias_enabled = 1;
}
}
if (mmc_slot(host).after_set_reg)
mmc_slot(host).after_set_reg(dev, slot, power_on, vdd);
error_set_power:
return ret;
}
static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
{
struct regulator *reg;
int ocr_value = 0;
reg = devm_regulator_get(host->dev, "vmmc");
if (IS_ERR(reg)) {
dev_err(host->dev, "unable to get vmmc regulator %ld\n",
PTR_ERR(reg));
return PTR_ERR(reg);
} else {
host->vcc = reg;
ocr_value = mmc_regulator_get_ocrmask(reg);
if (!mmc_slot(host).ocr_mask) {
mmc_slot(host).ocr_mask = ocr_value;
} else {
if (!(mmc_slot(host).ocr_mask & ocr_value)) {
dev_err(host->dev, "ocrmask %x is not supported\n",
mmc_slot(host).ocr_mask);
mmc_slot(host).ocr_mask = 0;
return -EINVAL;
}
}
}
mmc_slot(host).set_power = omap_hsmmc_set_power;
/* Allow an aux regulator */
reg = devm_regulator_get_optional(host->dev, "vmmc_aux");
host->vcc_aux = IS_ERR(reg) ? NULL : reg;
reg = devm_regulator_get_optional(host->dev, "pbias");
host->pbias = IS_ERR(reg) ? NULL : reg;
/* For eMMC do not power off when not in sleep state */
if (mmc_slot(host).no_regulator_off_init)
return 0;
/*
* To disable boot_on regulator, enable regulator
* to increase usecount and then disable it.
*/
if ((host->vcc && regulator_is_enabled(host->vcc) > 0) ||
(host->vcc_aux && regulator_is_enabled(host->vcc_aux))) {
int vdd = ffs(mmc_slot(host).ocr_mask) - 1;
mmc_slot(host).set_power(host->dev, host->slot_id, 1, vdd);
mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
}
return 0;
}
static void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
{
mmc_slot(host).set_power = NULL;
}
static inline int omap_hsmmc_have_reg(void)
{
return 1;
}
#else
static inline int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
{
return -EINVAL;
}
static inline void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
{
}
static inline int omap_hsmmc_have_reg(void)
{
return 0;
}
#endif
static int omap_hsmmc_gpio_init(struct omap_mmc_platform_data *pdata)
{
int ret;
if (gpio_is_valid(pdata->slots[0].switch_pin)) {
if (pdata->slots[0].cover)
pdata->slots[0].get_cover_state =
omap_hsmmc_get_cover_state;
else
pdata->slots[0].card_detect = omap_hsmmc_card_detect;
pdata->slots[0].card_detect_irq =
gpio_to_irq(pdata->slots[0].switch_pin);
ret = gpio_request(pdata->slots[0].switch_pin, "mmc_cd");
if (ret)
return ret;
ret = gpio_direction_input(pdata->slots[0].switch_pin);
if (ret)
goto err_free_sp;
} else
pdata->slots[0].switch_pin = -EINVAL;
if (gpio_is_valid(pdata->slots[0].gpio_wp)) {
pdata->slots[0].get_ro = omap_hsmmc_get_wp;
ret = gpio_request(pdata->slots[0].gpio_wp, "mmc_wp");
if (ret)
goto err_free_cd;
ret = gpio_direction_input(pdata->slots[0].gpio_wp);
if (ret)
goto err_free_wp;
} else
pdata->slots[0].gpio_wp = -EINVAL;
return 0;
err_free_wp:
gpio_free(pdata->slots[0].gpio_wp);
err_free_cd:
if (gpio_is_valid(pdata->slots[0].switch_pin))
err_free_sp:
gpio_free(pdata->slots[0].switch_pin);
return ret;
}
static void omap_hsmmc_gpio_free(struct omap_mmc_platform_data *pdata)
{
if (gpio_is_valid(pdata->slots[0].gpio_wp))
gpio_free(pdata->slots[0].gpio_wp);
if (gpio_is_valid(pdata->slots[0].switch_pin))
gpio_free(pdata->slots[0].switch_pin);
}
/*
* Start clock to the card
*/
static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
{
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
}
/*
* Stop clock to the card
*/
static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
{
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
}
static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
struct mmc_command *cmd)
{
u32 irq_mask = INT_EN_MASK;
unsigned long flags;
if (host->use_dma)
irq_mask &= ~(BRR_EN | BWR_EN);
/* Disable timeout for erases */
if (cmd->opcode == MMC_ERASE)
irq_mask &= ~DTO_EN;
spin_lock_irqsave(&host->irq_lock, flags);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
/* latch pending CIRQ, but don't signal MMC core */
if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
irq_mask |= CIRQ_EN;
OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
spin_unlock_irqrestore(&host->irq_lock, flags);
}
static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
{
u32 irq_mask = 0;
unsigned long flags;
spin_lock_irqsave(&host->irq_lock, flags);
/* no transfer running but need to keep cirq if enabled */
if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
irq_mask |= CIRQ_EN;
OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
spin_unlock_irqrestore(&host->irq_lock, flags);
}
/* Calculate divisor for the given clock frequency */
static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
{
u16 dsor = 0;
if (ios->clock) {
dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
if (dsor > CLKD_MAX)
dsor = CLKD_MAX;
}
return dsor;
}
static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
unsigned long regval;
unsigned long timeout;
unsigned long clkdiv;
dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
omap_hsmmc_stop_clock(host);
regval = OMAP_HSMMC_READ(host->base, SYSCTL);
regval = regval & ~(CLKD_MASK | DTO_MASK);
clkdiv = calc_divisor(host, ios);
regval = regval | (clkdiv << 6) | (DTO << 16);
OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
/* Wait till the ICS bit is set */
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
&& time_before(jiffies, timeout))
cpu_relax();
/*
* Enable High-Speed Support
* Pre-Requisites
* - Controller should support High-Speed-Enable Bit
* - Controller should not be using DDR Mode
* - Controller should advertise that it supports High Speed
* in capabilities register
* - MMC/SD clock coming out of controller > 25MHz
*/
if ((mmc_slot(host).features & HSMMC_HAS_HSPE_SUPPORT) &&
(ios->timing != MMC_TIMING_MMC_DDR52) &&
((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
regval = OMAP_HSMMC_READ(host->base, HCTL);
if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
regval |= HSPE;
else
regval &= ~HSPE;
OMAP_HSMMC_WRITE(host->base, HCTL, regval);
}
omap_hsmmc_start_clock(host);
}
static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
u32 con;
con = OMAP_HSMMC_READ(host->base, CON);
if (ios->timing == MMC_TIMING_MMC_DDR52)
con |= DDR; /* configure in DDR mode */
else
con &= ~DDR;
switch (ios->bus_width) {
case MMC_BUS_WIDTH_8:
OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
break;
case MMC_BUS_WIDTH_4:
OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
break;
case MMC_BUS_WIDTH_1:
OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
break;
}
}
static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
u32 con;
con = OMAP_HSMMC_READ(host->base, CON);
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
OMAP_HSMMC_WRITE(host->base, CON, con | OD);
else
OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
}
#ifdef CONFIG_PM
/*
* Restore the MMC host context, if it was lost as result of a
* power state change.
*/
static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
u32 hctl, capa;
unsigned long timeout;
if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
host->capa == OMAP_HSMMC_READ(host->base, CAPA))
return 0;
host->context_loss++;
if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
if (host->power_mode != MMC_POWER_OFF &&
(1 << ios->vdd) <= MMC_VDD_23_24)
hctl = SDVS18;
else
hctl = SDVS30;
capa = VS30 | VS18;
} else {
hctl = SDVS18;
capa = VS18;
}
if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
hctl |= IWE;
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | hctl);
OMAP_HSMMC_WRITE(host->base, CAPA,
OMAP_HSMMC_READ(host->base, CAPA) | capa);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
&& time_before(jiffies, timeout))
;
OMAP_HSMMC_WRITE(host->base, ISE, 0);
OMAP_HSMMC_WRITE(host->base, IE, 0);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
/* Do not initialize card-specific things if the power is off */
if (host->power_mode == MMC_POWER_OFF)
goto out;
omap_hsmmc_set_bus_width(host);
omap_hsmmc_set_clock(host);
omap_hsmmc_set_bus_mode(host);
out:
dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
host->context_loss);
return 0;
}
/*
* Save the MMC host context (store the number of power state changes so far).
*/
static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
{
host->con = OMAP_HSMMC_READ(host->base, CON);
host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL);
host->capa = OMAP_HSMMC_READ(host->base, CAPA);
}
#else
static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
{
return 0;
}
static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
{
}
#endif
/*
* Send init stream sequence to card
* before sending IDLE command
*/
static void send_init_stream(struct omap_hsmmc_host *host)
{
int reg = 0;
unsigned long timeout;
if (host->protect_card)
return;
disable_irq(host->irq);
OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
OMAP_HSMMC_WRITE(host->base, CON,
OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((reg != CC_EN) && time_before(jiffies, timeout))
reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
OMAP_HSMMC_WRITE(host->base, CON,
OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_READ(host->base, STAT);
enable_irq(host->irq);
}
static inline
int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
{
int r = 1;
if (mmc_slot(host).get_cover_state)
r = mmc_slot(host).get_cover_state(host->dev, host->slot_id);
return r;
}
static ssize_t
omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct omap_hsmmc_host *host = mmc_priv(mmc);
return sprintf(buf, "%s\n",
omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
}
static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
static ssize_t
omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct omap_hsmmc_host *host = mmc_priv(mmc);
return sprintf(buf, "%s\n", mmc_slot(host).name);
}
static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
/*
* Configure the response type and send the cmd.
*/
static void
omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
struct mmc_data *data)
{
int cmdreg = 0, resptype = 0, cmdtype = 0;
dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
host->cmd = cmd;
omap_hsmmc_enable_irq(host, cmd);
host->response_busy = 0;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136)
resptype = 1;
else if (cmd->flags & MMC_RSP_BUSY) {
resptype = 3;
host->response_busy = 1;
} else
resptype = 2;
}
/*
* Unlike OMAP1 controller, the cmdtype does not seem to be based on
* ac, bc, adtc, bcr. Only commands ending an open ended transfer need
* a val of 0x3, rest 0x0.
*/
if (cmd == host->mrq->stop)
cmdtype = 0x3;
cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
host->mrq->sbc) {
cmdreg |= ACEN_ACMD23;
OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
}
if (data) {
cmdreg |= DP_SELECT | MSBS | BCE;
if (data->flags & MMC_DATA_READ)
cmdreg |= DDIR;
else
cmdreg &= ~(DDIR);
}
if (host->use_dma)
cmdreg |= DMAE;
host->req_in_progress = 1;
OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
}
static int
omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
{
if (data->flags & MMC_DATA_WRITE)
return DMA_TO_DEVICE;
else
return DMA_FROM_DEVICE;
}
static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
struct mmc_data *data)
{
return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
}
static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
{
int dma_ch;
unsigned long flags;
spin_lock_irqsave(&host->irq_lock, flags);
host->req_in_progress = 0;
dma_ch = host->dma_ch;
spin_unlock_irqrestore(&host->irq_lock, flags);
omap_hsmmc_disable_irq(host);
/* Do not complete the request if DMA is still in progress */
if (mrq->data && host->use_dma && dma_ch != -1)
return;
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
/*
* Notify the transfer complete to MMC core
*/
static void
omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
{
if (!data) {
struct mmc_request *mrq = host->mrq;
/* TC before CC from CMD6 - don't know why, but it happens */
if (host->cmd && host->cmd->opcode == 6 &&
host->response_busy) {
host->response_busy = 0;
return;
}
omap_hsmmc_request_done(host, mrq);
return;
}
host->data = NULL;
if (!data->error)
data->bytes_xfered += data->blocks * (data->blksz);
else
data->bytes_xfered = 0;
if (data->stop && (data->error || !host->mrq->sbc))
omap_hsmmc_start_command(host, data->stop, NULL);
else
omap_hsmmc_request_done(host, data->mrq);
}
/*
* Notify the core about command completion
*/
static void
omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
{
if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
!host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
host->cmd = NULL;
omap_hsmmc_start_dma_transfer(host);
omap_hsmmc_start_command(host, host->mrq->cmd,
host->mrq->data);
return;
}
host->cmd = NULL;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
/* response type 2 */
cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
} else {
/* response types 1, 1b, 3, 4, 5, 6 */
cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
}
}
if ((host->data == NULL && !host->response_busy) || cmd->error)
omap_hsmmc_request_done(host, host->mrq);
}
/*
* DMA clean up for command errors
*/
static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
{
int dma_ch;
unsigned long flags;
host->data->error = errno;
spin_lock_irqsave(&host->irq_lock, flags);
dma_ch = host->dma_ch;
host->dma_ch = -1;
spin_unlock_irqrestore(&host->irq_lock, flags);
if (host->use_dma && dma_ch != -1) {
struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
dmaengine_terminate_all(chan);
dma_unmap_sg(chan->device->dev,
host->data->sg, host->data->sg_len,
omap_hsmmc_get_dma_dir(host, host->data));
host->data->host_cookie = 0;
}
host->data = NULL;
}
/*
* Readable error output
*/
#ifdef CONFIG_MMC_DEBUG
static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
{
/* --- means reserved bit without definition at documentation */
static const char *omap_hsmmc_status_bits[] = {
"CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
"CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
};
char res[256];
char *buf = res;
int len, i;
len = sprintf(buf, "MMC IRQ 0x%x :", status);
buf += len;
for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
if (status & (1 << i)) {
len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
buf += len;
}
dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
}
#else
static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
u32 status)
{
}
#endif /* CONFIG_MMC_DEBUG */
/*
* MMC controller internal state machines reset
*
* Used to reset command or data internal state machines, using respectively
* SRC or SRD bit of SYSCTL register
* Can be called from interrupt context
*/
static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
unsigned long bit)
{
unsigned long i = 0;
unsigned long limit = MMC_TIMEOUT_US;
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
/*
* OMAP4 ES2 and greater has an updated reset logic.
* Monitor a 0->1 transition first
*/
if (mmc_slot(host).features & HSMMC_HAS_UPDATED_RESET) {
while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
&& (i++ < limit))
udelay(1);
}
i = 0;
while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
(i++ < limit))
udelay(1);
if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
dev_err(mmc_dev(host->mmc),
"Timeout waiting on controller reset in %s\n",
__func__);
}
static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
int err, int end_cmd)
{
if (end_cmd) {
omap_hsmmc_reset_controller_fsm(host, SRC);
if (host->cmd)
host->cmd->error = err;
}
if (host->data) {
omap_hsmmc_reset_controller_fsm(host, SRD);
omap_hsmmc_dma_cleanup(host, err);
} else if (host->mrq && host->mrq->cmd)
host->mrq->cmd->error = err;
}
static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
{
struct mmc_data *data;
int end_cmd = 0, end_trans = 0;
int error = 0;
data = host->data;
dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
if (status & ERR_EN) {
omap_hsmmc_dbg_report_irq(host, status);
if (status & (CTO_EN | CCRC_EN))
end_cmd = 1;
if (status & (CTO_EN | DTO_EN))
hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
else if (status & (CCRC_EN | DCRC_EN))
hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
if (status & ACE_EN) {
u32 ac12;
ac12 = OMAP_HSMMC_READ(host->base, AC12);
if (!(ac12 & ACNE) && host->mrq->sbc) {
end_cmd = 1;
if (ac12 & ACTO)
error = -ETIMEDOUT;
else if (ac12 & (ACCE | ACEB | ACIE))
error = -EILSEQ;
host->mrq->sbc->error = error;
hsmmc_command_incomplete(host, error, end_cmd);
}
dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
}
if (host->data || host->response_busy) {
end_trans = !end_cmd;
host->response_busy = 0;
}
}
OMAP_HSMMC_WRITE(host->base, STAT, status);
if (end_cmd || ((status & CC_EN) && host->cmd))
omap_hsmmc_cmd_done(host, host->cmd);
if ((end_trans || (status & TC_EN)) && host->mrq)
omap_hsmmc_xfer_done(host, data);
}
/*
* MMC controller IRQ handler
*/
static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
{
struct omap_hsmmc_host *host = dev_id;
int status;
status = OMAP_HSMMC_READ(host->base, STAT);
while (status & (INT_EN_MASK | CIRQ_EN)) {
if (host->req_in_progress)
omap_hsmmc_do_irq(host, status);
if (status & CIRQ_EN)
mmc_signal_sdio_irq(host->mmc);
/* Flush posted write */
status = OMAP_HSMMC_READ(host->base, STAT);
}
return IRQ_HANDLED;
}
static irqreturn_t omap_hsmmc_wake_irq(int irq, void *dev_id)
{
struct omap_hsmmc_host *host = dev_id;
/* cirq is level triggered, disable to avoid infinite loop */
spin_lock(&host->irq_lock);
if (host->flags & HSMMC_WAKE_IRQ_ENABLED) {
disable_irq_nosync(host->wake_irq);
host->flags &= ~HSMMC_WAKE_IRQ_ENABLED;
}
spin_unlock(&host->irq_lock);
pm_request_resume(host->dev); /* no use counter */
return IRQ_HANDLED;
}
static void set_sd_bus_power(struct omap_hsmmc_host *host)
{
unsigned long i;
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
for (i = 0; i < loops_per_jiffy; i++) {
if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
break;
cpu_relax();
}
}
/*
* Switch MMC interface voltage ... only relevant for MMC1.
*
* MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
* The MMC2 transceiver controls are used instead of DAT4..DAT7.
* Some chips, like eMMC ones, use internal transceivers.
*/
static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
{
u32 reg_val = 0;
int ret;
/* Disable the clocks */
pm_runtime_put_sync(host->dev);
if (host->dbclk)
clk_disable_unprepare(host->dbclk);
/* Turn the power off */
ret = mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
/* Turn the power ON with given VDD 1.8 or 3.0v */
if (!ret)
ret = mmc_slot(host).set_power(host->dev, host->slot_id, 1,
vdd);
pm_runtime_get_sync(host->dev);
if (host->dbclk)
clk_prepare_enable(host->dbclk);
if (ret != 0)
goto err;
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
reg_val = OMAP_HSMMC_READ(host->base, HCTL);
/*
* If a MMC dual voltage card is detected, the set_ios fn calls
* this fn with VDD bit set for 1.8V. Upon card removal from the
* slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
*
* Cope with a bit of slop in the range ... per data sheets:
* - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
* but recommended values are 1.71V to 1.89V
* - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
* but recommended values are 2.7V to 3.3V
*
* Board setup code shouldn't permit anything very out-of-range.
* TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
* middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
*/
if ((1 << vdd) <= MMC_VDD_23_24)
reg_val |= SDVS18;
else
reg_val |= SDVS30;
OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
set_sd_bus_power(host);
return 0;
err:
dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
return ret;
}
/* Protect the card while the cover is open */
static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
{
if (!mmc_slot(host).get_cover_state)
return;
host->reqs_blocked = 0;
if (mmc_slot(host).get_cover_state(host->dev, host->slot_id)) {
if (host->protect_card) {
dev_info(host->dev, "%s: cover is closed, "
"card is now accessible\n",
mmc_hostname(host->mmc));
host->protect_card = 0;
}
} else {
if (!host->protect_card) {
dev_info(host->dev, "%s: cover is open, "
"card is now inaccessible\n",
mmc_hostname(host->mmc));
host->protect_card = 1;
}
}
}
/*
* irq handler to notify the core about card insertion/removal
*/
static irqreturn_t omap_hsmmc_detect(int irq, void *dev_id)
{
struct omap_hsmmc_host *host = dev_id;
struct omap_mmc_slot_data *slot = &mmc_slot(host);
int carddetect;
sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
if (slot->card_detect)
carddetect = slot->card_detect(host->dev, host->slot_id);
else {
omap_hsmmc_protect_card(host);
carddetect = -ENOSYS;
}
if (carddetect)
mmc_detect_change(host->mmc, (HZ * 200) / 1000);
else
mmc_detect_change(host->mmc, (HZ * 50) / 1000);
return IRQ_HANDLED;
}
static void omap_hsmmc_dma_callback(void *param)
{
struct omap_hsmmc_host *host = param;
struct dma_chan *chan;
struct mmc_data *data;
int req_in_progress;
spin_lock_irq(&host->irq_lock);
if (host->dma_ch < 0) {
spin_unlock_irq(&host->irq_lock);
return;
}
data = host->mrq->data;
chan = omap_hsmmc_get_dma_chan(host, data);
if (!data->host_cookie)
dma_unmap_sg(chan->device->dev,
data->sg, data->sg_len,
omap_hsmmc_get_dma_dir(host, data));
req_in_progress = host->req_in_progress;
host->dma_ch = -1;
spin_unlock_irq(&host->irq_lock);
/* If DMA has finished after TC, complete the request */
if (!req_in_progress) {
struct mmc_request *mrq = host->mrq;
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
}
static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
struct mmc_data *data,
struct omap_hsmmc_next *next,
struct dma_chan *chan)
{
int dma_len;
if (!next && data->host_cookie &&
data->host_cookie != host->next_data.cookie) {
dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
" host->next_data.cookie %d\n",
__func__, data->host_cookie, host->next_data.cookie);
data->host_cookie = 0;
}
/* Check if next job is already prepared */
if (next || data->host_cookie != host->next_data.cookie) {
dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
omap_hsmmc_get_dma_dir(host, data));
} else {
dma_len = host->next_data.dma_len;
host->next_data.dma_len = 0;
}
if (dma_len == 0)
return -EINVAL;
if (next) {
next->dma_len = dma_len;
data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
} else
host->dma_len = dma_len;
return 0;
}
/*
* Routine to configure and start DMA for the MMC card
*/
static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
struct mmc_request *req)
{
struct dma_slave_config cfg;
struct dma_async_tx_descriptor *tx;
int ret = 0, i;
struct mmc_data *data = req->data;
struct dma_chan *chan;
/* Sanity check: all the SG entries must be aligned by block size. */
for (i = 0; i < data->sg_len; i++) {
struct scatterlist *sgl;
sgl = data->sg + i;
if (sgl->length % data->blksz)
return -EINVAL;
}
if ((data->blksz % 4) != 0)
/* REVISIT: The MMC buffer increments only when MSB is written.
* Return error for blksz which is non multiple of four.
*/
return -EINVAL;
BUG_ON(host->dma_ch != -1);
chan = omap_hsmmc_get_dma_chan(host, data);
cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA;
cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = data->blksz / 4;
cfg.dst_maxburst = data->blksz / 4;
ret = dmaengine_slave_config(chan, &cfg);
if (ret)
return ret;
ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
if (ret)
return ret;
tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx) {
dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
/* FIXME: cleanup */
return -1;
}
tx->callback = omap_hsmmc_dma_callback;
tx->callback_param = host;
/* Does not fail */
dmaengine_submit(tx);
host->dma_ch = 1;
return 0;
}
static void set_data_timeout(struct omap_hsmmc_host *host,
unsigned int timeout_ns,
unsigned int timeout_clks)
{
unsigned int timeout, cycle_ns;
uint32_t reg, clkd, dto = 0;
reg = OMAP_HSMMC_READ(host->base, SYSCTL);
clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
if (clkd == 0)
clkd = 1;
cycle_ns = 1000000000 / (host->clk_rate / clkd);
timeout = timeout_ns / cycle_ns;
timeout += timeout_clks;
if (timeout) {
while ((timeout & 0x80000000) == 0) {
dto += 1;
timeout <<= 1;
}
dto = 31 - dto;
timeout <<= 1;
if (timeout && dto)
dto += 1;
if (dto >= 13)
dto -= 13;
else
dto = 0;
if (dto > 14)
dto = 14;
}
reg &= ~DTO_MASK;
reg |= dto << DTO_SHIFT;
OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
}
static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
{
struct mmc_request *req = host->mrq;
struct dma_chan *chan;
if (!req->data)
return;
OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
| (req->data->blocks << 16));
set_data_timeout(host, req->data->timeout_ns,
req->data->timeout_clks);
chan = omap_hsmmc_get_dma_chan(host, req->data);
dma_async_issue_pending(chan);
}
/*
* Configure block length for MMC/SD cards and initiate the transfer.
*/
static int
omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
{
int ret;
host->data = req->data;
if (req->data == NULL) {
OMAP_HSMMC_WRITE(host->base, BLK, 0);
/*
* Set an arbitrary 100ms data timeout for commands with
* busy signal.
*/
if (req->cmd->flags & MMC_RSP_BUSY)
set_data_timeout(host, 100000000U, 0);
return 0;
}
if (host->use_dma) {
ret = omap_hsmmc_setup_dma_transfer(host, req);
if (ret != 0) {
dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
return ret;
}
}
return 0;
}
static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
int err)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (host->use_dma && data->host_cookie) {
struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
omap_hsmmc_get_dma_dir(host, data));
data->host_cookie = 0;
}
}
static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
bool is_first_req)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
if (mrq->data->host_cookie) {
mrq->data->host_cookie = 0;
return ;
}
if (host->use_dma) {
struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
&host->next_data, c))
mrq->data->host_cookie = 0;
}
}
/*
* Request function. for read/write operation
*/
static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
int err;
BUG_ON(host->req_in_progress);
BUG_ON(host->dma_ch != -1);
if (host->protect_card) {
if (host->reqs_blocked < 3) {
/*
* Ensure the controller is left in a consistent
* state by resetting the command and data state
* machines.
*/
omap_hsmmc_reset_controller_fsm(host, SRD);
omap_hsmmc_reset_controller_fsm(host, SRC);
host->reqs_blocked += 1;
}
req->cmd->error = -EBADF;
if (req->data)
req->data->error = -EBADF;
req->cmd->retries = 0;
mmc_request_done(mmc, req);
return;
} else if (host->reqs_blocked)
host->reqs_blocked = 0;
WARN_ON(host->mrq != NULL);
host->mrq = req;
host->clk_rate = clk_get_rate(host->fclk);
err = omap_hsmmc_prepare_data(host, req);
if (err) {
req->cmd->error = err;
if (req->data)
req->data->error = err;
host->mrq = NULL;
mmc_request_done(mmc, req);
return;
}
if (req->sbc && !(host->flags & AUTO_CMD23)) {
omap_hsmmc_start_command(host, req->sbc, NULL);
return;
}
omap_hsmmc_start_dma_transfer(host);
omap_hsmmc_start_command(host, req->cmd, req->data);
}
/* Routine to configure clock values. Exposed API to core */
static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
int do_send_init_stream = 0;
pm_runtime_get_sync(host->dev);
if (ios->power_mode != host->power_mode) {
switch (ios->power_mode) {
case MMC_POWER_OFF:
mmc_slot(host).set_power(host->dev, host->slot_id,
0, 0);
break;
case MMC_POWER_UP:
mmc_slot(host).set_power(host->dev, host->slot_id,
1, ios->vdd);
break;
case MMC_POWER_ON:
do_send_init_stream = 1;
break;
}
host->power_mode = ios->power_mode;
}
/* FIXME: set registers based only on changes to ios */
omap_hsmmc_set_bus_width(host);
if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
/* Only MMC1 can interface at 3V without some flavor
* of external transceiver; but they all handle 1.8V.
*/
if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
(ios->vdd == DUAL_VOLT_OCR_BIT)) {
/*
* The mmc_select_voltage fn of the core does
* not seem to set the power_mode to
* MMC_POWER_UP upon recalculating the voltage.
* vdd 1.8v.
*/
if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
dev_dbg(mmc_dev(host->mmc),
"Switch operation failed\n");
}
}
omap_hsmmc_set_clock(host);
if (do_send_init_stream)
send_init_stream(host);
omap_hsmmc_set_bus_mode(host);
pm_runtime_put_autosuspend(host->dev);
}
static int omap_hsmmc_get_cd(struct mmc_host *mmc)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
if (!mmc_slot(host).card_detect)
return -ENOSYS;
return mmc_slot(host).card_detect(host->dev, host->slot_id);
}
static int omap_hsmmc_get_ro(struct mmc_host *mmc)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
if (!mmc_slot(host).get_ro)
return -ENOSYS;
return mmc_slot(host).get_ro(host->dev, 0);
}
static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
if (mmc_slot(host).init_card)
mmc_slot(host).init_card(card);
}
static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
u32 irq_mask, con;
unsigned long flags;
spin_lock_irqsave(&host->irq_lock, flags);
con = OMAP_HSMMC_READ(host->base, CON);
irq_mask = OMAP_HSMMC_READ(host->base, ISE);
if (enable) {
host->flags |= HSMMC_SDIO_IRQ_ENABLED;
irq_mask |= CIRQ_EN;
con |= CTPL | CLKEXTFREE;
} else {
host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
irq_mask &= ~CIRQ_EN;
con &= ~(CTPL | CLKEXTFREE);
}
OMAP_HSMMC_WRITE(host->base, CON, con);
OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
/*
* if enable, piggy back detection on current request
* but always disable immediately
*/
if (!host->req_in_progress || !enable)
OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
/* flush posted write */
OMAP_HSMMC_READ(host->base, IE);
spin_unlock_irqrestore(&host->irq_lock, flags);
}
static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
{
struct mmc_host *mmc = host->mmc;
int ret;
/*
* For omaps with wake-up path, wakeirq will be irq from pinctrl and
* for other omaps, wakeirq will be from GPIO (dat line remuxed to
* gpio). wakeirq is needed to detect sdio irq in runtime suspend state
* with functional clock disabled.
*/
if (!host->dev->of_node || !host->wake_irq)
return -ENODEV;
/* Prevent auto-enabling of IRQ */
irq_set_status_flags(host->wake_irq, IRQ_NOAUTOEN);
ret = devm_request_irq(host->dev, host->wake_irq, omap_hsmmc_wake_irq,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
mmc_hostname(mmc), host);
if (ret) {
dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
goto err;
}
/*
* Some omaps don't have wake-up path from deeper idle states
* and need to remux SDIO DAT1 to GPIO for wake-up from idle.
*/
if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
struct pinctrl *p = devm_pinctrl_get(host->dev);
if (!p) {
ret = -ENODEV;
goto err_free_irq;
}
if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
dev_info(host->dev, "missing default pinctrl state\n");
devm_pinctrl_put(p);
ret = -EINVAL;
goto err_free_irq;
}
if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
dev_info(host->dev, "missing idle pinctrl state\n");
devm_pinctrl_put(p);
ret = -EINVAL;
goto err_free_irq;
}
devm_pinctrl_put(p);
}
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | IWE);
return 0;
err_free_irq:
devm_free_irq(host->dev, host->wake_irq, host);
err:
dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
host->wake_irq = 0;
return ret;
}
static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
{
u32 hctl, capa, value;
/* Only MMC1 supports 3.0V */
if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
hctl = SDVS30;
capa = VS30 | VS18;
} else {
hctl = SDVS18;
capa = VS18;
}
value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
value = OMAP_HSMMC_READ(host->base, CAPA);
OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
/* Set SD bus power bit */
set_sd_bus_power(host);
}
static int omap_hsmmc_enable_fclk(struct mmc_host *mmc)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
pm_runtime_get_sync(host->dev);
return 0;
}
static int omap_hsmmc_disable_fclk(struct mmc_host *mmc)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
pm_runtime_mark_last_busy(host->dev);
pm_runtime_put_autosuspend(host->dev);
return 0;
}
static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
unsigned int direction, int blk_size)
{
/* This controller can't do multiblock reads due to hw bugs */
if (direction == MMC_DATA_READ)
return 1;
return blk_size;
}
static struct mmc_host_ops omap_hsmmc_ops = {
.enable = omap_hsmmc_enable_fclk,
.disable = omap_hsmmc_disable_fclk,
.post_req = omap_hsmmc_post_req,
.pre_req = omap_hsmmc_pre_req,
.request = omap_hsmmc_request,
.set_ios = omap_hsmmc_set_ios,
.get_cd = omap_hsmmc_get_cd,
.get_ro = omap_hsmmc_get_ro,
.init_card = omap_hsmmc_init_card,
.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
};
#ifdef CONFIG_DEBUG_FS
static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
{
struct mmc_host *mmc = s->private;
struct omap_hsmmc_host *host = mmc_priv(mmc);
seq_printf(s, "mmc%d:\n", mmc->index);
seq_printf(s, "sdio irq mode\t%s\n",
(mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
if (mmc->caps & MMC_CAP_SDIO_IRQ) {
seq_printf(s, "sdio irq \t%s\n",
(host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled"
: "disabled");
}
seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
pm_runtime_get_sync(host->dev);
seq_puts(s, "\nregs:\n");
seq_printf(s, "CON:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, CON));
seq_printf(s, "PSTATE:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, PSTATE));
seq_printf(s, "HCTL:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, HCTL));
seq_printf(s, "SYSCTL:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, SYSCTL));
seq_printf(s, "IE:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, IE));
seq_printf(s, "ISE:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, ISE));
seq_printf(s, "CAPA:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, CAPA));
pm_runtime_mark_last_busy(host->dev);
pm_runtime_put_autosuspend(host->dev);
return 0;
}
static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
{
return single_open(file, omap_hsmmc_regs_show, inode->i_private);
}
static const struct file_operations mmc_regs_fops = {
.open = omap_hsmmc_regs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void omap_hsmmc_debugfs(struct mmc_host *mmc)
{
if (mmc->debugfs_root)
debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
mmc, &mmc_regs_fops);
}
#else
static void omap_hsmmc_debugfs(struct mmc_host *mmc)
{
}
#endif
#ifdef CONFIG_OF
static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
/* See 35xx errata 2.1.1.128 in SPRZ278F */
.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
};
static const struct omap_mmc_of_data omap4_mmc_of_data = {
.reg_offset = 0x100,
};
static const struct omap_mmc_of_data am33xx_mmc_of_data = {
.reg_offset = 0x100,
.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
};
static const struct of_device_id omap_mmc_of_match[] = {
{
.compatible = "ti,omap2-hsmmc",
},
{
.compatible = "ti,omap3-pre-es3-hsmmc",
.data = &omap3_pre_es3_mmc_of_data,
},
{
.compatible = "ti,omap3-hsmmc",
},
{
.compatible = "ti,omap4-hsmmc",
.data = &omap4_mmc_of_data,
},
{
.compatible = "ti,am33xx-hsmmc",
.data = &am33xx_mmc_of_data,
},
{},
};
MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
static struct omap_mmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
{
struct omap_mmc_platform_data *pdata;
struct device_node *np = dev->of_node;
u32 bus_width, max_freq;
int cd_gpio, wp_gpio;
cd_gpio = of_get_named_gpio(np, "cd-gpios", 0);
wp_gpio = of_get_named_gpio(np, "wp-gpios", 0);
if (cd_gpio == -EPROBE_DEFER || wp_gpio == -EPROBE_DEFER)
return ERR_PTR(-EPROBE_DEFER);
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return ERR_PTR(-ENOMEM); /* out of memory */
if (of_find_property(np, "ti,dual-volt", NULL))
pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
/* This driver only supports 1 slot */
pdata->nr_slots = 1;
pdata->slots[0].switch_pin = cd_gpio;
pdata->slots[0].gpio_wp = wp_gpio;
if (of_find_property(np, "ti,non-removable", NULL)) {
pdata->slots[0].nonremovable = true;
pdata->slots[0].no_regulator_off_init = true;
}
of_property_read_u32(np, "bus-width", &bus_width);
if (bus_width == 4)
pdata->slots[0].caps |= MMC_CAP_4_BIT_DATA;
else if (bus_width == 8)
pdata->slots[0].caps |= MMC_CAP_8_BIT_DATA;
if (of_find_property(np, "ti,needs-special-reset", NULL))
pdata->slots[0].features |= HSMMC_HAS_UPDATED_RESET;
if (!of_property_read_u32(np, "max-frequency", &max_freq))
pdata->max_freq = max_freq;
if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
pdata->slots[0].features |= HSMMC_HAS_HSPE_SUPPORT;
if (of_find_property(np, "keep-power-in-suspend", NULL))
pdata->slots[0].pm_caps |= MMC_PM_KEEP_POWER;
if (of_find_property(np, "enable-sdio-wakeup", NULL))
pdata->slots[0].pm_caps |= MMC_PM_WAKE_SDIO_IRQ;
return pdata;
}
#else
static inline struct omap_mmc_platform_data
*of_get_hsmmc_pdata(struct device *dev)
{
return ERR_PTR(-EINVAL);
}
#endif
static int omap_hsmmc_probe(struct platform_device *pdev)
{
struct omap_mmc_platform_data *pdata = pdev->dev.platform_data;
struct mmc_host *mmc;
struct omap_hsmmc_host *host = NULL;
struct resource *res;
int ret, irq;
const struct of_device_id *match;
dma_cap_mask_t mask;
unsigned tx_req, rx_req;
const struct omap_mmc_of_data *data;
void __iomem *base;
match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
if (match) {
pdata = of_get_hsmmc_pdata(&pdev->dev);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
if (match->data) {
data = match->data;
pdata->reg_offset = data->reg_offset;
pdata->controller_flags |= data->controller_flags;
}
}
if (pdata == NULL) {
dev_err(&pdev->dev, "Platform Data is missing\n");
return -ENXIO;
}
if (pdata->nr_slots == 0) {
dev_err(&pdev->dev, "No Slots\n");
return -ENXIO;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (res == NULL || irq < 0)
return -ENXIO;
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
ret = omap_hsmmc_gpio_init(pdata);
if (ret)
goto err;
mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto err_alloc;
}
host = mmc_priv(mmc);
host->mmc = mmc;
host->pdata = pdata;
host->dev = &pdev->dev;
host->use_dma = 1;
host->dma_ch = -1;
host->irq = irq;
host->slot_id = 0;
host->mapbase = res->start + pdata->reg_offset;
host->base = base + pdata->reg_offset;
host->power_mode = MMC_POWER_OFF;
host->next_data.cookie = 1;
host->pbias_enabled = 0;
platform_set_drvdata(pdev, host);
if (pdev->dev.of_node)
host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
mmc->ops = &omap_hsmmc_ops;
mmc->f_min = OMAP_MMC_MIN_CLOCK;
if (pdata->max_freq > 0)
mmc->f_max = pdata->max_freq;
else
mmc->f_max = OMAP_MMC_MAX_CLOCK;
spin_lock_init(&host->irq_lock);
host->fclk = devm_clk_get(&pdev->dev, "fck");
if (IS_ERR(host->fclk)) {
ret = PTR_ERR(host->fclk);
host->fclk = NULL;
goto err1;
}
if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
}
pm_runtime_enable(host->dev);
pm_runtime_get_sync(host->dev);
pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(host->dev);
omap_hsmmc_context_save(host);
host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
/*
* MMC can still work without debounce clock.
*/
if (IS_ERR(host->dbclk)) {
host->dbclk = NULL;
} else if (clk_prepare_enable(host->dbclk) != 0) {
dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
host->dbclk = NULL;
}
/* Since we do only SG emulation, we can have as many segs
* as we want. */
mmc->max_segs = 1024;
mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
mmc->caps |= mmc_slot(host).caps;
if (mmc->caps & MMC_CAP_8_BIT_DATA)
mmc->caps |= MMC_CAP_4_BIT_DATA;
if (mmc_slot(host).nonremovable)
mmc->caps |= MMC_CAP_NONREMOVABLE;
mmc->pm_caps = mmc_slot(host).pm_caps;
omap_hsmmc_conf_bus_power(host);
if (!pdev->dev.of_node) {
res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
if (!res) {
dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
ret = -ENXIO;
goto err_irq;
}
tx_req = res->start;
res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
if (!res) {
dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
ret = -ENXIO;
goto err_irq;
}
rx_req = res->start;
}
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
host->rx_chan =
dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
&rx_req, &pdev->dev, "rx");
if (!host->rx_chan) {
dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel %u\n", rx_req);
ret = -ENXIO;
goto err_irq;
}
host->tx_chan =
dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
&tx_req, &pdev->dev, "tx");
if (!host->tx_chan) {
dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel %u\n", tx_req);
ret = -ENXIO;
goto err_irq;
}
/* Request IRQ for MMC operations */
ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
mmc_hostname(mmc), host);
if (ret) {
dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
goto err_irq;
}
if (pdata->init != NULL) {
if (pdata->init(&pdev->dev) != 0) {
dev_err(mmc_dev(host->mmc),
"Unable to configure MMC IRQs\n");
goto err_irq;
}
}
if (omap_hsmmc_have_reg() && !mmc_slot(host).set_power) {
ret = omap_hsmmc_reg_get(host);
if (ret)
goto err_reg;
host->use_reg = 1;
}
mmc->ocr_avail = mmc_slot(host).ocr_mask;
/* Request IRQ for card detect */
if ((mmc_slot(host).card_detect_irq)) {
ret = devm_request_threaded_irq(&pdev->dev,
mmc_slot(host).card_detect_irq,
NULL, omap_hsmmc_detect,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
mmc_hostname(mmc), host);
if (ret) {
dev_err(mmc_dev(host->mmc),
"Unable to grab MMC CD IRQ\n");
goto err_irq_cd;
}
pdata->suspend = omap_hsmmc_suspend_cdirq;
pdata->resume = omap_hsmmc_resume_cdirq;
}
omap_hsmmc_disable_irq(host);
/*
* For now, only support SDIO interrupt if we have a separate
* wake-up interrupt configured from device tree. This is because
* the wake-up interrupt is needed for idle state and some
* platforms need special quirks. And we don't want to add new
* legacy mux platform init code callbacks any longer as we
* are moving to DT based booting anyways.
*/
ret = omap_hsmmc_configure_wake_irq(host);
if (!ret)
mmc->caps |= MMC_CAP_SDIO_IRQ;
omap_hsmmc_protect_card(host);
mmc_add_host(mmc);
if (mmc_slot(host).name != NULL) {
ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
if (ret < 0)
goto err_slot_name;
}
if (mmc_slot(host).card_detect_irq && mmc_slot(host).get_cover_state) {
ret = device_create_file(&mmc->class_dev,
&dev_attr_cover_switch);
if (ret < 0)
goto err_slot_name;
}
omap_hsmmc_debugfs(mmc);
pm_runtime_mark_last_busy(host->dev);
pm_runtime_put_autosuspend(host->dev);
return 0;
err_slot_name:
mmc_remove_host(mmc);
err_irq_cd:
if (host->use_reg)
omap_hsmmc_reg_put(host);
err_reg:
if (host->pdata->cleanup)
host->pdata->cleanup(&pdev->dev);
err_irq:
if (host->tx_chan)
dma_release_channel(host->tx_chan);
if (host->rx_chan)
dma_release_channel(host->rx_chan);
pm_runtime_put_sync(host->dev);
pm_runtime_disable(host->dev);
if (host->dbclk)
clk_disable_unprepare(host->dbclk);
err1:
mmc_free_host(mmc);
err_alloc:
omap_hsmmc_gpio_free(pdata);
err:
return ret;
}
static int omap_hsmmc_remove(struct platform_device *pdev)
{
struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
pm_runtime_get_sync(host->dev);
mmc_remove_host(host->mmc);
if (host->use_reg)
omap_hsmmc_reg_put(host);
if (host->pdata->cleanup)
host->pdata->cleanup(&pdev->dev);
if (host->tx_chan)
dma_release_channel(host->tx_chan);
if (host->rx_chan)
dma_release_channel(host->rx_chan);
pm_runtime_put_sync(host->dev);
pm_runtime_disable(host->dev);
if (host->dbclk)
clk_disable_unprepare(host->dbclk);
omap_hsmmc_gpio_free(host->pdata);
mmc_free_host(host->mmc);
return 0;
}
#ifdef CONFIG_PM
static int omap_hsmmc_prepare(struct device *dev)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
if (host->pdata->suspend)
return host->pdata->suspend(dev, host->slot_id);
return 0;
}
static void omap_hsmmc_complete(struct device *dev)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
if (host->pdata->resume)
host->pdata->resume(dev, host->slot_id);
}
static int omap_hsmmc_suspend(struct device *dev)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
if (!host)
return 0;
pm_runtime_get_sync(host->dev);
if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
OMAP_HSMMC_WRITE(host->base, ISE, 0);
OMAP_HSMMC_WRITE(host->base, IE, 0);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
}
/* do not wake up due to sdio irq */
if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
!(host->mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ))
disable_irq(host->wake_irq);
if (host->dbclk)
clk_disable_unprepare(host->dbclk);
pm_runtime_put_sync(host->dev);
return 0;
}
/* Routine to resume the MMC device */
static int omap_hsmmc_resume(struct device *dev)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
if (!host)
return 0;
pm_runtime_get_sync(host->dev);
if (host->dbclk)
clk_prepare_enable(host->dbclk);
if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
omap_hsmmc_conf_bus_power(host);
omap_hsmmc_protect_card(host);
if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
!(host->mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ))
enable_irq(host->wake_irq);
pm_runtime_mark_last_busy(host->dev);
pm_runtime_put_autosuspend(host->dev);
return 0;
}
#else
#define omap_hsmmc_prepare NULL
#define omap_hsmmc_complete NULL
#define omap_hsmmc_suspend NULL
#define omap_hsmmc_resume NULL
#endif
static int omap_hsmmc_runtime_suspend(struct device *dev)
{
struct omap_hsmmc_host *host;
unsigned long flags;
int ret = 0;
host = platform_get_drvdata(to_platform_device(dev));
omap_hsmmc_context_save(host);
dev_dbg(dev, "disabled\n");
spin_lock_irqsave(&host->irq_lock, flags);
if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
(host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
/* disable sdio irq handling to prevent race */
OMAP_HSMMC_WRITE(host->base, ISE, 0);
OMAP_HSMMC_WRITE(host->base, IE, 0);
if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
/*
* dat1 line low, pending sdio irq
* race condition: possible irq handler running on
* multi-core, abort
*/
dev_dbg(dev, "pending sdio irq, abort suspend\n");
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
pm_runtime_mark_last_busy(dev);
ret = -EBUSY;
goto abort;
}
pinctrl_pm_select_idle_state(dev);
WARN_ON(host->flags & HSMMC_WAKE_IRQ_ENABLED);
enable_irq(host->wake_irq);
host->flags |= HSMMC_WAKE_IRQ_ENABLED;
} else {
pinctrl_pm_select_idle_state(dev);
}
abort:
spin_unlock_irqrestore(&host->irq_lock, flags);
return ret;
}
static int omap_hsmmc_runtime_resume(struct device *dev)
{
struct omap_hsmmc_host *host;
unsigned long flags;
host = platform_get_drvdata(to_platform_device(dev));
omap_hsmmc_context_restore(host);
dev_dbg(dev, "enabled\n");
spin_lock_irqsave(&host->irq_lock, flags);
if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
(host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
/* sdio irq flag can't change while in runtime suspend */
if (host->flags & HSMMC_WAKE_IRQ_ENABLED) {
disable_irq_nosync(host->wake_irq);
host->flags &= ~HSMMC_WAKE_IRQ_ENABLED;
}
pinctrl_pm_select_default_state(host->dev);
/* irq lost, if pinmux incorrect */
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
} else {
pinctrl_pm_select_default_state(host->dev);
}
spin_unlock_irqrestore(&host->irq_lock, flags);
return 0;
}
static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
.suspend = omap_hsmmc_suspend,
.resume = omap_hsmmc_resume,
.prepare = omap_hsmmc_prepare,
.complete = omap_hsmmc_complete,
.runtime_suspend = omap_hsmmc_runtime_suspend,
.runtime_resume = omap_hsmmc_runtime_resume,
};
static struct platform_driver omap_hsmmc_driver = {
.probe = omap_hsmmc_probe,
.remove = omap_hsmmc_remove,
.driver = {
.name = DRIVER_NAME,
.pm = &omap_hsmmc_dev_pm_ops,
.of_match_table = of_match_ptr(omap_mmc_of_match),
},
};
module_platform_driver(omap_hsmmc_driver);
MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Texas Instruments Inc");