16653 lines
464 KiB
C
16653 lines
464 KiB
C
/*
|
|
* Copyright © 2006-2007 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*/
|
|
|
|
#include <linux/dmi.h>
|
|
#include <linux/module.h>
|
|
#include <linux/input.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vgaarb.h>
|
|
#include <drm/drm_edid.h>
|
|
#include <drm/drmP.h>
|
|
#include "intel_drv.h"
|
|
#include "intel_frontbuffer.h"
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
#include "i915_gem_dmabuf.h"
|
|
#include "intel_dsi.h"
|
|
#include "i915_trace.h"
|
|
#include <drm/drm_atomic.h>
|
|
#include <drm/drm_atomic_helper.h>
|
|
#include <drm/drm_dp_helper.h>
|
|
#include <drm/drm_crtc_helper.h>
|
|
#include <drm/drm_plane_helper.h>
|
|
#include <drm/drm_rect.h>
|
|
#include <linux/dma_remapping.h>
|
|
#include <linux/reservation.h>
|
|
|
|
static bool is_mmio_work(struct intel_flip_work *work)
|
|
{
|
|
return work->mmio_work.func;
|
|
}
|
|
|
|
/* Primary plane formats for gen <= 3 */
|
|
static const uint32_t i8xx_primary_formats[] = {
|
|
DRM_FORMAT_C8,
|
|
DRM_FORMAT_RGB565,
|
|
DRM_FORMAT_XRGB1555,
|
|
DRM_FORMAT_XRGB8888,
|
|
};
|
|
|
|
/* Primary plane formats for gen >= 4 */
|
|
static const uint32_t i965_primary_formats[] = {
|
|
DRM_FORMAT_C8,
|
|
DRM_FORMAT_RGB565,
|
|
DRM_FORMAT_XRGB8888,
|
|
DRM_FORMAT_XBGR8888,
|
|
DRM_FORMAT_XRGB2101010,
|
|
DRM_FORMAT_XBGR2101010,
|
|
};
|
|
|
|
static const uint32_t skl_primary_formats[] = {
|
|
DRM_FORMAT_C8,
|
|
DRM_FORMAT_RGB565,
|
|
DRM_FORMAT_XRGB8888,
|
|
DRM_FORMAT_XBGR8888,
|
|
DRM_FORMAT_ARGB8888,
|
|
DRM_FORMAT_ABGR8888,
|
|
DRM_FORMAT_XRGB2101010,
|
|
DRM_FORMAT_XBGR2101010,
|
|
DRM_FORMAT_YUYV,
|
|
DRM_FORMAT_YVYU,
|
|
DRM_FORMAT_UYVY,
|
|
DRM_FORMAT_VYUY,
|
|
};
|
|
|
|
/* Cursor formats */
|
|
static const uint32_t intel_cursor_formats[] = {
|
|
DRM_FORMAT_ARGB8888,
|
|
};
|
|
|
|
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config);
|
|
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config);
|
|
|
|
static int intel_framebuffer_init(struct drm_device *dev,
|
|
struct intel_framebuffer *ifb,
|
|
struct drm_mode_fb_cmd2 *mode_cmd,
|
|
struct drm_i915_gem_object *obj);
|
|
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
|
|
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
|
|
static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
|
|
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
|
|
struct intel_link_m_n *m_n,
|
|
struct intel_link_m_n *m2_n2);
|
|
static void ironlake_set_pipeconf(struct drm_crtc *crtc);
|
|
static void haswell_set_pipeconf(struct drm_crtc *crtc);
|
|
static void haswell_set_pipemisc(struct drm_crtc *crtc);
|
|
static void vlv_prepare_pll(struct intel_crtc *crtc,
|
|
const struct intel_crtc_state *pipe_config);
|
|
static void chv_prepare_pll(struct intel_crtc *crtc,
|
|
const struct intel_crtc_state *pipe_config);
|
|
static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
|
|
static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
|
|
static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
|
|
struct intel_crtc_state *crtc_state);
|
|
static void skylake_pfit_enable(struct intel_crtc *crtc);
|
|
static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
|
|
static void ironlake_pfit_enable(struct intel_crtc *crtc);
|
|
static void intel_modeset_setup_hw_state(struct drm_device *dev);
|
|
static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
|
|
static int ilk_max_pixel_rate(struct drm_atomic_state *state);
|
|
static int bxt_calc_cdclk(int max_pixclk);
|
|
|
|
struct intel_limit {
|
|
struct {
|
|
int min, max;
|
|
} dot, vco, n, m, m1, m2, p, p1;
|
|
|
|
struct {
|
|
int dot_limit;
|
|
int p2_slow, p2_fast;
|
|
} p2;
|
|
};
|
|
|
|
/* returns HPLL frequency in kHz */
|
|
static int valleyview_get_vco(struct drm_i915_private *dev_priv)
|
|
{
|
|
int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
|
|
|
|
/* Obtain SKU information */
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
|
|
CCK_FUSE_HPLL_FREQ_MASK;
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
return vco_freq[hpll_freq] * 1000;
|
|
}
|
|
|
|
int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
|
|
const char *name, u32 reg, int ref_freq)
|
|
{
|
|
u32 val;
|
|
int divider;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
val = vlv_cck_read(dev_priv, reg);
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
divider = val & CCK_FREQUENCY_VALUES;
|
|
|
|
WARN((val & CCK_FREQUENCY_STATUS) !=
|
|
(divider << CCK_FREQUENCY_STATUS_SHIFT),
|
|
"%s change in progress\n", name);
|
|
|
|
return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
|
|
}
|
|
|
|
static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
|
|
const char *name, u32 reg)
|
|
{
|
|
if (dev_priv->hpll_freq == 0)
|
|
dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
|
|
|
|
return vlv_get_cck_clock(dev_priv, name, reg,
|
|
dev_priv->hpll_freq);
|
|
}
|
|
|
|
static int
|
|
intel_pch_rawclk(struct drm_i915_private *dev_priv)
|
|
{
|
|
return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
|
|
}
|
|
|
|
static int
|
|
intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* RAWCLK_FREQ_VLV register updated from power well code */
|
|
return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
|
|
CCK_DISPLAY_REF_CLOCK_CONTROL);
|
|
}
|
|
|
|
static int
|
|
intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t clkcfg;
|
|
|
|
/* hrawclock is 1/4 the FSB frequency */
|
|
clkcfg = I915_READ(CLKCFG);
|
|
switch (clkcfg & CLKCFG_FSB_MASK) {
|
|
case CLKCFG_FSB_400:
|
|
return 100000;
|
|
case CLKCFG_FSB_533:
|
|
return 133333;
|
|
case CLKCFG_FSB_667:
|
|
return 166667;
|
|
case CLKCFG_FSB_800:
|
|
return 200000;
|
|
case CLKCFG_FSB_1067:
|
|
return 266667;
|
|
case CLKCFG_FSB_1333:
|
|
return 333333;
|
|
/* these two are just a guess; one of them might be right */
|
|
case CLKCFG_FSB_1600:
|
|
case CLKCFG_FSB_1600_ALT:
|
|
return 400000;
|
|
default:
|
|
return 133333;
|
|
}
|
|
}
|
|
|
|
void intel_update_rawclk(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (HAS_PCH_SPLIT(dev_priv))
|
|
dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
|
|
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
|
|
else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
|
|
dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
|
|
else
|
|
return; /* no rawclk on other platforms, or no need to know it */
|
|
|
|
DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
|
|
}
|
|
|
|
static void intel_update_czclk(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
|
|
return;
|
|
|
|
dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
|
|
CCK_CZ_CLOCK_CONTROL);
|
|
|
|
DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
|
|
}
|
|
|
|
static inline u32 /* units of 100MHz */
|
|
intel_fdi_link_freq(struct drm_i915_private *dev_priv,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
if (HAS_DDI(dev_priv))
|
|
return pipe_config->port_clock; /* SPLL */
|
|
else if (IS_GEN5(dev_priv))
|
|
return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
|
|
else
|
|
return 270000;
|
|
}
|
|
|
|
static const struct intel_limit intel_limits_i8xx_dac = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 908000, .max = 1512000 },
|
|
.n = { .min = 2, .max = 16 },
|
|
.m = { .min = 96, .max = 140 },
|
|
.m1 = { .min = 18, .max = 26 },
|
|
.m2 = { .min = 6, .max = 16 },
|
|
.p = { .min = 4, .max = 128 },
|
|
.p1 = { .min = 2, .max = 33 },
|
|
.p2 = { .dot_limit = 165000,
|
|
.p2_slow = 4, .p2_fast = 2 },
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_i8xx_dvo = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 908000, .max = 1512000 },
|
|
.n = { .min = 2, .max = 16 },
|
|
.m = { .min = 96, .max = 140 },
|
|
.m1 = { .min = 18, .max = 26 },
|
|
.m2 = { .min = 6, .max = 16 },
|
|
.p = { .min = 4, .max = 128 },
|
|
.p1 = { .min = 2, .max = 33 },
|
|
.p2 = { .dot_limit = 165000,
|
|
.p2_slow = 4, .p2_fast = 4 },
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_i8xx_lvds = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 908000, .max = 1512000 },
|
|
.n = { .min = 2, .max = 16 },
|
|
.m = { .min = 96, .max = 140 },
|
|
.m1 = { .min = 18, .max = 26 },
|
|
.m2 = { .min = 6, .max = 16 },
|
|
.p = { .min = 4, .max = 128 },
|
|
.p1 = { .min = 1, .max = 6 },
|
|
.p2 = { .dot_limit = 165000,
|
|
.p2_slow = 14, .p2_fast = 7 },
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_i9xx_sdvo = {
|
|
.dot = { .min = 20000, .max = 400000 },
|
|
.vco = { .min = 1400000, .max = 2800000 },
|
|
.n = { .min = 1, .max = 6 },
|
|
.m = { .min = 70, .max = 120 },
|
|
.m1 = { .min = 8, .max = 18 },
|
|
.m2 = { .min = 3, .max = 7 },
|
|
.p = { .min = 5, .max = 80 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 200000,
|
|
.p2_slow = 10, .p2_fast = 5 },
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_i9xx_lvds = {
|
|
.dot = { .min = 20000, .max = 400000 },
|
|
.vco = { .min = 1400000, .max = 2800000 },
|
|
.n = { .min = 1, .max = 6 },
|
|
.m = { .min = 70, .max = 120 },
|
|
.m1 = { .min = 8, .max = 18 },
|
|
.m2 = { .min = 3, .max = 7 },
|
|
.p = { .min = 7, .max = 98 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 112000,
|
|
.p2_slow = 14, .p2_fast = 7 },
|
|
};
|
|
|
|
|
|
static const struct intel_limit intel_limits_g4x_sdvo = {
|
|
.dot = { .min = 25000, .max = 270000 },
|
|
.vco = { .min = 1750000, .max = 3500000},
|
|
.n = { .min = 1, .max = 4 },
|
|
.m = { .min = 104, .max = 138 },
|
|
.m1 = { .min = 17, .max = 23 },
|
|
.m2 = { .min = 5, .max = 11 },
|
|
.p = { .min = 10, .max = 30 },
|
|
.p1 = { .min = 1, .max = 3},
|
|
.p2 = { .dot_limit = 270000,
|
|
.p2_slow = 10,
|
|
.p2_fast = 10
|
|
},
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_g4x_hdmi = {
|
|
.dot = { .min = 22000, .max = 400000 },
|
|
.vco = { .min = 1750000, .max = 3500000},
|
|
.n = { .min = 1, .max = 4 },
|
|
.m = { .min = 104, .max = 138 },
|
|
.m1 = { .min = 16, .max = 23 },
|
|
.m2 = { .min = 5, .max = 11 },
|
|
.p = { .min = 5, .max = 80 },
|
|
.p1 = { .min = 1, .max = 8},
|
|
.p2 = { .dot_limit = 165000,
|
|
.p2_slow = 10, .p2_fast = 5 },
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
|
|
.dot = { .min = 20000, .max = 115000 },
|
|
.vco = { .min = 1750000, .max = 3500000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 104, .max = 138 },
|
|
.m1 = { .min = 17, .max = 23 },
|
|
.m2 = { .min = 5, .max = 11 },
|
|
.p = { .min = 28, .max = 112 },
|
|
.p1 = { .min = 2, .max = 8 },
|
|
.p2 = { .dot_limit = 0,
|
|
.p2_slow = 14, .p2_fast = 14
|
|
},
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
|
|
.dot = { .min = 80000, .max = 224000 },
|
|
.vco = { .min = 1750000, .max = 3500000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 104, .max = 138 },
|
|
.m1 = { .min = 17, .max = 23 },
|
|
.m2 = { .min = 5, .max = 11 },
|
|
.p = { .min = 14, .max = 42 },
|
|
.p1 = { .min = 2, .max = 6 },
|
|
.p2 = { .dot_limit = 0,
|
|
.p2_slow = 7, .p2_fast = 7
|
|
},
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_pineview_sdvo = {
|
|
.dot = { .min = 20000, .max = 400000},
|
|
.vco = { .min = 1700000, .max = 3500000 },
|
|
/* Pineview's Ncounter is a ring counter */
|
|
.n = { .min = 3, .max = 6 },
|
|
.m = { .min = 2, .max = 256 },
|
|
/* Pineview only has one combined m divider, which we treat as m2. */
|
|
.m1 = { .min = 0, .max = 0 },
|
|
.m2 = { .min = 0, .max = 254 },
|
|
.p = { .min = 5, .max = 80 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 200000,
|
|
.p2_slow = 10, .p2_fast = 5 },
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_pineview_lvds = {
|
|
.dot = { .min = 20000, .max = 400000 },
|
|
.vco = { .min = 1700000, .max = 3500000 },
|
|
.n = { .min = 3, .max = 6 },
|
|
.m = { .min = 2, .max = 256 },
|
|
.m1 = { .min = 0, .max = 0 },
|
|
.m2 = { .min = 0, .max = 254 },
|
|
.p = { .min = 7, .max = 112 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 112000,
|
|
.p2_slow = 14, .p2_fast = 14 },
|
|
};
|
|
|
|
/* Ironlake / Sandybridge
|
|
*
|
|
* We calculate clock using (register_value + 2) for N/M1/M2, so here
|
|
* the range value for them is (actual_value - 2).
|
|
*/
|
|
static const struct intel_limit intel_limits_ironlake_dac = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 5 },
|
|
.m = { .min = 79, .max = 127 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 5, .max = 80 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 10, .p2_fast = 5 },
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_ironlake_single_lvds = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 79, .max = 118 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 28, .max = 112 },
|
|
.p1 = { .min = 2, .max = 8 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 14, .p2_fast = 14 },
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_ironlake_dual_lvds = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 79, .max = 127 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 14, .max = 56 },
|
|
.p1 = { .min = 2, .max = 8 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 7, .p2_fast = 7 },
|
|
};
|
|
|
|
/* LVDS 100mhz refclk limits. */
|
|
static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 2 },
|
|
.m = { .min = 79, .max = 126 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 28, .max = 112 },
|
|
.p1 = { .min = 2, .max = 8 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 14, .p2_fast = 14 },
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 79, .max = 126 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 14, .max = 42 },
|
|
.p1 = { .min = 2, .max = 6 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 7, .p2_fast = 7 },
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_vlv = {
|
|
/*
|
|
* These are the data rate limits (measured in fast clocks)
|
|
* since those are the strictest limits we have. The fast
|
|
* clock and actual rate limits are more relaxed, so checking
|
|
* them would make no difference.
|
|
*/
|
|
.dot = { .min = 25000 * 5, .max = 270000 * 5 },
|
|
.vco = { .min = 4000000, .max = 6000000 },
|
|
.n = { .min = 1, .max = 7 },
|
|
.m1 = { .min = 2, .max = 3 },
|
|
.m2 = { .min = 11, .max = 156 },
|
|
.p1 = { .min = 2, .max = 3 },
|
|
.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_chv = {
|
|
/*
|
|
* These are the data rate limits (measured in fast clocks)
|
|
* since those are the strictest limits we have. The fast
|
|
* clock and actual rate limits are more relaxed, so checking
|
|
* them would make no difference.
|
|
*/
|
|
.dot = { .min = 25000 * 5, .max = 540000 * 5},
|
|
.vco = { .min = 4800000, .max = 6480000 },
|
|
.n = { .min = 1, .max = 1 },
|
|
.m1 = { .min = 2, .max = 2 },
|
|
.m2 = { .min = 24 << 22, .max = 175 << 22 },
|
|
.p1 = { .min = 2, .max = 4 },
|
|
.p2 = { .p2_slow = 1, .p2_fast = 14 },
|
|
};
|
|
|
|
static const struct intel_limit intel_limits_bxt = {
|
|
/* FIXME: find real dot limits */
|
|
.dot = { .min = 0, .max = INT_MAX },
|
|
.vco = { .min = 4800000, .max = 6700000 },
|
|
.n = { .min = 1, .max = 1 },
|
|
.m1 = { .min = 2, .max = 2 },
|
|
/* FIXME: find real m2 limits */
|
|
.m2 = { .min = 2 << 22, .max = 255 << 22 },
|
|
.p1 = { .min = 2, .max = 4 },
|
|
.p2 = { .p2_slow = 1, .p2_fast = 20 },
|
|
};
|
|
|
|
static bool
|
|
needs_modeset(struct drm_crtc_state *state)
|
|
{
|
|
return drm_atomic_crtc_needs_modeset(state);
|
|
}
|
|
|
|
/*
|
|
* Platform specific helpers to calculate the port PLL loopback- (clock.m),
|
|
* and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
|
|
* (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
|
|
* The helpers' return value is the rate of the clock that is fed to the
|
|
* display engine's pipe which can be the above fast dot clock rate or a
|
|
* divided-down version of it.
|
|
*/
|
|
/* m1 is reserved as 0 in Pineview, n is a ring counter */
|
|
static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
|
|
{
|
|
clock->m = clock->m2 + 2;
|
|
clock->p = clock->p1 * clock->p2;
|
|
if (WARN_ON(clock->n == 0 || clock->p == 0))
|
|
return 0;
|
|
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
|
|
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
|
|
|
|
return clock->dot;
|
|
}
|
|
|
|
static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
|
|
{
|
|
return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
|
|
}
|
|
|
|
static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
|
|
{
|
|
clock->m = i9xx_dpll_compute_m(clock);
|
|
clock->p = clock->p1 * clock->p2;
|
|
if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
|
|
return 0;
|
|
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
|
|
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
|
|
|
|
return clock->dot;
|
|
}
|
|
|
|
static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
|
|
{
|
|
clock->m = clock->m1 * clock->m2;
|
|
clock->p = clock->p1 * clock->p2;
|
|
if (WARN_ON(clock->n == 0 || clock->p == 0))
|
|
return 0;
|
|
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
|
|
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
|
|
|
|
return clock->dot / 5;
|
|
}
|
|
|
|
int chv_calc_dpll_params(int refclk, struct dpll *clock)
|
|
{
|
|
clock->m = clock->m1 * clock->m2;
|
|
clock->p = clock->p1 * clock->p2;
|
|
if (WARN_ON(clock->n == 0 || clock->p == 0))
|
|
return 0;
|
|
clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
|
|
clock->n << 22);
|
|
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
|
|
|
|
return clock->dot / 5;
|
|
}
|
|
|
|
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
|
|
/**
|
|
* Returns whether the given set of divisors are valid for a given refclk with
|
|
* the given connectors.
|
|
*/
|
|
|
|
static bool intel_PLL_is_valid(struct drm_device *dev,
|
|
const struct intel_limit *limit,
|
|
const struct dpll *clock)
|
|
{
|
|
if (clock->n < limit->n.min || limit->n.max < clock->n)
|
|
INTELPllInvalid("n out of range\n");
|
|
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
|
|
INTELPllInvalid("p1 out of range\n");
|
|
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
|
|
INTELPllInvalid("m2 out of range\n");
|
|
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
|
|
INTELPllInvalid("m1 out of range\n");
|
|
|
|
if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
|
|
!IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
|
|
if (clock->m1 <= clock->m2)
|
|
INTELPllInvalid("m1 <= m2\n");
|
|
|
|
if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
|
|
if (clock->p < limit->p.min || limit->p.max < clock->p)
|
|
INTELPllInvalid("p out of range\n");
|
|
if (clock->m < limit->m.min || limit->m.max < clock->m)
|
|
INTELPllInvalid("m out of range\n");
|
|
}
|
|
|
|
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
|
|
INTELPllInvalid("vco out of range\n");
|
|
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
|
|
* connector, etc., rather than just a single range.
|
|
*/
|
|
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
|
|
INTELPllInvalid("dot out of range\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
static int
|
|
i9xx_select_p2_div(const struct intel_limit *limit,
|
|
const struct intel_crtc_state *crtc_state,
|
|
int target)
|
|
{
|
|
struct drm_device *dev = crtc_state->base.crtc->dev;
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
|
|
/*
|
|
* For LVDS just rely on its current settings for dual-channel.
|
|
* We haven't figured out how to reliably set up different
|
|
* single/dual channel state, if we even can.
|
|
*/
|
|
if (intel_is_dual_link_lvds(dev))
|
|
return limit->p2.p2_fast;
|
|
else
|
|
return limit->p2.p2_slow;
|
|
} else {
|
|
if (target < limit->p2.dot_limit)
|
|
return limit->p2.p2_slow;
|
|
else
|
|
return limit->p2.p2_fast;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns a set of divisors for the desired target clock with the given
|
|
* refclk, or FALSE. The returned values represent the clock equation:
|
|
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
|
|
*
|
|
* Target and reference clocks are specified in kHz.
|
|
*
|
|
* If match_clock is provided, then best_clock P divider must match the P
|
|
* divider from @match_clock used for LVDS downclocking.
|
|
*/
|
|
static bool
|
|
i9xx_find_best_dpll(const struct intel_limit *limit,
|
|
struct intel_crtc_state *crtc_state,
|
|
int target, int refclk, struct dpll *match_clock,
|
|
struct dpll *best_clock)
|
|
{
|
|
struct drm_device *dev = crtc_state->base.crtc->dev;
|
|
struct dpll clock;
|
|
int err = target;
|
|
|
|
memset(best_clock, 0, sizeof(*best_clock));
|
|
|
|
clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
|
|
|
|
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
|
|
clock.m1++) {
|
|
for (clock.m2 = limit->m2.min;
|
|
clock.m2 <= limit->m2.max; clock.m2++) {
|
|
if (clock.m2 >= clock.m1)
|
|
break;
|
|
for (clock.n = limit->n.min;
|
|
clock.n <= limit->n.max; clock.n++) {
|
|
for (clock.p1 = limit->p1.min;
|
|
clock.p1 <= limit->p1.max; clock.p1++) {
|
|
int this_err;
|
|
|
|
i9xx_calc_dpll_params(refclk, &clock);
|
|
if (!intel_PLL_is_valid(dev, limit,
|
|
&clock))
|
|
continue;
|
|
if (match_clock &&
|
|
clock.p != match_clock->p)
|
|
continue;
|
|
|
|
this_err = abs(clock.dot - target);
|
|
if (this_err < err) {
|
|
*best_clock = clock;
|
|
err = this_err;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return (err != target);
|
|
}
|
|
|
|
/*
|
|
* Returns a set of divisors for the desired target clock with the given
|
|
* refclk, or FALSE. The returned values represent the clock equation:
|
|
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
|
|
*
|
|
* Target and reference clocks are specified in kHz.
|
|
*
|
|
* If match_clock is provided, then best_clock P divider must match the P
|
|
* divider from @match_clock used for LVDS downclocking.
|
|
*/
|
|
static bool
|
|
pnv_find_best_dpll(const struct intel_limit *limit,
|
|
struct intel_crtc_state *crtc_state,
|
|
int target, int refclk, struct dpll *match_clock,
|
|
struct dpll *best_clock)
|
|
{
|
|
struct drm_device *dev = crtc_state->base.crtc->dev;
|
|
struct dpll clock;
|
|
int err = target;
|
|
|
|
memset(best_clock, 0, sizeof(*best_clock));
|
|
|
|
clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
|
|
|
|
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
|
|
clock.m1++) {
|
|
for (clock.m2 = limit->m2.min;
|
|
clock.m2 <= limit->m2.max; clock.m2++) {
|
|
for (clock.n = limit->n.min;
|
|
clock.n <= limit->n.max; clock.n++) {
|
|
for (clock.p1 = limit->p1.min;
|
|
clock.p1 <= limit->p1.max; clock.p1++) {
|
|
int this_err;
|
|
|
|
pnv_calc_dpll_params(refclk, &clock);
|
|
if (!intel_PLL_is_valid(dev, limit,
|
|
&clock))
|
|
continue;
|
|
if (match_clock &&
|
|
clock.p != match_clock->p)
|
|
continue;
|
|
|
|
this_err = abs(clock.dot - target);
|
|
if (this_err < err) {
|
|
*best_clock = clock;
|
|
err = this_err;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return (err != target);
|
|
}
|
|
|
|
/*
|
|
* Returns a set of divisors for the desired target clock with the given
|
|
* refclk, or FALSE. The returned values represent the clock equation:
|
|
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
|
|
*
|
|
* Target and reference clocks are specified in kHz.
|
|
*
|
|
* If match_clock is provided, then best_clock P divider must match the P
|
|
* divider from @match_clock used for LVDS downclocking.
|
|
*/
|
|
static bool
|
|
g4x_find_best_dpll(const struct intel_limit *limit,
|
|
struct intel_crtc_state *crtc_state,
|
|
int target, int refclk, struct dpll *match_clock,
|
|
struct dpll *best_clock)
|
|
{
|
|
struct drm_device *dev = crtc_state->base.crtc->dev;
|
|
struct dpll clock;
|
|
int max_n;
|
|
bool found = false;
|
|
/* approximately equals target * 0.00585 */
|
|
int err_most = (target >> 8) + (target >> 9);
|
|
|
|
memset(best_clock, 0, sizeof(*best_clock));
|
|
|
|
clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
|
|
|
|
max_n = limit->n.max;
|
|
/* based on hardware requirement, prefer smaller n to precision */
|
|
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
|
|
/* based on hardware requirement, prefere larger m1,m2 */
|
|
for (clock.m1 = limit->m1.max;
|
|
clock.m1 >= limit->m1.min; clock.m1--) {
|
|
for (clock.m2 = limit->m2.max;
|
|
clock.m2 >= limit->m2.min; clock.m2--) {
|
|
for (clock.p1 = limit->p1.max;
|
|
clock.p1 >= limit->p1.min; clock.p1--) {
|
|
int this_err;
|
|
|
|
i9xx_calc_dpll_params(refclk, &clock);
|
|
if (!intel_PLL_is_valid(dev, limit,
|
|
&clock))
|
|
continue;
|
|
|
|
this_err = abs(clock.dot - target);
|
|
if (this_err < err_most) {
|
|
*best_clock = clock;
|
|
err_most = this_err;
|
|
max_n = clock.n;
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* Check if the calculated PLL configuration is more optimal compared to the
|
|
* best configuration and error found so far. Return the calculated error.
|
|
*/
|
|
static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
|
|
const struct dpll *calculated_clock,
|
|
const struct dpll *best_clock,
|
|
unsigned int best_error_ppm,
|
|
unsigned int *error_ppm)
|
|
{
|
|
/*
|
|
* For CHV ignore the error and consider only the P value.
|
|
* Prefer a bigger P value based on HW requirements.
|
|
*/
|
|
if (IS_CHERRYVIEW(dev)) {
|
|
*error_ppm = 0;
|
|
|
|
return calculated_clock->p > best_clock->p;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(!target_freq))
|
|
return false;
|
|
|
|
*error_ppm = div_u64(1000000ULL *
|
|
abs(target_freq - calculated_clock->dot),
|
|
target_freq);
|
|
/*
|
|
* Prefer a better P value over a better (smaller) error if the error
|
|
* is small. Ensure this preference for future configurations too by
|
|
* setting the error to 0.
|
|
*/
|
|
if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
|
|
*error_ppm = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
return *error_ppm + 10 < best_error_ppm;
|
|
}
|
|
|
|
/*
|
|
* Returns a set of divisors for the desired target clock with the given
|
|
* refclk, or FALSE. The returned values represent the clock equation:
|
|
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
|
|
*/
|
|
static bool
|
|
vlv_find_best_dpll(const struct intel_limit *limit,
|
|
struct intel_crtc_state *crtc_state,
|
|
int target, int refclk, struct dpll *match_clock,
|
|
struct dpll *best_clock)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct dpll clock;
|
|
unsigned int bestppm = 1000000;
|
|
/* min update 19.2 MHz */
|
|
int max_n = min(limit->n.max, refclk / 19200);
|
|
bool found = false;
|
|
|
|
target *= 5; /* fast clock */
|
|
|
|
memset(best_clock, 0, sizeof(*best_clock));
|
|
|
|
/* based on hardware requirement, prefer smaller n to precision */
|
|
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
|
|
for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
|
|
for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
|
|
clock.p2 -= clock.p2 > 10 ? 2 : 1) {
|
|
clock.p = clock.p1 * clock.p2;
|
|
/* based on hardware requirement, prefer bigger m1,m2 values */
|
|
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
|
|
unsigned int ppm;
|
|
|
|
clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
|
|
refclk * clock.m1);
|
|
|
|
vlv_calc_dpll_params(refclk, &clock);
|
|
|
|
if (!intel_PLL_is_valid(dev, limit,
|
|
&clock))
|
|
continue;
|
|
|
|
if (!vlv_PLL_is_optimal(dev, target,
|
|
&clock,
|
|
best_clock,
|
|
bestppm, &ppm))
|
|
continue;
|
|
|
|
*best_clock = clock;
|
|
bestppm = ppm;
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* Returns a set of divisors for the desired target clock with the given
|
|
* refclk, or FALSE. The returned values represent the clock equation:
|
|
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
|
|
*/
|
|
static bool
|
|
chv_find_best_dpll(const struct intel_limit *limit,
|
|
struct intel_crtc_state *crtc_state,
|
|
int target, int refclk, struct dpll *match_clock,
|
|
struct dpll *best_clock)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_device *dev = crtc->base.dev;
|
|
unsigned int best_error_ppm;
|
|
struct dpll clock;
|
|
uint64_t m2;
|
|
int found = false;
|
|
|
|
memset(best_clock, 0, sizeof(*best_clock));
|
|
best_error_ppm = 1000000;
|
|
|
|
/*
|
|
* Based on hardware doc, the n always set to 1, and m1 always
|
|
* set to 2. If requires to support 200Mhz refclk, we need to
|
|
* revisit this because n may not 1 anymore.
|
|
*/
|
|
clock.n = 1, clock.m1 = 2;
|
|
target *= 5; /* fast clock */
|
|
|
|
for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
|
|
for (clock.p2 = limit->p2.p2_fast;
|
|
clock.p2 >= limit->p2.p2_slow;
|
|
clock.p2 -= clock.p2 > 10 ? 2 : 1) {
|
|
unsigned int error_ppm;
|
|
|
|
clock.p = clock.p1 * clock.p2;
|
|
|
|
m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
|
|
clock.n) << 22, refclk * clock.m1);
|
|
|
|
if (m2 > INT_MAX/clock.m1)
|
|
continue;
|
|
|
|
clock.m2 = m2;
|
|
|
|
chv_calc_dpll_params(refclk, &clock);
|
|
|
|
if (!intel_PLL_is_valid(dev, limit, &clock))
|
|
continue;
|
|
|
|
if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
|
|
best_error_ppm, &error_ppm))
|
|
continue;
|
|
|
|
*best_clock = clock;
|
|
best_error_ppm = error_ppm;
|
|
found = true;
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
|
|
struct dpll *best_clock)
|
|
{
|
|
int refclk = 100000;
|
|
const struct intel_limit *limit = &intel_limits_bxt;
|
|
|
|
return chv_find_best_dpll(limit, crtc_state,
|
|
target_clock, refclk, NULL, best_clock);
|
|
}
|
|
|
|
bool intel_crtc_active(struct drm_crtc *crtc)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
/* Be paranoid as we can arrive here with only partial
|
|
* state retrieved from the hardware during setup.
|
|
*
|
|
* We can ditch the adjusted_mode.crtc_clock check as soon
|
|
* as Haswell has gained clock readout/fastboot support.
|
|
*
|
|
* We can ditch the crtc->primary->fb check as soon as we can
|
|
* properly reconstruct framebuffers.
|
|
*
|
|
* FIXME: The intel_crtc->active here should be switched to
|
|
* crtc->state->active once we have proper CRTC states wired up
|
|
* for atomic.
|
|
*/
|
|
return intel_crtc->active && crtc->primary->state->fb &&
|
|
intel_crtc->config->base.adjusted_mode.crtc_clock;
|
|
}
|
|
|
|
enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
return intel_crtc->config->cpu_transcoder;
|
|
}
|
|
|
|
static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
i915_reg_t reg = PIPEDSL(pipe);
|
|
u32 line1, line2;
|
|
u32 line_mask;
|
|
|
|
if (IS_GEN2(dev))
|
|
line_mask = DSL_LINEMASK_GEN2;
|
|
else
|
|
line_mask = DSL_LINEMASK_GEN3;
|
|
|
|
line1 = I915_READ(reg) & line_mask;
|
|
msleep(5);
|
|
line2 = I915_READ(reg) & line_mask;
|
|
|
|
return line1 == line2;
|
|
}
|
|
|
|
/*
|
|
* intel_wait_for_pipe_off - wait for pipe to turn off
|
|
* @crtc: crtc whose pipe to wait for
|
|
*
|
|
* After disabling a pipe, we can't wait for vblank in the usual way,
|
|
* spinning on the vblank interrupt status bit, since we won't actually
|
|
* see an interrupt when the pipe is disabled.
|
|
*
|
|
* On Gen4 and above:
|
|
* wait for the pipe register state bit to turn off
|
|
*
|
|
* Otherwise:
|
|
* wait for the display line value to settle (it usually
|
|
* ends up stopping at the start of the next frame).
|
|
*
|
|
*/
|
|
static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
i915_reg_t reg = PIPECONF(cpu_transcoder);
|
|
|
|
/* Wait for the Pipe State to go off */
|
|
if (intel_wait_for_register(dev_priv,
|
|
reg, I965_PIPECONF_ACTIVE, 0,
|
|
100))
|
|
WARN(1, "pipe_off wait timed out\n");
|
|
} else {
|
|
/* Wait for the display line to settle */
|
|
if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
|
|
WARN(1, "pipe_off wait timed out\n");
|
|
}
|
|
}
|
|
|
|
/* Only for pre-ILK configs */
|
|
void assert_pll(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
u32 val;
|
|
bool cur_state;
|
|
|
|
val = I915_READ(DPLL(pipe));
|
|
cur_state = !!(val & DPLL_VCO_ENABLE);
|
|
I915_STATE_WARN(cur_state != state,
|
|
"PLL state assertion failure (expected %s, current %s)\n",
|
|
onoff(state), onoff(cur_state));
|
|
}
|
|
|
|
/* XXX: the dsi pll is shared between MIPI DSI ports */
|
|
void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
|
|
{
|
|
u32 val;
|
|
bool cur_state;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
cur_state = val & DSI_PLL_VCO_EN;
|
|
I915_STATE_WARN(cur_state != state,
|
|
"DSI PLL state assertion failure (expected %s, current %s)\n",
|
|
onoff(state), onoff(cur_state));
|
|
}
|
|
|
|
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
bool cur_state;
|
|
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
|
|
pipe);
|
|
|
|
if (HAS_DDI(dev_priv)) {
|
|
/* DDI does not have a specific FDI_TX register */
|
|
u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
|
|
cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
|
|
} else {
|
|
u32 val = I915_READ(FDI_TX_CTL(pipe));
|
|
cur_state = !!(val & FDI_TX_ENABLE);
|
|
}
|
|
I915_STATE_WARN(cur_state != state,
|
|
"FDI TX state assertion failure (expected %s, current %s)\n",
|
|
onoff(state), onoff(cur_state));
|
|
}
|
|
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
|
|
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
|
|
|
|
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
u32 val;
|
|
bool cur_state;
|
|
|
|
val = I915_READ(FDI_RX_CTL(pipe));
|
|
cur_state = !!(val & FDI_RX_ENABLE);
|
|
I915_STATE_WARN(cur_state != state,
|
|
"FDI RX state assertion failure (expected %s, current %s)\n",
|
|
onoff(state), onoff(cur_state));
|
|
}
|
|
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
|
|
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
|
|
|
|
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
u32 val;
|
|
|
|
/* ILK FDI PLL is always enabled */
|
|
if (IS_GEN5(dev_priv))
|
|
return;
|
|
|
|
/* On Haswell, DDI ports are responsible for the FDI PLL setup */
|
|
if (HAS_DDI(dev_priv))
|
|
return;
|
|
|
|
val = I915_READ(FDI_TX_CTL(pipe));
|
|
I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
|
|
}
|
|
|
|
void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
u32 val;
|
|
bool cur_state;
|
|
|
|
val = I915_READ(FDI_RX_CTL(pipe));
|
|
cur_state = !!(val & FDI_RX_PLL_ENABLE);
|
|
I915_STATE_WARN(cur_state != state,
|
|
"FDI RX PLL assertion failure (expected %s, current %s)\n",
|
|
onoff(state), onoff(cur_state));
|
|
}
|
|
|
|
void assert_panel_unlocked(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
i915_reg_t pp_reg;
|
|
u32 val;
|
|
enum pipe panel_pipe = PIPE_A;
|
|
bool locked = true;
|
|
|
|
if (WARN_ON(HAS_DDI(dev)))
|
|
return;
|
|
|
|
if (HAS_PCH_SPLIT(dev)) {
|
|
u32 port_sel;
|
|
|
|
pp_reg = PP_CONTROL(0);
|
|
port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
|
|
|
|
if (port_sel == PANEL_PORT_SELECT_LVDS &&
|
|
I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
|
|
panel_pipe = PIPE_B;
|
|
/* XXX: else fix for eDP */
|
|
} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
|
|
/* presumably write lock depends on pipe, not port select */
|
|
pp_reg = PP_CONTROL(pipe);
|
|
panel_pipe = pipe;
|
|
} else {
|
|
pp_reg = PP_CONTROL(0);
|
|
if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
|
|
panel_pipe = PIPE_B;
|
|
}
|
|
|
|
val = I915_READ(pp_reg);
|
|
if (!(val & PANEL_POWER_ON) ||
|
|
((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
|
|
locked = false;
|
|
|
|
I915_STATE_WARN(panel_pipe == pipe && locked,
|
|
"panel assertion failure, pipe %c regs locked\n",
|
|
pipe_name(pipe));
|
|
}
|
|
|
|
static void assert_cursor(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
bool cur_state;
|
|
|
|
if (IS_845G(dev) || IS_I865G(dev))
|
|
cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
|
|
else
|
|
cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
|
|
|
|
I915_STATE_WARN(cur_state != state,
|
|
"cursor on pipe %c assertion failure (expected %s, current %s)\n",
|
|
pipe_name(pipe), onoff(state), onoff(cur_state));
|
|
}
|
|
#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
|
|
#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
|
|
|
|
void assert_pipe(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
bool cur_state;
|
|
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
|
|
pipe);
|
|
enum intel_display_power_domain power_domain;
|
|
|
|
/* if we need the pipe quirk it must be always on */
|
|
if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
|
|
(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
|
|
state = true;
|
|
|
|
power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
|
|
if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
|
|
u32 val = I915_READ(PIPECONF(cpu_transcoder));
|
|
cur_state = !!(val & PIPECONF_ENABLE);
|
|
|
|
intel_display_power_put(dev_priv, power_domain);
|
|
} else {
|
|
cur_state = false;
|
|
}
|
|
|
|
I915_STATE_WARN(cur_state != state,
|
|
"pipe %c assertion failure (expected %s, current %s)\n",
|
|
pipe_name(pipe), onoff(state), onoff(cur_state));
|
|
}
|
|
|
|
static void assert_plane(struct drm_i915_private *dev_priv,
|
|
enum plane plane, bool state)
|
|
{
|
|
u32 val;
|
|
bool cur_state;
|
|
|
|
val = I915_READ(DSPCNTR(plane));
|
|
cur_state = !!(val & DISPLAY_PLANE_ENABLE);
|
|
I915_STATE_WARN(cur_state != state,
|
|
"plane %c assertion failure (expected %s, current %s)\n",
|
|
plane_name(plane), onoff(state), onoff(cur_state));
|
|
}
|
|
|
|
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
|
|
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
|
|
|
|
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
int i;
|
|
|
|
/* Primary planes are fixed to pipes on gen4+ */
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
u32 val = I915_READ(DSPCNTR(pipe));
|
|
I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
|
|
"plane %c assertion failure, should be disabled but not\n",
|
|
plane_name(pipe));
|
|
return;
|
|
}
|
|
|
|
/* Need to check both planes against the pipe */
|
|
for_each_pipe(dev_priv, i) {
|
|
u32 val = I915_READ(DSPCNTR(i));
|
|
enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
|
|
DISPPLANE_SEL_PIPE_SHIFT;
|
|
I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
|
|
"plane %c assertion failure, should be off on pipe %c but is still active\n",
|
|
plane_name(i), pipe_name(pipe));
|
|
}
|
|
}
|
|
|
|
static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
int sprite;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 9) {
|
|
for_each_sprite(dev_priv, pipe, sprite) {
|
|
u32 val = I915_READ(PLANE_CTL(pipe, sprite));
|
|
I915_STATE_WARN(val & PLANE_CTL_ENABLE,
|
|
"plane %d assertion failure, should be off on pipe %c but is still active\n",
|
|
sprite, pipe_name(pipe));
|
|
}
|
|
} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
|
|
for_each_sprite(dev_priv, pipe, sprite) {
|
|
u32 val = I915_READ(SPCNTR(pipe, sprite));
|
|
I915_STATE_WARN(val & SP_ENABLE,
|
|
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
|
|
sprite_name(pipe, sprite), pipe_name(pipe));
|
|
}
|
|
} else if (INTEL_INFO(dev)->gen >= 7) {
|
|
u32 val = I915_READ(SPRCTL(pipe));
|
|
I915_STATE_WARN(val & SPRITE_ENABLE,
|
|
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
|
|
plane_name(pipe), pipe_name(pipe));
|
|
} else if (INTEL_INFO(dev)->gen >= 5) {
|
|
u32 val = I915_READ(DVSCNTR(pipe));
|
|
I915_STATE_WARN(val & DVS_ENABLE,
|
|
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
|
|
plane_name(pipe), pipe_name(pipe));
|
|
}
|
|
}
|
|
|
|
static void assert_vblank_disabled(struct drm_crtc *crtc)
|
|
{
|
|
if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
|
|
drm_crtc_vblank_put(crtc);
|
|
}
|
|
|
|
void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
u32 val;
|
|
bool enabled;
|
|
|
|
val = I915_READ(PCH_TRANSCONF(pipe));
|
|
enabled = !!(val & TRANS_ENABLE);
|
|
I915_STATE_WARN(enabled,
|
|
"transcoder assertion failed, should be off on pipe %c but is still active\n",
|
|
pipe_name(pipe));
|
|
}
|
|
|
|
static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, u32 port_sel, u32 val)
|
|
{
|
|
if ((val & DP_PORT_EN) == 0)
|
|
return false;
|
|
|
|
if (HAS_PCH_CPT(dev_priv)) {
|
|
u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
|
|
if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
|
|
return false;
|
|
} else if (IS_CHERRYVIEW(dev_priv)) {
|
|
if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
|
|
return false;
|
|
} else {
|
|
if ((val & DP_PIPE_MASK) != (pipe << 30))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, u32 val)
|
|
{
|
|
if ((val & SDVO_ENABLE) == 0)
|
|
return false;
|
|
|
|
if (HAS_PCH_CPT(dev_priv)) {
|
|
if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
|
|
return false;
|
|
} else if (IS_CHERRYVIEW(dev_priv)) {
|
|
if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
|
|
return false;
|
|
} else {
|
|
if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, u32 val)
|
|
{
|
|
if ((val & LVDS_PORT_EN) == 0)
|
|
return false;
|
|
|
|
if (HAS_PCH_CPT(dev_priv)) {
|
|
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
|
|
return false;
|
|
} else {
|
|
if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, u32 val)
|
|
{
|
|
if ((val & ADPA_DAC_ENABLE) == 0)
|
|
return false;
|
|
if (HAS_PCH_CPT(dev_priv)) {
|
|
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
|
|
return false;
|
|
} else {
|
|
if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, i915_reg_t reg,
|
|
u32 port_sel)
|
|
{
|
|
u32 val = I915_READ(reg);
|
|
I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
|
|
"PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
|
|
i915_mmio_reg_offset(reg), pipe_name(pipe));
|
|
|
|
I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
|
|
&& (val & DP_PIPEB_SELECT),
|
|
"IBX PCH dp port still using transcoder B\n");
|
|
}
|
|
|
|
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, i915_reg_t reg)
|
|
{
|
|
u32 val = I915_READ(reg);
|
|
I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
|
|
"PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
|
|
i915_mmio_reg_offset(reg), pipe_name(pipe));
|
|
|
|
I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
|
|
&& (val & SDVO_PIPE_B_SELECT),
|
|
"IBX PCH hdmi port still using transcoder B\n");
|
|
}
|
|
|
|
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
u32 val;
|
|
|
|
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
|
|
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
|
|
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
|
|
|
|
val = I915_READ(PCH_ADPA);
|
|
I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
|
|
"PCH VGA enabled on transcoder %c, should be disabled\n",
|
|
pipe_name(pipe));
|
|
|
|
val = I915_READ(PCH_LVDS);
|
|
I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
|
|
"PCH LVDS enabled on transcoder %c, should be disabled\n",
|
|
pipe_name(pipe));
|
|
|
|
assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
|
|
assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
|
|
assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
|
|
}
|
|
|
|
static void _vlv_enable_pll(struct intel_crtc *crtc,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
|
|
POSTING_READ(DPLL(pipe));
|
|
udelay(150);
|
|
|
|
if (intel_wait_for_register(dev_priv,
|
|
DPLL(pipe),
|
|
DPLL_LOCK_VLV,
|
|
DPLL_LOCK_VLV,
|
|
1))
|
|
DRM_ERROR("DPLL %d failed to lock\n", pipe);
|
|
}
|
|
|
|
static void vlv_enable_pll(struct intel_crtc *crtc,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
assert_pipe_disabled(dev_priv, pipe);
|
|
|
|
/* PLL is protected by panel, make sure we can write it */
|
|
assert_panel_unlocked(dev_priv, pipe);
|
|
|
|
if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
|
|
_vlv_enable_pll(crtc, pipe_config);
|
|
|
|
I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
|
|
POSTING_READ(DPLL_MD(pipe));
|
|
}
|
|
|
|
|
|
static void _chv_enable_pll(struct intel_crtc *crtc,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
enum pipe pipe = crtc->pipe;
|
|
enum dpio_channel port = vlv_pipe_to_channel(pipe);
|
|
u32 tmp;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* Enable back the 10bit clock to display controller */
|
|
tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
|
|
tmp |= DPIO_DCLKP_EN;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
/*
|
|
* Need to wait > 100ns between dclkp clock enable bit and PLL enable.
|
|
*/
|
|
udelay(1);
|
|
|
|
/* Enable PLL */
|
|
I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
|
|
|
|
/* Check PLL is locked */
|
|
if (intel_wait_for_register(dev_priv,
|
|
DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
|
|
1))
|
|
DRM_ERROR("PLL %d failed to lock\n", pipe);
|
|
}
|
|
|
|
static void chv_enable_pll(struct intel_crtc *crtc,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
assert_pipe_disabled(dev_priv, pipe);
|
|
|
|
/* PLL is protected by panel, make sure we can write it */
|
|
assert_panel_unlocked(dev_priv, pipe);
|
|
|
|
if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
|
|
_chv_enable_pll(crtc, pipe_config);
|
|
|
|
if (pipe != PIPE_A) {
|
|
/*
|
|
* WaPixelRepeatModeFixForC0:chv
|
|
*
|
|
* DPLLCMD is AWOL. Use chicken bits to propagate
|
|
* the value from DPLLBMD to either pipe B or C.
|
|
*/
|
|
I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
|
|
I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
|
|
I915_WRITE(CBR4_VLV, 0);
|
|
dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
|
|
|
|
/*
|
|
* DPLLB VGA mode also seems to cause problems.
|
|
* We should always have it disabled.
|
|
*/
|
|
WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
|
|
} else {
|
|
I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
|
|
POSTING_READ(DPLL_MD(pipe));
|
|
}
|
|
}
|
|
|
|
static int intel_num_dvo_pipes(struct drm_device *dev)
|
|
{
|
|
struct intel_crtc *crtc;
|
|
int count = 0;
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
count += crtc->base.state->active &&
|
|
intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static void i9xx_enable_pll(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
i915_reg_t reg = DPLL(crtc->pipe);
|
|
u32 dpll = crtc->config->dpll_hw_state.dpll;
|
|
|
|
assert_pipe_disabled(dev_priv, crtc->pipe);
|
|
|
|
/* PLL is protected by panel, make sure we can write it */
|
|
if (IS_MOBILE(dev) && !IS_I830(dev))
|
|
assert_panel_unlocked(dev_priv, crtc->pipe);
|
|
|
|
/* Enable DVO 2x clock on both PLLs if necessary */
|
|
if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
|
|
/*
|
|
* It appears to be important that we don't enable this
|
|
* for the current pipe before otherwise configuring the
|
|
* PLL. No idea how this should be handled if multiple
|
|
* DVO outputs are enabled simultaneosly.
|
|
*/
|
|
dpll |= DPLL_DVO_2X_MODE;
|
|
I915_WRITE(DPLL(!crtc->pipe),
|
|
I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
|
|
}
|
|
|
|
/*
|
|
* Apparently we need to have VGA mode enabled prior to changing
|
|
* the P1/P2 dividers. Otherwise the DPLL will keep using the old
|
|
* dividers, even though the register value does change.
|
|
*/
|
|
I915_WRITE(reg, 0);
|
|
|
|
I915_WRITE(reg, dpll);
|
|
|
|
/* Wait for the clocks to stabilize. */
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
I915_WRITE(DPLL_MD(crtc->pipe),
|
|
crtc->config->dpll_hw_state.dpll_md);
|
|
} else {
|
|
/* The pixel multiplier can only be updated once the
|
|
* DPLL is enabled and the clocks are stable.
|
|
*
|
|
* So write it again.
|
|
*/
|
|
I915_WRITE(reg, dpll);
|
|
}
|
|
|
|
/* We do this three times for luck */
|
|
I915_WRITE(reg, dpll);
|
|
POSTING_READ(reg);
|
|
udelay(150); /* wait for warmup */
|
|
I915_WRITE(reg, dpll);
|
|
POSTING_READ(reg);
|
|
udelay(150); /* wait for warmup */
|
|
I915_WRITE(reg, dpll);
|
|
POSTING_READ(reg);
|
|
udelay(150); /* wait for warmup */
|
|
}
|
|
|
|
/**
|
|
* i9xx_disable_pll - disable a PLL
|
|
* @dev_priv: i915 private structure
|
|
* @pipe: pipe PLL to disable
|
|
*
|
|
* Disable the PLL for @pipe, making sure the pipe is off first.
|
|
*
|
|
* Note! This is for pre-ILK only.
|
|
*/
|
|
static void i9xx_disable_pll(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
/* Disable DVO 2x clock on both PLLs if necessary */
|
|
if (IS_I830(dev) &&
|
|
intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
|
|
!intel_num_dvo_pipes(dev)) {
|
|
I915_WRITE(DPLL(PIPE_B),
|
|
I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
|
|
I915_WRITE(DPLL(PIPE_A),
|
|
I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
|
|
}
|
|
|
|
/* Don't disable pipe or pipe PLLs if needed */
|
|
if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
|
|
(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
|
|
return;
|
|
|
|
/* Make sure the pipe isn't still relying on us */
|
|
assert_pipe_disabled(dev_priv, pipe);
|
|
|
|
I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
|
|
POSTING_READ(DPLL(pipe));
|
|
}
|
|
|
|
static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
|
|
{
|
|
u32 val;
|
|
|
|
/* Make sure the pipe isn't still relying on us */
|
|
assert_pipe_disabled(dev_priv, pipe);
|
|
|
|
val = DPLL_INTEGRATED_REF_CLK_VLV |
|
|
DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
|
|
if (pipe != PIPE_A)
|
|
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
|
|
|
|
I915_WRITE(DPLL(pipe), val);
|
|
POSTING_READ(DPLL(pipe));
|
|
}
|
|
|
|
static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
|
|
{
|
|
enum dpio_channel port = vlv_pipe_to_channel(pipe);
|
|
u32 val;
|
|
|
|
/* Make sure the pipe isn't still relying on us */
|
|
assert_pipe_disabled(dev_priv, pipe);
|
|
|
|
val = DPLL_SSC_REF_CLK_CHV |
|
|
DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
|
|
if (pipe != PIPE_A)
|
|
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
|
|
|
|
I915_WRITE(DPLL(pipe), val);
|
|
POSTING_READ(DPLL(pipe));
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* Disable 10bit clock to display controller */
|
|
val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
|
|
val &= ~DPIO_DCLKP_EN;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *dport,
|
|
unsigned int expected_mask)
|
|
{
|
|
u32 port_mask;
|
|
i915_reg_t dpll_reg;
|
|
|
|
switch (dport->port) {
|
|
case PORT_B:
|
|
port_mask = DPLL_PORTB_READY_MASK;
|
|
dpll_reg = DPLL(0);
|
|
break;
|
|
case PORT_C:
|
|
port_mask = DPLL_PORTC_READY_MASK;
|
|
dpll_reg = DPLL(0);
|
|
expected_mask <<= 4;
|
|
break;
|
|
case PORT_D:
|
|
port_mask = DPLL_PORTD_READY_MASK;
|
|
dpll_reg = DPIO_PHY_STATUS;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (intel_wait_for_register(dev_priv,
|
|
dpll_reg, port_mask, expected_mask,
|
|
1000))
|
|
WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
|
|
port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
|
|
}
|
|
|
|
static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
i915_reg_t reg;
|
|
uint32_t val, pipeconf_val;
|
|
|
|
/* Make sure PCH DPLL is enabled */
|
|
assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
|
|
|
|
/* FDI must be feeding us bits for PCH ports */
|
|
assert_fdi_tx_enabled(dev_priv, pipe);
|
|
assert_fdi_rx_enabled(dev_priv, pipe);
|
|
|
|
if (HAS_PCH_CPT(dev)) {
|
|
/* Workaround: Set the timing override bit before enabling the
|
|
* pch transcoder. */
|
|
reg = TRANS_CHICKEN2(pipe);
|
|
val = I915_READ(reg);
|
|
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
|
|
I915_WRITE(reg, val);
|
|
}
|
|
|
|
reg = PCH_TRANSCONF(pipe);
|
|
val = I915_READ(reg);
|
|
pipeconf_val = I915_READ(PIPECONF(pipe));
|
|
|
|
if (HAS_PCH_IBX(dev_priv)) {
|
|
/*
|
|
* Make the BPC in transcoder be consistent with
|
|
* that in pipeconf reg. For HDMI we must use 8bpc
|
|
* here for both 8bpc and 12bpc.
|
|
*/
|
|
val &= ~PIPECONF_BPC_MASK;
|
|
if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
|
|
val |= PIPECONF_8BPC;
|
|
else
|
|
val |= pipeconf_val & PIPECONF_BPC_MASK;
|
|
}
|
|
|
|
val &= ~TRANS_INTERLACE_MASK;
|
|
if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
|
|
if (HAS_PCH_IBX(dev_priv) &&
|
|
intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
|
|
val |= TRANS_LEGACY_INTERLACED_ILK;
|
|
else
|
|
val |= TRANS_INTERLACED;
|
|
else
|
|
val |= TRANS_PROGRESSIVE;
|
|
|
|
I915_WRITE(reg, val | TRANS_ENABLE);
|
|
if (intel_wait_for_register(dev_priv,
|
|
reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
|
|
100))
|
|
DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
|
|
}
|
|
|
|
static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
|
|
enum transcoder cpu_transcoder)
|
|
{
|
|
u32 val, pipeconf_val;
|
|
|
|
/* FDI must be feeding us bits for PCH ports */
|
|
assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
|
|
assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
|
|
|
|
/* Workaround: set timing override bit. */
|
|
val = I915_READ(TRANS_CHICKEN2(PIPE_A));
|
|
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
|
|
I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
|
|
|
|
val = TRANS_ENABLE;
|
|
pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
|
|
|
|
if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
|
|
PIPECONF_INTERLACED_ILK)
|
|
val |= TRANS_INTERLACED;
|
|
else
|
|
val |= TRANS_PROGRESSIVE;
|
|
|
|
I915_WRITE(LPT_TRANSCONF, val);
|
|
if (intel_wait_for_register(dev_priv,
|
|
LPT_TRANSCONF,
|
|
TRANS_STATE_ENABLE,
|
|
TRANS_STATE_ENABLE,
|
|
100))
|
|
DRM_ERROR("Failed to enable PCH transcoder\n");
|
|
}
|
|
|
|
static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
i915_reg_t reg;
|
|
uint32_t val;
|
|
|
|
/* FDI relies on the transcoder */
|
|
assert_fdi_tx_disabled(dev_priv, pipe);
|
|
assert_fdi_rx_disabled(dev_priv, pipe);
|
|
|
|
/* Ports must be off as well */
|
|
assert_pch_ports_disabled(dev_priv, pipe);
|
|
|
|
reg = PCH_TRANSCONF(pipe);
|
|
val = I915_READ(reg);
|
|
val &= ~TRANS_ENABLE;
|
|
I915_WRITE(reg, val);
|
|
/* wait for PCH transcoder off, transcoder state */
|
|
if (intel_wait_for_register(dev_priv,
|
|
reg, TRANS_STATE_ENABLE, 0,
|
|
50))
|
|
DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
|
|
|
|
if (HAS_PCH_CPT(dev)) {
|
|
/* Workaround: Clear the timing override chicken bit again. */
|
|
reg = TRANS_CHICKEN2(pipe);
|
|
val = I915_READ(reg);
|
|
val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
|
|
I915_WRITE(reg, val);
|
|
}
|
|
}
|
|
|
|
static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val;
|
|
|
|
val = I915_READ(LPT_TRANSCONF);
|
|
val &= ~TRANS_ENABLE;
|
|
I915_WRITE(LPT_TRANSCONF, val);
|
|
/* wait for PCH transcoder off, transcoder state */
|
|
if (intel_wait_for_register(dev_priv,
|
|
LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
|
|
50))
|
|
DRM_ERROR("Failed to disable PCH transcoder\n");
|
|
|
|
/* Workaround: clear timing override bit. */
|
|
val = I915_READ(TRANS_CHICKEN2(PIPE_A));
|
|
val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
|
|
I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
|
|
}
|
|
|
|
/**
|
|
* intel_enable_pipe - enable a pipe, asserting requirements
|
|
* @crtc: crtc responsible for the pipe
|
|
*
|
|
* Enable @crtc's pipe, making sure that various hardware specific requirements
|
|
* are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
|
|
*/
|
|
static void intel_enable_pipe(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum pipe pipe = crtc->pipe;
|
|
enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
|
|
enum pipe pch_transcoder;
|
|
i915_reg_t reg;
|
|
u32 val;
|
|
|
|
DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
|
|
|
|
assert_planes_disabled(dev_priv, pipe);
|
|
assert_cursor_disabled(dev_priv, pipe);
|
|
assert_sprites_disabled(dev_priv, pipe);
|
|
|
|
if (HAS_PCH_LPT(dev_priv))
|
|
pch_transcoder = TRANSCODER_A;
|
|
else
|
|
pch_transcoder = pipe;
|
|
|
|
/*
|
|
* A pipe without a PLL won't actually be able to drive bits from
|
|
* a plane. On ILK+ the pipe PLLs are integrated, so we don't
|
|
* need the check.
|
|
*/
|
|
if (HAS_GMCH_DISPLAY(dev_priv)) {
|
|
if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
|
|
assert_dsi_pll_enabled(dev_priv);
|
|
else
|
|
assert_pll_enabled(dev_priv, pipe);
|
|
} else {
|
|
if (crtc->config->has_pch_encoder) {
|
|
/* if driving the PCH, we need FDI enabled */
|
|
assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
|
|
assert_fdi_tx_pll_enabled(dev_priv,
|
|
(enum pipe) cpu_transcoder);
|
|
}
|
|
/* FIXME: assert CPU port conditions for SNB+ */
|
|
}
|
|
|
|
reg = PIPECONF(cpu_transcoder);
|
|
val = I915_READ(reg);
|
|
if (val & PIPECONF_ENABLE) {
|
|
WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
|
|
(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
|
|
return;
|
|
}
|
|
|
|
I915_WRITE(reg, val | PIPECONF_ENABLE);
|
|
POSTING_READ(reg);
|
|
|
|
/*
|
|
* Until the pipe starts DSL will read as 0, which would cause
|
|
* an apparent vblank timestamp jump, which messes up also the
|
|
* frame count when it's derived from the timestamps. So let's
|
|
* wait for the pipe to start properly before we call
|
|
* drm_crtc_vblank_on()
|
|
*/
|
|
if (dev->max_vblank_count == 0 &&
|
|
wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
|
|
DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
|
|
}
|
|
|
|
/**
|
|
* intel_disable_pipe - disable a pipe, asserting requirements
|
|
* @crtc: crtc whose pipes is to be disabled
|
|
*
|
|
* Disable the pipe of @crtc, making sure that various hardware
|
|
* specific requirements are met, if applicable, e.g. plane
|
|
* disabled, panel fitter off, etc.
|
|
*
|
|
* Will wait until the pipe has shut down before returning.
|
|
*/
|
|
static void intel_disable_pipe(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
|
|
enum pipe pipe = crtc->pipe;
|
|
i915_reg_t reg;
|
|
u32 val;
|
|
|
|
DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
|
|
|
|
/*
|
|
* Make sure planes won't keep trying to pump pixels to us,
|
|
* or we might hang the display.
|
|
*/
|
|
assert_planes_disabled(dev_priv, pipe);
|
|
assert_cursor_disabled(dev_priv, pipe);
|
|
assert_sprites_disabled(dev_priv, pipe);
|
|
|
|
reg = PIPECONF(cpu_transcoder);
|
|
val = I915_READ(reg);
|
|
if ((val & PIPECONF_ENABLE) == 0)
|
|
return;
|
|
|
|
/*
|
|
* Double wide has implications for planes
|
|
* so best keep it disabled when not needed.
|
|
*/
|
|
if (crtc->config->double_wide)
|
|
val &= ~PIPECONF_DOUBLE_WIDE;
|
|
|
|
/* Don't disable pipe or pipe PLLs if needed */
|
|
if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
|
|
!(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
|
|
val &= ~PIPECONF_ENABLE;
|
|
|
|
I915_WRITE(reg, val);
|
|
if ((val & PIPECONF_ENABLE) == 0)
|
|
intel_wait_for_pipe_off(crtc);
|
|
}
|
|
|
|
static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
|
|
{
|
|
return IS_GEN2(dev_priv) ? 2048 : 4096;
|
|
}
|
|
|
|
static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
|
|
uint64_t fb_modifier, unsigned int cpp)
|
|
{
|
|
switch (fb_modifier) {
|
|
case DRM_FORMAT_MOD_NONE:
|
|
return cpp;
|
|
case I915_FORMAT_MOD_X_TILED:
|
|
if (IS_GEN2(dev_priv))
|
|
return 128;
|
|
else
|
|
return 512;
|
|
case I915_FORMAT_MOD_Y_TILED:
|
|
if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
|
|
return 128;
|
|
else
|
|
return 512;
|
|
case I915_FORMAT_MOD_Yf_TILED:
|
|
switch (cpp) {
|
|
case 1:
|
|
return 64;
|
|
case 2:
|
|
case 4:
|
|
return 128;
|
|
case 8:
|
|
case 16:
|
|
return 256;
|
|
default:
|
|
MISSING_CASE(cpp);
|
|
return cpp;
|
|
}
|
|
break;
|
|
default:
|
|
MISSING_CASE(fb_modifier);
|
|
return cpp;
|
|
}
|
|
}
|
|
|
|
unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
|
|
uint64_t fb_modifier, unsigned int cpp)
|
|
{
|
|
if (fb_modifier == DRM_FORMAT_MOD_NONE)
|
|
return 1;
|
|
else
|
|
return intel_tile_size(dev_priv) /
|
|
intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
|
|
}
|
|
|
|
/* Return the tile dimensions in pixel units */
|
|
static void intel_tile_dims(const struct drm_i915_private *dev_priv,
|
|
unsigned int *tile_width,
|
|
unsigned int *tile_height,
|
|
uint64_t fb_modifier,
|
|
unsigned int cpp)
|
|
{
|
|
unsigned int tile_width_bytes =
|
|
intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
|
|
|
|
*tile_width = tile_width_bytes / cpp;
|
|
*tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
|
|
}
|
|
|
|
unsigned int
|
|
intel_fb_align_height(struct drm_device *dev, unsigned int height,
|
|
uint32_t pixel_format, uint64_t fb_modifier)
|
|
{
|
|
unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
|
|
unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
|
|
|
|
return ALIGN(height, tile_height);
|
|
}
|
|
|
|
unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
|
|
{
|
|
unsigned int size = 0;
|
|
int i;
|
|
|
|
for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
|
|
size += rot_info->plane[i].width * rot_info->plane[i].height;
|
|
|
|
return size;
|
|
}
|
|
|
|
static void
|
|
intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
|
|
const struct drm_framebuffer *fb,
|
|
unsigned int rotation)
|
|
{
|
|
if (intel_rotation_90_or_270(rotation)) {
|
|
*view = i915_ggtt_view_rotated;
|
|
view->params.rotated = to_intel_framebuffer(fb)->rot_info;
|
|
} else {
|
|
*view = i915_ggtt_view_normal;
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_fill_fb_info(struct drm_i915_private *dev_priv,
|
|
struct drm_framebuffer *fb)
|
|
{
|
|
struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
|
|
unsigned int tile_size, tile_width, tile_height, cpp;
|
|
|
|
tile_size = intel_tile_size(dev_priv);
|
|
|
|
cpp = drm_format_plane_cpp(fb->pixel_format, 0);
|
|
intel_tile_dims(dev_priv, &tile_width, &tile_height,
|
|
fb->modifier[0], cpp);
|
|
|
|
info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
|
|
info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
|
|
|
|
if (info->pixel_format == DRM_FORMAT_NV12) {
|
|
cpp = drm_format_plane_cpp(fb->pixel_format, 1);
|
|
intel_tile_dims(dev_priv, &tile_width, &tile_height,
|
|
fb->modifier[1], cpp);
|
|
|
|
info->uv_offset = fb->offsets[1];
|
|
info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
|
|
info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
|
|
}
|
|
}
|
|
|
|
static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
|
|
{
|
|
if (INTEL_INFO(dev_priv)->gen >= 9)
|
|
return 256 * 1024;
|
|
else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
|
|
IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
return 128 * 1024;
|
|
else if (INTEL_INFO(dev_priv)->gen >= 4)
|
|
return 4 * 1024;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
|
|
uint64_t fb_modifier)
|
|
{
|
|
switch (fb_modifier) {
|
|
case DRM_FORMAT_MOD_NONE:
|
|
return intel_linear_alignment(dev_priv);
|
|
case I915_FORMAT_MOD_X_TILED:
|
|
if (INTEL_INFO(dev_priv)->gen >= 9)
|
|
return 256 * 1024;
|
|
return 0;
|
|
case I915_FORMAT_MOD_Y_TILED:
|
|
case I915_FORMAT_MOD_Yf_TILED:
|
|
return 1 * 1024 * 1024;
|
|
default:
|
|
MISSING_CASE(fb_modifier);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int
|
|
intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
|
|
unsigned int rotation)
|
|
{
|
|
struct drm_device *dev = fb->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
|
|
struct i915_ggtt_view view;
|
|
u32 alignment;
|
|
int ret;
|
|
|
|
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
|
|
|
|
alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
|
|
|
|
intel_fill_fb_ggtt_view(&view, fb, rotation);
|
|
|
|
/* Note that the w/a also requires 64 PTE of padding following the
|
|
* bo. We currently fill all unused PTE with the shadow page and so
|
|
* we should always have valid PTE following the scanout preventing
|
|
* the VT-d warning.
|
|
*/
|
|
if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
|
|
alignment = 256 * 1024;
|
|
|
|
/*
|
|
* Global gtt pte registers are special registers which actually forward
|
|
* writes to a chunk of system memory. Which means that there is no risk
|
|
* that the register values disappear as soon as we call
|
|
* intel_runtime_pm_put(), so it is correct to wrap only the
|
|
* pin/unpin/fence and not more.
|
|
*/
|
|
intel_runtime_pm_get(dev_priv);
|
|
|
|
ret = i915_gem_object_pin_to_display_plane(obj, alignment,
|
|
&view);
|
|
if (ret)
|
|
goto err_pm;
|
|
|
|
/* Install a fence for tiled scan-out. Pre-i965 always needs a
|
|
* fence, whereas 965+ only requires a fence if using
|
|
* framebuffer compression. For simplicity, we always install
|
|
* a fence as the cost is not that onerous.
|
|
*/
|
|
if (view.type == I915_GGTT_VIEW_NORMAL) {
|
|
ret = i915_gem_object_get_fence(obj);
|
|
if (ret == -EDEADLK) {
|
|
/*
|
|
* -EDEADLK means there are no free fences
|
|
* no pending flips.
|
|
*
|
|
* This is propagated to atomic, but it uses
|
|
* -EDEADLK to force a locking recovery, so
|
|
* change the returned error to -EBUSY.
|
|
*/
|
|
ret = -EBUSY;
|
|
goto err_unpin;
|
|
} else if (ret)
|
|
goto err_unpin;
|
|
|
|
i915_gem_object_pin_fence(obj);
|
|
}
|
|
|
|
intel_runtime_pm_put(dev_priv);
|
|
return 0;
|
|
|
|
err_unpin:
|
|
i915_gem_object_unpin_from_display_plane(obj, &view);
|
|
err_pm:
|
|
intel_runtime_pm_put(dev_priv);
|
|
return ret;
|
|
}
|
|
|
|
void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
|
|
{
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
|
|
struct i915_ggtt_view view;
|
|
|
|
WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
|
|
|
|
intel_fill_fb_ggtt_view(&view, fb, rotation);
|
|
|
|
if (view.type == I915_GGTT_VIEW_NORMAL)
|
|
i915_gem_object_unpin_fence(obj);
|
|
|
|
i915_gem_object_unpin_from_display_plane(obj, &view);
|
|
}
|
|
|
|
/*
|
|
* Adjust the tile offset by moving the difference into
|
|
* the x/y offsets.
|
|
*
|
|
* Input tile dimensions and pitch must already be
|
|
* rotated to match x and y, and in pixel units.
|
|
*/
|
|
static u32 intel_adjust_tile_offset(int *x, int *y,
|
|
unsigned int tile_width,
|
|
unsigned int tile_height,
|
|
unsigned int tile_size,
|
|
unsigned int pitch_tiles,
|
|
u32 old_offset,
|
|
u32 new_offset)
|
|
{
|
|
unsigned int tiles;
|
|
|
|
WARN_ON(old_offset & (tile_size - 1));
|
|
WARN_ON(new_offset & (tile_size - 1));
|
|
WARN_ON(new_offset > old_offset);
|
|
|
|
tiles = (old_offset - new_offset) / tile_size;
|
|
|
|
*y += tiles / pitch_tiles * tile_height;
|
|
*x += tiles % pitch_tiles * tile_width;
|
|
|
|
return new_offset;
|
|
}
|
|
|
|
/*
|
|
* Computes the linear offset to the base tile and adjusts
|
|
* x, y. bytes per pixel is assumed to be a power-of-two.
|
|
*
|
|
* In the 90/270 rotated case, x and y are assumed
|
|
* to be already rotated to match the rotated GTT view, and
|
|
* pitch is the tile_height aligned framebuffer height.
|
|
*/
|
|
u32 intel_compute_tile_offset(int *x, int *y,
|
|
const struct drm_framebuffer *fb, int plane,
|
|
unsigned int pitch,
|
|
unsigned int rotation)
|
|
{
|
|
const struct drm_i915_private *dev_priv = to_i915(fb->dev);
|
|
uint64_t fb_modifier = fb->modifier[plane];
|
|
unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
|
|
u32 offset, offset_aligned, alignment;
|
|
|
|
alignment = intel_surf_alignment(dev_priv, fb_modifier);
|
|
if (alignment)
|
|
alignment--;
|
|
|
|
if (fb_modifier != DRM_FORMAT_MOD_NONE) {
|
|
unsigned int tile_size, tile_width, tile_height;
|
|
unsigned int tile_rows, tiles, pitch_tiles;
|
|
|
|
tile_size = intel_tile_size(dev_priv);
|
|
intel_tile_dims(dev_priv, &tile_width, &tile_height,
|
|
fb_modifier, cpp);
|
|
|
|
if (intel_rotation_90_or_270(rotation)) {
|
|
pitch_tiles = pitch / tile_height;
|
|
swap(tile_width, tile_height);
|
|
} else {
|
|
pitch_tiles = pitch / (tile_width * cpp);
|
|
}
|
|
|
|
tile_rows = *y / tile_height;
|
|
*y %= tile_height;
|
|
|
|
tiles = *x / tile_width;
|
|
*x %= tile_width;
|
|
|
|
offset = (tile_rows * pitch_tiles + tiles) * tile_size;
|
|
offset_aligned = offset & ~alignment;
|
|
|
|
intel_adjust_tile_offset(x, y, tile_width, tile_height,
|
|
tile_size, pitch_tiles,
|
|
offset, offset_aligned);
|
|
} else {
|
|
offset = *y * pitch + *x * cpp;
|
|
offset_aligned = offset & ~alignment;
|
|
|
|
*y = (offset & alignment) / pitch;
|
|
*x = ((offset & alignment) - *y * pitch) / cpp;
|
|
}
|
|
|
|
return offset_aligned;
|
|
}
|
|
|
|
static int i9xx_format_to_fourcc(int format)
|
|
{
|
|
switch (format) {
|
|
case DISPPLANE_8BPP:
|
|
return DRM_FORMAT_C8;
|
|
case DISPPLANE_BGRX555:
|
|
return DRM_FORMAT_XRGB1555;
|
|
case DISPPLANE_BGRX565:
|
|
return DRM_FORMAT_RGB565;
|
|
default:
|
|
case DISPPLANE_BGRX888:
|
|
return DRM_FORMAT_XRGB8888;
|
|
case DISPPLANE_RGBX888:
|
|
return DRM_FORMAT_XBGR8888;
|
|
case DISPPLANE_BGRX101010:
|
|
return DRM_FORMAT_XRGB2101010;
|
|
case DISPPLANE_RGBX101010:
|
|
return DRM_FORMAT_XBGR2101010;
|
|
}
|
|
}
|
|
|
|
static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
|
|
{
|
|
switch (format) {
|
|
case PLANE_CTL_FORMAT_RGB_565:
|
|
return DRM_FORMAT_RGB565;
|
|
default:
|
|
case PLANE_CTL_FORMAT_XRGB_8888:
|
|
if (rgb_order) {
|
|
if (alpha)
|
|
return DRM_FORMAT_ABGR8888;
|
|
else
|
|
return DRM_FORMAT_XBGR8888;
|
|
} else {
|
|
if (alpha)
|
|
return DRM_FORMAT_ARGB8888;
|
|
else
|
|
return DRM_FORMAT_XRGB8888;
|
|
}
|
|
case PLANE_CTL_FORMAT_XRGB_2101010:
|
|
if (rgb_order)
|
|
return DRM_FORMAT_XBGR2101010;
|
|
else
|
|
return DRM_FORMAT_XRGB2101010;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
|
|
struct intel_initial_plane_config *plane_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
struct drm_i915_gem_object *obj = NULL;
|
|
struct drm_mode_fb_cmd2 mode_cmd = { 0 };
|
|
struct drm_framebuffer *fb = &plane_config->fb->base;
|
|
u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
|
|
u32 size_aligned = round_up(plane_config->base + plane_config->size,
|
|
PAGE_SIZE);
|
|
|
|
size_aligned -= base_aligned;
|
|
|
|
if (plane_config->size == 0)
|
|
return false;
|
|
|
|
/* If the FB is too big, just don't use it since fbdev is not very
|
|
* important and we should probably use that space with FBC or other
|
|
* features. */
|
|
if (size_aligned * 2 > ggtt->stolen_usable_size)
|
|
return false;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
obj = i915_gem_object_create_stolen_for_preallocated(dev,
|
|
base_aligned,
|
|
base_aligned,
|
|
size_aligned);
|
|
if (!obj) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return false;
|
|
}
|
|
|
|
if (plane_config->tiling == I915_TILING_X)
|
|
obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
|
|
|
|
mode_cmd.pixel_format = fb->pixel_format;
|
|
mode_cmd.width = fb->width;
|
|
mode_cmd.height = fb->height;
|
|
mode_cmd.pitches[0] = fb->pitches[0];
|
|
mode_cmd.modifier[0] = fb->modifier[0];
|
|
mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
|
|
|
|
if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
|
|
&mode_cmd, obj)) {
|
|
DRM_DEBUG_KMS("intel fb init failed\n");
|
|
goto out_unref_obj;
|
|
}
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
|
|
return true;
|
|
|
|
out_unref_obj:
|
|
i915_gem_object_put(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return false;
|
|
}
|
|
|
|
/* Update plane->state->fb to match plane->fb after driver-internal updates */
|
|
static void
|
|
update_state_fb(struct drm_plane *plane)
|
|
{
|
|
if (plane->fb == plane->state->fb)
|
|
return;
|
|
|
|
if (plane->state->fb)
|
|
drm_framebuffer_unreference(plane->state->fb);
|
|
plane->state->fb = plane->fb;
|
|
if (plane->state->fb)
|
|
drm_framebuffer_reference(plane->state->fb);
|
|
}
|
|
|
|
static void
|
|
intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
|
|
struct intel_initial_plane_config *plane_config)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_crtc *c;
|
|
struct intel_crtc *i;
|
|
struct drm_i915_gem_object *obj;
|
|
struct drm_plane *primary = intel_crtc->base.primary;
|
|
struct drm_plane_state *plane_state = primary->state;
|
|
struct drm_crtc_state *crtc_state = intel_crtc->base.state;
|
|
struct intel_plane *intel_plane = to_intel_plane(primary);
|
|
struct intel_plane_state *intel_state =
|
|
to_intel_plane_state(plane_state);
|
|
struct drm_framebuffer *fb;
|
|
|
|
if (!plane_config->fb)
|
|
return;
|
|
|
|
if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
|
|
fb = &plane_config->fb->base;
|
|
goto valid_fb;
|
|
}
|
|
|
|
kfree(plane_config->fb);
|
|
|
|
/*
|
|
* Failed to alloc the obj, check to see if we should share
|
|
* an fb with another CRTC instead
|
|
*/
|
|
for_each_crtc(dev, c) {
|
|
i = to_intel_crtc(c);
|
|
|
|
if (c == &intel_crtc->base)
|
|
continue;
|
|
|
|
if (!i->active)
|
|
continue;
|
|
|
|
fb = c->primary->fb;
|
|
if (!fb)
|
|
continue;
|
|
|
|
obj = intel_fb_obj(fb);
|
|
if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
|
|
drm_framebuffer_reference(fb);
|
|
goto valid_fb;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We've failed to reconstruct the BIOS FB. Current display state
|
|
* indicates that the primary plane is visible, but has a NULL FB,
|
|
* which will lead to problems later if we don't fix it up. The
|
|
* simplest solution is to just disable the primary plane now and
|
|
* pretend the BIOS never had it enabled.
|
|
*/
|
|
to_intel_plane_state(plane_state)->visible = false;
|
|
crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
|
|
intel_pre_disable_primary_noatomic(&intel_crtc->base);
|
|
intel_plane->disable_plane(primary, &intel_crtc->base);
|
|
|
|
return;
|
|
|
|
valid_fb:
|
|
plane_state->src_x = 0;
|
|
plane_state->src_y = 0;
|
|
plane_state->src_w = fb->width << 16;
|
|
plane_state->src_h = fb->height << 16;
|
|
|
|
plane_state->crtc_x = 0;
|
|
plane_state->crtc_y = 0;
|
|
plane_state->crtc_w = fb->width;
|
|
plane_state->crtc_h = fb->height;
|
|
|
|
intel_state->src.x1 = plane_state->src_x;
|
|
intel_state->src.y1 = plane_state->src_y;
|
|
intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
|
|
intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
|
|
intel_state->dst.x1 = plane_state->crtc_x;
|
|
intel_state->dst.y1 = plane_state->crtc_y;
|
|
intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
|
|
intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
|
|
|
|
obj = intel_fb_obj(fb);
|
|
if (i915_gem_object_is_tiled(obj))
|
|
dev_priv->preserve_bios_swizzle = true;
|
|
|
|
drm_framebuffer_reference(fb);
|
|
primary->fb = primary->state->fb = fb;
|
|
primary->crtc = primary->state->crtc = &intel_crtc->base;
|
|
intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
|
|
atomic_or(to_intel_plane(primary)->frontbuffer_bit,
|
|
&obj->frontbuffer_bits);
|
|
}
|
|
|
|
static void i9xx_update_primary_plane(struct drm_plane *primary,
|
|
const struct intel_crtc_state *crtc_state,
|
|
const struct intel_plane_state *plane_state)
|
|
{
|
|
struct drm_device *dev = primary->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_framebuffer *fb = plane_state->base.fb;
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
|
|
int plane = intel_crtc->plane;
|
|
u32 linear_offset;
|
|
u32 dspcntr;
|
|
i915_reg_t reg = DSPCNTR(plane);
|
|
unsigned int rotation = plane_state->base.rotation;
|
|
int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
|
|
int x = plane_state->src.x1 >> 16;
|
|
int y = plane_state->src.y1 >> 16;
|
|
|
|
dspcntr = DISPPLANE_GAMMA_ENABLE;
|
|
|
|
dspcntr |= DISPLAY_PLANE_ENABLE;
|
|
|
|
if (INTEL_INFO(dev)->gen < 4) {
|
|
if (intel_crtc->pipe == PIPE_B)
|
|
dspcntr |= DISPPLANE_SEL_PIPE_B;
|
|
|
|
/* pipesrc and dspsize control the size that is scaled from,
|
|
* which should always be the user's requested size.
|
|
*/
|
|
I915_WRITE(DSPSIZE(plane),
|
|
((crtc_state->pipe_src_h - 1) << 16) |
|
|
(crtc_state->pipe_src_w - 1));
|
|
I915_WRITE(DSPPOS(plane), 0);
|
|
} else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
|
|
I915_WRITE(PRIMSIZE(plane),
|
|
((crtc_state->pipe_src_h - 1) << 16) |
|
|
(crtc_state->pipe_src_w - 1));
|
|
I915_WRITE(PRIMPOS(plane), 0);
|
|
I915_WRITE(PRIMCNSTALPHA(plane), 0);
|
|
}
|
|
|
|
switch (fb->pixel_format) {
|
|
case DRM_FORMAT_C8:
|
|
dspcntr |= DISPPLANE_8BPP;
|
|
break;
|
|
case DRM_FORMAT_XRGB1555:
|
|
dspcntr |= DISPPLANE_BGRX555;
|
|
break;
|
|
case DRM_FORMAT_RGB565:
|
|
dspcntr |= DISPPLANE_BGRX565;
|
|
break;
|
|
case DRM_FORMAT_XRGB8888:
|
|
dspcntr |= DISPPLANE_BGRX888;
|
|
break;
|
|
case DRM_FORMAT_XBGR8888:
|
|
dspcntr |= DISPPLANE_RGBX888;
|
|
break;
|
|
case DRM_FORMAT_XRGB2101010:
|
|
dspcntr |= DISPPLANE_BGRX101010;
|
|
break;
|
|
case DRM_FORMAT_XBGR2101010:
|
|
dspcntr |= DISPPLANE_RGBX101010;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4 && i915_gem_object_is_tiled(obj))
|
|
dspcntr |= DISPPLANE_TILED;
|
|
|
|
if (IS_G4X(dev))
|
|
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
|
|
|
|
linear_offset = y * fb->pitches[0] + x * cpp;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
intel_crtc->dspaddr_offset =
|
|
intel_compute_tile_offset(&x, &y, fb, 0,
|
|
fb->pitches[0], rotation);
|
|
linear_offset -= intel_crtc->dspaddr_offset;
|
|
} else {
|
|
intel_crtc->dspaddr_offset = linear_offset;
|
|
}
|
|
|
|
if (rotation == BIT(DRM_ROTATE_180)) {
|
|
dspcntr |= DISPPLANE_ROTATE_180;
|
|
|
|
x += (crtc_state->pipe_src_w - 1);
|
|
y += (crtc_state->pipe_src_h - 1);
|
|
|
|
/* Finding the last pixel of the last line of the display
|
|
data and adding to linear_offset*/
|
|
linear_offset +=
|
|
(crtc_state->pipe_src_h - 1) * fb->pitches[0] +
|
|
(crtc_state->pipe_src_w - 1) * cpp;
|
|
}
|
|
|
|
intel_crtc->adjusted_x = x;
|
|
intel_crtc->adjusted_y = y;
|
|
|
|
I915_WRITE(reg, dspcntr);
|
|
|
|
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
I915_WRITE(DSPSURF(plane),
|
|
i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
|
|
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
|
|
I915_WRITE(DSPLINOFF(plane), linear_offset);
|
|
} else
|
|
I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
|
|
POSTING_READ(reg);
|
|
}
|
|
|
|
static void i9xx_disable_primary_plane(struct drm_plane *primary,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int plane = intel_crtc->plane;
|
|
|
|
I915_WRITE(DSPCNTR(plane), 0);
|
|
if (INTEL_INFO(dev_priv)->gen >= 4)
|
|
I915_WRITE(DSPSURF(plane), 0);
|
|
else
|
|
I915_WRITE(DSPADDR(plane), 0);
|
|
POSTING_READ(DSPCNTR(plane));
|
|
}
|
|
|
|
static void ironlake_update_primary_plane(struct drm_plane *primary,
|
|
const struct intel_crtc_state *crtc_state,
|
|
const struct intel_plane_state *plane_state)
|
|
{
|
|
struct drm_device *dev = primary->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_framebuffer *fb = plane_state->base.fb;
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
|
|
int plane = intel_crtc->plane;
|
|
u32 linear_offset;
|
|
u32 dspcntr;
|
|
i915_reg_t reg = DSPCNTR(plane);
|
|
unsigned int rotation = plane_state->base.rotation;
|
|
int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
|
|
int x = plane_state->src.x1 >> 16;
|
|
int y = plane_state->src.y1 >> 16;
|
|
|
|
dspcntr = DISPPLANE_GAMMA_ENABLE;
|
|
dspcntr |= DISPLAY_PLANE_ENABLE;
|
|
|
|
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
|
|
dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
|
|
|
|
switch (fb->pixel_format) {
|
|
case DRM_FORMAT_C8:
|
|
dspcntr |= DISPPLANE_8BPP;
|
|
break;
|
|
case DRM_FORMAT_RGB565:
|
|
dspcntr |= DISPPLANE_BGRX565;
|
|
break;
|
|
case DRM_FORMAT_XRGB8888:
|
|
dspcntr |= DISPPLANE_BGRX888;
|
|
break;
|
|
case DRM_FORMAT_XBGR8888:
|
|
dspcntr |= DISPPLANE_RGBX888;
|
|
break;
|
|
case DRM_FORMAT_XRGB2101010:
|
|
dspcntr |= DISPPLANE_BGRX101010;
|
|
break;
|
|
case DRM_FORMAT_XBGR2101010:
|
|
dspcntr |= DISPPLANE_RGBX101010;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (i915_gem_object_is_tiled(obj))
|
|
dspcntr |= DISPPLANE_TILED;
|
|
|
|
if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
|
|
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
|
|
|
|
linear_offset = y * fb->pitches[0] + x * cpp;
|
|
intel_crtc->dspaddr_offset =
|
|
intel_compute_tile_offset(&x, &y, fb, 0,
|
|
fb->pitches[0], rotation);
|
|
linear_offset -= intel_crtc->dspaddr_offset;
|
|
if (rotation == BIT(DRM_ROTATE_180)) {
|
|
dspcntr |= DISPPLANE_ROTATE_180;
|
|
|
|
if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
|
|
x += (crtc_state->pipe_src_w - 1);
|
|
y += (crtc_state->pipe_src_h - 1);
|
|
|
|
/* Finding the last pixel of the last line of the display
|
|
data and adding to linear_offset*/
|
|
linear_offset +=
|
|
(crtc_state->pipe_src_h - 1) * fb->pitches[0] +
|
|
(crtc_state->pipe_src_w - 1) * cpp;
|
|
}
|
|
}
|
|
|
|
intel_crtc->adjusted_x = x;
|
|
intel_crtc->adjusted_y = y;
|
|
|
|
I915_WRITE(reg, dspcntr);
|
|
|
|
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
|
|
I915_WRITE(DSPSURF(plane),
|
|
i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
|
|
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
|
|
I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
|
|
} else {
|
|
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
|
|
I915_WRITE(DSPLINOFF(plane), linear_offset);
|
|
}
|
|
POSTING_READ(reg);
|
|
}
|
|
|
|
u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
|
|
uint64_t fb_modifier, uint32_t pixel_format)
|
|
{
|
|
if (fb_modifier == DRM_FORMAT_MOD_NONE) {
|
|
return 64;
|
|
} else {
|
|
int cpp = drm_format_plane_cpp(pixel_format, 0);
|
|
|
|
return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
|
|
}
|
|
}
|
|
|
|
u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
|
|
struct drm_i915_gem_object *obj,
|
|
unsigned int plane)
|
|
{
|
|
struct i915_ggtt_view view;
|
|
struct i915_vma *vma;
|
|
u64 offset;
|
|
|
|
intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
|
|
intel_plane->base.state->rotation);
|
|
|
|
vma = i915_gem_obj_to_ggtt_view(obj, &view);
|
|
if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
|
|
view.type))
|
|
return -1;
|
|
|
|
offset = vma->node.start;
|
|
|
|
if (plane == 1) {
|
|
offset += vma->ggtt_view.params.rotated.uv_start_page *
|
|
PAGE_SIZE;
|
|
}
|
|
|
|
WARN_ON(upper_32_bits(offset));
|
|
|
|
return lower_32_bits(offset);
|
|
}
|
|
|
|
static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
|
|
I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
|
|
I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
|
|
}
|
|
|
|
/*
|
|
* This function detaches (aka. unbinds) unused scalers in hardware
|
|
*/
|
|
static void skl_detach_scalers(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct intel_crtc_scaler_state *scaler_state;
|
|
int i;
|
|
|
|
scaler_state = &intel_crtc->config->scaler_state;
|
|
|
|
/* loop through and disable scalers that aren't in use */
|
|
for (i = 0; i < intel_crtc->num_scalers; i++) {
|
|
if (!scaler_state->scalers[i].in_use)
|
|
skl_detach_scaler(intel_crtc, i);
|
|
}
|
|
}
|
|
|
|
u32 skl_plane_ctl_format(uint32_t pixel_format)
|
|
{
|
|
switch (pixel_format) {
|
|
case DRM_FORMAT_C8:
|
|
return PLANE_CTL_FORMAT_INDEXED;
|
|
case DRM_FORMAT_RGB565:
|
|
return PLANE_CTL_FORMAT_RGB_565;
|
|
case DRM_FORMAT_XBGR8888:
|
|
return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
|
|
case DRM_FORMAT_XRGB8888:
|
|
return PLANE_CTL_FORMAT_XRGB_8888;
|
|
/*
|
|
* XXX: For ARBG/ABGR formats we default to expecting scanout buffers
|
|
* to be already pre-multiplied. We need to add a knob (or a different
|
|
* DRM_FORMAT) for user-space to configure that.
|
|
*/
|
|
case DRM_FORMAT_ABGR8888:
|
|
return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
|
|
PLANE_CTL_ALPHA_SW_PREMULTIPLY;
|
|
case DRM_FORMAT_ARGB8888:
|
|
return PLANE_CTL_FORMAT_XRGB_8888 |
|
|
PLANE_CTL_ALPHA_SW_PREMULTIPLY;
|
|
case DRM_FORMAT_XRGB2101010:
|
|
return PLANE_CTL_FORMAT_XRGB_2101010;
|
|
case DRM_FORMAT_XBGR2101010:
|
|
return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
|
|
case DRM_FORMAT_YUYV:
|
|
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
|
|
case DRM_FORMAT_YVYU:
|
|
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
|
|
case DRM_FORMAT_UYVY:
|
|
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
|
|
case DRM_FORMAT_VYUY:
|
|
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
|
|
default:
|
|
MISSING_CASE(pixel_format);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
|
|
{
|
|
switch (fb_modifier) {
|
|
case DRM_FORMAT_MOD_NONE:
|
|
break;
|
|
case I915_FORMAT_MOD_X_TILED:
|
|
return PLANE_CTL_TILED_X;
|
|
case I915_FORMAT_MOD_Y_TILED:
|
|
return PLANE_CTL_TILED_Y;
|
|
case I915_FORMAT_MOD_Yf_TILED:
|
|
return PLANE_CTL_TILED_YF;
|
|
default:
|
|
MISSING_CASE(fb_modifier);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
u32 skl_plane_ctl_rotation(unsigned int rotation)
|
|
{
|
|
switch (rotation) {
|
|
case BIT(DRM_ROTATE_0):
|
|
break;
|
|
/*
|
|
* DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
|
|
* while i915 HW rotation is clockwise, thats why this swapping.
|
|
*/
|
|
case BIT(DRM_ROTATE_90):
|
|
return PLANE_CTL_ROTATE_270;
|
|
case BIT(DRM_ROTATE_180):
|
|
return PLANE_CTL_ROTATE_180;
|
|
case BIT(DRM_ROTATE_270):
|
|
return PLANE_CTL_ROTATE_90;
|
|
default:
|
|
MISSING_CASE(rotation);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void skylake_update_primary_plane(struct drm_plane *plane,
|
|
const struct intel_crtc_state *crtc_state,
|
|
const struct intel_plane_state *plane_state)
|
|
{
|
|
struct drm_device *dev = plane->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_framebuffer *fb = plane_state->base.fb;
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 plane_ctl, stride_div, stride;
|
|
u32 tile_height, plane_offset, plane_size;
|
|
unsigned int rotation = plane_state->base.rotation;
|
|
int x_offset, y_offset;
|
|
u32 surf_addr;
|
|
int scaler_id = plane_state->scaler_id;
|
|
int src_x = plane_state->src.x1 >> 16;
|
|
int src_y = plane_state->src.y1 >> 16;
|
|
int src_w = drm_rect_width(&plane_state->src) >> 16;
|
|
int src_h = drm_rect_height(&plane_state->src) >> 16;
|
|
int dst_x = plane_state->dst.x1;
|
|
int dst_y = plane_state->dst.y1;
|
|
int dst_w = drm_rect_width(&plane_state->dst);
|
|
int dst_h = drm_rect_height(&plane_state->dst);
|
|
|
|
plane_ctl = PLANE_CTL_ENABLE |
|
|
PLANE_CTL_PIPE_GAMMA_ENABLE |
|
|
PLANE_CTL_PIPE_CSC_ENABLE;
|
|
|
|
plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
|
|
plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
|
|
plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
|
|
plane_ctl |= skl_plane_ctl_rotation(rotation);
|
|
|
|
stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
|
|
fb->pixel_format);
|
|
surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
|
|
|
|
WARN_ON(drm_rect_width(&plane_state->src) == 0);
|
|
|
|
if (intel_rotation_90_or_270(rotation)) {
|
|
int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
|
|
|
|
/* stride = Surface height in tiles */
|
|
tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
|
|
stride = DIV_ROUND_UP(fb->height, tile_height);
|
|
x_offset = stride * tile_height - src_y - src_h;
|
|
y_offset = src_x;
|
|
plane_size = (src_w - 1) << 16 | (src_h - 1);
|
|
} else {
|
|
stride = fb->pitches[0] / stride_div;
|
|
x_offset = src_x;
|
|
y_offset = src_y;
|
|
plane_size = (src_h - 1) << 16 | (src_w - 1);
|
|
}
|
|
plane_offset = y_offset << 16 | x_offset;
|
|
|
|
intel_crtc->adjusted_x = x_offset;
|
|
intel_crtc->adjusted_y = y_offset;
|
|
|
|
I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
|
|
I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
|
|
I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
|
|
I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
|
|
|
|
if (scaler_id >= 0) {
|
|
uint32_t ps_ctrl = 0;
|
|
|
|
WARN_ON(!dst_w || !dst_h);
|
|
ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
|
|
crtc_state->scaler_state.scalers[scaler_id].mode;
|
|
I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
|
|
I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
|
|
I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
|
|
I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
|
|
I915_WRITE(PLANE_POS(pipe, 0), 0);
|
|
} else {
|
|
I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
|
|
}
|
|
|
|
I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
|
|
|
|
POSTING_READ(PLANE_SURF(pipe, 0));
|
|
}
|
|
|
|
static void skylake_disable_primary_plane(struct drm_plane *primary,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int pipe = to_intel_crtc(crtc)->pipe;
|
|
|
|
I915_WRITE(PLANE_CTL(pipe, 0), 0);
|
|
I915_WRITE(PLANE_SURF(pipe, 0), 0);
|
|
POSTING_READ(PLANE_SURF(pipe, 0));
|
|
}
|
|
|
|
/* Assume fb object is pinned & idle & fenced and just update base pointers */
|
|
static int
|
|
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
|
|
int x, int y, enum mode_set_atomic state)
|
|
{
|
|
/* Support for kgdboc is disabled, this needs a major rework. */
|
|
DRM_ERROR("legacy panic handler not supported any more.\n");
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_crtc *crtc;
|
|
|
|
for_each_intel_crtc(&dev_priv->drm, crtc)
|
|
intel_finish_page_flip_cs(dev_priv, crtc->pipe);
|
|
}
|
|
|
|
static void intel_update_primary_planes(struct drm_device *dev)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
|
|
for_each_crtc(dev, crtc) {
|
|
struct intel_plane *plane = to_intel_plane(crtc->primary);
|
|
struct intel_plane_state *plane_state =
|
|
to_intel_plane_state(plane->base.state);
|
|
|
|
if (plane_state->visible)
|
|
plane->update_plane(&plane->base,
|
|
to_intel_crtc_state(crtc->state),
|
|
plane_state);
|
|
}
|
|
}
|
|
|
|
static int
|
|
__intel_display_resume(struct drm_device *dev,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_crtc_state *crtc_state;
|
|
struct drm_crtc *crtc;
|
|
int i, ret;
|
|
|
|
intel_modeset_setup_hw_state(dev);
|
|
i915_redisable_vga(dev);
|
|
|
|
if (!state)
|
|
return 0;
|
|
|
|
for_each_crtc_in_state(state, crtc, crtc_state, i) {
|
|
/*
|
|
* Force recalculation even if we restore
|
|
* current state. With fast modeset this may not result
|
|
* in a modeset when the state is compatible.
|
|
*/
|
|
crtc_state->mode_changed = true;
|
|
}
|
|
|
|
/* ignore any reset values/BIOS leftovers in the WM registers */
|
|
to_intel_atomic_state(state)->skip_intermediate_wm = true;
|
|
|
|
ret = drm_atomic_commit(state);
|
|
|
|
WARN_ON(ret == -EDEADLK);
|
|
return ret;
|
|
}
|
|
|
|
static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
|
|
{
|
|
return intel_has_gpu_reset(dev_priv) &&
|
|
INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
|
|
}
|
|
|
|
void intel_prepare_reset(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
|
|
struct drm_atomic_state *state;
|
|
int ret;
|
|
|
|
/*
|
|
* Need mode_config.mutex so that we don't
|
|
* trample ongoing ->detect() and whatnot.
|
|
*/
|
|
mutex_lock(&dev->mode_config.mutex);
|
|
drm_modeset_acquire_init(ctx, 0);
|
|
while (1) {
|
|
ret = drm_modeset_lock_all_ctx(dev, ctx);
|
|
if (ret != -EDEADLK)
|
|
break;
|
|
|
|
drm_modeset_backoff(ctx);
|
|
}
|
|
|
|
/* reset doesn't touch the display, but flips might get nuked anyway, */
|
|
if (!i915.force_reset_modeset_test &&
|
|
!gpu_reset_clobbers_display(dev_priv))
|
|
return;
|
|
|
|
/*
|
|
* Disabling the crtcs gracefully seems nicer. Also the
|
|
* g33 docs say we should at least disable all the planes.
|
|
*/
|
|
state = drm_atomic_helper_duplicate_state(dev, ctx);
|
|
if (IS_ERR(state)) {
|
|
ret = PTR_ERR(state);
|
|
state = NULL;
|
|
DRM_ERROR("Duplicating state failed with %i\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
ret = drm_atomic_helper_disable_all(dev, ctx);
|
|
if (ret) {
|
|
DRM_ERROR("Suspending crtc's failed with %i\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
dev_priv->modeset_restore_state = state;
|
|
state->acquire_ctx = ctx;
|
|
return;
|
|
|
|
err:
|
|
drm_atomic_state_free(state);
|
|
}
|
|
|
|
void intel_finish_reset(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
|
|
struct drm_atomic_state *state = dev_priv->modeset_restore_state;
|
|
int ret;
|
|
|
|
/*
|
|
* Flips in the rings will be nuked by the reset,
|
|
* so complete all pending flips so that user space
|
|
* will get its events and not get stuck.
|
|
*/
|
|
intel_complete_page_flips(dev_priv);
|
|
|
|
dev_priv->modeset_restore_state = NULL;
|
|
|
|
/* reset doesn't touch the display */
|
|
if (!gpu_reset_clobbers_display(dev_priv)) {
|
|
if (!state) {
|
|
/*
|
|
* Flips in the rings have been nuked by the reset,
|
|
* so update the base address of all primary
|
|
* planes to the the last fb to make sure we're
|
|
* showing the correct fb after a reset.
|
|
*
|
|
* FIXME: Atomic will make this obsolete since we won't schedule
|
|
* CS-based flips (which might get lost in gpu resets) any more.
|
|
*/
|
|
intel_update_primary_planes(dev);
|
|
} else {
|
|
ret = __intel_display_resume(dev, state);
|
|
if (ret)
|
|
DRM_ERROR("Restoring old state failed with %i\n", ret);
|
|
}
|
|
} else {
|
|
/*
|
|
* The display has been reset as well,
|
|
* so need a full re-initialization.
|
|
*/
|
|
intel_runtime_pm_disable_interrupts(dev_priv);
|
|
intel_runtime_pm_enable_interrupts(dev_priv);
|
|
|
|
intel_modeset_init_hw(dev);
|
|
|
|
spin_lock_irq(&dev_priv->irq_lock);
|
|
if (dev_priv->display.hpd_irq_setup)
|
|
dev_priv->display.hpd_irq_setup(dev_priv);
|
|
spin_unlock_irq(&dev_priv->irq_lock);
|
|
|
|
ret = __intel_display_resume(dev, state);
|
|
if (ret)
|
|
DRM_ERROR("Restoring old state failed with %i\n", ret);
|
|
|
|
intel_hpd_init(dev_priv);
|
|
}
|
|
|
|
drm_modeset_drop_locks(ctx);
|
|
drm_modeset_acquire_fini(ctx);
|
|
mutex_unlock(&dev->mode_config.mutex);
|
|
}
|
|
|
|
static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
unsigned reset_counter;
|
|
bool pending;
|
|
|
|
reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
|
|
if (intel_crtc->reset_counter != reset_counter)
|
|
return false;
|
|
|
|
spin_lock_irq(&dev->event_lock);
|
|
pending = to_intel_crtc(crtc)->flip_work != NULL;
|
|
spin_unlock_irq(&dev->event_lock);
|
|
|
|
return pending;
|
|
}
|
|
|
|
static void intel_update_pipe_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *old_crtc_state)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc_state *pipe_config =
|
|
to_intel_crtc_state(crtc->base.state);
|
|
|
|
/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
|
|
crtc->base.mode = crtc->base.state->mode;
|
|
|
|
DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
|
|
old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
|
|
pipe_config->pipe_src_w, pipe_config->pipe_src_h);
|
|
|
|
/*
|
|
* Update pipe size and adjust fitter if needed: the reason for this is
|
|
* that in compute_mode_changes we check the native mode (not the pfit
|
|
* mode) to see if we can flip rather than do a full mode set. In the
|
|
* fastboot case, we'll flip, but if we don't update the pipesrc and
|
|
* pfit state, we'll end up with a big fb scanned out into the wrong
|
|
* sized surface.
|
|
*/
|
|
|
|
I915_WRITE(PIPESRC(crtc->pipe),
|
|
((pipe_config->pipe_src_w - 1) << 16) |
|
|
(pipe_config->pipe_src_h - 1));
|
|
|
|
/* on skylake this is done by detaching scalers */
|
|
if (INTEL_INFO(dev)->gen >= 9) {
|
|
skl_detach_scalers(crtc);
|
|
|
|
if (pipe_config->pch_pfit.enabled)
|
|
skylake_pfit_enable(crtc);
|
|
} else if (HAS_PCH_SPLIT(dev)) {
|
|
if (pipe_config->pch_pfit.enabled)
|
|
ironlake_pfit_enable(crtc);
|
|
else if (old_crtc_state->pch_pfit.enabled)
|
|
ironlake_pfit_disable(crtc, true);
|
|
}
|
|
}
|
|
|
|
static void intel_fdi_normal_train(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
i915_reg_t reg;
|
|
u32 temp;
|
|
|
|
/* enable normal train */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (IS_IVYBRIDGE(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
|
|
temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
|
|
}
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (HAS_PCH_CPT(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_NORMAL_CPT;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_NONE;
|
|
}
|
|
I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
|
|
|
|
/* wait one idle pattern time */
|
|
POSTING_READ(reg);
|
|
udelay(1000);
|
|
|
|
/* IVB wants error correction enabled */
|
|
if (IS_IVYBRIDGE(dev))
|
|
I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
|
|
FDI_FE_ERRC_ENABLE);
|
|
}
|
|
|
|
/* The FDI link training functions for ILK/Ibexpeak. */
|
|
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
i915_reg_t reg;
|
|
u32 temp, tries;
|
|
|
|
/* FDI needs bits from pipe first */
|
|
assert_pipe_enabled(dev_priv, pipe);
|
|
|
|
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
|
|
for train result */
|
|
reg = FDI_RX_IMR(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_RX_SYMBOL_LOCK;
|
|
temp &= ~FDI_RX_BIT_LOCK;
|
|
I915_WRITE(reg, temp);
|
|
I915_READ(reg);
|
|
udelay(150);
|
|
|
|
/* enable CPU FDI TX and PCH FDI RX */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_DP_PORT_WIDTH_MASK;
|
|
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
I915_WRITE(reg, temp | FDI_TX_ENABLE);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
I915_WRITE(reg, temp | FDI_RX_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
/* Ironlake workaround, enable clock pointer after FDI enable*/
|
|
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
|
|
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
|
|
FDI_RX_PHASE_SYNC_POINTER_EN);
|
|
|
|
reg = FDI_RX_IIR(pipe);
|
|
for (tries = 0; tries < 5; tries++) {
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
|
|
if ((temp & FDI_RX_BIT_LOCK)) {
|
|
DRM_DEBUG_KMS("FDI train 1 done.\n");
|
|
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
|
|
break;
|
|
}
|
|
}
|
|
if (tries == 5)
|
|
DRM_ERROR("FDI train 1 fail!\n");
|
|
|
|
/* Train 2 */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2;
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
reg = FDI_RX_IIR(pipe);
|
|
for (tries = 0; tries < 5; tries++) {
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
|
|
if (temp & FDI_RX_SYMBOL_LOCK) {
|
|
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 2 done.\n");
|
|
break;
|
|
}
|
|
}
|
|
if (tries == 5)
|
|
DRM_ERROR("FDI train 2 fail!\n");
|
|
|
|
DRM_DEBUG_KMS("FDI train done\n");
|
|
|
|
}
|
|
|
|
static const int snb_b_fdi_train_param[] = {
|
|
FDI_LINK_TRAIN_400MV_0DB_SNB_B,
|
|
FDI_LINK_TRAIN_400MV_6DB_SNB_B,
|
|
FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
|
|
FDI_LINK_TRAIN_800MV_0DB_SNB_B,
|
|
};
|
|
|
|
/* The FDI link training functions for SNB/Cougarpoint. */
|
|
static void gen6_fdi_link_train(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
i915_reg_t reg;
|
|
u32 temp, i, retry;
|
|
|
|
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
|
|
for train result */
|
|
reg = FDI_RX_IMR(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_RX_SYMBOL_LOCK;
|
|
temp &= ~FDI_RX_BIT_LOCK;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
/* enable CPU FDI TX and PCH FDI RX */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_DP_PORT_WIDTH_MASK;
|
|
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
/* SNB-B */
|
|
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
|
|
I915_WRITE(reg, temp | FDI_TX_ENABLE);
|
|
|
|
I915_WRITE(FDI_RX_MISC(pipe),
|
|
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (HAS_PCH_CPT(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
}
|
|
I915_WRITE(reg, temp | FDI_RX_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
temp |= snb_b_fdi_train_param[i];
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(500);
|
|
|
|
for (retry = 0; retry < 5; retry++) {
|
|
reg = FDI_RX_IIR(pipe);
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
if (temp & FDI_RX_BIT_LOCK) {
|
|
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 1 done.\n");
|
|
break;
|
|
}
|
|
udelay(50);
|
|
}
|
|
if (retry < 5)
|
|
break;
|
|
}
|
|
if (i == 4)
|
|
DRM_ERROR("FDI train 1 fail!\n");
|
|
|
|
/* Train 2 */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2;
|
|
if (IS_GEN6(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
/* SNB-B */
|
|
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
|
|
}
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (HAS_PCH_CPT(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2;
|
|
}
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
temp |= snb_b_fdi_train_param[i];
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(500);
|
|
|
|
for (retry = 0; retry < 5; retry++) {
|
|
reg = FDI_RX_IIR(pipe);
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
if (temp & FDI_RX_SYMBOL_LOCK) {
|
|
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 2 done.\n");
|
|
break;
|
|
}
|
|
udelay(50);
|
|
}
|
|
if (retry < 5)
|
|
break;
|
|
}
|
|
if (i == 4)
|
|
DRM_ERROR("FDI train 2 fail!\n");
|
|
|
|
DRM_DEBUG_KMS("FDI train done.\n");
|
|
}
|
|
|
|
/* Manual link training for Ivy Bridge A0 parts */
|
|
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
i915_reg_t reg;
|
|
u32 temp, i, j;
|
|
|
|
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
|
|
for train result */
|
|
reg = FDI_RX_IMR(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_RX_SYMBOL_LOCK;
|
|
temp &= ~FDI_RX_BIT_LOCK;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
|
|
I915_READ(FDI_RX_IIR(pipe)));
|
|
|
|
/* Try each vswing and preemphasis setting twice before moving on */
|
|
for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
|
|
/* disable first in case we need to retry */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
|
|
temp &= ~FDI_TX_ENABLE;
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_AUTO;
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp &= ~FDI_RX_ENABLE;
|
|
I915_WRITE(reg, temp);
|
|
|
|
/* enable CPU FDI TX and PCH FDI RX */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_DP_PORT_WIDTH_MASK;
|
|
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
temp |= snb_b_fdi_train_param[j/2];
|
|
temp |= FDI_COMPOSITE_SYNC;
|
|
I915_WRITE(reg, temp | FDI_TX_ENABLE);
|
|
|
|
I915_WRITE(FDI_RX_MISC(pipe),
|
|
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
|
|
temp |= FDI_COMPOSITE_SYNC;
|
|
I915_WRITE(reg, temp | FDI_RX_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(1); /* should be 0.5us */
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
reg = FDI_RX_IIR(pipe);
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
|
|
if (temp & FDI_RX_BIT_LOCK ||
|
|
(I915_READ(reg) & FDI_RX_BIT_LOCK)) {
|
|
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
|
|
i);
|
|
break;
|
|
}
|
|
udelay(1); /* should be 0.5us */
|
|
}
|
|
if (i == 4) {
|
|
DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
|
|
continue;
|
|
}
|
|
|
|
/* Train 2 */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(2); /* should be 1.5us */
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
reg = FDI_RX_IIR(pipe);
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
|
|
if (temp & FDI_RX_SYMBOL_LOCK ||
|
|
(I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
|
|
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
|
|
i);
|
|
goto train_done;
|
|
}
|
|
udelay(2); /* should be 1.5us */
|
|
}
|
|
if (i == 4)
|
|
DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
|
|
}
|
|
|
|
train_done:
|
|
DRM_DEBUG_KMS("FDI train done.\n");
|
|
}
|
|
|
|
static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int pipe = intel_crtc->pipe;
|
|
i915_reg_t reg;
|
|
u32 temp;
|
|
|
|
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
|
|
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
|
|
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
|
|
I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(200);
|
|
|
|
/* Switch from Rawclk to PCDclk */
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp | FDI_PCDCLK);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(200);
|
|
|
|
/* Enable CPU FDI TX PLL, always on for Ironlake */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
|
|
I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
}
|
|
}
|
|
|
|
static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int pipe = intel_crtc->pipe;
|
|
i915_reg_t reg;
|
|
u32 temp;
|
|
|
|
/* Switch from PCDclk to Rawclk */
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp & ~FDI_PCDCLK);
|
|
|
|
/* Disable CPU FDI TX PLL */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
|
|
|
|
/* Wait for the clocks to turn off. */
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
}
|
|
|
|
static void ironlake_fdi_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
i915_reg_t reg;
|
|
u32 temp;
|
|
|
|
/* disable CPU FDI tx and PCH FDI rx */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
|
|
POSTING_READ(reg);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(0x7 << 16);
|
|
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
|
|
I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
|
|
/* Ironlake workaround, disable clock pointer after downing FDI */
|
|
if (HAS_PCH_IBX(dev))
|
|
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
|
|
|
|
/* still set train pattern 1 */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (HAS_PCH_CPT(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
}
|
|
/* BPC in FDI rx is consistent with that in PIPECONF */
|
|
temp &= ~(0x07 << 16);
|
|
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
}
|
|
|
|
bool intel_has_pending_fb_unpin(struct drm_device *dev)
|
|
{
|
|
struct intel_crtc *crtc;
|
|
|
|
/* Note that we don't need to be called with mode_config.lock here
|
|
* as our list of CRTC objects is static for the lifetime of the
|
|
* device and so cannot disappear as we iterate. Similarly, we can
|
|
* happily treat the predicates as racy, atomic checks as userspace
|
|
* cannot claim and pin a new fb without at least acquring the
|
|
* struct_mutex and so serialising with us.
|
|
*/
|
|
for_each_intel_crtc(dev, crtc) {
|
|
if (atomic_read(&crtc->unpin_work_count) == 0)
|
|
continue;
|
|
|
|
if (crtc->flip_work)
|
|
intel_wait_for_vblank(dev, crtc->pipe);
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void page_flip_completed(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
|
|
struct intel_flip_work *work = intel_crtc->flip_work;
|
|
|
|
intel_crtc->flip_work = NULL;
|
|
|
|
if (work->event)
|
|
drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
|
|
|
|
drm_crtc_vblank_put(&intel_crtc->base);
|
|
|
|
wake_up_all(&dev_priv->pending_flip_queue);
|
|
queue_work(dev_priv->wq, &work->unpin_work);
|
|
|
|
trace_i915_flip_complete(intel_crtc->plane,
|
|
work->pending_flip_obj);
|
|
}
|
|
|
|
static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
long ret;
|
|
|
|
WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
|
|
|
|
ret = wait_event_interruptible_timeout(
|
|
dev_priv->pending_flip_queue,
|
|
!intel_crtc_has_pending_flip(crtc),
|
|
60*HZ);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ret == 0) {
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_flip_work *work;
|
|
|
|
spin_lock_irq(&dev->event_lock);
|
|
work = intel_crtc->flip_work;
|
|
if (work && !is_mmio_work(work)) {
|
|
WARN_ONCE(1, "Removing stuck page flip\n");
|
|
page_flip_completed(intel_crtc);
|
|
}
|
|
spin_unlock_irq(&dev->event_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 temp;
|
|
|
|
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
|
|
temp |= SBI_SSCCTL_DISABLE;
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
/* Program iCLKIP clock to the desired frequency */
|
|
static void lpt_program_iclkip(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
|
|
int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
|
|
u32 divsel, phaseinc, auxdiv, phasedir = 0;
|
|
u32 temp;
|
|
|
|
lpt_disable_iclkip(dev_priv);
|
|
|
|
/* The iCLK virtual clock root frequency is in MHz,
|
|
* but the adjusted_mode->crtc_clock in in KHz. To get the
|
|
* divisors, it is necessary to divide one by another, so we
|
|
* convert the virtual clock precision to KHz here for higher
|
|
* precision.
|
|
*/
|
|
for (auxdiv = 0; auxdiv < 2; auxdiv++) {
|
|
u32 iclk_virtual_root_freq = 172800 * 1000;
|
|
u32 iclk_pi_range = 64;
|
|
u32 desired_divisor;
|
|
|
|
desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
|
|
clock << auxdiv);
|
|
divsel = (desired_divisor / iclk_pi_range) - 2;
|
|
phaseinc = desired_divisor % iclk_pi_range;
|
|
|
|
/*
|
|
* Near 20MHz is a corner case which is
|
|
* out of range for the 7-bit divisor
|
|
*/
|
|
if (divsel <= 0x7f)
|
|
break;
|
|
}
|
|
|
|
/* This should not happen with any sane values */
|
|
WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
|
|
~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
|
|
WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
|
|
~SBI_SSCDIVINTPHASE_INCVAL_MASK);
|
|
|
|
DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
|
|
clock,
|
|
auxdiv,
|
|
divsel,
|
|
phasedir,
|
|
phaseinc);
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* Program SSCDIVINTPHASE6 */
|
|
temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
|
|
temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
|
|
temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
|
|
temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
|
|
temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
|
|
temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
|
|
temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
|
|
intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
|
|
|
|
/* Program SSCAUXDIV */
|
|
temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
|
|
temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
|
|
temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
|
|
intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
|
|
|
|
/* Enable modulator and associated divider */
|
|
temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
|
|
temp &= ~SBI_SSCCTL_DISABLE;
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
/* Wait for initialization time */
|
|
udelay(24);
|
|
|
|
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
|
|
}
|
|
|
|
int lpt_get_iclkip(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 divsel, phaseinc, auxdiv;
|
|
u32 iclk_virtual_root_freq = 172800 * 1000;
|
|
u32 iclk_pi_range = 64;
|
|
u32 desired_divisor;
|
|
u32 temp;
|
|
|
|
if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
|
|
return 0;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
|
|
if (temp & SBI_SSCCTL_DISABLE) {
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
return 0;
|
|
}
|
|
|
|
temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
|
|
divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
|
|
SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
|
|
phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
|
|
SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
|
|
|
|
temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
|
|
auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
|
|
SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
|
|
|
|
return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
|
|
desired_divisor << auxdiv);
|
|
}
|
|
|
|
static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
|
|
enum pipe pch_transcoder)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
|
|
|
|
I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
|
|
I915_READ(HTOTAL(cpu_transcoder)));
|
|
I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
|
|
I915_READ(HBLANK(cpu_transcoder)));
|
|
I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
|
|
I915_READ(HSYNC(cpu_transcoder)));
|
|
|
|
I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
|
|
I915_READ(VTOTAL(cpu_transcoder)));
|
|
I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
|
|
I915_READ(VBLANK(cpu_transcoder)));
|
|
I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
|
|
I915_READ(VSYNC(cpu_transcoder)));
|
|
I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
|
|
I915_READ(VSYNCSHIFT(cpu_transcoder)));
|
|
}
|
|
|
|
static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint32_t temp;
|
|
|
|
temp = I915_READ(SOUTH_CHICKEN1);
|
|
if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
|
|
return;
|
|
|
|
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
|
|
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
|
|
|
|
temp &= ~FDI_BC_BIFURCATION_SELECT;
|
|
if (enable)
|
|
temp |= FDI_BC_BIFURCATION_SELECT;
|
|
|
|
DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
|
|
I915_WRITE(SOUTH_CHICKEN1, temp);
|
|
POSTING_READ(SOUTH_CHICKEN1);
|
|
}
|
|
|
|
static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
|
|
switch (intel_crtc->pipe) {
|
|
case PIPE_A:
|
|
break;
|
|
case PIPE_B:
|
|
if (intel_crtc->config->fdi_lanes > 2)
|
|
cpt_set_fdi_bc_bifurcation(dev, false);
|
|
else
|
|
cpt_set_fdi_bc_bifurcation(dev, true);
|
|
|
|
break;
|
|
case PIPE_C:
|
|
cpt_set_fdi_bc_bifurcation(dev, true);
|
|
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/* Return which DP Port should be selected for Transcoder DP control */
|
|
static enum port
|
|
intel_trans_dp_port_sel(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_encoder *encoder;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder) {
|
|
if (encoder->type == INTEL_OUTPUT_DP ||
|
|
encoder->type == INTEL_OUTPUT_EDP)
|
|
return enc_to_dig_port(&encoder->base)->port;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Enable PCH resources required for PCH ports:
|
|
* - PCH PLLs
|
|
* - FDI training & RX/TX
|
|
* - update transcoder timings
|
|
* - DP transcoding bits
|
|
* - transcoder
|
|
*/
|
|
static void ironlake_pch_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 temp;
|
|
|
|
assert_pch_transcoder_disabled(dev_priv, pipe);
|
|
|
|
if (IS_IVYBRIDGE(dev))
|
|
ivybridge_update_fdi_bc_bifurcation(intel_crtc);
|
|
|
|
/* Write the TU size bits before fdi link training, so that error
|
|
* detection works. */
|
|
I915_WRITE(FDI_RX_TUSIZE1(pipe),
|
|
I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
|
|
|
|
/* For PCH output, training FDI link */
|
|
dev_priv->display.fdi_link_train(crtc);
|
|
|
|
/* We need to program the right clock selection before writing the pixel
|
|
* mutliplier into the DPLL. */
|
|
if (HAS_PCH_CPT(dev)) {
|
|
u32 sel;
|
|
|
|
temp = I915_READ(PCH_DPLL_SEL);
|
|
temp |= TRANS_DPLL_ENABLE(pipe);
|
|
sel = TRANS_DPLLB_SEL(pipe);
|
|
if (intel_crtc->config->shared_dpll ==
|
|
intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
|
|
temp |= sel;
|
|
else
|
|
temp &= ~sel;
|
|
I915_WRITE(PCH_DPLL_SEL, temp);
|
|
}
|
|
|
|
/* XXX: pch pll's can be enabled any time before we enable the PCH
|
|
* transcoder, and we actually should do this to not upset any PCH
|
|
* transcoder that already use the clock when we share it.
|
|
*
|
|
* Note that enable_shared_dpll tries to do the right thing, but
|
|
* get_shared_dpll unconditionally resets the pll - we need that to have
|
|
* the right LVDS enable sequence. */
|
|
intel_enable_shared_dpll(intel_crtc);
|
|
|
|
/* set transcoder timing, panel must allow it */
|
|
assert_panel_unlocked(dev_priv, pipe);
|
|
ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
|
|
|
|
intel_fdi_normal_train(crtc);
|
|
|
|
/* For PCH DP, enable TRANS_DP_CTL */
|
|
if (HAS_PCH_CPT(dev) && intel_crtc_has_dp_encoder(intel_crtc->config)) {
|
|
const struct drm_display_mode *adjusted_mode =
|
|
&intel_crtc->config->base.adjusted_mode;
|
|
u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
|
|
i915_reg_t reg = TRANS_DP_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(TRANS_DP_PORT_SEL_MASK |
|
|
TRANS_DP_SYNC_MASK |
|
|
TRANS_DP_BPC_MASK);
|
|
temp |= TRANS_DP_OUTPUT_ENABLE;
|
|
temp |= bpc << 9; /* same format but at 11:9 */
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
|
|
temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
|
|
temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
|
|
|
|
switch (intel_trans_dp_port_sel(crtc)) {
|
|
case PORT_B:
|
|
temp |= TRANS_DP_PORT_SEL_B;
|
|
break;
|
|
case PORT_C:
|
|
temp |= TRANS_DP_PORT_SEL_C;
|
|
break;
|
|
case PORT_D:
|
|
temp |= TRANS_DP_PORT_SEL_D;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
I915_WRITE(reg, temp);
|
|
}
|
|
|
|
ironlake_enable_pch_transcoder(dev_priv, pipe);
|
|
}
|
|
|
|
static void lpt_pch_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
|
|
|
|
assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
|
|
|
|
lpt_program_iclkip(crtc);
|
|
|
|
/* Set transcoder timing. */
|
|
ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
|
|
|
|
lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
|
|
}
|
|
|
|
static void cpt_verify_modeset(struct drm_device *dev, int pipe)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
i915_reg_t dslreg = PIPEDSL(pipe);
|
|
u32 temp;
|
|
|
|
temp = I915_READ(dslreg);
|
|
udelay(500);
|
|
if (wait_for(I915_READ(dslreg) != temp, 5)) {
|
|
if (wait_for(I915_READ(dslreg) != temp, 5))
|
|
DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
|
|
}
|
|
}
|
|
|
|
static int
|
|
skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
|
|
unsigned scaler_user, int *scaler_id, unsigned int rotation,
|
|
int src_w, int src_h, int dst_w, int dst_h)
|
|
{
|
|
struct intel_crtc_scaler_state *scaler_state =
|
|
&crtc_state->scaler_state;
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(crtc_state->base.crtc);
|
|
int need_scaling;
|
|
|
|
need_scaling = intel_rotation_90_or_270(rotation) ?
|
|
(src_h != dst_w || src_w != dst_h):
|
|
(src_w != dst_w || src_h != dst_h);
|
|
|
|
/*
|
|
* if plane is being disabled or scaler is no more required or force detach
|
|
* - free scaler binded to this plane/crtc
|
|
* - in order to do this, update crtc->scaler_usage
|
|
*
|
|
* Here scaler state in crtc_state is set free so that
|
|
* scaler can be assigned to other user. Actual register
|
|
* update to free the scaler is done in plane/panel-fit programming.
|
|
* For this purpose crtc/plane_state->scaler_id isn't reset here.
|
|
*/
|
|
if (force_detach || !need_scaling) {
|
|
if (*scaler_id >= 0) {
|
|
scaler_state->scaler_users &= ~(1 << scaler_user);
|
|
scaler_state->scalers[*scaler_id].in_use = 0;
|
|
|
|
DRM_DEBUG_KMS("scaler_user index %u.%u: "
|
|
"Staged freeing scaler id %d scaler_users = 0x%x\n",
|
|
intel_crtc->pipe, scaler_user, *scaler_id,
|
|
scaler_state->scaler_users);
|
|
*scaler_id = -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* range checks */
|
|
if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
|
|
dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
|
|
|
|
src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
|
|
dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
|
|
DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
|
|
"size is out of scaler range\n",
|
|
intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* mark this plane as a scaler user in crtc_state */
|
|
scaler_state->scaler_users |= (1 << scaler_user);
|
|
DRM_DEBUG_KMS("scaler_user index %u.%u: "
|
|
"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
|
|
intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
|
|
scaler_state->scaler_users);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
|
|
*
|
|
* @state: crtc's scaler state
|
|
*
|
|
* Return
|
|
* 0 - scaler_usage updated successfully
|
|
* error - requested scaling cannot be supported or other error condition
|
|
*/
|
|
int skl_update_scaler_crtc(struct intel_crtc_state *state)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
|
|
const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
|
|
|
|
DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
|
|
intel_crtc->base.base.id, intel_crtc->base.name,
|
|
intel_crtc->pipe, SKL_CRTC_INDEX);
|
|
|
|
return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
|
|
&state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
|
|
state->pipe_src_w, state->pipe_src_h,
|
|
adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
|
|
}
|
|
|
|
/**
|
|
* skl_update_scaler_plane - Stages update to scaler state for a given plane.
|
|
*
|
|
* @state: crtc's scaler state
|
|
* @plane_state: atomic plane state to update
|
|
*
|
|
* Return
|
|
* 0 - scaler_usage updated successfully
|
|
* error - requested scaling cannot be supported or other error condition
|
|
*/
|
|
static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
|
|
struct intel_plane_state *plane_state)
|
|
{
|
|
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct intel_plane *intel_plane =
|
|
to_intel_plane(plane_state->base.plane);
|
|
struct drm_framebuffer *fb = plane_state->base.fb;
|
|
int ret;
|
|
|
|
bool force_detach = !fb || !plane_state->visible;
|
|
|
|
DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
|
|
intel_plane->base.base.id, intel_plane->base.name,
|
|
intel_crtc->pipe, drm_plane_index(&intel_plane->base));
|
|
|
|
ret = skl_update_scaler(crtc_state, force_detach,
|
|
drm_plane_index(&intel_plane->base),
|
|
&plane_state->scaler_id,
|
|
plane_state->base.rotation,
|
|
drm_rect_width(&plane_state->src) >> 16,
|
|
drm_rect_height(&plane_state->src) >> 16,
|
|
drm_rect_width(&plane_state->dst),
|
|
drm_rect_height(&plane_state->dst));
|
|
|
|
if (ret || plane_state->scaler_id < 0)
|
|
return ret;
|
|
|
|
/* check colorkey */
|
|
if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
|
|
DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
|
|
intel_plane->base.base.id,
|
|
intel_plane->base.name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check src format */
|
|
switch (fb->pixel_format) {
|
|
case DRM_FORMAT_RGB565:
|
|
case DRM_FORMAT_XBGR8888:
|
|
case DRM_FORMAT_XRGB8888:
|
|
case DRM_FORMAT_ABGR8888:
|
|
case DRM_FORMAT_ARGB8888:
|
|
case DRM_FORMAT_XRGB2101010:
|
|
case DRM_FORMAT_XBGR2101010:
|
|
case DRM_FORMAT_YUYV:
|
|
case DRM_FORMAT_YVYU:
|
|
case DRM_FORMAT_UYVY:
|
|
case DRM_FORMAT_VYUY:
|
|
break;
|
|
default:
|
|
DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
|
|
intel_plane->base.base.id, intel_plane->base.name,
|
|
fb->base.id, fb->pixel_format);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void skylake_scaler_disable(struct intel_crtc *crtc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < crtc->num_scalers; i++)
|
|
skl_detach_scaler(crtc, i);
|
|
}
|
|
|
|
static void skylake_pfit_enable(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int pipe = crtc->pipe;
|
|
struct intel_crtc_scaler_state *scaler_state =
|
|
&crtc->config->scaler_state;
|
|
|
|
DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
|
|
|
|
if (crtc->config->pch_pfit.enabled) {
|
|
int id;
|
|
|
|
if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
|
|
DRM_ERROR("Requesting pfit without getting a scaler first\n");
|
|
return;
|
|
}
|
|
|
|
id = scaler_state->scaler_id;
|
|
I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
|
|
PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
|
|
I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
|
|
I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
|
|
|
|
DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
|
|
}
|
|
}
|
|
|
|
static void ironlake_pfit_enable(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int pipe = crtc->pipe;
|
|
|
|
if (crtc->config->pch_pfit.enabled) {
|
|
/* Force use of hard-coded filter coefficients
|
|
* as some pre-programmed values are broken,
|
|
* e.g. x201.
|
|
*/
|
|
if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
|
|
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
|
|
PF_PIPE_SEL_IVB(pipe));
|
|
else
|
|
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
|
|
I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
|
|
I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
|
|
}
|
|
}
|
|
|
|
void hsw_enable_ips(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (!crtc->config->ips_enabled)
|
|
return;
|
|
|
|
/*
|
|
* We can only enable IPS after we enable a plane and wait for a vblank
|
|
* This function is called from post_plane_update, which is run after
|
|
* a vblank wait.
|
|
*/
|
|
|
|
assert_plane_enabled(dev_priv, crtc->plane);
|
|
if (IS_BROADWELL(dev)) {
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
/* Quoting Art Runyan: "its not safe to expect any particular
|
|
* value in IPS_CTL bit 31 after enabling IPS through the
|
|
* mailbox." Moreover, the mailbox may return a bogus state,
|
|
* so we need to just enable it and continue on.
|
|
*/
|
|
} else {
|
|
I915_WRITE(IPS_CTL, IPS_ENABLE);
|
|
/* The bit only becomes 1 in the next vblank, so this wait here
|
|
* is essentially intel_wait_for_vblank. If we don't have this
|
|
* and don't wait for vblanks until the end of crtc_enable, then
|
|
* the HW state readout code will complain that the expected
|
|
* IPS_CTL value is not the one we read. */
|
|
if (intel_wait_for_register(dev_priv,
|
|
IPS_CTL, IPS_ENABLE, IPS_ENABLE,
|
|
50))
|
|
DRM_ERROR("Timed out waiting for IPS enable\n");
|
|
}
|
|
}
|
|
|
|
void hsw_disable_ips(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (!crtc->config->ips_enabled)
|
|
return;
|
|
|
|
assert_plane_enabled(dev_priv, crtc->plane);
|
|
if (IS_BROADWELL(dev)) {
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
/* wait for pcode to finish disabling IPS, which may take up to 42ms */
|
|
if (intel_wait_for_register(dev_priv,
|
|
IPS_CTL, IPS_ENABLE, 0,
|
|
42))
|
|
DRM_ERROR("Timed out waiting for IPS disable\n");
|
|
} else {
|
|
I915_WRITE(IPS_CTL, 0);
|
|
POSTING_READ(IPS_CTL);
|
|
}
|
|
|
|
/* We need to wait for a vblank before we can disable the plane. */
|
|
intel_wait_for_vblank(dev, crtc->pipe);
|
|
}
|
|
|
|
static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
|
|
{
|
|
if (intel_crtc->overlay) {
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
dev_priv->mm.interruptible = false;
|
|
(void) intel_overlay_switch_off(intel_crtc->overlay);
|
|
dev_priv->mm.interruptible = true;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
/* Let userspace switch the overlay on again. In most cases userspace
|
|
* has to recompute where to put it anyway.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* intel_post_enable_primary - Perform operations after enabling primary plane
|
|
* @crtc: the CRTC whose primary plane was just enabled
|
|
*
|
|
* Performs potentially sleeping operations that must be done after the primary
|
|
* plane is enabled, such as updating FBC and IPS. Note that this may be
|
|
* called due to an explicit primary plane update, or due to an implicit
|
|
* re-enable that is caused when a sprite plane is updated to no longer
|
|
* completely hide the primary plane.
|
|
*/
|
|
static void
|
|
intel_post_enable_primary(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
/*
|
|
* FIXME IPS should be fine as long as one plane is
|
|
* enabled, but in practice it seems to have problems
|
|
* when going from primary only to sprite only and vice
|
|
* versa.
|
|
*/
|
|
hsw_enable_ips(intel_crtc);
|
|
|
|
/*
|
|
* Gen2 reports pipe underruns whenever all planes are disabled.
|
|
* So don't enable underrun reporting before at least some planes
|
|
* are enabled.
|
|
* FIXME: Need to fix the logic to work when we turn off all planes
|
|
* but leave the pipe running.
|
|
*/
|
|
if (IS_GEN2(dev))
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
|
|
/* Underruns don't always raise interrupts, so check manually. */
|
|
intel_check_cpu_fifo_underruns(dev_priv);
|
|
intel_check_pch_fifo_underruns(dev_priv);
|
|
}
|
|
|
|
/* FIXME move all this to pre_plane_update() with proper state tracking */
|
|
static void
|
|
intel_pre_disable_primary(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
/*
|
|
* Gen2 reports pipe underruns whenever all planes are disabled.
|
|
* So diasble underrun reporting before all the planes get disabled.
|
|
* FIXME: Need to fix the logic to work when we turn off all planes
|
|
* but leave the pipe running.
|
|
*/
|
|
if (IS_GEN2(dev))
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
|
|
|
|
/*
|
|
* FIXME IPS should be fine as long as one plane is
|
|
* enabled, but in practice it seems to have problems
|
|
* when going from primary only to sprite only and vice
|
|
* versa.
|
|
*/
|
|
hsw_disable_ips(intel_crtc);
|
|
}
|
|
|
|
/* FIXME get rid of this and use pre_plane_update */
|
|
static void
|
|
intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
intel_pre_disable_primary(crtc);
|
|
|
|
/*
|
|
* Vblank time updates from the shadow to live plane control register
|
|
* are blocked if the memory self-refresh mode is active at that
|
|
* moment. So to make sure the plane gets truly disabled, disable
|
|
* first the self-refresh mode. The self-refresh enable bit in turn
|
|
* will be checked/applied by the HW only at the next frame start
|
|
* event which is after the vblank start event, so we need to have a
|
|
* wait-for-vblank between disabling the plane and the pipe.
|
|
*/
|
|
if (HAS_GMCH_DISPLAY(dev)) {
|
|
intel_set_memory_cxsr(dev_priv, false);
|
|
dev_priv->wm.vlv.cxsr = false;
|
|
intel_wait_for_vblank(dev, pipe);
|
|
}
|
|
}
|
|
|
|
static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
|
|
struct drm_atomic_state *old_state = old_crtc_state->base.state;
|
|
struct intel_crtc_state *pipe_config =
|
|
to_intel_crtc_state(crtc->base.state);
|
|
struct drm_plane *primary = crtc->base.primary;
|
|
struct drm_plane_state *old_pri_state =
|
|
drm_atomic_get_existing_plane_state(old_state, primary);
|
|
|
|
intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
|
|
|
|
crtc->wm.cxsr_allowed = true;
|
|
|
|
if (pipe_config->update_wm_post && pipe_config->base.active)
|
|
intel_update_watermarks(&crtc->base);
|
|
|
|
if (old_pri_state) {
|
|
struct intel_plane_state *primary_state =
|
|
to_intel_plane_state(primary->state);
|
|
struct intel_plane_state *old_primary_state =
|
|
to_intel_plane_state(old_pri_state);
|
|
|
|
intel_fbc_post_update(crtc);
|
|
|
|
if (primary_state->visible &&
|
|
(needs_modeset(&pipe_config->base) ||
|
|
!old_primary_state->visible))
|
|
intel_post_enable_primary(&crtc->base);
|
|
}
|
|
}
|
|
|
|
static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc_state *pipe_config =
|
|
to_intel_crtc_state(crtc->base.state);
|
|
struct drm_atomic_state *old_state = old_crtc_state->base.state;
|
|
struct drm_plane *primary = crtc->base.primary;
|
|
struct drm_plane_state *old_pri_state =
|
|
drm_atomic_get_existing_plane_state(old_state, primary);
|
|
bool modeset = needs_modeset(&pipe_config->base);
|
|
|
|
if (old_pri_state) {
|
|
struct intel_plane_state *primary_state =
|
|
to_intel_plane_state(primary->state);
|
|
struct intel_plane_state *old_primary_state =
|
|
to_intel_plane_state(old_pri_state);
|
|
|
|
intel_fbc_pre_update(crtc, pipe_config, primary_state);
|
|
|
|
if (old_primary_state->visible &&
|
|
(modeset || !primary_state->visible))
|
|
intel_pre_disable_primary(&crtc->base);
|
|
}
|
|
|
|
if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
|
|
crtc->wm.cxsr_allowed = false;
|
|
|
|
/*
|
|
* Vblank time updates from the shadow to live plane control register
|
|
* are blocked if the memory self-refresh mode is active at that
|
|
* moment. So to make sure the plane gets truly disabled, disable
|
|
* first the self-refresh mode. The self-refresh enable bit in turn
|
|
* will be checked/applied by the HW only at the next frame start
|
|
* event which is after the vblank start event, so we need to have a
|
|
* wait-for-vblank between disabling the plane and the pipe.
|
|
*/
|
|
if (old_crtc_state->base.active) {
|
|
intel_set_memory_cxsr(dev_priv, false);
|
|
dev_priv->wm.vlv.cxsr = false;
|
|
intel_wait_for_vblank(dev, crtc->pipe);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* IVB workaround: must disable low power watermarks for at least
|
|
* one frame before enabling scaling. LP watermarks can be re-enabled
|
|
* when scaling is disabled.
|
|
*
|
|
* WaCxSRDisabledForSpriteScaling:ivb
|
|
*/
|
|
if (pipe_config->disable_lp_wm) {
|
|
ilk_disable_lp_wm(dev);
|
|
intel_wait_for_vblank(dev, crtc->pipe);
|
|
}
|
|
|
|
/*
|
|
* If we're doing a modeset, we're done. No need to do any pre-vblank
|
|
* watermark programming here.
|
|
*/
|
|
if (needs_modeset(&pipe_config->base))
|
|
return;
|
|
|
|
/*
|
|
* For platforms that support atomic watermarks, program the
|
|
* 'intermediate' watermarks immediately. On pre-gen9 platforms, these
|
|
* will be the intermediate values that are safe for both pre- and
|
|
* post- vblank; when vblank happens, the 'active' values will be set
|
|
* to the final 'target' values and we'll do this again to get the
|
|
* optimal watermarks. For gen9+ platforms, the values we program here
|
|
* will be the final target values which will get automatically latched
|
|
* at vblank time; no further programming will be necessary.
|
|
*
|
|
* If a platform hasn't been transitioned to atomic watermarks yet,
|
|
* we'll continue to update watermarks the old way, if flags tell
|
|
* us to.
|
|
*/
|
|
if (dev_priv->display.initial_watermarks != NULL)
|
|
dev_priv->display.initial_watermarks(pipe_config);
|
|
else if (pipe_config->update_wm_pre)
|
|
intel_update_watermarks(&crtc->base);
|
|
}
|
|
|
|
static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_plane *p;
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
intel_crtc_dpms_overlay_disable(intel_crtc);
|
|
|
|
drm_for_each_plane_mask(p, dev, plane_mask)
|
|
to_intel_plane(p)->disable_plane(p, crtc);
|
|
|
|
/*
|
|
* FIXME: Once we grow proper nuclear flip support out of this we need
|
|
* to compute the mask of flip planes precisely. For the time being
|
|
* consider this a flip to a NULL plane.
|
|
*/
|
|
intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
|
|
}
|
|
|
|
static void ironlake_crtc_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
struct intel_crtc_state *pipe_config =
|
|
to_intel_crtc_state(crtc->state);
|
|
|
|
if (WARN_ON(intel_crtc->active))
|
|
return;
|
|
|
|
/*
|
|
* Sometimes spurious CPU pipe underruns happen during FDI
|
|
* training, at least with VGA+HDMI cloning. Suppress them.
|
|
*
|
|
* On ILK we get an occasional spurious CPU pipe underruns
|
|
* between eDP port A enable and vdd enable. Also PCH port
|
|
* enable seems to result in the occasional CPU pipe underrun.
|
|
*
|
|
* Spurious PCH underruns also occur during PCH enabling.
|
|
*/
|
|
if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
|
|
if (intel_crtc->config->has_pch_encoder)
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
|
|
|
|
if (intel_crtc->config->has_pch_encoder)
|
|
intel_prepare_shared_dpll(intel_crtc);
|
|
|
|
if (intel_crtc_has_dp_encoder(intel_crtc->config))
|
|
intel_dp_set_m_n(intel_crtc, M1_N1);
|
|
|
|
intel_set_pipe_timings(intel_crtc);
|
|
intel_set_pipe_src_size(intel_crtc);
|
|
|
|
if (intel_crtc->config->has_pch_encoder) {
|
|
intel_cpu_transcoder_set_m_n(intel_crtc,
|
|
&intel_crtc->config->fdi_m_n, NULL);
|
|
}
|
|
|
|
ironlake_set_pipeconf(crtc);
|
|
|
|
intel_crtc->active = true;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_enable)
|
|
encoder->pre_enable(encoder);
|
|
|
|
if (intel_crtc->config->has_pch_encoder) {
|
|
/* Note: FDI PLL enabling _must_ be done before we enable the
|
|
* cpu pipes, hence this is separate from all the other fdi/pch
|
|
* enabling. */
|
|
ironlake_fdi_pll_enable(intel_crtc);
|
|
} else {
|
|
assert_fdi_tx_disabled(dev_priv, pipe);
|
|
assert_fdi_rx_disabled(dev_priv, pipe);
|
|
}
|
|
|
|
ironlake_pfit_enable(intel_crtc);
|
|
|
|
/*
|
|
* On ILK+ LUT must be loaded before the pipe is running but with
|
|
* clocks enabled
|
|
*/
|
|
intel_color_load_luts(&pipe_config->base);
|
|
|
|
if (dev_priv->display.initial_watermarks != NULL)
|
|
dev_priv->display.initial_watermarks(intel_crtc->config);
|
|
intel_enable_pipe(intel_crtc);
|
|
|
|
if (intel_crtc->config->has_pch_encoder)
|
|
ironlake_pch_enable(crtc);
|
|
|
|
assert_vblank_disabled(crtc);
|
|
drm_crtc_vblank_on(crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->enable(encoder);
|
|
|
|
if (HAS_PCH_CPT(dev))
|
|
cpt_verify_modeset(dev, intel_crtc->pipe);
|
|
|
|
/* Must wait for vblank to avoid spurious PCH FIFO underruns */
|
|
if (intel_crtc->config->has_pch_encoder)
|
|
intel_wait_for_vblank(dev, pipe);
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
}
|
|
|
|
/* IPS only exists on ULT machines and is tied to pipe A. */
|
|
static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
|
|
{
|
|
return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
|
|
}
|
|
|
|
static void haswell_crtc_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe, hsw_workaround_pipe;
|
|
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
|
|
struct intel_crtc_state *pipe_config =
|
|
to_intel_crtc_state(crtc->state);
|
|
|
|
if (WARN_ON(intel_crtc->active))
|
|
return;
|
|
|
|
if (intel_crtc->config->has_pch_encoder)
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
|
|
false);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_pll_enable)
|
|
encoder->pre_pll_enable(encoder);
|
|
|
|
if (intel_crtc->config->shared_dpll)
|
|
intel_enable_shared_dpll(intel_crtc);
|
|
|
|
if (intel_crtc_has_dp_encoder(intel_crtc->config))
|
|
intel_dp_set_m_n(intel_crtc, M1_N1);
|
|
|
|
if (!transcoder_is_dsi(cpu_transcoder))
|
|
intel_set_pipe_timings(intel_crtc);
|
|
|
|
intel_set_pipe_src_size(intel_crtc);
|
|
|
|
if (cpu_transcoder != TRANSCODER_EDP &&
|
|
!transcoder_is_dsi(cpu_transcoder)) {
|
|
I915_WRITE(PIPE_MULT(cpu_transcoder),
|
|
intel_crtc->config->pixel_multiplier - 1);
|
|
}
|
|
|
|
if (intel_crtc->config->has_pch_encoder) {
|
|
intel_cpu_transcoder_set_m_n(intel_crtc,
|
|
&intel_crtc->config->fdi_m_n, NULL);
|
|
}
|
|
|
|
if (!transcoder_is_dsi(cpu_transcoder))
|
|
haswell_set_pipeconf(crtc);
|
|
|
|
haswell_set_pipemisc(crtc);
|
|
|
|
intel_color_set_csc(&pipe_config->base);
|
|
|
|
intel_crtc->active = true;
|
|
|
|
if (intel_crtc->config->has_pch_encoder)
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
|
|
else
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder) {
|
|
if (encoder->pre_enable)
|
|
encoder->pre_enable(encoder);
|
|
}
|
|
|
|
if (intel_crtc->config->has_pch_encoder)
|
|
dev_priv->display.fdi_link_train(crtc);
|
|
|
|
if (!transcoder_is_dsi(cpu_transcoder))
|
|
intel_ddi_enable_pipe_clock(intel_crtc);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 9)
|
|
skylake_pfit_enable(intel_crtc);
|
|
else
|
|
ironlake_pfit_enable(intel_crtc);
|
|
|
|
/*
|
|
* On ILK+ LUT must be loaded before the pipe is running but with
|
|
* clocks enabled
|
|
*/
|
|
intel_color_load_luts(&pipe_config->base);
|
|
|
|
intel_ddi_set_pipe_settings(crtc);
|
|
if (!transcoder_is_dsi(cpu_transcoder))
|
|
intel_ddi_enable_transcoder_func(crtc);
|
|
|
|
if (dev_priv->display.initial_watermarks != NULL)
|
|
dev_priv->display.initial_watermarks(pipe_config);
|
|
else
|
|
intel_update_watermarks(crtc);
|
|
|
|
/* XXX: Do the pipe assertions at the right place for BXT DSI. */
|
|
if (!transcoder_is_dsi(cpu_transcoder))
|
|
intel_enable_pipe(intel_crtc);
|
|
|
|
if (intel_crtc->config->has_pch_encoder)
|
|
lpt_pch_enable(crtc);
|
|
|
|
if (intel_crtc->config->dp_encoder_is_mst)
|
|
intel_ddi_set_vc_payload_alloc(crtc, true);
|
|
|
|
assert_vblank_disabled(crtc);
|
|
drm_crtc_vblank_on(crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder) {
|
|
encoder->enable(encoder);
|
|
intel_opregion_notify_encoder(encoder, true);
|
|
}
|
|
|
|
if (intel_crtc->config->has_pch_encoder) {
|
|
intel_wait_for_vblank(dev, pipe);
|
|
intel_wait_for_vblank(dev, pipe);
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
|
|
true);
|
|
}
|
|
|
|
/* If we change the relative order between pipe/planes enabling, we need
|
|
* to change the workaround. */
|
|
hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
|
|
if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
|
|
intel_wait_for_vblank(dev, hsw_workaround_pipe);
|
|
intel_wait_for_vblank(dev, hsw_workaround_pipe);
|
|
}
|
|
}
|
|
|
|
static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int pipe = crtc->pipe;
|
|
|
|
/* To avoid upsetting the power well on haswell only disable the pfit if
|
|
* it's in use. The hw state code will make sure we get this right. */
|
|
if (force || crtc->config->pch_pfit.enabled) {
|
|
I915_WRITE(PF_CTL(pipe), 0);
|
|
I915_WRITE(PF_WIN_POS(pipe), 0);
|
|
I915_WRITE(PF_WIN_SZ(pipe), 0);
|
|
}
|
|
}
|
|
|
|
static void ironlake_crtc_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
/*
|
|
* Sometimes spurious CPU pipe underruns happen when the
|
|
* pipe is already disabled, but FDI RX/TX is still enabled.
|
|
* Happens at least with VGA+HDMI cloning. Suppress them.
|
|
*/
|
|
if (intel_crtc->config->has_pch_encoder) {
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
|
|
}
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->disable(encoder);
|
|
|
|
drm_crtc_vblank_off(crtc);
|
|
assert_vblank_disabled(crtc);
|
|
|
|
intel_disable_pipe(intel_crtc);
|
|
|
|
ironlake_pfit_disable(intel_crtc, false);
|
|
|
|
if (intel_crtc->config->has_pch_encoder)
|
|
ironlake_fdi_disable(crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->post_disable)
|
|
encoder->post_disable(encoder);
|
|
|
|
if (intel_crtc->config->has_pch_encoder) {
|
|
ironlake_disable_pch_transcoder(dev_priv, pipe);
|
|
|
|
if (HAS_PCH_CPT(dev)) {
|
|
i915_reg_t reg;
|
|
u32 temp;
|
|
|
|
/* disable TRANS_DP_CTL */
|
|
reg = TRANS_DP_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(TRANS_DP_OUTPUT_ENABLE |
|
|
TRANS_DP_PORT_SEL_MASK);
|
|
temp |= TRANS_DP_PORT_SEL_NONE;
|
|
I915_WRITE(reg, temp);
|
|
|
|
/* disable DPLL_SEL */
|
|
temp = I915_READ(PCH_DPLL_SEL);
|
|
temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
|
|
I915_WRITE(PCH_DPLL_SEL, temp);
|
|
}
|
|
|
|
ironlake_fdi_pll_disable(intel_crtc);
|
|
}
|
|
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
}
|
|
|
|
static void haswell_crtc_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
|
|
|
|
if (intel_crtc->config->has_pch_encoder)
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
|
|
false);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder) {
|
|
intel_opregion_notify_encoder(encoder, false);
|
|
encoder->disable(encoder);
|
|
}
|
|
|
|
drm_crtc_vblank_off(crtc);
|
|
assert_vblank_disabled(crtc);
|
|
|
|
/* XXX: Do the pipe assertions at the right place for BXT DSI. */
|
|
if (!transcoder_is_dsi(cpu_transcoder))
|
|
intel_disable_pipe(intel_crtc);
|
|
|
|
if (intel_crtc->config->dp_encoder_is_mst)
|
|
intel_ddi_set_vc_payload_alloc(crtc, false);
|
|
|
|
if (!transcoder_is_dsi(cpu_transcoder))
|
|
intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 9)
|
|
skylake_scaler_disable(intel_crtc);
|
|
else
|
|
ironlake_pfit_disable(intel_crtc, false);
|
|
|
|
if (!transcoder_is_dsi(cpu_transcoder))
|
|
intel_ddi_disable_pipe_clock(intel_crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->post_disable)
|
|
encoder->post_disable(encoder);
|
|
|
|
if (intel_crtc->config->has_pch_encoder) {
|
|
lpt_disable_pch_transcoder(dev_priv);
|
|
lpt_disable_iclkip(dev_priv);
|
|
intel_ddi_fdi_disable(crtc);
|
|
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
|
|
true);
|
|
}
|
|
}
|
|
|
|
static void i9xx_pfit_enable(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc_state *pipe_config = crtc->config;
|
|
|
|
if (!pipe_config->gmch_pfit.control)
|
|
return;
|
|
|
|
/*
|
|
* The panel fitter should only be adjusted whilst the pipe is disabled,
|
|
* according to register description and PRM.
|
|
*/
|
|
WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
|
|
assert_pipe_disabled(dev_priv, crtc->pipe);
|
|
|
|
I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
|
|
I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
|
|
|
|
/* Border color in case we don't scale up to the full screen. Black by
|
|
* default, change to something else for debugging. */
|
|
I915_WRITE(BCLRPAT(crtc->pipe), 0);
|
|
}
|
|
|
|
static enum intel_display_power_domain port_to_power_domain(enum port port)
|
|
{
|
|
switch (port) {
|
|
case PORT_A:
|
|
return POWER_DOMAIN_PORT_DDI_A_LANES;
|
|
case PORT_B:
|
|
return POWER_DOMAIN_PORT_DDI_B_LANES;
|
|
case PORT_C:
|
|
return POWER_DOMAIN_PORT_DDI_C_LANES;
|
|
case PORT_D:
|
|
return POWER_DOMAIN_PORT_DDI_D_LANES;
|
|
case PORT_E:
|
|
return POWER_DOMAIN_PORT_DDI_E_LANES;
|
|
default:
|
|
MISSING_CASE(port);
|
|
return POWER_DOMAIN_PORT_OTHER;
|
|
}
|
|
}
|
|
|
|
static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
|
|
{
|
|
switch (port) {
|
|
case PORT_A:
|
|
return POWER_DOMAIN_AUX_A;
|
|
case PORT_B:
|
|
return POWER_DOMAIN_AUX_B;
|
|
case PORT_C:
|
|
return POWER_DOMAIN_AUX_C;
|
|
case PORT_D:
|
|
return POWER_DOMAIN_AUX_D;
|
|
case PORT_E:
|
|
/* FIXME: Check VBT for actual wiring of PORT E */
|
|
return POWER_DOMAIN_AUX_D;
|
|
default:
|
|
MISSING_CASE(port);
|
|
return POWER_DOMAIN_AUX_A;
|
|
}
|
|
}
|
|
|
|
enum intel_display_power_domain
|
|
intel_display_port_power_domain(struct intel_encoder *intel_encoder)
|
|
{
|
|
struct drm_device *dev = intel_encoder->base.dev;
|
|
struct intel_digital_port *intel_dig_port;
|
|
|
|
switch (intel_encoder->type) {
|
|
case INTEL_OUTPUT_UNKNOWN:
|
|
/* Only DDI platforms should ever use this output type */
|
|
WARN_ON_ONCE(!HAS_DDI(dev));
|
|
case INTEL_OUTPUT_DP:
|
|
case INTEL_OUTPUT_HDMI:
|
|
case INTEL_OUTPUT_EDP:
|
|
intel_dig_port = enc_to_dig_port(&intel_encoder->base);
|
|
return port_to_power_domain(intel_dig_port->port);
|
|
case INTEL_OUTPUT_DP_MST:
|
|
intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
|
|
return port_to_power_domain(intel_dig_port->port);
|
|
case INTEL_OUTPUT_ANALOG:
|
|
return POWER_DOMAIN_PORT_CRT;
|
|
case INTEL_OUTPUT_DSI:
|
|
return POWER_DOMAIN_PORT_DSI;
|
|
default:
|
|
return POWER_DOMAIN_PORT_OTHER;
|
|
}
|
|
}
|
|
|
|
enum intel_display_power_domain
|
|
intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
|
|
{
|
|
struct drm_device *dev = intel_encoder->base.dev;
|
|
struct intel_digital_port *intel_dig_port;
|
|
|
|
switch (intel_encoder->type) {
|
|
case INTEL_OUTPUT_UNKNOWN:
|
|
case INTEL_OUTPUT_HDMI:
|
|
/*
|
|
* Only DDI platforms should ever use these output types.
|
|
* We can get here after the HDMI detect code has already set
|
|
* the type of the shared encoder. Since we can't be sure
|
|
* what's the status of the given connectors, play safe and
|
|
* run the DP detection too.
|
|
*/
|
|
WARN_ON_ONCE(!HAS_DDI(dev));
|
|
case INTEL_OUTPUT_DP:
|
|
case INTEL_OUTPUT_EDP:
|
|
intel_dig_port = enc_to_dig_port(&intel_encoder->base);
|
|
return port_to_aux_power_domain(intel_dig_port->port);
|
|
case INTEL_OUTPUT_DP_MST:
|
|
intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
|
|
return port_to_aux_power_domain(intel_dig_port->port);
|
|
default:
|
|
MISSING_CASE(intel_encoder->type);
|
|
return POWER_DOMAIN_AUX_A;
|
|
}
|
|
}
|
|
|
|
static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_encoder *encoder;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
unsigned long mask;
|
|
enum transcoder transcoder = crtc_state->cpu_transcoder;
|
|
|
|
if (!crtc_state->base.active)
|
|
return 0;
|
|
|
|
mask = BIT(POWER_DOMAIN_PIPE(pipe));
|
|
mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
|
|
if (crtc_state->pch_pfit.enabled ||
|
|
crtc_state->pch_pfit.force_thru)
|
|
mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
|
|
|
|
drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
|
|
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
|
|
|
|
mask |= BIT(intel_display_port_power_domain(intel_encoder));
|
|
}
|
|
|
|
if (crtc_state->shared_dpll)
|
|
mask |= BIT(POWER_DOMAIN_PLLS);
|
|
|
|
return mask;
|
|
}
|
|
|
|
static unsigned long
|
|
modeset_get_crtc_power_domains(struct drm_crtc *crtc,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum intel_display_power_domain domain;
|
|
unsigned long domains, new_domains, old_domains;
|
|
|
|
old_domains = intel_crtc->enabled_power_domains;
|
|
intel_crtc->enabled_power_domains = new_domains =
|
|
get_crtc_power_domains(crtc, crtc_state);
|
|
|
|
domains = new_domains & ~old_domains;
|
|
|
|
for_each_power_domain(domain, domains)
|
|
intel_display_power_get(dev_priv, domain);
|
|
|
|
return old_domains & ~new_domains;
|
|
}
|
|
|
|
static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
|
|
unsigned long domains)
|
|
{
|
|
enum intel_display_power_domain domain;
|
|
|
|
for_each_power_domain(domain, domains)
|
|
intel_display_power_put(dev_priv, domain);
|
|
}
|
|
|
|
static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
|
|
{
|
|
int max_cdclk_freq = dev_priv->max_cdclk_freq;
|
|
|
|
if (INTEL_INFO(dev_priv)->gen >= 9 ||
|
|
IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
|
|
return max_cdclk_freq;
|
|
else if (IS_CHERRYVIEW(dev_priv))
|
|
return max_cdclk_freq*95/100;
|
|
else if (INTEL_INFO(dev_priv)->gen < 4)
|
|
return 2*max_cdclk_freq*90/100;
|
|
else
|
|
return max_cdclk_freq*90/100;
|
|
}
|
|
|
|
static int skl_calc_cdclk(int max_pixclk, int vco);
|
|
|
|
static void intel_update_max_cdclk(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
|
|
u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
|
|
int max_cdclk, vco;
|
|
|
|
vco = dev_priv->skl_preferred_vco_freq;
|
|
WARN_ON(vco != 8100000 && vco != 8640000);
|
|
|
|
/*
|
|
* Use the lower (vco 8640) cdclk values as a
|
|
* first guess. skl_calc_cdclk() will correct it
|
|
* if the preferred vco is 8100 instead.
|
|
*/
|
|
if (limit == SKL_DFSM_CDCLK_LIMIT_675)
|
|
max_cdclk = 617143;
|
|
else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
|
|
max_cdclk = 540000;
|
|
else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
|
|
max_cdclk = 432000;
|
|
else
|
|
max_cdclk = 308571;
|
|
|
|
dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
|
|
} else if (IS_BROXTON(dev)) {
|
|
dev_priv->max_cdclk_freq = 624000;
|
|
} else if (IS_BROADWELL(dev)) {
|
|
/*
|
|
* FIXME with extra cooling we can allow
|
|
* 540 MHz for ULX and 675 Mhz for ULT.
|
|
* How can we know if extra cooling is
|
|
* available? PCI ID, VTB, something else?
|
|
*/
|
|
if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
|
|
dev_priv->max_cdclk_freq = 450000;
|
|
else if (IS_BDW_ULX(dev))
|
|
dev_priv->max_cdclk_freq = 450000;
|
|
else if (IS_BDW_ULT(dev))
|
|
dev_priv->max_cdclk_freq = 540000;
|
|
else
|
|
dev_priv->max_cdclk_freq = 675000;
|
|
} else if (IS_CHERRYVIEW(dev)) {
|
|
dev_priv->max_cdclk_freq = 320000;
|
|
} else if (IS_VALLEYVIEW(dev)) {
|
|
dev_priv->max_cdclk_freq = 400000;
|
|
} else {
|
|
/* otherwise assume cdclk is fixed */
|
|
dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
|
|
}
|
|
|
|
dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
|
|
|
|
DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
|
|
dev_priv->max_cdclk_freq);
|
|
|
|
DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
|
|
dev_priv->max_dotclk_freq);
|
|
}
|
|
|
|
static void intel_update_cdclk(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
|
|
dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
|
|
dev_priv->cdclk_pll.ref);
|
|
else
|
|
DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
|
|
dev_priv->cdclk_freq);
|
|
|
|
/*
|
|
* 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
|
|
* Programmng [sic] note: bit[9:2] should be programmed to the number
|
|
* of cdclk that generates 4MHz reference clock freq which is used to
|
|
* generate GMBus clock. This will vary with the cdclk freq.
|
|
*/
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
|
|
}
|
|
|
|
/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
|
|
static int skl_cdclk_decimal(int cdclk)
|
|
{
|
|
return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
|
|
}
|
|
|
|
static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
|
|
{
|
|
int ratio;
|
|
|
|
if (cdclk == dev_priv->cdclk_pll.ref)
|
|
return 0;
|
|
|
|
switch (cdclk) {
|
|
default:
|
|
MISSING_CASE(cdclk);
|
|
case 144000:
|
|
case 288000:
|
|
case 384000:
|
|
case 576000:
|
|
ratio = 60;
|
|
break;
|
|
case 624000:
|
|
ratio = 65;
|
|
break;
|
|
}
|
|
|
|
return dev_priv->cdclk_pll.ref * ratio;
|
|
}
|
|
|
|
static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(BXT_DE_PLL_ENABLE, 0);
|
|
|
|
/* Timeout 200us */
|
|
if (intel_wait_for_register(dev_priv,
|
|
BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
|
|
1))
|
|
DRM_ERROR("timeout waiting for DE PLL unlock\n");
|
|
|
|
dev_priv->cdclk_pll.vco = 0;
|
|
}
|
|
|
|
static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
|
|
{
|
|
int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
|
|
u32 val;
|
|
|
|
val = I915_READ(BXT_DE_PLL_CTL);
|
|
val &= ~BXT_DE_PLL_RATIO_MASK;
|
|
val |= BXT_DE_PLL_RATIO(ratio);
|
|
I915_WRITE(BXT_DE_PLL_CTL, val);
|
|
|
|
I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
|
|
|
|
/* Timeout 200us */
|
|
if (intel_wait_for_register(dev_priv,
|
|
BXT_DE_PLL_ENABLE,
|
|
BXT_DE_PLL_LOCK,
|
|
BXT_DE_PLL_LOCK,
|
|
1))
|
|
DRM_ERROR("timeout waiting for DE PLL lock\n");
|
|
|
|
dev_priv->cdclk_pll.vco = vco;
|
|
}
|
|
|
|
static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
|
|
{
|
|
u32 val, divider;
|
|
int vco, ret;
|
|
|
|
vco = bxt_de_pll_vco(dev_priv, cdclk);
|
|
|
|
DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
|
|
|
|
/* cdclk = vco / 2 / div{1,1.5,2,4} */
|
|
switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
|
|
case 8:
|
|
divider = BXT_CDCLK_CD2X_DIV_SEL_4;
|
|
break;
|
|
case 4:
|
|
divider = BXT_CDCLK_CD2X_DIV_SEL_2;
|
|
break;
|
|
case 3:
|
|
divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
|
|
break;
|
|
case 2:
|
|
divider = BXT_CDCLK_CD2X_DIV_SEL_1;
|
|
break;
|
|
default:
|
|
WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
|
|
WARN_ON(vco != 0);
|
|
|
|
divider = BXT_CDCLK_CD2X_DIV_SEL_1;
|
|
break;
|
|
}
|
|
|
|
/* Inform power controller of upcoming frequency change */
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
|
|
0x80000000);
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
|
|
if (ret) {
|
|
DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
|
|
ret, cdclk);
|
|
return;
|
|
}
|
|
|
|
if (dev_priv->cdclk_pll.vco != 0 &&
|
|
dev_priv->cdclk_pll.vco != vco)
|
|
bxt_de_pll_disable(dev_priv);
|
|
|
|
if (dev_priv->cdclk_pll.vco != vco)
|
|
bxt_de_pll_enable(dev_priv, vco);
|
|
|
|
val = divider | skl_cdclk_decimal(cdclk);
|
|
/*
|
|
* FIXME if only the cd2x divider needs changing, it could be done
|
|
* without shutting off the pipe (if only one pipe is active).
|
|
*/
|
|
val |= BXT_CDCLK_CD2X_PIPE_NONE;
|
|
/*
|
|
* Disable SSA Precharge when CD clock frequency < 500 MHz,
|
|
* enable otherwise.
|
|
*/
|
|
if (cdclk >= 500000)
|
|
val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
|
|
I915_WRITE(CDCLK_CTL, val);
|
|
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
|
|
DIV_ROUND_UP(cdclk, 25000));
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
|
|
if (ret) {
|
|
DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
|
|
ret, cdclk);
|
|
return;
|
|
}
|
|
|
|
intel_update_cdclk(&dev_priv->drm);
|
|
}
|
|
|
|
static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 cdctl, expected;
|
|
|
|
intel_update_cdclk(&dev_priv->drm);
|
|
|
|
if (dev_priv->cdclk_pll.vco == 0 ||
|
|
dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
|
|
goto sanitize;
|
|
|
|
/* DPLL okay; verify the cdclock
|
|
*
|
|
* Some BIOS versions leave an incorrect decimal frequency value and
|
|
* set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
|
|
* so sanitize this register.
|
|
*/
|
|
cdctl = I915_READ(CDCLK_CTL);
|
|
/*
|
|
* Let's ignore the pipe field, since BIOS could have configured the
|
|
* dividers both synching to an active pipe, or asynchronously
|
|
* (PIPE_NONE).
|
|
*/
|
|
cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
|
|
|
|
expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
|
|
skl_cdclk_decimal(dev_priv->cdclk_freq);
|
|
/*
|
|
* Disable SSA Precharge when CD clock frequency < 500 MHz,
|
|
* enable otherwise.
|
|
*/
|
|
if (dev_priv->cdclk_freq >= 500000)
|
|
expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
|
|
|
|
if (cdctl == expected)
|
|
/* All well; nothing to sanitize */
|
|
return;
|
|
|
|
sanitize:
|
|
DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
|
|
|
|
/* force cdclk programming */
|
|
dev_priv->cdclk_freq = 0;
|
|
|
|
/* force full PLL disable + enable */
|
|
dev_priv->cdclk_pll.vco = -1;
|
|
}
|
|
|
|
void bxt_init_cdclk(struct drm_i915_private *dev_priv)
|
|
{
|
|
bxt_sanitize_cdclk(dev_priv);
|
|
|
|
if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
|
|
return;
|
|
|
|
/*
|
|
* FIXME:
|
|
* - The initial CDCLK needs to be read from VBT.
|
|
* Need to make this change after VBT has changes for BXT.
|
|
*/
|
|
bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
|
|
}
|
|
|
|
void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
|
|
{
|
|
bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
|
|
}
|
|
|
|
static int skl_calc_cdclk(int max_pixclk, int vco)
|
|
{
|
|
if (vco == 8640000) {
|
|
if (max_pixclk > 540000)
|
|
return 617143;
|
|
else if (max_pixclk > 432000)
|
|
return 540000;
|
|
else if (max_pixclk > 308571)
|
|
return 432000;
|
|
else
|
|
return 308571;
|
|
} else {
|
|
if (max_pixclk > 540000)
|
|
return 675000;
|
|
else if (max_pixclk > 450000)
|
|
return 540000;
|
|
else if (max_pixclk > 337500)
|
|
return 450000;
|
|
else
|
|
return 337500;
|
|
}
|
|
}
|
|
|
|
static void
|
|
skl_dpll0_update(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val;
|
|
|
|
dev_priv->cdclk_pll.ref = 24000;
|
|
dev_priv->cdclk_pll.vco = 0;
|
|
|
|
val = I915_READ(LCPLL1_CTL);
|
|
if ((val & LCPLL_PLL_ENABLE) == 0)
|
|
return;
|
|
|
|
if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
|
|
return;
|
|
|
|
val = I915_READ(DPLL_CTRL1);
|
|
|
|
if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
|
|
DPLL_CTRL1_SSC(SKL_DPLL0) |
|
|
DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
|
|
DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
|
|
return;
|
|
|
|
switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
|
|
case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
|
|
case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
|
|
case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
|
|
case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
|
|
dev_priv->cdclk_pll.vco = 8100000;
|
|
break;
|
|
case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
|
|
case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
|
|
dev_priv->cdclk_pll.vco = 8640000;
|
|
break;
|
|
default:
|
|
MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
|
|
break;
|
|
}
|
|
}
|
|
|
|
void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
|
|
{
|
|
bool changed = dev_priv->skl_preferred_vco_freq != vco;
|
|
|
|
dev_priv->skl_preferred_vco_freq = vco;
|
|
|
|
if (changed)
|
|
intel_update_max_cdclk(&dev_priv->drm);
|
|
}
|
|
|
|
static void
|
|
skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
|
|
{
|
|
int min_cdclk = skl_calc_cdclk(0, vco);
|
|
u32 val;
|
|
|
|
WARN_ON(vco != 8100000 && vco != 8640000);
|
|
|
|
/* select the minimum CDCLK before enabling DPLL 0 */
|
|
val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
|
|
I915_WRITE(CDCLK_CTL, val);
|
|
POSTING_READ(CDCLK_CTL);
|
|
|
|
/*
|
|
* We always enable DPLL0 with the lowest link rate possible, but still
|
|
* taking into account the VCO required to operate the eDP panel at the
|
|
* desired frequency. The usual DP link rates operate with a VCO of
|
|
* 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
|
|
* The modeset code is responsible for the selection of the exact link
|
|
* rate later on, with the constraint of choosing a frequency that
|
|
* works with vco.
|
|
*/
|
|
val = I915_READ(DPLL_CTRL1);
|
|
|
|
val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
|
|
DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
|
|
val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
|
|
if (vco == 8640000)
|
|
val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
|
|
SKL_DPLL0);
|
|
else
|
|
val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
|
|
SKL_DPLL0);
|
|
|
|
I915_WRITE(DPLL_CTRL1, val);
|
|
POSTING_READ(DPLL_CTRL1);
|
|
|
|
I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
|
|
|
|
if (intel_wait_for_register(dev_priv,
|
|
LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
|
|
5))
|
|
DRM_ERROR("DPLL0 not locked\n");
|
|
|
|
dev_priv->cdclk_pll.vco = vco;
|
|
|
|
/* We'll want to keep using the current vco from now on. */
|
|
skl_set_preferred_cdclk_vco(dev_priv, vco);
|
|
}
|
|
|
|
static void
|
|
skl_dpll0_disable(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
|
|
if (intel_wait_for_register(dev_priv,
|
|
LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
|
|
1))
|
|
DRM_ERROR("Couldn't disable DPLL0\n");
|
|
|
|
dev_priv->cdclk_pll.vco = 0;
|
|
}
|
|
|
|
static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
|
|
{
|
|
int ret;
|
|
u32 val;
|
|
|
|
/* inform PCU we want to change CDCLK */
|
|
val = SKL_CDCLK_PREPARE_FOR_CHANGE;
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
|
|
return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
|
|
}
|
|
|
|
static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
|
|
{
|
|
return _wait_for(skl_cdclk_pcu_ready(dev_priv), 3000, 10) == 0;
|
|
}
|
|
|
|
static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
u32 freq_select, pcu_ack;
|
|
|
|
WARN_ON((cdclk == 24000) != (vco == 0));
|
|
|
|
DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
|
|
|
|
if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
|
|
DRM_ERROR("failed to inform PCU about cdclk change\n");
|
|
return;
|
|
}
|
|
|
|
/* set CDCLK_CTL */
|
|
switch (cdclk) {
|
|
case 450000:
|
|
case 432000:
|
|
freq_select = CDCLK_FREQ_450_432;
|
|
pcu_ack = 1;
|
|
break;
|
|
case 540000:
|
|
freq_select = CDCLK_FREQ_540;
|
|
pcu_ack = 2;
|
|
break;
|
|
case 308571:
|
|
case 337500:
|
|
default:
|
|
freq_select = CDCLK_FREQ_337_308;
|
|
pcu_ack = 0;
|
|
break;
|
|
case 617143:
|
|
case 675000:
|
|
freq_select = CDCLK_FREQ_675_617;
|
|
pcu_ack = 3;
|
|
break;
|
|
}
|
|
|
|
if (dev_priv->cdclk_pll.vco != 0 &&
|
|
dev_priv->cdclk_pll.vco != vco)
|
|
skl_dpll0_disable(dev_priv);
|
|
|
|
if (dev_priv->cdclk_pll.vco != vco)
|
|
skl_dpll0_enable(dev_priv, vco);
|
|
|
|
I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
|
|
POSTING_READ(CDCLK_CTL);
|
|
|
|
/* inform PCU of the change */
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
|
|
intel_update_cdclk(dev);
|
|
}
|
|
|
|
static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
|
|
|
|
void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
|
|
{
|
|
skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
|
|
}
|
|
|
|
void skl_init_cdclk(struct drm_i915_private *dev_priv)
|
|
{
|
|
int cdclk, vco;
|
|
|
|
skl_sanitize_cdclk(dev_priv);
|
|
|
|
if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
|
|
/*
|
|
* Use the current vco as our initial
|
|
* guess as to what the preferred vco is.
|
|
*/
|
|
if (dev_priv->skl_preferred_vco_freq == 0)
|
|
skl_set_preferred_cdclk_vco(dev_priv,
|
|
dev_priv->cdclk_pll.vco);
|
|
return;
|
|
}
|
|
|
|
vco = dev_priv->skl_preferred_vco_freq;
|
|
if (vco == 0)
|
|
vco = 8100000;
|
|
cdclk = skl_calc_cdclk(0, vco);
|
|
|
|
skl_set_cdclk(dev_priv, cdclk, vco);
|
|
}
|
|
|
|
static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t cdctl, expected;
|
|
|
|
/*
|
|
* check if the pre-os intialized the display
|
|
* There is SWF18 scratchpad register defined which is set by the
|
|
* pre-os which can be used by the OS drivers to check the status
|
|
*/
|
|
if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
|
|
goto sanitize;
|
|
|
|
intel_update_cdclk(&dev_priv->drm);
|
|
/* Is PLL enabled and locked ? */
|
|
if (dev_priv->cdclk_pll.vco == 0 ||
|
|
dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
|
|
goto sanitize;
|
|
|
|
/* DPLL okay; verify the cdclock
|
|
*
|
|
* Noticed in some instances that the freq selection is correct but
|
|
* decimal part is programmed wrong from BIOS where pre-os does not
|
|
* enable display. Verify the same as well.
|
|
*/
|
|
cdctl = I915_READ(CDCLK_CTL);
|
|
expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
|
|
skl_cdclk_decimal(dev_priv->cdclk_freq);
|
|
if (cdctl == expected)
|
|
/* All well; nothing to sanitize */
|
|
return;
|
|
|
|
sanitize:
|
|
DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
|
|
|
|
/* force cdclk programming */
|
|
dev_priv->cdclk_freq = 0;
|
|
/* force full PLL disable + enable */
|
|
dev_priv->cdclk_pll.vco = -1;
|
|
}
|
|
|
|
/* Adjust CDclk dividers to allow high res or save power if possible */
|
|
static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 val, cmd;
|
|
|
|
WARN_ON(dev_priv->display.get_display_clock_speed(dev)
|
|
!= dev_priv->cdclk_freq);
|
|
|
|
if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
|
|
cmd = 2;
|
|
else if (cdclk == 266667)
|
|
cmd = 1;
|
|
else
|
|
cmd = 0;
|
|
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
|
|
val &= ~DSPFREQGUAR_MASK;
|
|
val |= (cmd << DSPFREQGUAR_SHIFT);
|
|
vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
|
|
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
|
|
DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
|
|
50)) {
|
|
DRM_ERROR("timed out waiting for CDclk change\n");
|
|
}
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
if (cdclk == 400000) {
|
|
u32 divider;
|
|
|
|
divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
|
|
|
|
/* adjust cdclk divider */
|
|
val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
|
|
val &= ~CCK_FREQUENCY_VALUES;
|
|
val |= divider;
|
|
vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
|
|
|
|
if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
|
|
CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
|
|
50))
|
|
DRM_ERROR("timed out waiting for CDclk change\n");
|
|
}
|
|
|
|
/* adjust self-refresh exit latency value */
|
|
val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
|
|
val &= ~0x7f;
|
|
|
|
/*
|
|
* For high bandwidth configs, we set a higher latency in the bunit
|
|
* so that the core display fetch happens in time to avoid underruns.
|
|
*/
|
|
if (cdclk == 400000)
|
|
val |= 4500 / 250; /* 4.5 usec */
|
|
else
|
|
val |= 3000 / 250; /* 3.0 usec */
|
|
vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
intel_update_cdclk(dev);
|
|
}
|
|
|
|
static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 val, cmd;
|
|
|
|
WARN_ON(dev_priv->display.get_display_clock_speed(dev)
|
|
!= dev_priv->cdclk_freq);
|
|
|
|
switch (cdclk) {
|
|
case 333333:
|
|
case 320000:
|
|
case 266667:
|
|
case 200000:
|
|
break;
|
|
default:
|
|
MISSING_CASE(cdclk);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Specs are full of misinformation, but testing on actual
|
|
* hardware has shown that we just need to write the desired
|
|
* CCK divider into the Punit register.
|
|
*/
|
|
cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
|
|
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
|
|
val &= ~DSPFREQGUAR_MASK_CHV;
|
|
val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
|
|
vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
|
|
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
|
|
DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
|
|
50)) {
|
|
DRM_ERROR("timed out waiting for CDclk change\n");
|
|
}
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
|
|
intel_update_cdclk(dev);
|
|
}
|
|
|
|
static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
|
|
int max_pixclk)
|
|
{
|
|
int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
|
|
int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
|
|
|
|
/*
|
|
* Really only a few cases to deal with, as only 4 CDclks are supported:
|
|
* 200MHz
|
|
* 267MHz
|
|
* 320/333MHz (depends on HPLL freq)
|
|
* 400MHz (VLV only)
|
|
* So we check to see whether we're above 90% (VLV) or 95% (CHV)
|
|
* of the lower bin and adjust if needed.
|
|
*
|
|
* We seem to get an unstable or solid color picture at 200MHz.
|
|
* Not sure what's wrong. For now use 200MHz only when all pipes
|
|
* are off.
|
|
*/
|
|
if (!IS_CHERRYVIEW(dev_priv) &&
|
|
max_pixclk > freq_320*limit/100)
|
|
return 400000;
|
|
else if (max_pixclk > 266667*limit/100)
|
|
return freq_320;
|
|
else if (max_pixclk > 0)
|
|
return 266667;
|
|
else
|
|
return 200000;
|
|
}
|
|
|
|
static int bxt_calc_cdclk(int max_pixclk)
|
|
{
|
|
if (max_pixclk > 576000)
|
|
return 624000;
|
|
else if (max_pixclk > 384000)
|
|
return 576000;
|
|
else if (max_pixclk > 288000)
|
|
return 384000;
|
|
else if (max_pixclk > 144000)
|
|
return 288000;
|
|
else
|
|
return 144000;
|
|
}
|
|
|
|
/* Compute the max pixel clock for new configuration. */
|
|
static int intel_mode_max_pixclk(struct drm_device *dev,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_crtc *crtc;
|
|
struct drm_crtc_state *crtc_state;
|
|
unsigned max_pixclk = 0, i;
|
|
enum pipe pipe;
|
|
|
|
memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
|
|
sizeof(intel_state->min_pixclk));
|
|
|
|
for_each_crtc_in_state(state, crtc, crtc_state, i) {
|
|
int pixclk = 0;
|
|
|
|
if (crtc_state->enable)
|
|
pixclk = crtc_state->adjusted_mode.crtc_clock;
|
|
|
|
intel_state->min_pixclk[i] = pixclk;
|
|
}
|
|
|
|
for_each_pipe(dev_priv, pipe)
|
|
max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
|
|
|
|
return max_pixclk;
|
|
}
|
|
|
|
static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
|
|
{
|
|
struct drm_device *dev = state->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int max_pixclk = intel_mode_max_pixclk(dev, state);
|
|
struct intel_atomic_state *intel_state =
|
|
to_intel_atomic_state(state);
|
|
|
|
intel_state->cdclk = intel_state->dev_cdclk =
|
|
valleyview_calc_cdclk(dev_priv, max_pixclk);
|
|
|
|
if (!intel_state->active_crtcs)
|
|
intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
|
|
{
|
|
int max_pixclk = ilk_max_pixel_rate(state);
|
|
struct intel_atomic_state *intel_state =
|
|
to_intel_atomic_state(state);
|
|
|
|
intel_state->cdclk = intel_state->dev_cdclk =
|
|
bxt_calc_cdclk(max_pixclk);
|
|
|
|
if (!intel_state->active_crtcs)
|
|
intel_state->dev_cdclk = bxt_calc_cdclk(0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
|
|
{
|
|
unsigned int credits, default_credits;
|
|
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
default_credits = PFI_CREDIT(12);
|
|
else
|
|
default_credits = PFI_CREDIT(8);
|
|
|
|
if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
|
|
/* CHV suggested value is 31 or 63 */
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
credits = PFI_CREDIT_63;
|
|
else
|
|
credits = PFI_CREDIT(15);
|
|
} else {
|
|
credits = default_credits;
|
|
}
|
|
|
|
/*
|
|
* WA - write default credits before re-programming
|
|
* FIXME: should we also set the resend bit here?
|
|
*/
|
|
I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
|
|
default_credits);
|
|
|
|
I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
|
|
credits | PFI_CREDIT_RESEND);
|
|
|
|
/*
|
|
* FIXME is this guaranteed to clear
|
|
* immediately or should we poll for it?
|
|
*/
|
|
WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
|
|
}
|
|
|
|
static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
|
|
{
|
|
struct drm_device *dev = old_state->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_atomic_state *old_intel_state =
|
|
to_intel_atomic_state(old_state);
|
|
unsigned req_cdclk = old_intel_state->dev_cdclk;
|
|
|
|
/*
|
|
* FIXME: We can end up here with all power domains off, yet
|
|
* with a CDCLK frequency other than the minimum. To account
|
|
* for this take the PIPE-A power domain, which covers the HW
|
|
* blocks needed for the following programming. This can be
|
|
* removed once it's guaranteed that we get here either with
|
|
* the minimum CDCLK set, or the required power domains
|
|
* enabled.
|
|
*/
|
|
intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
|
|
|
|
if (IS_CHERRYVIEW(dev))
|
|
cherryview_set_cdclk(dev, req_cdclk);
|
|
else
|
|
valleyview_set_cdclk(dev, req_cdclk);
|
|
|
|
vlv_program_pfi_credits(dev_priv);
|
|
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
|
|
}
|
|
|
|
static void valleyview_crtc_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
struct intel_crtc_state *pipe_config =
|
|
to_intel_crtc_state(crtc->state);
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
if (WARN_ON(intel_crtc->active))
|
|
return;
|
|
|
|
if (intel_crtc_has_dp_encoder(intel_crtc->config))
|
|
intel_dp_set_m_n(intel_crtc, M1_N1);
|
|
|
|
intel_set_pipe_timings(intel_crtc);
|
|
intel_set_pipe_src_size(intel_crtc);
|
|
|
|
if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
|
|
I915_WRITE(CHV_CANVAS(pipe), 0);
|
|
}
|
|
|
|
i9xx_set_pipeconf(intel_crtc);
|
|
|
|
intel_crtc->active = true;
|
|
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_pll_enable)
|
|
encoder->pre_pll_enable(encoder);
|
|
|
|
if (IS_CHERRYVIEW(dev)) {
|
|
chv_prepare_pll(intel_crtc, intel_crtc->config);
|
|
chv_enable_pll(intel_crtc, intel_crtc->config);
|
|
} else {
|
|
vlv_prepare_pll(intel_crtc, intel_crtc->config);
|
|
vlv_enable_pll(intel_crtc, intel_crtc->config);
|
|
}
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_enable)
|
|
encoder->pre_enable(encoder);
|
|
|
|
i9xx_pfit_enable(intel_crtc);
|
|
|
|
intel_color_load_luts(&pipe_config->base);
|
|
|
|
intel_update_watermarks(crtc);
|
|
intel_enable_pipe(intel_crtc);
|
|
|
|
assert_vblank_disabled(crtc);
|
|
drm_crtc_vblank_on(crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->enable(encoder);
|
|
}
|
|
|
|
static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
|
|
I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
|
|
}
|
|
|
|
static void i9xx_crtc_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
struct intel_crtc_state *pipe_config =
|
|
to_intel_crtc_state(crtc->state);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
|
|
if (WARN_ON(intel_crtc->active))
|
|
return;
|
|
|
|
i9xx_set_pll_dividers(intel_crtc);
|
|
|
|
if (intel_crtc_has_dp_encoder(intel_crtc->config))
|
|
intel_dp_set_m_n(intel_crtc, M1_N1);
|
|
|
|
intel_set_pipe_timings(intel_crtc);
|
|
intel_set_pipe_src_size(intel_crtc);
|
|
|
|
i9xx_set_pipeconf(intel_crtc);
|
|
|
|
intel_crtc->active = true;
|
|
|
|
if (!IS_GEN2(dev))
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_enable)
|
|
encoder->pre_enable(encoder);
|
|
|
|
i9xx_enable_pll(intel_crtc);
|
|
|
|
i9xx_pfit_enable(intel_crtc);
|
|
|
|
intel_color_load_luts(&pipe_config->base);
|
|
|
|
intel_update_watermarks(crtc);
|
|
intel_enable_pipe(intel_crtc);
|
|
|
|
assert_vblank_disabled(crtc);
|
|
drm_crtc_vblank_on(crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->enable(encoder);
|
|
}
|
|
|
|
static void i9xx_pfit_disable(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (!crtc->config->gmch_pfit.control)
|
|
return;
|
|
|
|
assert_pipe_disabled(dev_priv, crtc->pipe);
|
|
|
|
DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
|
|
I915_READ(PFIT_CONTROL));
|
|
I915_WRITE(PFIT_CONTROL, 0);
|
|
}
|
|
|
|
static void i9xx_crtc_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
/*
|
|
* On gen2 planes are double buffered but the pipe isn't, so we must
|
|
* wait for planes to fully turn off before disabling the pipe.
|
|
*/
|
|
if (IS_GEN2(dev))
|
|
intel_wait_for_vblank(dev, pipe);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->disable(encoder);
|
|
|
|
drm_crtc_vblank_off(crtc);
|
|
assert_vblank_disabled(crtc);
|
|
|
|
intel_disable_pipe(intel_crtc);
|
|
|
|
i9xx_pfit_disable(intel_crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->post_disable)
|
|
encoder->post_disable(encoder);
|
|
|
|
if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
|
|
if (IS_CHERRYVIEW(dev))
|
|
chv_disable_pll(dev_priv, pipe);
|
|
else if (IS_VALLEYVIEW(dev))
|
|
vlv_disable_pll(dev_priv, pipe);
|
|
else
|
|
i9xx_disable_pll(intel_crtc);
|
|
}
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->post_pll_disable)
|
|
encoder->post_pll_disable(encoder);
|
|
|
|
if (!IS_GEN2(dev))
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
|
|
}
|
|
|
|
static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
|
|
enum intel_display_power_domain domain;
|
|
unsigned long domains;
|
|
|
|
if (!intel_crtc->active)
|
|
return;
|
|
|
|
if (to_intel_plane_state(crtc->primary->state)->visible) {
|
|
WARN_ON(intel_crtc->flip_work);
|
|
|
|
intel_pre_disable_primary_noatomic(crtc);
|
|
|
|
intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
|
|
to_intel_plane_state(crtc->primary->state)->visible = false;
|
|
}
|
|
|
|
dev_priv->display.crtc_disable(crtc);
|
|
|
|
DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
|
|
crtc->base.id, crtc->name);
|
|
|
|
WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
|
|
crtc->state->active = false;
|
|
intel_crtc->active = false;
|
|
crtc->enabled = false;
|
|
crtc->state->connector_mask = 0;
|
|
crtc->state->encoder_mask = 0;
|
|
|
|
for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
|
|
encoder->base.crtc = NULL;
|
|
|
|
intel_fbc_disable(intel_crtc);
|
|
intel_update_watermarks(crtc);
|
|
intel_disable_shared_dpll(intel_crtc);
|
|
|
|
domains = intel_crtc->enabled_power_domains;
|
|
for_each_power_domain(domain, domains)
|
|
intel_display_power_put(dev_priv, domain);
|
|
intel_crtc->enabled_power_domains = 0;
|
|
|
|
dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
|
|
dev_priv->min_pixclk[intel_crtc->pipe] = 0;
|
|
}
|
|
|
|
/*
|
|
* turn all crtc's off, but do not adjust state
|
|
* This has to be paired with a call to intel_modeset_setup_hw_state.
|
|
*/
|
|
int intel_display_suspend(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_atomic_state *state;
|
|
int ret;
|
|
|
|
state = drm_atomic_helper_suspend(dev);
|
|
ret = PTR_ERR_OR_ZERO(state);
|
|
if (ret)
|
|
DRM_ERROR("Suspending crtc's failed with %i\n", ret);
|
|
else
|
|
dev_priv->modeset_restore_state = state;
|
|
return ret;
|
|
}
|
|
|
|
void intel_encoder_destroy(struct drm_encoder *encoder)
|
|
{
|
|
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
|
|
|
|
drm_encoder_cleanup(encoder);
|
|
kfree(intel_encoder);
|
|
}
|
|
|
|
/* Cross check the actual hw state with our own modeset state tracking (and it's
|
|
* internal consistency). */
|
|
static void intel_connector_verify_state(struct intel_connector *connector)
|
|
{
|
|
struct drm_crtc *crtc = connector->base.state->crtc;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
|
|
connector->base.base.id,
|
|
connector->base.name);
|
|
|
|
if (connector->get_hw_state(connector)) {
|
|
struct intel_encoder *encoder = connector->encoder;
|
|
struct drm_connector_state *conn_state = connector->base.state;
|
|
|
|
I915_STATE_WARN(!crtc,
|
|
"connector enabled without attached crtc\n");
|
|
|
|
if (!crtc)
|
|
return;
|
|
|
|
I915_STATE_WARN(!crtc->state->active,
|
|
"connector is active, but attached crtc isn't\n");
|
|
|
|
if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
|
|
return;
|
|
|
|
I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
|
|
"atomic encoder doesn't match attached encoder\n");
|
|
|
|
I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
|
|
"attached encoder crtc differs from connector crtc\n");
|
|
} else {
|
|
I915_STATE_WARN(crtc && crtc->state->active,
|
|
"attached crtc is active, but connector isn't\n");
|
|
I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
|
|
"best encoder set without crtc!\n");
|
|
}
|
|
}
|
|
|
|
int intel_connector_init(struct intel_connector *connector)
|
|
{
|
|
drm_atomic_helper_connector_reset(&connector->base);
|
|
|
|
if (!connector->base.state)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct intel_connector *intel_connector_alloc(void)
|
|
{
|
|
struct intel_connector *connector;
|
|
|
|
connector = kzalloc(sizeof *connector, GFP_KERNEL);
|
|
if (!connector)
|
|
return NULL;
|
|
|
|
if (intel_connector_init(connector) < 0) {
|
|
kfree(connector);
|
|
return NULL;
|
|
}
|
|
|
|
return connector;
|
|
}
|
|
|
|
/* Simple connector->get_hw_state implementation for encoders that support only
|
|
* one connector and no cloning and hence the encoder state determines the state
|
|
* of the connector. */
|
|
bool intel_connector_get_hw_state(struct intel_connector *connector)
|
|
{
|
|
enum pipe pipe = 0;
|
|
struct intel_encoder *encoder = connector->encoder;
|
|
|
|
return encoder->get_hw_state(encoder, &pipe);
|
|
}
|
|
|
|
static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
|
|
{
|
|
if (crtc_state->base.enable && crtc_state->has_pch_encoder)
|
|
return crtc_state->fdi_lanes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_atomic_state *state = pipe_config->base.state;
|
|
struct intel_crtc *other_crtc;
|
|
struct intel_crtc_state *other_crtc_state;
|
|
|
|
DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
|
|
pipe_name(pipe), pipe_config->fdi_lanes);
|
|
if (pipe_config->fdi_lanes > 4) {
|
|
DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
|
|
pipe_name(pipe), pipe_config->fdi_lanes);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
|
|
if (pipe_config->fdi_lanes > 2) {
|
|
DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
|
|
pipe_config->fdi_lanes);
|
|
return -EINVAL;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->num_pipes == 2)
|
|
return 0;
|
|
|
|
/* Ivybridge 3 pipe is really complicated */
|
|
switch (pipe) {
|
|
case PIPE_A:
|
|
return 0;
|
|
case PIPE_B:
|
|
if (pipe_config->fdi_lanes <= 2)
|
|
return 0;
|
|
|
|
other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
|
|
other_crtc_state =
|
|
intel_atomic_get_crtc_state(state, other_crtc);
|
|
if (IS_ERR(other_crtc_state))
|
|
return PTR_ERR(other_crtc_state);
|
|
|
|
if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
|
|
DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
|
|
pipe_name(pipe), pipe_config->fdi_lanes);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
case PIPE_C:
|
|
if (pipe_config->fdi_lanes > 2) {
|
|
DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
|
|
pipe_name(pipe), pipe_config->fdi_lanes);
|
|
return -EINVAL;
|
|
}
|
|
|
|
other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
|
|
other_crtc_state =
|
|
intel_atomic_get_crtc_state(state, other_crtc);
|
|
if (IS_ERR(other_crtc_state))
|
|
return PTR_ERR(other_crtc_state);
|
|
|
|
if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
|
|
DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
#define RETRY 1
|
|
static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
|
|
int lane, link_bw, fdi_dotclock, ret;
|
|
bool needs_recompute = false;
|
|
|
|
retry:
|
|
/* FDI is a binary signal running at ~2.7GHz, encoding
|
|
* each output octet as 10 bits. The actual frequency
|
|
* is stored as a divider into a 100MHz clock, and the
|
|
* mode pixel clock is stored in units of 1KHz.
|
|
* Hence the bw of each lane in terms of the mode signal
|
|
* is:
|
|
*/
|
|
link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
|
|
|
|
fdi_dotclock = adjusted_mode->crtc_clock;
|
|
|
|
lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
|
|
pipe_config->pipe_bpp);
|
|
|
|
pipe_config->fdi_lanes = lane;
|
|
|
|
intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
|
|
link_bw, &pipe_config->fdi_m_n);
|
|
|
|
ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
|
|
if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
|
|
pipe_config->pipe_bpp -= 2*3;
|
|
DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
|
|
pipe_config->pipe_bpp);
|
|
needs_recompute = true;
|
|
pipe_config->bw_constrained = true;
|
|
|
|
goto retry;
|
|
}
|
|
|
|
if (needs_recompute)
|
|
return RETRY;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
if (pipe_config->pipe_bpp > 24)
|
|
return false;
|
|
|
|
/* HSW can handle pixel rate up to cdclk? */
|
|
if (IS_HASWELL(dev_priv))
|
|
return true;
|
|
|
|
/*
|
|
* We compare against max which means we must take
|
|
* the increased cdclk requirement into account when
|
|
* calculating the new cdclk.
|
|
*
|
|
* Should measure whether using a lower cdclk w/o IPS
|
|
*/
|
|
return ilk_pipe_pixel_rate(pipe_config) <=
|
|
dev_priv->max_cdclk_freq * 95 / 100;
|
|
}
|
|
|
|
static void hsw_compute_ips_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
pipe_config->ips_enabled = i915.enable_ips &&
|
|
hsw_crtc_supports_ips(crtc) &&
|
|
pipe_config_supports_ips(dev_priv, pipe_config);
|
|
}
|
|
|
|
static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
|
|
{
|
|
const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
|
|
/* GDG double wide on either pipe, otherwise pipe A only */
|
|
return INTEL_INFO(dev_priv)->gen < 4 &&
|
|
(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
|
|
}
|
|
|
|
static int intel_crtc_compute_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
|
|
int clock_limit = dev_priv->max_dotclk_freq;
|
|
|
|
if (INTEL_INFO(dev)->gen < 4) {
|
|
clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
|
|
|
|
/*
|
|
* Enable double wide mode when the dot clock
|
|
* is > 90% of the (display) core speed.
|
|
*/
|
|
if (intel_crtc_supports_double_wide(crtc) &&
|
|
adjusted_mode->crtc_clock > clock_limit) {
|
|
clock_limit = dev_priv->max_dotclk_freq;
|
|
pipe_config->double_wide = true;
|
|
}
|
|
}
|
|
|
|
if (adjusted_mode->crtc_clock > clock_limit) {
|
|
DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
|
|
adjusted_mode->crtc_clock, clock_limit,
|
|
yesno(pipe_config->double_wide));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Pipe horizontal size must be even in:
|
|
* - DVO ganged mode
|
|
* - LVDS dual channel mode
|
|
* - Double wide pipe
|
|
*/
|
|
if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
|
|
intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
|
|
pipe_config->pipe_src_w &= ~1;
|
|
|
|
/* Cantiga+ cannot handle modes with a hsync front porch of 0.
|
|
* WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
|
|
*/
|
|
if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
|
|
adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
|
|
return -EINVAL;
|
|
|
|
if (HAS_IPS(dev))
|
|
hsw_compute_ips_config(crtc, pipe_config);
|
|
|
|
if (pipe_config->has_pch_encoder)
|
|
return ironlake_fdi_compute_config(crtc, pipe_config);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skylake_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint32_t cdctl;
|
|
|
|
skl_dpll0_update(dev_priv);
|
|
|
|
if (dev_priv->cdclk_pll.vco == 0)
|
|
return dev_priv->cdclk_pll.ref;
|
|
|
|
cdctl = I915_READ(CDCLK_CTL);
|
|
|
|
if (dev_priv->cdclk_pll.vco == 8640000) {
|
|
switch (cdctl & CDCLK_FREQ_SEL_MASK) {
|
|
case CDCLK_FREQ_450_432:
|
|
return 432000;
|
|
case CDCLK_FREQ_337_308:
|
|
return 308571;
|
|
case CDCLK_FREQ_540:
|
|
return 540000;
|
|
case CDCLK_FREQ_675_617:
|
|
return 617143;
|
|
default:
|
|
MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
|
|
}
|
|
} else {
|
|
switch (cdctl & CDCLK_FREQ_SEL_MASK) {
|
|
case CDCLK_FREQ_450_432:
|
|
return 450000;
|
|
case CDCLK_FREQ_337_308:
|
|
return 337500;
|
|
case CDCLK_FREQ_540:
|
|
return 540000;
|
|
case CDCLK_FREQ_675_617:
|
|
return 675000;
|
|
default:
|
|
MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
|
|
}
|
|
}
|
|
|
|
return dev_priv->cdclk_pll.ref;
|
|
}
|
|
|
|
static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val;
|
|
|
|
dev_priv->cdclk_pll.ref = 19200;
|
|
dev_priv->cdclk_pll.vco = 0;
|
|
|
|
val = I915_READ(BXT_DE_PLL_ENABLE);
|
|
if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
|
|
return;
|
|
|
|
if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
|
|
return;
|
|
|
|
val = I915_READ(BXT_DE_PLL_CTL);
|
|
dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
|
|
dev_priv->cdclk_pll.ref;
|
|
}
|
|
|
|
static int broxton_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 divider;
|
|
int div, vco;
|
|
|
|
bxt_de_pll_update(dev_priv);
|
|
|
|
vco = dev_priv->cdclk_pll.vco;
|
|
if (vco == 0)
|
|
return dev_priv->cdclk_pll.ref;
|
|
|
|
divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
|
|
|
|
switch (divider) {
|
|
case BXT_CDCLK_CD2X_DIV_SEL_1:
|
|
div = 2;
|
|
break;
|
|
case BXT_CDCLK_CD2X_DIV_SEL_1_5:
|
|
div = 3;
|
|
break;
|
|
case BXT_CDCLK_CD2X_DIV_SEL_2:
|
|
div = 4;
|
|
break;
|
|
case BXT_CDCLK_CD2X_DIV_SEL_4:
|
|
div = 8;
|
|
break;
|
|
default:
|
|
MISSING_CASE(divider);
|
|
return dev_priv->cdclk_pll.ref;
|
|
}
|
|
|
|
return DIV_ROUND_CLOSEST(vco, div);
|
|
}
|
|
|
|
static int broadwell_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint32_t lcpll = I915_READ(LCPLL_CTL);
|
|
uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
|
|
|
|
if (lcpll & LCPLL_CD_SOURCE_FCLK)
|
|
return 800000;
|
|
else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
|
|
return 450000;
|
|
else if (freq == LCPLL_CLK_FREQ_450)
|
|
return 450000;
|
|
else if (freq == LCPLL_CLK_FREQ_54O_BDW)
|
|
return 540000;
|
|
else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
|
|
return 337500;
|
|
else
|
|
return 675000;
|
|
}
|
|
|
|
static int haswell_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint32_t lcpll = I915_READ(LCPLL_CTL);
|
|
uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
|
|
|
|
if (lcpll & LCPLL_CD_SOURCE_FCLK)
|
|
return 800000;
|
|
else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
|
|
return 450000;
|
|
else if (freq == LCPLL_CLK_FREQ_450)
|
|
return 450000;
|
|
else if (IS_HSW_ULT(dev))
|
|
return 337500;
|
|
else
|
|
return 540000;
|
|
}
|
|
|
|
static int valleyview_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
|
|
CCK_DISPLAY_CLOCK_CONTROL);
|
|
}
|
|
|
|
static int ilk_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 450000;
|
|
}
|
|
|
|
static int i945_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 400000;
|
|
}
|
|
|
|
static int i915_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 333333;
|
|
}
|
|
|
|
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 200000;
|
|
}
|
|
|
|
static int pnv_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
u16 gcfgc = 0;
|
|
|
|
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
|
|
|
|
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
|
|
case GC_DISPLAY_CLOCK_267_MHZ_PNV:
|
|
return 266667;
|
|
case GC_DISPLAY_CLOCK_333_MHZ_PNV:
|
|
return 333333;
|
|
case GC_DISPLAY_CLOCK_444_MHZ_PNV:
|
|
return 444444;
|
|
case GC_DISPLAY_CLOCK_200_MHZ_PNV:
|
|
return 200000;
|
|
default:
|
|
DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
|
|
case GC_DISPLAY_CLOCK_133_MHZ_PNV:
|
|
return 133333;
|
|
case GC_DISPLAY_CLOCK_167_MHZ_PNV:
|
|
return 166667;
|
|
}
|
|
}
|
|
|
|
static int i915gm_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
u16 gcfgc = 0;
|
|
|
|
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
|
|
|
|
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
|
|
return 133333;
|
|
else {
|
|
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
|
|
case GC_DISPLAY_CLOCK_333_MHZ:
|
|
return 333333;
|
|
default:
|
|
case GC_DISPLAY_CLOCK_190_200_MHZ:
|
|
return 190000;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int i865_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 266667;
|
|
}
|
|
|
|
static int i85x_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
u16 hpllcc = 0;
|
|
|
|
/*
|
|
* 852GM/852GMV only supports 133 MHz and the HPLLCC
|
|
* encoding is different :(
|
|
* FIXME is this the right way to detect 852GM/852GMV?
|
|
*/
|
|
if (dev->pdev->revision == 0x1)
|
|
return 133333;
|
|
|
|
pci_bus_read_config_word(dev->pdev->bus,
|
|
PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
|
|
|
|
/* Assume that the hardware is in the high speed state. This
|
|
* should be the default.
|
|
*/
|
|
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
|
|
case GC_CLOCK_133_200:
|
|
case GC_CLOCK_133_200_2:
|
|
case GC_CLOCK_100_200:
|
|
return 200000;
|
|
case GC_CLOCK_166_250:
|
|
return 250000;
|
|
case GC_CLOCK_100_133:
|
|
return 133333;
|
|
case GC_CLOCK_133_266:
|
|
case GC_CLOCK_133_266_2:
|
|
case GC_CLOCK_166_266:
|
|
return 266667;
|
|
}
|
|
|
|
/* Shouldn't happen */
|
|
return 0;
|
|
}
|
|
|
|
static int i830_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 133333;
|
|
}
|
|
|
|
static unsigned int intel_hpll_vco(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
static const unsigned int blb_vco[8] = {
|
|
[0] = 3200000,
|
|
[1] = 4000000,
|
|
[2] = 5333333,
|
|
[3] = 4800000,
|
|
[4] = 6400000,
|
|
};
|
|
static const unsigned int pnv_vco[8] = {
|
|
[0] = 3200000,
|
|
[1] = 4000000,
|
|
[2] = 5333333,
|
|
[3] = 4800000,
|
|
[4] = 2666667,
|
|
};
|
|
static const unsigned int cl_vco[8] = {
|
|
[0] = 3200000,
|
|
[1] = 4000000,
|
|
[2] = 5333333,
|
|
[3] = 6400000,
|
|
[4] = 3333333,
|
|
[5] = 3566667,
|
|
[6] = 4266667,
|
|
};
|
|
static const unsigned int elk_vco[8] = {
|
|
[0] = 3200000,
|
|
[1] = 4000000,
|
|
[2] = 5333333,
|
|
[3] = 4800000,
|
|
};
|
|
static const unsigned int ctg_vco[8] = {
|
|
[0] = 3200000,
|
|
[1] = 4000000,
|
|
[2] = 5333333,
|
|
[3] = 6400000,
|
|
[4] = 2666667,
|
|
[5] = 4266667,
|
|
};
|
|
const unsigned int *vco_table;
|
|
unsigned int vco;
|
|
uint8_t tmp = 0;
|
|
|
|
/* FIXME other chipsets? */
|
|
if (IS_GM45(dev))
|
|
vco_table = ctg_vco;
|
|
else if (IS_G4X(dev))
|
|
vco_table = elk_vco;
|
|
else if (IS_CRESTLINE(dev))
|
|
vco_table = cl_vco;
|
|
else if (IS_PINEVIEW(dev))
|
|
vco_table = pnv_vco;
|
|
else if (IS_G33(dev))
|
|
vco_table = blb_vco;
|
|
else
|
|
return 0;
|
|
|
|
tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
|
|
|
|
vco = vco_table[tmp & 0x7];
|
|
if (vco == 0)
|
|
DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
|
|
else
|
|
DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
|
|
|
|
return vco;
|
|
}
|
|
|
|
static int gm45_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
|
|
uint16_t tmp = 0;
|
|
|
|
pci_read_config_word(dev->pdev, GCFGC, &tmp);
|
|
|
|
cdclk_sel = (tmp >> 12) & 0x1;
|
|
|
|
switch (vco) {
|
|
case 2666667:
|
|
case 4000000:
|
|
case 5333333:
|
|
return cdclk_sel ? 333333 : 222222;
|
|
case 3200000:
|
|
return cdclk_sel ? 320000 : 228571;
|
|
default:
|
|
DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
|
|
return 222222;
|
|
}
|
|
}
|
|
|
|
static int i965gm_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
static const uint8_t div_3200[] = { 16, 10, 8 };
|
|
static const uint8_t div_4000[] = { 20, 12, 10 };
|
|
static const uint8_t div_5333[] = { 24, 16, 14 };
|
|
const uint8_t *div_table;
|
|
unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
|
|
uint16_t tmp = 0;
|
|
|
|
pci_read_config_word(dev->pdev, GCFGC, &tmp);
|
|
|
|
cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
|
|
|
|
if (cdclk_sel >= ARRAY_SIZE(div_3200))
|
|
goto fail;
|
|
|
|
switch (vco) {
|
|
case 3200000:
|
|
div_table = div_3200;
|
|
break;
|
|
case 4000000:
|
|
div_table = div_4000;
|
|
break;
|
|
case 5333333:
|
|
div_table = div_5333;
|
|
break;
|
|
default:
|
|
goto fail;
|
|
}
|
|
|
|
return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
|
|
|
|
fail:
|
|
DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
|
|
return 200000;
|
|
}
|
|
|
|
static int g33_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
|
|
static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
|
|
static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
|
|
static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
|
|
const uint8_t *div_table;
|
|
unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
|
|
uint16_t tmp = 0;
|
|
|
|
pci_read_config_word(dev->pdev, GCFGC, &tmp);
|
|
|
|
cdclk_sel = (tmp >> 4) & 0x7;
|
|
|
|
if (cdclk_sel >= ARRAY_SIZE(div_3200))
|
|
goto fail;
|
|
|
|
switch (vco) {
|
|
case 3200000:
|
|
div_table = div_3200;
|
|
break;
|
|
case 4000000:
|
|
div_table = div_4000;
|
|
break;
|
|
case 4800000:
|
|
div_table = div_4800;
|
|
break;
|
|
case 5333333:
|
|
div_table = div_5333;
|
|
break;
|
|
default:
|
|
goto fail;
|
|
}
|
|
|
|
return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
|
|
|
|
fail:
|
|
DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
|
|
return 190476;
|
|
}
|
|
|
|
static void
|
|
intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
|
|
{
|
|
while (*num > DATA_LINK_M_N_MASK ||
|
|
*den > DATA_LINK_M_N_MASK) {
|
|
*num >>= 1;
|
|
*den >>= 1;
|
|
}
|
|
}
|
|
|
|
static void compute_m_n(unsigned int m, unsigned int n,
|
|
uint32_t *ret_m, uint32_t *ret_n)
|
|
{
|
|
*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
|
|
*ret_m = div_u64((uint64_t) m * *ret_n, n);
|
|
intel_reduce_m_n_ratio(ret_m, ret_n);
|
|
}
|
|
|
|
void
|
|
intel_link_compute_m_n(int bits_per_pixel, int nlanes,
|
|
int pixel_clock, int link_clock,
|
|
struct intel_link_m_n *m_n)
|
|
{
|
|
m_n->tu = 64;
|
|
|
|
compute_m_n(bits_per_pixel * pixel_clock,
|
|
link_clock * nlanes * 8,
|
|
&m_n->gmch_m, &m_n->gmch_n);
|
|
|
|
compute_m_n(pixel_clock, link_clock,
|
|
&m_n->link_m, &m_n->link_n);
|
|
}
|
|
|
|
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (i915.panel_use_ssc >= 0)
|
|
return i915.panel_use_ssc != 0;
|
|
return dev_priv->vbt.lvds_use_ssc
|
|
&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
|
|
}
|
|
|
|
static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
|
|
{
|
|
return (1 << dpll->n) << 16 | dpll->m2;
|
|
}
|
|
|
|
static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
|
|
{
|
|
return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
|
|
}
|
|
|
|
static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *crtc_state,
|
|
struct dpll *reduced_clock)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
u32 fp, fp2 = 0;
|
|
|
|
if (IS_PINEVIEW(dev)) {
|
|
fp = pnv_dpll_compute_fp(&crtc_state->dpll);
|
|
if (reduced_clock)
|
|
fp2 = pnv_dpll_compute_fp(reduced_clock);
|
|
} else {
|
|
fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
|
|
if (reduced_clock)
|
|
fp2 = i9xx_dpll_compute_fp(reduced_clock);
|
|
}
|
|
|
|
crtc_state->dpll_hw_state.fp0 = fp;
|
|
|
|
crtc->lowfreq_avail = false;
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
|
|
reduced_clock) {
|
|
crtc_state->dpll_hw_state.fp1 = fp2;
|
|
crtc->lowfreq_avail = true;
|
|
} else {
|
|
crtc_state->dpll_hw_state.fp1 = fp;
|
|
}
|
|
}
|
|
|
|
static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
|
|
pipe)
|
|
{
|
|
u32 reg_val;
|
|
|
|
/*
|
|
* PLLB opamp always calibrates to max value of 0x3f, force enable it
|
|
* and set it to a reasonable value instead.
|
|
*/
|
|
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
|
|
reg_val &= 0xffffff00;
|
|
reg_val |= 0x00000030;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
|
|
|
|
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
|
|
reg_val &= 0x8cffffff;
|
|
reg_val = 0x8c000000;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
|
|
|
|
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
|
|
reg_val &= 0xffffff00;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
|
|
|
|
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
|
|
reg_val &= 0x00ffffff;
|
|
reg_val |= 0xb0000000;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
|
|
}
|
|
|
|
static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
|
|
struct intel_link_m_n *m_n)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int pipe = crtc->pipe;
|
|
|
|
I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
|
|
I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
|
|
I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
|
|
I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
|
|
}
|
|
|
|
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
|
|
struct intel_link_m_n *m_n,
|
|
struct intel_link_m_n *m2_n2)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int pipe = crtc->pipe;
|
|
enum transcoder transcoder = crtc->config->cpu_transcoder;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 5) {
|
|
I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
|
|
I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
|
|
I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
|
|
I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
|
|
/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
|
|
* for gen < 8) and if DRRS is supported (to make sure the
|
|
* registers are not unnecessarily accessed).
|
|
*/
|
|
if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
|
|
crtc->config->has_drrs) {
|
|
I915_WRITE(PIPE_DATA_M2(transcoder),
|
|
TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
|
|
I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
|
|
I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
|
|
I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
|
|
}
|
|
} else {
|
|
I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
|
|
I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
|
|
I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
|
|
I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
|
|
}
|
|
}
|
|
|
|
void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
|
|
{
|
|
struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
|
|
|
|
if (m_n == M1_N1) {
|
|
dp_m_n = &crtc->config->dp_m_n;
|
|
dp_m2_n2 = &crtc->config->dp_m2_n2;
|
|
} else if (m_n == M2_N2) {
|
|
|
|
/*
|
|
* M2_N2 registers are not supported. Hence m2_n2 divider value
|
|
* needs to be programmed into M1_N1.
|
|
*/
|
|
dp_m_n = &crtc->config->dp_m2_n2;
|
|
} else {
|
|
DRM_ERROR("Unsupported divider value\n");
|
|
return;
|
|
}
|
|
|
|
if (crtc->config->has_pch_encoder)
|
|
intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
|
|
else
|
|
intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
|
|
}
|
|
|
|
static void vlv_compute_dpll(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
|
|
DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
|
|
if (crtc->pipe != PIPE_A)
|
|
pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
|
|
|
|
/* DPLL not used with DSI, but still need the rest set up */
|
|
if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
|
|
pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
|
|
DPLL_EXT_BUFFER_ENABLE_VLV;
|
|
|
|
pipe_config->dpll_hw_state.dpll_md =
|
|
(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
|
|
}
|
|
|
|
static void chv_compute_dpll(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
|
|
DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
|
|
if (crtc->pipe != PIPE_A)
|
|
pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
|
|
|
|
/* DPLL not used with DSI, but still need the rest set up */
|
|
if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
|
|
pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
|
|
|
|
pipe_config->dpll_hw_state.dpll_md =
|
|
(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
|
|
}
|
|
|
|
static void vlv_prepare_pll(struct intel_crtc *crtc,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum pipe pipe = crtc->pipe;
|
|
u32 mdiv;
|
|
u32 bestn, bestm1, bestm2, bestp1, bestp2;
|
|
u32 coreclk, reg_val;
|
|
|
|
/* Enable Refclk */
|
|
I915_WRITE(DPLL(pipe),
|
|
pipe_config->dpll_hw_state.dpll &
|
|
~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
|
|
|
|
/* No need to actually set up the DPLL with DSI */
|
|
if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
bestn = pipe_config->dpll.n;
|
|
bestm1 = pipe_config->dpll.m1;
|
|
bestm2 = pipe_config->dpll.m2;
|
|
bestp1 = pipe_config->dpll.p1;
|
|
bestp2 = pipe_config->dpll.p2;
|
|
|
|
/* See eDP HDMI DPIO driver vbios notes doc */
|
|
|
|
/* PLL B needs special handling */
|
|
if (pipe == PIPE_B)
|
|
vlv_pllb_recal_opamp(dev_priv, pipe);
|
|
|
|
/* Set up Tx target for periodic Rcomp update */
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
|
|
|
|
/* Disable target IRef on PLL */
|
|
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
|
|
reg_val &= 0x00ffffff;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
|
|
|
|
/* Disable fast lock */
|
|
vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
|
|
|
|
/* Set idtafcrecal before PLL is enabled */
|
|
mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
|
|
mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
|
|
mdiv |= ((bestn << DPIO_N_SHIFT));
|
|
mdiv |= (1 << DPIO_K_SHIFT);
|
|
|
|
/*
|
|
* Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
|
|
* but we don't support that).
|
|
* Note: don't use the DAC post divider as it seems unstable.
|
|
*/
|
|
mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
|
|
|
|
mdiv |= DPIO_ENABLE_CALIBRATION;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
|
|
|
|
/* Set HBR and RBR LPF coefficients */
|
|
if (pipe_config->port_clock == 162000 ||
|
|
intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
|
|
intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
|
|
0x009f0003);
|
|
else
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
|
|
0x00d0000f);
|
|
|
|
if (intel_crtc_has_dp_encoder(pipe_config)) {
|
|
/* Use SSC source */
|
|
if (pipe == PIPE_A)
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
|
|
0x0df40000);
|
|
else
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
|
|
0x0df70000);
|
|
} else { /* HDMI or VGA */
|
|
/* Use bend source */
|
|
if (pipe == PIPE_A)
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
|
|
0x0df70000);
|
|
else
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
|
|
0x0df40000);
|
|
}
|
|
|
|
coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
|
|
coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
|
|
if (intel_crtc_has_dp_encoder(crtc->config))
|
|
coreclk |= 0x01000000;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
|
|
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
static void chv_prepare_pll(struct intel_crtc *crtc,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum pipe pipe = crtc->pipe;
|
|
enum dpio_channel port = vlv_pipe_to_channel(pipe);
|
|
u32 loopfilter, tribuf_calcntr;
|
|
u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
|
|
u32 dpio_val;
|
|
int vco;
|
|
|
|
/* Enable Refclk and SSC */
|
|
I915_WRITE(DPLL(pipe),
|
|
pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
|
|
|
|
/* No need to actually set up the DPLL with DSI */
|
|
if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
|
|
return;
|
|
|
|
bestn = pipe_config->dpll.n;
|
|
bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
|
|
bestm1 = pipe_config->dpll.m1;
|
|
bestm2 = pipe_config->dpll.m2 >> 22;
|
|
bestp1 = pipe_config->dpll.p1;
|
|
bestp2 = pipe_config->dpll.p2;
|
|
vco = pipe_config->dpll.vco;
|
|
dpio_val = 0;
|
|
loopfilter = 0;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* p1 and p2 divider */
|
|
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
|
|
5 << DPIO_CHV_S1_DIV_SHIFT |
|
|
bestp1 << DPIO_CHV_P1_DIV_SHIFT |
|
|
bestp2 << DPIO_CHV_P2_DIV_SHIFT |
|
|
1 << DPIO_CHV_K_DIV_SHIFT);
|
|
|
|
/* Feedback post-divider - m2 */
|
|
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
|
|
|
|
/* Feedback refclk divider - n and m1 */
|
|
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
|
|
DPIO_CHV_M1_DIV_BY_2 |
|
|
1 << DPIO_CHV_N_DIV_SHIFT);
|
|
|
|
/* M2 fraction division */
|
|
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
|
|
|
|
/* M2 fraction division enable */
|
|
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
|
|
dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
|
|
dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
|
|
if (bestm2_frac)
|
|
dpio_val |= DPIO_CHV_FRAC_DIV_EN;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
|
|
|
|
/* Program digital lock detect threshold */
|
|
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
|
|
dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
|
|
DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
|
|
dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
|
|
if (!bestm2_frac)
|
|
dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
|
|
|
|
/* Loop filter */
|
|
if (vco == 5400000) {
|
|
loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
|
|
loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
|
|
loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
|
|
tribuf_calcntr = 0x9;
|
|
} else if (vco <= 6200000) {
|
|
loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
|
|
loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
|
|
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
|
|
tribuf_calcntr = 0x9;
|
|
} else if (vco <= 6480000) {
|
|
loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
|
|
loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
|
|
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
|
|
tribuf_calcntr = 0x8;
|
|
} else {
|
|
/* Not supported. Apply the same limits as in the max case */
|
|
loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
|
|
loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
|
|
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
|
|
tribuf_calcntr = 0;
|
|
}
|
|
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
|
|
|
|
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
|
|
dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
|
|
dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
|
|
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
|
|
|
|
/* AFC Recal */
|
|
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
|
|
vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
|
|
DPIO_AFC_RECAL);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
/**
|
|
* vlv_force_pll_on - forcibly enable just the PLL
|
|
* @dev_priv: i915 private structure
|
|
* @pipe: pipe PLL to enable
|
|
* @dpll: PLL configuration
|
|
*
|
|
* Enable the PLL for @pipe using the supplied @dpll config. To be used
|
|
* in cases where we need the PLL enabled even when @pipe is not going to
|
|
* be enabled.
|
|
*/
|
|
int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
|
|
const struct dpll *dpll)
|
|
{
|
|
struct intel_crtc *crtc =
|
|
to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
|
|
struct intel_crtc_state *pipe_config;
|
|
|
|
pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
|
|
if (!pipe_config)
|
|
return -ENOMEM;
|
|
|
|
pipe_config->base.crtc = &crtc->base;
|
|
pipe_config->pixel_multiplier = 1;
|
|
pipe_config->dpll = *dpll;
|
|
|
|
if (IS_CHERRYVIEW(dev)) {
|
|
chv_compute_dpll(crtc, pipe_config);
|
|
chv_prepare_pll(crtc, pipe_config);
|
|
chv_enable_pll(crtc, pipe_config);
|
|
} else {
|
|
vlv_compute_dpll(crtc, pipe_config);
|
|
vlv_prepare_pll(crtc, pipe_config);
|
|
vlv_enable_pll(crtc, pipe_config);
|
|
}
|
|
|
|
kfree(pipe_config);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* vlv_force_pll_off - forcibly disable just the PLL
|
|
* @dev_priv: i915 private structure
|
|
* @pipe: pipe PLL to disable
|
|
*
|
|
* Disable the PLL for @pipe. To be used in cases where we need
|
|
* the PLL enabled even when @pipe is not going to be enabled.
|
|
*/
|
|
void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
|
|
{
|
|
if (IS_CHERRYVIEW(dev))
|
|
chv_disable_pll(to_i915(dev), pipe);
|
|
else
|
|
vlv_disable_pll(to_i915(dev), pipe);
|
|
}
|
|
|
|
static void i9xx_compute_dpll(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *crtc_state,
|
|
struct dpll *reduced_clock)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 dpll;
|
|
struct dpll *clock = &crtc_state->dpll;
|
|
|
|
i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
|
|
|
|
dpll = DPLL_VGA_MODE_DIS;
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
|
|
dpll |= DPLLB_MODE_LVDS;
|
|
else
|
|
dpll |= DPLLB_MODE_DAC_SERIAL;
|
|
|
|
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
|
|
dpll |= (crtc_state->pixel_multiplier - 1)
|
|
<< SDVO_MULTIPLIER_SHIFT_HIRES;
|
|
}
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
|
|
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
|
|
dpll |= DPLL_SDVO_HIGH_SPEED;
|
|
|
|
if (intel_crtc_has_dp_encoder(crtc_state))
|
|
dpll |= DPLL_SDVO_HIGH_SPEED;
|
|
|
|
/* compute bitmask from p1 value */
|
|
if (IS_PINEVIEW(dev))
|
|
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
|
|
else {
|
|
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
if (IS_G4X(dev) && reduced_clock)
|
|
dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
|
|
}
|
|
switch (clock->p2) {
|
|
case 5:
|
|
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
|
|
break;
|
|
case 7:
|
|
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
|
|
break;
|
|
case 10:
|
|
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
|
|
break;
|
|
case 14:
|
|
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
|
|
break;
|
|
}
|
|
if (INTEL_INFO(dev)->gen >= 4)
|
|
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
|
|
|
|
if (crtc_state->sdvo_tv_clock)
|
|
dpll |= PLL_REF_INPUT_TVCLKINBC;
|
|
else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
|
|
intel_panel_use_ssc(dev_priv))
|
|
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
|
|
else
|
|
dpll |= PLL_REF_INPUT_DREFCLK;
|
|
|
|
dpll |= DPLL_VCO_ENABLE;
|
|
crtc_state->dpll_hw_state.dpll = dpll;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
u32 dpll_md = (crtc_state->pixel_multiplier - 1)
|
|
<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
|
|
crtc_state->dpll_hw_state.dpll_md = dpll_md;
|
|
}
|
|
}
|
|
|
|
static void i8xx_compute_dpll(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *crtc_state,
|
|
struct dpll *reduced_clock)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 dpll;
|
|
struct dpll *clock = &crtc_state->dpll;
|
|
|
|
i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
|
|
|
|
dpll = DPLL_VGA_MODE_DIS;
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
|
|
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
} else {
|
|
if (clock->p1 == 2)
|
|
dpll |= PLL_P1_DIVIDE_BY_TWO;
|
|
else
|
|
dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
if (clock->p2 == 4)
|
|
dpll |= PLL_P2_DIVIDE_BY_4;
|
|
}
|
|
|
|
if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
|
|
dpll |= DPLL_DVO_2X_MODE;
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
|
|
intel_panel_use_ssc(dev_priv))
|
|
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
|
|
else
|
|
dpll |= PLL_REF_INPUT_DREFCLK;
|
|
|
|
dpll |= DPLL_VCO_ENABLE;
|
|
crtc_state->dpll_hw_state.dpll = dpll;
|
|
}
|
|
|
|
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
|
|
const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
|
|
uint32_t crtc_vtotal, crtc_vblank_end;
|
|
int vsyncshift = 0;
|
|
|
|
/* We need to be careful not to changed the adjusted mode, for otherwise
|
|
* the hw state checker will get angry at the mismatch. */
|
|
crtc_vtotal = adjusted_mode->crtc_vtotal;
|
|
crtc_vblank_end = adjusted_mode->crtc_vblank_end;
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
|
|
/* the chip adds 2 halflines automatically */
|
|
crtc_vtotal -= 1;
|
|
crtc_vblank_end -= 1;
|
|
|
|
if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
|
|
vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
|
|
else
|
|
vsyncshift = adjusted_mode->crtc_hsync_start -
|
|
adjusted_mode->crtc_htotal / 2;
|
|
if (vsyncshift < 0)
|
|
vsyncshift += adjusted_mode->crtc_htotal;
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->gen > 3)
|
|
I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
|
|
|
|
I915_WRITE(HTOTAL(cpu_transcoder),
|
|
(adjusted_mode->crtc_hdisplay - 1) |
|
|
((adjusted_mode->crtc_htotal - 1) << 16));
|
|
I915_WRITE(HBLANK(cpu_transcoder),
|
|
(adjusted_mode->crtc_hblank_start - 1) |
|
|
((adjusted_mode->crtc_hblank_end - 1) << 16));
|
|
I915_WRITE(HSYNC(cpu_transcoder),
|
|
(adjusted_mode->crtc_hsync_start - 1) |
|
|
((adjusted_mode->crtc_hsync_end - 1) << 16));
|
|
|
|
I915_WRITE(VTOTAL(cpu_transcoder),
|
|
(adjusted_mode->crtc_vdisplay - 1) |
|
|
((crtc_vtotal - 1) << 16));
|
|
I915_WRITE(VBLANK(cpu_transcoder),
|
|
(adjusted_mode->crtc_vblank_start - 1) |
|
|
((crtc_vblank_end - 1) << 16));
|
|
I915_WRITE(VSYNC(cpu_transcoder),
|
|
(adjusted_mode->crtc_vsync_start - 1) |
|
|
((adjusted_mode->crtc_vsync_end - 1) << 16));
|
|
|
|
/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
|
|
* programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
|
|
* documented on the DDI_FUNC_CTL register description, EDP Input Select
|
|
* bits. */
|
|
if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
|
|
(pipe == PIPE_B || pipe == PIPE_C))
|
|
I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
|
|
|
|
}
|
|
|
|
static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
|
|
/* pipesrc controls the size that is scaled from, which should
|
|
* always be the user's requested size.
|
|
*/
|
|
I915_WRITE(PIPESRC(pipe),
|
|
((intel_crtc->config->pipe_src_w - 1) << 16) |
|
|
(intel_crtc->config->pipe_src_h - 1));
|
|
}
|
|
|
|
static void intel_get_pipe_timings(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
|
|
uint32_t tmp;
|
|
|
|
tmp = I915_READ(HTOTAL(cpu_transcoder));
|
|
pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
|
|
pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
|
|
tmp = I915_READ(HBLANK(cpu_transcoder));
|
|
pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
|
|
pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
|
|
tmp = I915_READ(HSYNC(cpu_transcoder));
|
|
pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
|
|
pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
|
|
|
|
tmp = I915_READ(VTOTAL(cpu_transcoder));
|
|
pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
|
|
pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
|
|
tmp = I915_READ(VBLANK(cpu_transcoder));
|
|
pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
|
|
pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
|
|
tmp = I915_READ(VSYNC(cpu_transcoder));
|
|
pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
|
|
pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
|
|
|
|
if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
|
|
pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
|
|
pipe_config->base.adjusted_mode.crtc_vtotal += 1;
|
|
pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
|
|
}
|
|
}
|
|
|
|
static void intel_get_pipe_src_size(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 tmp;
|
|
|
|
tmp = I915_READ(PIPESRC(crtc->pipe));
|
|
pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
|
|
pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
|
|
|
|
pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
|
|
pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
|
|
}
|
|
|
|
void intel_mode_from_pipe_config(struct drm_display_mode *mode,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
|
|
mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
|
|
mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
|
|
mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
|
|
|
|
mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
|
|
mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
|
|
mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
|
|
mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
|
|
|
|
mode->flags = pipe_config->base.adjusted_mode.flags;
|
|
mode->type = DRM_MODE_TYPE_DRIVER;
|
|
|
|
mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
|
|
mode->flags |= pipe_config->base.adjusted_mode.flags;
|
|
|
|
mode->hsync = drm_mode_hsync(mode);
|
|
mode->vrefresh = drm_mode_vrefresh(mode);
|
|
drm_mode_set_name(mode);
|
|
}
|
|
|
|
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint32_t pipeconf;
|
|
|
|
pipeconf = 0;
|
|
|
|
if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
|
|
(intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
|
|
pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
|
|
|
|
if (intel_crtc->config->double_wide)
|
|
pipeconf |= PIPECONF_DOUBLE_WIDE;
|
|
|
|
/* only g4x and later have fancy bpc/dither controls */
|
|
if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
|
|
/* Bspec claims that we can't use dithering for 30bpp pipes. */
|
|
if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
|
|
pipeconf |= PIPECONF_DITHER_EN |
|
|
PIPECONF_DITHER_TYPE_SP;
|
|
|
|
switch (intel_crtc->config->pipe_bpp) {
|
|
case 18:
|
|
pipeconf |= PIPECONF_6BPC;
|
|
break;
|
|
case 24:
|
|
pipeconf |= PIPECONF_8BPC;
|
|
break;
|
|
case 30:
|
|
pipeconf |= PIPECONF_10BPC;
|
|
break;
|
|
default:
|
|
/* Case prevented by intel_choose_pipe_bpp_dither. */
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
if (HAS_PIPE_CXSR(dev)) {
|
|
if (intel_crtc->lowfreq_avail) {
|
|
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
|
|
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
|
|
} else {
|
|
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
|
|
}
|
|
}
|
|
|
|
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
|
|
if (INTEL_INFO(dev)->gen < 4 ||
|
|
intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
|
|
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
|
|
else
|
|
pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
|
|
} else
|
|
pipeconf |= PIPECONF_PROGRESSIVE;
|
|
|
|
if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
|
|
intel_crtc->config->limited_color_range)
|
|
pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
|
|
|
|
I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
|
|
POSTING_READ(PIPECONF(intel_crtc->pipe));
|
|
}
|
|
|
|
static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
const struct intel_limit *limit;
|
|
int refclk = 48000;
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
|
|
if (intel_panel_use_ssc(dev_priv)) {
|
|
refclk = dev_priv->vbt.lvds_ssc_freq;
|
|
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
|
|
}
|
|
|
|
limit = &intel_limits_i8xx_lvds;
|
|
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
|
|
limit = &intel_limits_i8xx_dvo;
|
|
} else {
|
|
limit = &intel_limits_i8xx_dac;
|
|
}
|
|
|
|
if (!crtc_state->clock_set &&
|
|
!i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
|
|
refclk, NULL, &crtc_state->dpll)) {
|
|
DRM_ERROR("Couldn't find PLL settings for mode!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
i8xx_compute_dpll(crtc, crtc_state, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
const struct intel_limit *limit;
|
|
int refclk = 96000;
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
|
|
if (intel_panel_use_ssc(dev_priv)) {
|
|
refclk = dev_priv->vbt.lvds_ssc_freq;
|
|
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
|
|
}
|
|
|
|
if (intel_is_dual_link_lvds(dev))
|
|
limit = &intel_limits_g4x_dual_channel_lvds;
|
|
else
|
|
limit = &intel_limits_g4x_single_channel_lvds;
|
|
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
|
|
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
|
|
limit = &intel_limits_g4x_hdmi;
|
|
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
|
|
limit = &intel_limits_g4x_sdvo;
|
|
} else {
|
|
/* The option is for other outputs */
|
|
limit = &intel_limits_i9xx_sdvo;
|
|
}
|
|
|
|
if (!crtc_state->clock_set &&
|
|
!g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
|
|
refclk, NULL, &crtc_state->dpll)) {
|
|
DRM_ERROR("Couldn't find PLL settings for mode!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
i9xx_compute_dpll(crtc, crtc_state, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
const struct intel_limit *limit;
|
|
int refclk = 96000;
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
|
|
if (intel_panel_use_ssc(dev_priv)) {
|
|
refclk = dev_priv->vbt.lvds_ssc_freq;
|
|
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
|
|
}
|
|
|
|
limit = &intel_limits_pineview_lvds;
|
|
} else {
|
|
limit = &intel_limits_pineview_sdvo;
|
|
}
|
|
|
|
if (!crtc_state->clock_set &&
|
|
!pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
|
|
refclk, NULL, &crtc_state->dpll)) {
|
|
DRM_ERROR("Couldn't find PLL settings for mode!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
i9xx_compute_dpll(crtc, crtc_state, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
const struct intel_limit *limit;
|
|
int refclk = 96000;
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
|
|
if (intel_panel_use_ssc(dev_priv)) {
|
|
refclk = dev_priv->vbt.lvds_ssc_freq;
|
|
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
|
|
}
|
|
|
|
limit = &intel_limits_i9xx_lvds;
|
|
} else {
|
|
limit = &intel_limits_i9xx_sdvo;
|
|
}
|
|
|
|
if (!crtc_state->clock_set &&
|
|
!i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
|
|
refclk, NULL, &crtc_state->dpll)) {
|
|
DRM_ERROR("Couldn't find PLL settings for mode!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
i9xx_compute_dpll(crtc, crtc_state, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int chv_crtc_compute_clock(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
int refclk = 100000;
|
|
const struct intel_limit *limit = &intel_limits_chv;
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
if (!crtc_state->clock_set &&
|
|
!chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
|
|
refclk, NULL, &crtc_state->dpll)) {
|
|
DRM_ERROR("Couldn't find PLL settings for mode!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
chv_compute_dpll(crtc, crtc_state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
int refclk = 100000;
|
|
const struct intel_limit *limit = &intel_limits_vlv;
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
if (!crtc_state->clock_set &&
|
|
!vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
|
|
refclk, NULL, &crtc_state->dpll)) {
|
|
DRM_ERROR("Couldn't find PLL settings for mode!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
vlv_compute_dpll(crtc, crtc_state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i9xx_get_pfit_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint32_t tmp;
|
|
|
|
if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
|
|
return;
|
|
|
|
tmp = I915_READ(PFIT_CONTROL);
|
|
if (!(tmp & PFIT_ENABLE))
|
|
return;
|
|
|
|
/* Check whether the pfit is attached to our pipe. */
|
|
if (INTEL_INFO(dev)->gen < 4) {
|
|
if (crtc->pipe != PIPE_B)
|
|
return;
|
|
} else {
|
|
if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
|
|
return;
|
|
}
|
|
|
|
pipe_config->gmch_pfit.control = tmp;
|
|
pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
|
|
}
|
|
|
|
static void vlv_crtc_clock_get(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int pipe = pipe_config->cpu_transcoder;
|
|
struct dpll clock;
|
|
u32 mdiv;
|
|
int refclk = 100000;
|
|
|
|
/* In case of DSI, DPLL will not be used */
|
|
if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
|
|
clock.m2 = mdiv & DPIO_M2DIV_MASK;
|
|
clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
|
|
clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
|
|
clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
|
|
|
|
pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
|
|
}
|
|
|
|
static void
|
|
i9xx_get_initial_plane_config(struct intel_crtc *crtc,
|
|
struct intel_initial_plane_config *plane_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 val, base, offset;
|
|
int pipe = crtc->pipe, plane = crtc->plane;
|
|
int fourcc, pixel_format;
|
|
unsigned int aligned_height;
|
|
struct drm_framebuffer *fb;
|
|
struct intel_framebuffer *intel_fb;
|
|
|
|
val = I915_READ(DSPCNTR(plane));
|
|
if (!(val & DISPLAY_PLANE_ENABLE))
|
|
return;
|
|
|
|
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
|
|
if (!intel_fb) {
|
|
DRM_DEBUG_KMS("failed to alloc fb\n");
|
|
return;
|
|
}
|
|
|
|
fb = &intel_fb->base;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
if (val & DISPPLANE_TILED) {
|
|
plane_config->tiling = I915_TILING_X;
|
|
fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
|
|
}
|
|
}
|
|
|
|
pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
|
|
fourcc = i9xx_format_to_fourcc(pixel_format);
|
|
fb->pixel_format = fourcc;
|
|
fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
if (plane_config->tiling)
|
|
offset = I915_READ(DSPTILEOFF(plane));
|
|
else
|
|
offset = I915_READ(DSPLINOFF(plane));
|
|
base = I915_READ(DSPSURF(plane)) & 0xfffff000;
|
|
} else {
|
|
base = I915_READ(DSPADDR(plane));
|
|
}
|
|
plane_config->base = base;
|
|
|
|
val = I915_READ(PIPESRC(pipe));
|
|
fb->width = ((val >> 16) & 0xfff) + 1;
|
|
fb->height = ((val >> 0) & 0xfff) + 1;
|
|
|
|
val = I915_READ(DSPSTRIDE(pipe));
|
|
fb->pitches[0] = val & 0xffffffc0;
|
|
|
|
aligned_height = intel_fb_align_height(dev, fb->height,
|
|
fb->pixel_format,
|
|
fb->modifier[0]);
|
|
|
|
plane_config->size = fb->pitches[0] * aligned_height;
|
|
|
|
DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
|
|
pipe_name(pipe), plane, fb->width, fb->height,
|
|
fb->bits_per_pixel, base, fb->pitches[0],
|
|
plane_config->size);
|
|
|
|
plane_config->fb = intel_fb;
|
|
}
|
|
|
|
static void chv_crtc_clock_get(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int pipe = pipe_config->cpu_transcoder;
|
|
enum dpio_channel port = vlv_pipe_to_channel(pipe);
|
|
struct dpll clock;
|
|
u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
|
|
int refclk = 100000;
|
|
|
|
/* In case of DSI, DPLL will not be used */
|
|
if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
|
|
pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
|
|
pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
|
|
pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
|
|
pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
|
|
clock.m2 = (pll_dw0 & 0xff) << 22;
|
|
if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
|
|
clock.m2 |= pll_dw2 & 0x3fffff;
|
|
clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
|
|
clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
|
|
clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
|
|
|
|
pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
|
|
}
|
|
|
|
static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum intel_display_power_domain power_domain;
|
|
uint32_t tmp;
|
|
bool ret;
|
|
|
|
power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
|
|
if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
|
|
return false;
|
|
|
|
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
|
|
pipe_config->shared_dpll = NULL;
|
|
|
|
ret = false;
|
|
|
|
tmp = I915_READ(PIPECONF(crtc->pipe));
|
|
if (!(tmp & PIPECONF_ENABLE))
|
|
goto out;
|
|
|
|
if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
|
|
switch (tmp & PIPECONF_BPC_MASK) {
|
|
case PIPECONF_6BPC:
|
|
pipe_config->pipe_bpp = 18;
|
|
break;
|
|
case PIPECONF_8BPC:
|
|
pipe_config->pipe_bpp = 24;
|
|
break;
|
|
case PIPECONF_10BPC:
|
|
pipe_config->pipe_bpp = 30;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
|
|
(tmp & PIPECONF_COLOR_RANGE_SELECT))
|
|
pipe_config->limited_color_range = true;
|
|
|
|
if (INTEL_INFO(dev)->gen < 4)
|
|
pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
|
|
|
|
intel_get_pipe_timings(crtc, pipe_config);
|
|
intel_get_pipe_src_size(crtc, pipe_config);
|
|
|
|
i9xx_get_pfit_config(crtc, pipe_config);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
/* No way to read it out on pipes B and C */
|
|
if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
|
|
tmp = dev_priv->chv_dpll_md[crtc->pipe];
|
|
else
|
|
tmp = I915_READ(DPLL_MD(crtc->pipe));
|
|
pipe_config->pixel_multiplier =
|
|
((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
|
|
>> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
|
|
pipe_config->dpll_hw_state.dpll_md = tmp;
|
|
} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
|
|
tmp = I915_READ(DPLL(crtc->pipe));
|
|
pipe_config->pixel_multiplier =
|
|
((tmp & SDVO_MULTIPLIER_MASK)
|
|
>> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
|
|
} else {
|
|
/* Note that on i915G/GM the pixel multiplier is in the sdvo
|
|
* port and will be fixed up in the encoder->get_config
|
|
* function. */
|
|
pipe_config->pixel_multiplier = 1;
|
|
}
|
|
pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
|
|
if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
|
|
/*
|
|
* DPLL_DVO_2X_MODE must be enabled for both DPLLs
|
|
* on 830. Filter it out here so that we don't
|
|
* report errors due to that.
|
|
*/
|
|
if (IS_I830(dev))
|
|
pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
|
|
|
|
pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
|
|
pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
|
|
} else {
|
|
/* Mask out read-only status bits. */
|
|
pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
|
|
DPLL_PORTC_READY_MASK |
|
|
DPLL_PORTB_READY_MASK);
|
|
}
|
|
|
|
if (IS_CHERRYVIEW(dev))
|
|
chv_crtc_clock_get(crtc, pipe_config);
|
|
else if (IS_VALLEYVIEW(dev))
|
|
vlv_crtc_clock_get(crtc, pipe_config);
|
|
else
|
|
i9xx_crtc_clock_get(crtc, pipe_config);
|
|
|
|
/*
|
|
* Normally the dotclock is filled in by the encoder .get_config()
|
|
* but in case the pipe is enabled w/o any ports we need a sane
|
|
* default.
|
|
*/
|
|
pipe_config->base.adjusted_mode.crtc_clock =
|
|
pipe_config->port_clock / pipe_config->pixel_multiplier;
|
|
|
|
ret = true;
|
|
|
|
out:
|
|
intel_display_power_put(dev_priv, power_domain);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ironlake_init_pch_refclk(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_encoder *encoder;
|
|
int i;
|
|
u32 val, final;
|
|
bool has_lvds = false;
|
|
bool has_cpu_edp = false;
|
|
bool has_panel = false;
|
|
bool has_ck505 = false;
|
|
bool can_ssc = false;
|
|
bool using_ssc_source = false;
|
|
|
|
/* We need to take the global config into account */
|
|
for_each_intel_encoder(dev, encoder) {
|
|
switch (encoder->type) {
|
|
case INTEL_OUTPUT_LVDS:
|
|
has_panel = true;
|
|
has_lvds = true;
|
|
break;
|
|
case INTEL_OUTPUT_EDP:
|
|
has_panel = true;
|
|
if (enc_to_dig_port(&encoder->base)->port == PORT_A)
|
|
has_cpu_edp = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (HAS_PCH_IBX(dev)) {
|
|
has_ck505 = dev_priv->vbt.display_clock_mode;
|
|
can_ssc = has_ck505;
|
|
} else {
|
|
has_ck505 = false;
|
|
can_ssc = true;
|
|
}
|
|
|
|
/* Check if any DPLLs are using the SSC source */
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
u32 temp = I915_READ(PCH_DPLL(i));
|
|
|
|
if (!(temp & DPLL_VCO_ENABLE))
|
|
continue;
|
|
|
|
if ((temp & PLL_REF_INPUT_MASK) ==
|
|
PLLB_REF_INPUT_SPREADSPECTRUMIN) {
|
|
using_ssc_source = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
|
|
has_panel, has_lvds, has_ck505, using_ssc_source);
|
|
|
|
/* Ironlake: try to setup display ref clock before DPLL
|
|
* enabling. This is only under driver's control after
|
|
* PCH B stepping, previous chipset stepping should be
|
|
* ignoring this setting.
|
|
*/
|
|
val = I915_READ(PCH_DREF_CONTROL);
|
|
|
|
/* As we must carefully and slowly disable/enable each source in turn,
|
|
* compute the final state we want first and check if we need to
|
|
* make any changes at all.
|
|
*/
|
|
final = val;
|
|
final &= ~DREF_NONSPREAD_SOURCE_MASK;
|
|
if (has_ck505)
|
|
final |= DREF_NONSPREAD_CK505_ENABLE;
|
|
else
|
|
final |= DREF_NONSPREAD_SOURCE_ENABLE;
|
|
|
|
final &= ~DREF_SSC_SOURCE_MASK;
|
|
final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
|
|
final &= ~DREF_SSC1_ENABLE;
|
|
|
|
if (has_panel) {
|
|
final |= DREF_SSC_SOURCE_ENABLE;
|
|
|
|
if (intel_panel_use_ssc(dev_priv) && can_ssc)
|
|
final |= DREF_SSC1_ENABLE;
|
|
|
|
if (has_cpu_edp) {
|
|
if (intel_panel_use_ssc(dev_priv) && can_ssc)
|
|
final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
|
|
else
|
|
final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
|
|
} else
|
|
final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
|
|
} else if (using_ssc_source) {
|
|
final |= DREF_SSC_SOURCE_ENABLE;
|
|
final |= DREF_SSC1_ENABLE;
|
|
}
|
|
|
|
if (final == val)
|
|
return;
|
|
|
|
/* Always enable nonspread source */
|
|
val &= ~DREF_NONSPREAD_SOURCE_MASK;
|
|
|
|
if (has_ck505)
|
|
val |= DREF_NONSPREAD_CK505_ENABLE;
|
|
else
|
|
val |= DREF_NONSPREAD_SOURCE_ENABLE;
|
|
|
|
if (has_panel) {
|
|
val &= ~DREF_SSC_SOURCE_MASK;
|
|
val |= DREF_SSC_SOURCE_ENABLE;
|
|
|
|
/* SSC must be turned on before enabling the CPU output */
|
|
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
|
|
DRM_DEBUG_KMS("Using SSC on panel\n");
|
|
val |= DREF_SSC1_ENABLE;
|
|
} else
|
|
val &= ~DREF_SSC1_ENABLE;
|
|
|
|
/* Get SSC going before enabling the outputs */
|
|
I915_WRITE(PCH_DREF_CONTROL, val);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
udelay(200);
|
|
|
|
val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
|
|
|
|
/* Enable CPU source on CPU attached eDP */
|
|
if (has_cpu_edp) {
|
|
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
|
|
DRM_DEBUG_KMS("Using SSC on eDP\n");
|
|
val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
|
|
} else
|
|
val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
|
|
} else
|
|
val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
|
|
|
|
I915_WRITE(PCH_DREF_CONTROL, val);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
udelay(200);
|
|
} else {
|
|
DRM_DEBUG_KMS("Disabling CPU source output\n");
|
|
|
|
val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
|
|
|
|
/* Turn off CPU output */
|
|
val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
|
|
|
|
I915_WRITE(PCH_DREF_CONTROL, val);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
udelay(200);
|
|
|
|
if (!using_ssc_source) {
|
|
DRM_DEBUG_KMS("Disabling SSC source\n");
|
|
|
|
/* Turn off the SSC source */
|
|
val &= ~DREF_SSC_SOURCE_MASK;
|
|
val |= DREF_SSC_SOURCE_DISABLE;
|
|
|
|
/* Turn off SSC1 */
|
|
val &= ~DREF_SSC1_ENABLE;
|
|
|
|
I915_WRITE(PCH_DREF_CONTROL, val);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
udelay(200);
|
|
}
|
|
}
|
|
|
|
BUG_ON(val != final);
|
|
}
|
|
|
|
static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = I915_READ(SOUTH_CHICKEN2);
|
|
tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
|
|
I915_WRITE(SOUTH_CHICKEN2, tmp);
|
|
|
|
if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
|
|
FDI_MPHY_IOSFSB_RESET_STATUS, 100))
|
|
DRM_ERROR("FDI mPHY reset assert timeout\n");
|
|
|
|
tmp = I915_READ(SOUTH_CHICKEN2);
|
|
tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
|
|
I915_WRITE(SOUTH_CHICKEN2, tmp);
|
|
|
|
if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
|
|
FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
|
|
DRM_ERROR("FDI mPHY reset de-assert timeout\n");
|
|
}
|
|
|
|
/* WaMPhyProgramming:hsw */
|
|
static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
|
|
tmp &= ~(0xFF << 24);
|
|
tmp |= (0x12 << 24);
|
|
intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
|
|
tmp |= (1 << 11);
|
|
intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
|
|
tmp |= (1 << 11);
|
|
intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
|
|
tmp |= (1 << 24) | (1 << 21) | (1 << 18);
|
|
intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
|
|
tmp |= (1 << 24) | (1 << 21) | (1 << 18);
|
|
intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
|
|
tmp &= ~(7 << 13);
|
|
tmp |= (5 << 13);
|
|
intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
|
|
tmp &= ~(7 << 13);
|
|
tmp |= (5 << 13);
|
|
intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
|
|
tmp &= ~0xFF;
|
|
tmp |= 0x1C;
|
|
intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
|
|
tmp &= ~0xFF;
|
|
tmp |= 0x1C;
|
|
intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
|
|
tmp &= ~(0xFF << 16);
|
|
tmp |= (0x1C << 16);
|
|
intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
|
|
tmp &= ~(0xFF << 16);
|
|
tmp |= (0x1C << 16);
|
|
intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
|
|
tmp |= (1 << 27);
|
|
intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
|
|
tmp |= (1 << 27);
|
|
intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
|
|
tmp &= ~(0xF << 28);
|
|
tmp |= (4 << 28);
|
|
intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
|
|
tmp &= ~(0xF << 28);
|
|
tmp |= (4 << 28);
|
|
intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
|
|
}
|
|
|
|
/* Implements 3 different sequences from BSpec chapter "Display iCLK
|
|
* Programming" based on the parameters passed:
|
|
* - Sequence to enable CLKOUT_DP
|
|
* - Sequence to enable CLKOUT_DP without spread
|
|
* - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
|
|
*/
|
|
static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
|
|
bool with_fdi)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint32_t reg, tmp;
|
|
|
|
if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
|
|
with_spread = true;
|
|
if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
|
|
with_fdi = false;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
|
|
tmp &= ~SBI_SSCCTL_DISABLE;
|
|
tmp |= SBI_SSCCTL_PATHALT;
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
|
|
|
|
udelay(24);
|
|
|
|
if (with_spread) {
|
|
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
|
|
tmp &= ~SBI_SSCCTL_PATHALT;
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
|
|
|
|
if (with_fdi) {
|
|
lpt_reset_fdi_mphy(dev_priv);
|
|
lpt_program_fdi_mphy(dev_priv);
|
|
}
|
|
}
|
|
|
|
reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
|
|
tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
|
|
tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
|
|
intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
/* Sequence to disable CLKOUT_DP */
|
|
static void lpt_disable_clkout_dp(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint32_t reg, tmp;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
|
|
tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
|
|
tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
|
|
intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
|
|
|
|
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
|
|
if (!(tmp & SBI_SSCCTL_DISABLE)) {
|
|
if (!(tmp & SBI_SSCCTL_PATHALT)) {
|
|
tmp |= SBI_SSCCTL_PATHALT;
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
|
|
udelay(32);
|
|
}
|
|
tmp |= SBI_SSCCTL_DISABLE;
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
|
|
}
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
#define BEND_IDX(steps) ((50 + (steps)) / 5)
|
|
|
|
static const uint16_t sscdivintphase[] = {
|
|
[BEND_IDX( 50)] = 0x3B23,
|
|
[BEND_IDX( 45)] = 0x3B23,
|
|
[BEND_IDX( 40)] = 0x3C23,
|
|
[BEND_IDX( 35)] = 0x3C23,
|
|
[BEND_IDX( 30)] = 0x3D23,
|
|
[BEND_IDX( 25)] = 0x3D23,
|
|
[BEND_IDX( 20)] = 0x3E23,
|
|
[BEND_IDX( 15)] = 0x3E23,
|
|
[BEND_IDX( 10)] = 0x3F23,
|
|
[BEND_IDX( 5)] = 0x3F23,
|
|
[BEND_IDX( 0)] = 0x0025,
|
|
[BEND_IDX( -5)] = 0x0025,
|
|
[BEND_IDX(-10)] = 0x0125,
|
|
[BEND_IDX(-15)] = 0x0125,
|
|
[BEND_IDX(-20)] = 0x0225,
|
|
[BEND_IDX(-25)] = 0x0225,
|
|
[BEND_IDX(-30)] = 0x0325,
|
|
[BEND_IDX(-35)] = 0x0325,
|
|
[BEND_IDX(-40)] = 0x0425,
|
|
[BEND_IDX(-45)] = 0x0425,
|
|
[BEND_IDX(-50)] = 0x0525,
|
|
};
|
|
|
|
/*
|
|
* Bend CLKOUT_DP
|
|
* steps -50 to 50 inclusive, in steps of 5
|
|
* < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
|
|
* change in clock period = -(steps / 10) * 5.787 ps
|
|
*/
|
|
static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
|
|
{
|
|
uint32_t tmp;
|
|
int idx = BEND_IDX(steps);
|
|
|
|
if (WARN_ON(steps % 5 != 0))
|
|
return;
|
|
|
|
if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
if (steps % 10 != 0)
|
|
tmp = 0xAAAAAAAB;
|
|
else
|
|
tmp = 0x00000000;
|
|
intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
|
|
|
|
tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
|
|
tmp &= 0xffff0000;
|
|
tmp |= sscdivintphase[idx];
|
|
intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
#undef BEND_IDX
|
|
|
|
static void lpt_init_pch_refclk(struct drm_device *dev)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
bool has_vga = false;
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
switch (encoder->type) {
|
|
case INTEL_OUTPUT_ANALOG:
|
|
has_vga = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (has_vga) {
|
|
lpt_bend_clkout_dp(to_i915(dev), 0);
|
|
lpt_enable_clkout_dp(dev, true, true);
|
|
} else {
|
|
lpt_disable_clkout_dp(dev);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize reference clocks when the driver loads
|
|
*/
|
|
void intel_init_pch_refclk(struct drm_device *dev)
|
|
{
|
|
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
|
|
ironlake_init_pch_refclk(dev);
|
|
else if (HAS_PCH_LPT(dev))
|
|
lpt_init_pch_refclk(dev);
|
|
}
|
|
|
|
static void ironlake_set_pipeconf(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
uint32_t val;
|
|
|
|
val = 0;
|
|
|
|
switch (intel_crtc->config->pipe_bpp) {
|
|
case 18:
|
|
val |= PIPECONF_6BPC;
|
|
break;
|
|
case 24:
|
|
val |= PIPECONF_8BPC;
|
|
break;
|
|
case 30:
|
|
val |= PIPECONF_10BPC;
|
|
break;
|
|
case 36:
|
|
val |= PIPECONF_12BPC;
|
|
break;
|
|
default:
|
|
/* Case prevented by intel_choose_pipe_bpp_dither. */
|
|
BUG();
|
|
}
|
|
|
|
if (intel_crtc->config->dither)
|
|
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
|
|
|
|
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
|
|
val |= PIPECONF_INTERLACED_ILK;
|
|
else
|
|
val |= PIPECONF_PROGRESSIVE;
|
|
|
|
if (intel_crtc->config->limited_color_range)
|
|
val |= PIPECONF_COLOR_RANGE_SELECT;
|
|
|
|
I915_WRITE(PIPECONF(pipe), val);
|
|
POSTING_READ(PIPECONF(pipe));
|
|
}
|
|
|
|
static void haswell_set_pipeconf(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
|
|
u32 val = 0;
|
|
|
|
if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
|
|
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
|
|
|
|
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
|
|
val |= PIPECONF_INTERLACED_ILK;
|
|
else
|
|
val |= PIPECONF_PROGRESSIVE;
|
|
|
|
I915_WRITE(PIPECONF(cpu_transcoder), val);
|
|
POSTING_READ(PIPECONF(cpu_transcoder));
|
|
}
|
|
|
|
static void haswell_set_pipemisc(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
|
|
u32 val = 0;
|
|
|
|
switch (intel_crtc->config->pipe_bpp) {
|
|
case 18:
|
|
val |= PIPEMISC_DITHER_6_BPC;
|
|
break;
|
|
case 24:
|
|
val |= PIPEMISC_DITHER_8_BPC;
|
|
break;
|
|
case 30:
|
|
val |= PIPEMISC_DITHER_10_BPC;
|
|
break;
|
|
case 36:
|
|
val |= PIPEMISC_DITHER_12_BPC;
|
|
break;
|
|
default:
|
|
/* Case prevented by pipe_config_set_bpp. */
|
|
BUG();
|
|
}
|
|
|
|
if (intel_crtc->config->dither)
|
|
val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
|
|
|
|
I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
|
|
}
|
|
}
|
|
|
|
int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
|
|
{
|
|
/*
|
|
* Account for spread spectrum to avoid
|
|
* oversubscribing the link. Max center spread
|
|
* is 2.5%; use 5% for safety's sake.
|
|
*/
|
|
u32 bps = target_clock * bpp * 21 / 20;
|
|
return DIV_ROUND_UP(bps, link_bw * 8);
|
|
}
|
|
|
|
static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
|
|
{
|
|
return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
|
|
}
|
|
|
|
static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
|
|
struct intel_crtc_state *crtc_state,
|
|
struct dpll *reduced_clock)
|
|
{
|
|
struct drm_crtc *crtc = &intel_crtc->base;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 dpll, fp, fp2;
|
|
int factor;
|
|
|
|
/* Enable autotuning of the PLL clock (if permissible) */
|
|
factor = 21;
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
|
|
if ((intel_panel_use_ssc(dev_priv) &&
|
|
dev_priv->vbt.lvds_ssc_freq == 100000) ||
|
|
(HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
|
|
factor = 25;
|
|
} else if (crtc_state->sdvo_tv_clock)
|
|
factor = 20;
|
|
|
|
fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
|
|
|
|
if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
|
|
fp |= FP_CB_TUNE;
|
|
|
|
if (reduced_clock) {
|
|
fp2 = i9xx_dpll_compute_fp(reduced_clock);
|
|
|
|
if (reduced_clock->m < factor * reduced_clock->n)
|
|
fp2 |= FP_CB_TUNE;
|
|
} else {
|
|
fp2 = fp;
|
|
}
|
|
|
|
dpll = 0;
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
|
|
dpll |= DPLLB_MODE_LVDS;
|
|
else
|
|
dpll |= DPLLB_MODE_DAC_SERIAL;
|
|
|
|
dpll |= (crtc_state->pixel_multiplier - 1)
|
|
<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
|
|
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
|
|
dpll |= DPLL_SDVO_HIGH_SPEED;
|
|
|
|
if (intel_crtc_has_dp_encoder(crtc_state))
|
|
dpll |= DPLL_SDVO_HIGH_SPEED;
|
|
|
|
/* compute bitmask from p1 value */
|
|
dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
/* also FPA1 */
|
|
dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
|
|
|
|
switch (crtc_state->dpll.p2) {
|
|
case 5:
|
|
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
|
|
break;
|
|
case 7:
|
|
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
|
|
break;
|
|
case 10:
|
|
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
|
|
break;
|
|
case 14:
|
|
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
|
|
break;
|
|
}
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
|
|
intel_panel_use_ssc(dev_priv))
|
|
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
|
|
else
|
|
dpll |= PLL_REF_INPUT_DREFCLK;
|
|
|
|
dpll |= DPLL_VCO_ENABLE;
|
|
|
|
crtc_state->dpll_hw_state.dpll = dpll;
|
|
crtc_state->dpll_hw_state.fp0 = fp;
|
|
crtc_state->dpll_hw_state.fp1 = fp2;
|
|
}
|
|
|
|
static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct dpll reduced_clock;
|
|
bool has_reduced_clock = false;
|
|
struct intel_shared_dpll *pll;
|
|
const struct intel_limit *limit;
|
|
int refclk = 120000;
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
crtc->lowfreq_avail = false;
|
|
|
|
/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
|
|
if (!crtc_state->has_pch_encoder)
|
|
return 0;
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
|
|
if (intel_panel_use_ssc(dev_priv)) {
|
|
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
|
|
dev_priv->vbt.lvds_ssc_freq);
|
|
refclk = dev_priv->vbt.lvds_ssc_freq;
|
|
}
|
|
|
|
if (intel_is_dual_link_lvds(dev)) {
|
|
if (refclk == 100000)
|
|
limit = &intel_limits_ironlake_dual_lvds_100m;
|
|
else
|
|
limit = &intel_limits_ironlake_dual_lvds;
|
|
} else {
|
|
if (refclk == 100000)
|
|
limit = &intel_limits_ironlake_single_lvds_100m;
|
|
else
|
|
limit = &intel_limits_ironlake_single_lvds;
|
|
}
|
|
} else {
|
|
limit = &intel_limits_ironlake_dac;
|
|
}
|
|
|
|
if (!crtc_state->clock_set &&
|
|
!g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
|
|
refclk, NULL, &crtc_state->dpll)) {
|
|
DRM_ERROR("Couldn't find PLL settings for mode!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ironlake_compute_dpll(crtc, crtc_state,
|
|
has_reduced_clock ? &reduced_clock : NULL);
|
|
|
|
pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
|
|
if (pll == NULL) {
|
|
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
|
|
pipe_name(crtc->pipe));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
|
|
has_reduced_clock)
|
|
crtc->lowfreq_avail = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
|
|
struct intel_link_m_n *m_n)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
|
|
m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
|
|
m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
|
|
& ~TU_SIZE_MASK;
|
|
m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
|
|
m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
|
|
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
|
|
}
|
|
|
|
static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
|
|
enum transcoder transcoder,
|
|
struct intel_link_m_n *m_n,
|
|
struct intel_link_m_n *m2_n2)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 5) {
|
|
m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
|
|
m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
|
|
m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
|
|
& ~TU_SIZE_MASK;
|
|
m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
|
|
m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
|
|
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
|
|
/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
|
|
* gen < 8) and if DRRS is supported (to make sure the
|
|
* registers are not unnecessarily read).
|
|
*/
|
|
if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
|
|
crtc->config->has_drrs) {
|
|
m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
|
|
m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
|
|
m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
|
|
& ~TU_SIZE_MASK;
|
|
m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
|
|
m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
|
|
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
|
|
}
|
|
} else {
|
|
m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
|
|
m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
|
|
m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
|
|
& ~TU_SIZE_MASK;
|
|
m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
|
|
m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
|
|
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
|
|
}
|
|
}
|
|
|
|
void intel_dp_get_m_n(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
if (pipe_config->has_pch_encoder)
|
|
intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
|
|
else
|
|
intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
|
|
&pipe_config->dp_m_n,
|
|
&pipe_config->dp_m2_n2);
|
|
}
|
|
|
|
static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
|
|
&pipe_config->fdi_m_n, NULL);
|
|
}
|
|
|
|
static void skylake_get_pfit_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
|
|
uint32_t ps_ctrl = 0;
|
|
int id = -1;
|
|
int i;
|
|
|
|
/* find scaler attached to this pipe */
|
|
for (i = 0; i < crtc->num_scalers; i++) {
|
|
ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
|
|
if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
|
|
id = i;
|
|
pipe_config->pch_pfit.enabled = true;
|
|
pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
|
|
pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
|
|
break;
|
|
}
|
|
}
|
|
|
|
scaler_state->scaler_id = id;
|
|
if (id >= 0) {
|
|
scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
|
|
} else {
|
|
scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
|
|
}
|
|
}
|
|
|
|
static void
|
|
skylake_get_initial_plane_config(struct intel_crtc *crtc,
|
|
struct intel_initial_plane_config *plane_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 val, base, offset, stride_mult, tiling;
|
|
int pipe = crtc->pipe;
|
|
int fourcc, pixel_format;
|
|
unsigned int aligned_height;
|
|
struct drm_framebuffer *fb;
|
|
struct intel_framebuffer *intel_fb;
|
|
|
|
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
|
|
if (!intel_fb) {
|
|
DRM_DEBUG_KMS("failed to alloc fb\n");
|
|
return;
|
|
}
|
|
|
|
fb = &intel_fb->base;
|
|
|
|
val = I915_READ(PLANE_CTL(pipe, 0));
|
|
if (!(val & PLANE_CTL_ENABLE))
|
|
goto error;
|
|
|
|
pixel_format = val & PLANE_CTL_FORMAT_MASK;
|
|
fourcc = skl_format_to_fourcc(pixel_format,
|
|
val & PLANE_CTL_ORDER_RGBX,
|
|
val & PLANE_CTL_ALPHA_MASK);
|
|
fb->pixel_format = fourcc;
|
|
fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
|
|
|
|
tiling = val & PLANE_CTL_TILED_MASK;
|
|
switch (tiling) {
|
|
case PLANE_CTL_TILED_LINEAR:
|
|
fb->modifier[0] = DRM_FORMAT_MOD_NONE;
|
|
break;
|
|
case PLANE_CTL_TILED_X:
|
|
plane_config->tiling = I915_TILING_X;
|
|
fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
|
|
break;
|
|
case PLANE_CTL_TILED_Y:
|
|
fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
|
|
break;
|
|
case PLANE_CTL_TILED_YF:
|
|
fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
|
|
break;
|
|
default:
|
|
MISSING_CASE(tiling);
|
|
goto error;
|
|
}
|
|
|
|
base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
|
|
plane_config->base = base;
|
|
|
|
offset = I915_READ(PLANE_OFFSET(pipe, 0));
|
|
|
|
val = I915_READ(PLANE_SIZE(pipe, 0));
|
|
fb->height = ((val >> 16) & 0xfff) + 1;
|
|
fb->width = ((val >> 0) & 0x1fff) + 1;
|
|
|
|
val = I915_READ(PLANE_STRIDE(pipe, 0));
|
|
stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
|
|
fb->pixel_format);
|
|
fb->pitches[0] = (val & 0x3ff) * stride_mult;
|
|
|
|
aligned_height = intel_fb_align_height(dev, fb->height,
|
|
fb->pixel_format,
|
|
fb->modifier[0]);
|
|
|
|
plane_config->size = fb->pitches[0] * aligned_height;
|
|
|
|
DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
|
|
pipe_name(pipe), fb->width, fb->height,
|
|
fb->bits_per_pixel, base, fb->pitches[0],
|
|
plane_config->size);
|
|
|
|
plane_config->fb = intel_fb;
|
|
return;
|
|
|
|
error:
|
|
kfree(fb);
|
|
}
|
|
|
|
static void ironlake_get_pfit_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint32_t tmp;
|
|
|
|
tmp = I915_READ(PF_CTL(crtc->pipe));
|
|
|
|
if (tmp & PF_ENABLE) {
|
|
pipe_config->pch_pfit.enabled = true;
|
|
pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
|
|
pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
|
|
|
|
/* We currently do not free assignements of panel fitters on
|
|
* ivb/hsw (since we don't use the higher upscaling modes which
|
|
* differentiates them) so just WARN about this case for now. */
|
|
if (IS_GEN7(dev)) {
|
|
WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
|
|
PF_PIPE_SEL_IVB(crtc->pipe));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ironlake_get_initial_plane_config(struct intel_crtc *crtc,
|
|
struct intel_initial_plane_config *plane_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 val, base, offset;
|
|
int pipe = crtc->pipe;
|
|
int fourcc, pixel_format;
|
|
unsigned int aligned_height;
|
|
struct drm_framebuffer *fb;
|
|
struct intel_framebuffer *intel_fb;
|
|
|
|
val = I915_READ(DSPCNTR(pipe));
|
|
if (!(val & DISPLAY_PLANE_ENABLE))
|
|
return;
|
|
|
|
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
|
|
if (!intel_fb) {
|
|
DRM_DEBUG_KMS("failed to alloc fb\n");
|
|
return;
|
|
}
|
|
|
|
fb = &intel_fb->base;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
if (val & DISPPLANE_TILED) {
|
|
plane_config->tiling = I915_TILING_X;
|
|
fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
|
|
}
|
|
}
|
|
|
|
pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
|
|
fourcc = i9xx_format_to_fourcc(pixel_format);
|
|
fb->pixel_format = fourcc;
|
|
fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
|
|
|
|
base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
|
|
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
|
|
offset = I915_READ(DSPOFFSET(pipe));
|
|
} else {
|
|
if (plane_config->tiling)
|
|
offset = I915_READ(DSPTILEOFF(pipe));
|
|
else
|
|
offset = I915_READ(DSPLINOFF(pipe));
|
|
}
|
|
plane_config->base = base;
|
|
|
|
val = I915_READ(PIPESRC(pipe));
|
|
fb->width = ((val >> 16) & 0xfff) + 1;
|
|
fb->height = ((val >> 0) & 0xfff) + 1;
|
|
|
|
val = I915_READ(DSPSTRIDE(pipe));
|
|
fb->pitches[0] = val & 0xffffffc0;
|
|
|
|
aligned_height = intel_fb_align_height(dev, fb->height,
|
|
fb->pixel_format,
|
|
fb->modifier[0]);
|
|
|
|
plane_config->size = fb->pitches[0] * aligned_height;
|
|
|
|
DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
|
|
pipe_name(pipe), fb->width, fb->height,
|
|
fb->bits_per_pixel, base, fb->pitches[0],
|
|
plane_config->size);
|
|
|
|
plane_config->fb = intel_fb;
|
|
}
|
|
|
|
static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum intel_display_power_domain power_domain;
|
|
uint32_t tmp;
|
|
bool ret;
|
|
|
|
power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
|
|
if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
|
|
return false;
|
|
|
|
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
|
|
pipe_config->shared_dpll = NULL;
|
|
|
|
ret = false;
|
|
tmp = I915_READ(PIPECONF(crtc->pipe));
|
|
if (!(tmp & PIPECONF_ENABLE))
|
|
goto out;
|
|
|
|
switch (tmp & PIPECONF_BPC_MASK) {
|
|
case PIPECONF_6BPC:
|
|
pipe_config->pipe_bpp = 18;
|
|
break;
|
|
case PIPECONF_8BPC:
|
|
pipe_config->pipe_bpp = 24;
|
|
break;
|
|
case PIPECONF_10BPC:
|
|
pipe_config->pipe_bpp = 30;
|
|
break;
|
|
case PIPECONF_12BPC:
|
|
pipe_config->pipe_bpp = 36;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (tmp & PIPECONF_COLOR_RANGE_SELECT)
|
|
pipe_config->limited_color_range = true;
|
|
|
|
if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
|
|
struct intel_shared_dpll *pll;
|
|
enum intel_dpll_id pll_id;
|
|
|
|
pipe_config->has_pch_encoder = true;
|
|
|
|
tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
|
|
pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
|
|
FDI_DP_PORT_WIDTH_SHIFT) + 1;
|
|
|
|
ironlake_get_fdi_m_n_config(crtc, pipe_config);
|
|
|
|
if (HAS_PCH_IBX(dev_priv)) {
|
|
/*
|
|
* The pipe->pch transcoder and pch transcoder->pll
|
|
* mapping is fixed.
|
|
*/
|
|
pll_id = (enum intel_dpll_id) crtc->pipe;
|
|
} else {
|
|
tmp = I915_READ(PCH_DPLL_SEL);
|
|
if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
|
|
pll_id = DPLL_ID_PCH_PLL_B;
|
|
else
|
|
pll_id= DPLL_ID_PCH_PLL_A;
|
|
}
|
|
|
|
pipe_config->shared_dpll =
|
|
intel_get_shared_dpll_by_id(dev_priv, pll_id);
|
|
pll = pipe_config->shared_dpll;
|
|
|
|
WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
|
|
&pipe_config->dpll_hw_state));
|
|
|
|
tmp = pipe_config->dpll_hw_state.dpll;
|
|
pipe_config->pixel_multiplier =
|
|
((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
|
|
>> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
|
|
|
|
ironlake_pch_clock_get(crtc, pipe_config);
|
|
} else {
|
|
pipe_config->pixel_multiplier = 1;
|
|
}
|
|
|
|
intel_get_pipe_timings(crtc, pipe_config);
|
|
intel_get_pipe_src_size(crtc, pipe_config);
|
|
|
|
ironlake_get_pfit_config(crtc, pipe_config);
|
|
|
|
ret = true;
|
|
|
|
out:
|
|
intel_display_power_put(dev_priv, power_domain);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
struct intel_crtc *crtc;
|
|
|
|
for_each_intel_crtc(dev, crtc)
|
|
I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
|
|
pipe_name(crtc->pipe));
|
|
|
|
I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
|
|
I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
|
|
I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
|
|
I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
|
|
I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
|
|
I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
|
|
"CPU PWM1 enabled\n");
|
|
if (IS_HASWELL(dev))
|
|
I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
|
|
"CPU PWM2 enabled\n");
|
|
I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
|
|
"PCH PWM1 enabled\n");
|
|
I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
|
|
"Utility pin enabled\n");
|
|
I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
|
|
|
|
/*
|
|
* In theory we can still leave IRQs enabled, as long as only the HPD
|
|
* interrupts remain enabled. We used to check for that, but since it's
|
|
* gen-specific and since we only disable LCPLL after we fully disable
|
|
* the interrupts, the check below should be enough.
|
|
*/
|
|
I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
|
|
}
|
|
|
|
static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
|
|
if (IS_HASWELL(dev))
|
|
return I915_READ(D_COMP_HSW);
|
|
else
|
|
return I915_READ(D_COMP_BDW);
|
|
}
|
|
|
|
static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
|
|
if (IS_HASWELL(dev)) {
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
|
|
val))
|
|
DRM_ERROR("Failed to write to D_COMP\n");
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
} else {
|
|
I915_WRITE(D_COMP_BDW, val);
|
|
POSTING_READ(D_COMP_BDW);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function implements pieces of two sequences from BSpec:
|
|
* - Sequence for display software to disable LCPLL
|
|
* - Sequence for display software to allow package C8+
|
|
* The steps implemented here are just the steps that actually touch the LCPLL
|
|
* register. Callers should take care of disabling all the display engine
|
|
* functions, doing the mode unset, fixing interrupts, etc.
|
|
*/
|
|
static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
|
|
bool switch_to_fclk, bool allow_power_down)
|
|
{
|
|
uint32_t val;
|
|
|
|
assert_can_disable_lcpll(dev_priv);
|
|
|
|
val = I915_READ(LCPLL_CTL);
|
|
|
|
if (switch_to_fclk) {
|
|
val |= LCPLL_CD_SOURCE_FCLK;
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
|
|
if (wait_for_us(I915_READ(LCPLL_CTL) &
|
|
LCPLL_CD_SOURCE_FCLK_DONE, 1))
|
|
DRM_ERROR("Switching to FCLK failed\n");
|
|
|
|
val = I915_READ(LCPLL_CTL);
|
|
}
|
|
|
|
val |= LCPLL_PLL_DISABLE;
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
POSTING_READ(LCPLL_CTL);
|
|
|
|
if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
|
|
DRM_ERROR("LCPLL still locked\n");
|
|
|
|
val = hsw_read_dcomp(dev_priv);
|
|
val |= D_COMP_COMP_DISABLE;
|
|
hsw_write_dcomp(dev_priv, val);
|
|
ndelay(100);
|
|
|
|
if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
|
|
1))
|
|
DRM_ERROR("D_COMP RCOMP still in progress\n");
|
|
|
|
if (allow_power_down) {
|
|
val = I915_READ(LCPLL_CTL);
|
|
val |= LCPLL_POWER_DOWN_ALLOW;
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
POSTING_READ(LCPLL_CTL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fully restores LCPLL, disallowing power down and switching back to LCPLL
|
|
* source.
|
|
*/
|
|
static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t val;
|
|
|
|
val = I915_READ(LCPLL_CTL);
|
|
|
|
if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
|
|
LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
|
|
return;
|
|
|
|
/*
|
|
* Make sure we're not on PC8 state before disabling PC8, otherwise
|
|
* we'll hang the machine. To prevent PC8 state, just enable force_wake.
|
|
*/
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
if (val & LCPLL_POWER_DOWN_ALLOW) {
|
|
val &= ~LCPLL_POWER_DOWN_ALLOW;
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
POSTING_READ(LCPLL_CTL);
|
|
}
|
|
|
|
val = hsw_read_dcomp(dev_priv);
|
|
val |= D_COMP_COMP_FORCE;
|
|
val &= ~D_COMP_COMP_DISABLE;
|
|
hsw_write_dcomp(dev_priv, val);
|
|
|
|
val = I915_READ(LCPLL_CTL);
|
|
val &= ~LCPLL_PLL_DISABLE;
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
|
|
if (intel_wait_for_register(dev_priv,
|
|
LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
|
|
5))
|
|
DRM_ERROR("LCPLL not locked yet\n");
|
|
|
|
if (val & LCPLL_CD_SOURCE_FCLK) {
|
|
val = I915_READ(LCPLL_CTL);
|
|
val &= ~LCPLL_CD_SOURCE_FCLK;
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
|
|
if (wait_for_us((I915_READ(LCPLL_CTL) &
|
|
LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
|
|
DRM_ERROR("Switching back to LCPLL failed\n");
|
|
}
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
intel_update_cdclk(&dev_priv->drm);
|
|
}
|
|
|
|
/*
|
|
* Package states C8 and deeper are really deep PC states that can only be
|
|
* reached when all the devices on the system allow it, so even if the graphics
|
|
* device allows PC8+, it doesn't mean the system will actually get to these
|
|
* states. Our driver only allows PC8+ when going into runtime PM.
|
|
*
|
|
* The requirements for PC8+ are that all the outputs are disabled, the power
|
|
* well is disabled and most interrupts are disabled, and these are also
|
|
* requirements for runtime PM. When these conditions are met, we manually do
|
|
* the other conditions: disable the interrupts, clocks and switch LCPLL refclk
|
|
* to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
|
|
* hang the machine.
|
|
*
|
|
* When we really reach PC8 or deeper states (not just when we allow it) we lose
|
|
* the state of some registers, so when we come back from PC8+ we need to
|
|
* restore this state. We don't get into PC8+ if we're not in RC6, so we don't
|
|
* need to take care of the registers kept by RC6. Notice that this happens even
|
|
* if we don't put the device in PCI D3 state (which is what currently happens
|
|
* because of the runtime PM support).
|
|
*
|
|
* For more, read "Display Sequences for Package C8" on the hardware
|
|
* documentation.
|
|
*/
|
|
void hsw_enable_pc8(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
uint32_t val;
|
|
|
|
DRM_DEBUG_KMS("Enabling package C8+\n");
|
|
|
|
if (HAS_PCH_LPT_LP(dev)) {
|
|
val = I915_READ(SOUTH_DSPCLK_GATE_D);
|
|
val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
|
|
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
|
|
}
|
|
|
|
lpt_disable_clkout_dp(dev);
|
|
hsw_disable_lcpll(dev_priv, true, true);
|
|
}
|
|
|
|
void hsw_disable_pc8(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
uint32_t val;
|
|
|
|
DRM_DEBUG_KMS("Disabling package C8+\n");
|
|
|
|
hsw_restore_lcpll(dev_priv);
|
|
lpt_init_pch_refclk(dev);
|
|
|
|
if (HAS_PCH_LPT_LP(dev)) {
|
|
val = I915_READ(SOUTH_DSPCLK_GATE_D);
|
|
val |= PCH_LP_PARTITION_LEVEL_DISABLE;
|
|
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
|
|
}
|
|
}
|
|
|
|
static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
|
|
{
|
|
struct drm_device *dev = old_state->dev;
|
|
struct intel_atomic_state *old_intel_state =
|
|
to_intel_atomic_state(old_state);
|
|
unsigned int req_cdclk = old_intel_state->dev_cdclk;
|
|
|
|
bxt_set_cdclk(to_i915(dev), req_cdclk);
|
|
}
|
|
|
|
/* compute the max rate for new configuration */
|
|
static int ilk_max_pixel_rate(struct drm_atomic_state *state)
|
|
{
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
|
|
struct drm_i915_private *dev_priv = to_i915(state->dev);
|
|
struct drm_crtc *crtc;
|
|
struct drm_crtc_state *cstate;
|
|
struct intel_crtc_state *crtc_state;
|
|
unsigned max_pixel_rate = 0, i;
|
|
enum pipe pipe;
|
|
|
|
memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
|
|
sizeof(intel_state->min_pixclk));
|
|
|
|
for_each_crtc_in_state(state, crtc, cstate, i) {
|
|
int pixel_rate;
|
|
|
|
crtc_state = to_intel_crtc_state(cstate);
|
|
if (!crtc_state->base.enable) {
|
|
intel_state->min_pixclk[i] = 0;
|
|
continue;
|
|
}
|
|
|
|
pixel_rate = ilk_pipe_pixel_rate(crtc_state);
|
|
|
|
/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
|
|
if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
|
|
pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
|
|
|
|
intel_state->min_pixclk[i] = pixel_rate;
|
|
}
|
|
|
|
for_each_pipe(dev_priv, pipe)
|
|
max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
|
|
|
|
return max_pixel_rate;
|
|
}
|
|
|
|
static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint32_t val, data;
|
|
int ret;
|
|
|
|
if (WARN((I915_READ(LCPLL_CTL) &
|
|
(LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
|
|
LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
|
|
LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
|
|
LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
|
|
"trying to change cdclk frequency with cdclk not enabled\n"))
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
ret = sandybridge_pcode_write(dev_priv,
|
|
BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
if (ret) {
|
|
DRM_ERROR("failed to inform pcode about cdclk change\n");
|
|
return;
|
|
}
|
|
|
|
val = I915_READ(LCPLL_CTL);
|
|
val |= LCPLL_CD_SOURCE_FCLK;
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
|
|
if (wait_for_us(I915_READ(LCPLL_CTL) &
|
|
LCPLL_CD_SOURCE_FCLK_DONE, 1))
|
|
DRM_ERROR("Switching to FCLK failed\n");
|
|
|
|
val = I915_READ(LCPLL_CTL);
|
|
val &= ~LCPLL_CLK_FREQ_MASK;
|
|
|
|
switch (cdclk) {
|
|
case 450000:
|
|
val |= LCPLL_CLK_FREQ_450;
|
|
data = 0;
|
|
break;
|
|
case 540000:
|
|
val |= LCPLL_CLK_FREQ_54O_BDW;
|
|
data = 1;
|
|
break;
|
|
case 337500:
|
|
val |= LCPLL_CLK_FREQ_337_5_BDW;
|
|
data = 2;
|
|
break;
|
|
case 675000:
|
|
val |= LCPLL_CLK_FREQ_675_BDW;
|
|
data = 3;
|
|
break;
|
|
default:
|
|
WARN(1, "invalid cdclk frequency\n");
|
|
return;
|
|
}
|
|
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
|
|
val = I915_READ(LCPLL_CTL);
|
|
val &= ~LCPLL_CD_SOURCE_FCLK;
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
|
|
if (wait_for_us((I915_READ(LCPLL_CTL) &
|
|
LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
|
|
DRM_ERROR("Switching back to LCPLL failed\n");
|
|
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
|
|
I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
|
|
|
|
intel_update_cdclk(dev);
|
|
|
|
WARN(cdclk != dev_priv->cdclk_freq,
|
|
"cdclk requested %d kHz but got %d kHz\n",
|
|
cdclk, dev_priv->cdclk_freq);
|
|
}
|
|
|
|
static int broadwell_calc_cdclk(int max_pixclk)
|
|
{
|
|
if (max_pixclk > 540000)
|
|
return 675000;
|
|
else if (max_pixclk > 450000)
|
|
return 540000;
|
|
else if (max_pixclk > 337500)
|
|
return 450000;
|
|
else
|
|
return 337500;
|
|
}
|
|
|
|
static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(state->dev);
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
|
|
int max_pixclk = ilk_max_pixel_rate(state);
|
|
int cdclk;
|
|
|
|
/*
|
|
* FIXME should also account for plane ratio
|
|
* once 64bpp pixel formats are supported.
|
|
*/
|
|
cdclk = broadwell_calc_cdclk(max_pixclk);
|
|
|
|
if (cdclk > dev_priv->max_cdclk_freq) {
|
|
DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
|
|
cdclk, dev_priv->max_cdclk_freq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
intel_state->cdclk = intel_state->dev_cdclk = cdclk;
|
|
if (!intel_state->active_crtcs)
|
|
intel_state->dev_cdclk = broadwell_calc_cdclk(0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
|
|
{
|
|
struct drm_device *dev = old_state->dev;
|
|
struct intel_atomic_state *old_intel_state =
|
|
to_intel_atomic_state(old_state);
|
|
unsigned req_cdclk = old_intel_state->dev_cdclk;
|
|
|
|
broadwell_set_cdclk(dev, req_cdclk);
|
|
}
|
|
|
|
static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
|
|
{
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
|
|
struct drm_i915_private *dev_priv = to_i915(state->dev);
|
|
const int max_pixclk = ilk_max_pixel_rate(state);
|
|
int vco = intel_state->cdclk_pll_vco;
|
|
int cdclk;
|
|
|
|
/*
|
|
* FIXME should also account for plane ratio
|
|
* once 64bpp pixel formats are supported.
|
|
*/
|
|
cdclk = skl_calc_cdclk(max_pixclk, vco);
|
|
|
|
/*
|
|
* FIXME move the cdclk caclulation to
|
|
* compute_config() so we can fail gracegully.
|
|
*/
|
|
if (cdclk > dev_priv->max_cdclk_freq) {
|
|
DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
|
|
cdclk, dev_priv->max_cdclk_freq);
|
|
cdclk = dev_priv->max_cdclk_freq;
|
|
}
|
|
|
|
intel_state->cdclk = intel_state->dev_cdclk = cdclk;
|
|
if (!intel_state->active_crtcs)
|
|
intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(old_state->dev);
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
|
|
unsigned int req_cdclk = intel_state->dev_cdclk;
|
|
unsigned int req_vco = intel_state->cdclk_pll_vco;
|
|
|
|
skl_set_cdclk(dev_priv, req_cdclk, req_vco);
|
|
}
|
|
|
|
static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
|
|
if (!intel_ddi_pll_select(crtc, crtc_state))
|
|
return -EINVAL;
|
|
}
|
|
|
|
crtc->lowfreq_avail = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
|
|
enum port port,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
enum intel_dpll_id id;
|
|
|
|
switch (port) {
|
|
case PORT_A:
|
|
pipe_config->ddi_pll_sel = SKL_DPLL0;
|
|
id = DPLL_ID_SKL_DPLL0;
|
|
break;
|
|
case PORT_B:
|
|
pipe_config->ddi_pll_sel = SKL_DPLL1;
|
|
id = DPLL_ID_SKL_DPLL1;
|
|
break;
|
|
case PORT_C:
|
|
pipe_config->ddi_pll_sel = SKL_DPLL2;
|
|
id = DPLL_ID_SKL_DPLL2;
|
|
break;
|
|
default:
|
|
DRM_ERROR("Incorrect port type\n");
|
|
return;
|
|
}
|
|
|
|
pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
|
|
}
|
|
|
|
static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
|
|
enum port port,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
enum intel_dpll_id id;
|
|
u32 temp;
|
|
|
|
temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
|
|
pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
|
|
|
|
switch (pipe_config->ddi_pll_sel) {
|
|
case SKL_DPLL0:
|
|
id = DPLL_ID_SKL_DPLL0;
|
|
break;
|
|
case SKL_DPLL1:
|
|
id = DPLL_ID_SKL_DPLL1;
|
|
break;
|
|
case SKL_DPLL2:
|
|
id = DPLL_ID_SKL_DPLL2;
|
|
break;
|
|
case SKL_DPLL3:
|
|
id = DPLL_ID_SKL_DPLL3;
|
|
break;
|
|
default:
|
|
MISSING_CASE(pipe_config->ddi_pll_sel);
|
|
return;
|
|
}
|
|
|
|
pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
|
|
}
|
|
|
|
static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
|
|
enum port port,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
enum intel_dpll_id id;
|
|
|
|
pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
|
|
|
|
switch (pipe_config->ddi_pll_sel) {
|
|
case PORT_CLK_SEL_WRPLL1:
|
|
id = DPLL_ID_WRPLL1;
|
|
break;
|
|
case PORT_CLK_SEL_WRPLL2:
|
|
id = DPLL_ID_WRPLL2;
|
|
break;
|
|
case PORT_CLK_SEL_SPLL:
|
|
id = DPLL_ID_SPLL;
|
|
break;
|
|
case PORT_CLK_SEL_LCPLL_810:
|
|
id = DPLL_ID_LCPLL_810;
|
|
break;
|
|
case PORT_CLK_SEL_LCPLL_1350:
|
|
id = DPLL_ID_LCPLL_1350;
|
|
break;
|
|
case PORT_CLK_SEL_LCPLL_2700:
|
|
id = DPLL_ID_LCPLL_2700;
|
|
break;
|
|
default:
|
|
MISSING_CASE(pipe_config->ddi_pll_sel);
|
|
/* fall through */
|
|
case PORT_CLK_SEL_NONE:
|
|
return;
|
|
}
|
|
|
|
pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
|
|
}
|
|
|
|
static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config,
|
|
unsigned long *power_domain_mask)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum intel_display_power_domain power_domain;
|
|
u32 tmp;
|
|
|
|
/*
|
|
* The pipe->transcoder mapping is fixed with the exception of the eDP
|
|
* transcoder handled below.
|
|
*/
|
|
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
|
|
|
|
/*
|
|
* XXX: Do intel_display_power_get_if_enabled before reading this (for
|
|
* consistency and less surprising code; it's in always on power).
|
|
*/
|
|
tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
|
|
if (tmp & TRANS_DDI_FUNC_ENABLE) {
|
|
enum pipe trans_edp_pipe;
|
|
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
|
|
default:
|
|
WARN(1, "unknown pipe linked to edp transcoder\n");
|
|
case TRANS_DDI_EDP_INPUT_A_ONOFF:
|
|
case TRANS_DDI_EDP_INPUT_A_ON:
|
|
trans_edp_pipe = PIPE_A;
|
|
break;
|
|
case TRANS_DDI_EDP_INPUT_B_ONOFF:
|
|
trans_edp_pipe = PIPE_B;
|
|
break;
|
|
case TRANS_DDI_EDP_INPUT_C_ONOFF:
|
|
trans_edp_pipe = PIPE_C;
|
|
break;
|
|
}
|
|
|
|
if (trans_edp_pipe == crtc->pipe)
|
|
pipe_config->cpu_transcoder = TRANSCODER_EDP;
|
|
}
|
|
|
|
power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
|
|
if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
|
|
return false;
|
|
*power_domain_mask |= BIT(power_domain);
|
|
|
|
tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
|
|
|
|
return tmp & PIPECONF_ENABLE;
|
|
}
|
|
|
|
static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config,
|
|
unsigned long *power_domain_mask)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum intel_display_power_domain power_domain;
|
|
enum port port;
|
|
enum transcoder cpu_transcoder;
|
|
u32 tmp;
|
|
|
|
for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
|
|
if (port == PORT_A)
|
|
cpu_transcoder = TRANSCODER_DSI_A;
|
|
else
|
|
cpu_transcoder = TRANSCODER_DSI_C;
|
|
|
|
power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
|
|
if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
|
|
continue;
|
|
*power_domain_mask |= BIT(power_domain);
|
|
|
|
/*
|
|
* The PLL needs to be enabled with a valid divider
|
|
* configuration, otherwise accessing DSI registers will hang
|
|
* the machine. See BSpec North Display Engine
|
|
* registers/MIPI[BXT]. We can break out here early, since we
|
|
* need the same DSI PLL to be enabled for both DSI ports.
|
|
*/
|
|
if (!intel_dsi_pll_is_enabled(dev_priv))
|
|
break;
|
|
|
|
/* XXX: this works for video mode only */
|
|
tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
|
|
if (!(tmp & DPI_ENABLE))
|
|
continue;
|
|
|
|
tmp = I915_READ(MIPI_CTRL(port));
|
|
if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
|
|
continue;
|
|
|
|
pipe_config->cpu_transcoder = cpu_transcoder;
|
|
break;
|
|
}
|
|
|
|
return transcoder_is_dsi(pipe_config->cpu_transcoder);
|
|
}
|
|
|
|
static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_shared_dpll *pll;
|
|
enum port port;
|
|
uint32_t tmp;
|
|
|
|
tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
|
|
|
|
port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
|
|
|
|
if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
|
|
skylake_get_ddi_pll(dev_priv, port, pipe_config);
|
|
else if (IS_BROXTON(dev))
|
|
bxt_get_ddi_pll(dev_priv, port, pipe_config);
|
|
else
|
|
haswell_get_ddi_pll(dev_priv, port, pipe_config);
|
|
|
|
pll = pipe_config->shared_dpll;
|
|
if (pll) {
|
|
WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
|
|
&pipe_config->dpll_hw_state));
|
|
}
|
|
|
|
/*
|
|
* Haswell has only FDI/PCH transcoder A. It is which is connected to
|
|
* DDI E. So just check whether this pipe is wired to DDI E and whether
|
|
* the PCH transcoder is on.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen < 9 &&
|
|
(port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
|
|
pipe_config->has_pch_encoder = true;
|
|
|
|
tmp = I915_READ(FDI_RX_CTL(PIPE_A));
|
|
pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
|
|
FDI_DP_PORT_WIDTH_SHIFT) + 1;
|
|
|
|
ironlake_get_fdi_m_n_config(crtc, pipe_config);
|
|
}
|
|
}
|
|
|
|
static bool haswell_get_pipe_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum intel_display_power_domain power_domain;
|
|
unsigned long power_domain_mask;
|
|
bool active;
|
|
|
|
power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
|
|
if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
|
|
return false;
|
|
power_domain_mask = BIT(power_domain);
|
|
|
|
pipe_config->shared_dpll = NULL;
|
|
|
|
active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
|
|
|
|
if (IS_BROXTON(dev_priv) &&
|
|
bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
|
|
WARN_ON(active);
|
|
active = true;
|
|
}
|
|
|
|
if (!active)
|
|
goto out;
|
|
|
|
if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
|
|
haswell_get_ddi_port_state(crtc, pipe_config);
|
|
intel_get_pipe_timings(crtc, pipe_config);
|
|
}
|
|
|
|
intel_get_pipe_src_size(crtc, pipe_config);
|
|
|
|
pipe_config->gamma_mode =
|
|
I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 9) {
|
|
skl_init_scalers(dev, crtc, pipe_config);
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->gen >= 9) {
|
|
pipe_config->scaler_state.scaler_id = -1;
|
|
pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
|
|
}
|
|
|
|
power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
|
|
if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
|
|
power_domain_mask |= BIT(power_domain);
|
|
if (INTEL_INFO(dev)->gen >= 9)
|
|
skylake_get_pfit_config(crtc, pipe_config);
|
|
else
|
|
ironlake_get_pfit_config(crtc, pipe_config);
|
|
}
|
|
|
|
if (IS_HASWELL(dev))
|
|
pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
|
|
(I915_READ(IPS_CTL) & IPS_ENABLE);
|
|
|
|
if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
|
|
!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
|
|
pipe_config->pixel_multiplier =
|
|
I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
|
|
} else {
|
|
pipe_config->pixel_multiplier = 1;
|
|
}
|
|
|
|
out:
|
|
for_each_power_domain(power_domain, power_domain_mask)
|
|
intel_display_power_put(dev_priv, power_domain);
|
|
|
|
return active;
|
|
}
|
|
|
|
static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
|
|
const struct intel_plane_state *plane_state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
uint32_t cntl = 0, size = 0;
|
|
|
|
if (plane_state && plane_state->visible) {
|
|
unsigned int width = plane_state->base.crtc_w;
|
|
unsigned int height = plane_state->base.crtc_h;
|
|
unsigned int stride = roundup_pow_of_two(width) * 4;
|
|
|
|
switch (stride) {
|
|
default:
|
|
WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
|
|
width, stride);
|
|
stride = 256;
|
|
/* fallthrough */
|
|
case 256:
|
|
case 512:
|
|
case 1024:
|
|
case 2048:
|
|
break;
|
|
}
|
|
|
|
cntl |= CURSOR_ENABLE |
|
|
CURSOR_GAMMA_ENABLE |
|
|
CURSOR_FORMAT_ARGB |
|
|
CURSOR_STRIDE(stride);
|
|
|
|
size = (height << 12) | width;
|
|
}
|
|
|
|
if (intel_crtc->cursor_cntl != 0 &&
|
|
(intel_crtc->cursor_base != base ||
|
|
intel_crtc->cursor_size != size ||
|
|
intel_crtc->cursor_cntl != cntl)) {
|
|
/* On these chipsets we can only modify the base/size/stride
|
|
* whilst the cursor is disabled.
|
|
*/
|
|
I915_WRITE(CURCNTR(PIPE_A), 0);
|
|
POSTING_READ(CURCNTR(PIPE_A));
|
|
intel_crtc->cursor_cntl = 0;
|
|
}
|
|
|
|
if (intel_crtc->cursor_base != base) {
|
|
I915_WRITE(CURBASE(PIPE_A), base);
|
|
intel_crtc->cursor_base = base;
|
|
}
|
|
|
|
if (intel_crtc->cursor_size != size) {
|
|
I915_WRITE(CURSIZE, size);
|
|
intel_crtc->cursor_size = size;
|
|
}
|
|
|
|
if (intel_crtc->cursor_cntl != cntl) {
|
|
I915_WRITE(CURCNTR(PIPE_A), cntl);
|
|
POSTING_READ(CURCNTR(PIPE_A));
|
|
intel_crtc->cursor_cntl = cntl;
|
|
}
|
|
}
|
|
|
|
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
|
|
const struct intel_plane_state *plane_state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
uint32_t cntl = 0;
|
|
|
|
if (plane_state && plane_state->visible) {
|
|
cntl = MCURSOR_GAMMA_ENABLE;
|
|
switch (plane_state->base.crtc_w) {
|
|
case 64:
|
|
cntl |= CURSOR_MODE_64_ARGB_AX;
|
|
break;
|
|
case 128:
|
|
cntl |= CURSOR_MODE_128_ARGB_AX;
|
|
break;
|
|
case 256:
|
|
cntl |= CURSOR_MODE_256_ARGB_AX;
|
|
break;
|
|
default:
|
|
MISSING_CASE(plane_state->base.crtc_w);
|
|
return;
|
|
}
|
|
cntl |= pipe << 28; /* Connect to correct pipe */
|
|
|
|
if (HAS_DDI(dev))
|
|
cntl |= CURSOR_PIPE_CSC_ENABLE;
|
|
|
|
if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
|
|
cntl |= CURSOR_ROTATE_180;
|
|
}
|
|
|
|
if (intel_crtc->cursor_cntl != cntl) {
|
|
I915_WRITE(CURCNTR(pipe), cntl);
|
|
POSTING_READ(CURCNTR(pipe));
|
|
intel_crtc->cursor_cntl = cntl;
|
|
}
|
|
|
|
/* and commit changes on next vblank */
|
|
I915_WRITE(CURBASE(pipe), base);
|
|
POSTING_READ(CURBASE(pipe));
|
|
|
|
intel_crtc->cursor_base = base;
|
|
}
|
|
|
|
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
|
|
static void intel_crtc_update_cursor(struct drm_crtc *crtc,
|
|
const struct intel_plane_state *plane_state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 base = intel_crtc->cursor_addr;
|
|
u32 pos = 0;
|
|
|
|
if (plane_state) {
|
|
int x = plane_state->base.crtc_x;
|
|
int y = plane_state->base.crtc_y;
|
|
|
|
if (x < 0) {
|
|
pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
|
|
x = -x;
|
|
}
|
|
pos |= x << CURSOR_X_SHIFT;
|
|
|
|
if (y < 0) {
|
|
pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
|
|
y = -y;
|
|
}
|
|
pos |= y << CURSOR_Y_SHIFT;
|
|
|
|
/* ILK+ do this automagically */
|
|
if (HAS_GMCH_DISPLAY(dev) &&
|
|
plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
|
|
base += (plane_state->base.crtc_h *
|
|
plane_state->base.crtc_w - 1) * 4;
|
|
}
|
|
}
|
|
|
|
I915_WRITE(CURPOS(pipe), pos);
|
|
|
|
if (IS_845G(dev) || IS_I865G(dev))
|
|
i845_update_cursor(crtc, base, plane_state);
|
|
else
|
|
i9xx_update_cursor(crtc, base, plane_state);
|
|
}
|
|
|
|
static bool cursor_size_ok(struct drm_device *dev,
|
|
uint32_t width, uint32_t height)
|
|
{
|
|
if (width == 0 || height == 0)
|
|
return false;
|
|
|
|
/*
|
|
* 845g/865g are special in that they are only limited by
|
|
* the width of their cursors, the height is arbitrary up to
|
|
* the precision of the register. Everything else requires
|
|
* square cursors, limited to a few power-of-two sizes.
|
|
*/
|
|
if (IS_845G(dev) || IS_I865G(dev)) {
|
|
if ((width & 63) != 0)
|
|
return false;
|
|
|
|
if (width > (IS_845G(dev) ? 64 : 512))
|
|
return false;
|
|
|
|
if (height > 1023)
|
|
return false;
|
|
} else {
|
|
switch (width | height) {
|
|
case 256:
|
|
case 128:
|
|
if (IS_GEN2(dev))
|
|
return false;
|
|
case 64:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* VESA 640x480x72Hz mode to set on the pipe */
|
|
static struct drm_display_mode load_detect_mode = {
|
|
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
|
|
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
|
|
};
|
|
|
|
struct drm_framebuffer *
|
|
__intel_framebuffer_create(struct drm_device *dev,
|
|
struct drm_mode_fb_cmd2 *mode_cmd,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct intel_framebuffer *intel_fb;
|
|
int ret;
|
|
|
|
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
|
|
if (!intel_fb)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
|
|
if (ret)
|
|
goto err;
|
|
|
|
return &intel_fb->base;
|
|
|
|
err:
|
|
kfree(intel_fb);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct drm_framebuffer *
|
|
intel_framebuffer_create(struct drm_device *dev,
|
|
struct drm_mode_fb_cmd2 *mode_cmd,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_framebuffer *fb;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
fb = __intel_framebuffer_create(dev, mode_cmd, obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return fb;
|
|
}
|
|
|
|
static u32
|
|
intel_framebuffer_pitch_for_width(int width, int bpp)
|
|
{
|
|
u32 pitch = DIV_ROUND_UP(width * bpp, 8);
|
|
return ALIGN(pitch, 64);
|
|
}
|
|
|
|
static u32
|
|
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
|
|
{
|
|
u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
|
|
return PAGE_ALIGN(pitch * mode->vdisplay);
|
|
}
|
|
|
|
static struct drm_framebuffer *
|
|
intel_framebuffer_create_for_mode(struct drm_device *dev,
|
|
struct drm_display_mode *mode,
|
|
int depth, int bpp)
|
|
{
|
|
struct drm_framebuffer *fb;
|
|
struct drm_i915_gem_object *obj;
|
|
struct drm_mode_fb_cmd2 mode_cmd = { 0 };
|
|
|
|
obj = i915_gem_object_create(dev,
|
|
intel_framebuffer_size_for_mode(mode, bpp));
|
|
if (IS_ERR(obj))
|
|
return ERR_CAST(obj);
|
|
|
|
mode_cmd.width = mode->hdisplay;
|
|
mode_cmd.height = mode->vdisplay;
|
|
mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
|
|
bpp);
|
|
mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
|
|
|
|
fb = intel_framebuffer_create(dev, &mode_cmd, obj);
|
|
if (IS_ERR(fb))
|
|
i915_gem_object_put_unlocked(obj);
|
|
|
|
return fb;
|
|
}
|
|
|
|
static struct drm_framebuffer *
|
|
mode_fits_in_fbdev(struct drm_device *dev,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
#ifdef CONFIG_DRM_FBDEV_EMULATION
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_i915_gem_object *obj;
|
|
struct drm_framebuffer *fb;
|
|
|
|
if (!dev_priv->fbdev)
|
|
return NULL;
|
|
|
|
if (!dev_priv->fbdev->fb)
|
|
return NULL;
|
|
|
|
obj = dev_priv->fbdev->fb->obj;
|
|
BUG_ON(!obj);
|
|
|
|
fb = &dev_priv->fbdev->fb->base;
|
|
if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
|
|
fb->bits_per_pixel))
|
|
return NULL;
|
|
|
|
if (obj->base.size < mode->vdisplay * fb->pitches[0])
|
|
return NULL;
|
|
|
|
drm_framebuffer_reference(fb);
|
|
return fb;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
|
|
struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
struct drm_framebuffer *fb,
|
|
int x, int y)
|
|
{
|
|
struct drm_plane_state *plane_state;
|
|
int hdisplay, vdisplay;
|
|
int ret;
|
|
|
|
plane_state = drm_atomic_get_plane_state(state, crtc->primary);
|
|
if (IS_ERR(plane_state))
|
|
return PTR_ERR(plane_state);
|
|
|
|
if (mode)
|
|
drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
|
|
else
|
|
hdisplay = vdisplay = 0;
|
|
|
|
ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
|
|
if (ret)
|
|
return ret;
|
|
drm_atomic_set_fb_for_plane(plane_state, fb);
|
|
plane_state->crtc_x = 0;
|
|
plane_state->crtc_y = 0;
|
|
plane_state->crtc_w = hdisplay;
|
|
plane_state->crtc_h = vdisplay;
|
|
plane_state->src_x = x << 16;
|
|
plane_state->src_y = y << 16;
|
|
plane_state->src_w = hdisplay << 16;
|
|
plane_state->src_h = vdisplay << 16;
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool intel_get_load_detect_pipe(struct drm_connector *connector,
|
|
struct drm_display_mode *mode,
|
|
struct intel_load_detect_pipe *old,
|
|
struct drm_modeset_acquire_ctx *ctx)
|
|
{
|
|
struct intel_crtc *intel_crtc;
|
|
struct intel_encoder *intel_encoder =
|
|
intel_attached_encoder(connector);
|
|
struct drm_crtc *possible_crtc;
|
|
struct drm_encoder *encoder = &intel_encoder->base;
|
|
struct drm_crtc *crtc = NULL;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_framebuffer *fb;
|
|
struct drm_mode_config *config = &dev->mode_config;
|
|
struct drm_atomic_state *state = NULL, *restore_state = NULL;
|
|
struct drm_connector_state *connector_state;
|
|
struct intel_crtc_state *crtc_state;
|
|
int ret, i = -1;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
|
|
connector->base.id, connector->name,
|
|
encoder->base.id, encoder->name);
|
|
|
|
old->restore_state = NULL;
|
|
|
|
retry:
|
|
ret = drm_modeset_lock(&config->connection_mutex, ctx);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
/*
|
|
* Algorithm gets a little messy:
|
|
*
|
|
* - if the connector already has an assigned crtc, use it (but make
|
|
* sure it's on first)
|
|
*
|
|
* - try to find the first unused crtc that can drive this connector,
|
|
* and use that if we find one
|
|
*/
|
|
|
|
/* See if we already have a CRTC for this connector */
|
|
if (connector->state->crtc) {
|
|
crtc = connector->state->crtc;
|
|
|
|
ret = drm_modeset_lock(&crtc->mutex, ctx);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
/* Make sure the crtc and connector are running */
|
|
goto found;
|
|
}
|
|
|
|
/* Find an unused one (if possible) */
|
|
for_each_crtc(dev, possible_crtc) {
|
|
i++;
|
|
if (!(encoder->possible_crtcs & (1 << i)))
|
|
continue;
|
|
|
|
ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
if (possible_crtc->state->enable) {
|
|
drm_modeset_unlock(&possible_crtc->mutex);
|
|
continue;
|
|
}
|
|
|
|
crtc = possible_crtc;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we didn't find an unused CRTC, don't use any.
|
|
*/
|
|
if (!crtc) {
|
|
DRM_DEBUG_KMS("no pipe available for load-detect\n");
|
|
goto fail;
|
|
}
|
|
|
|
found:
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
|
|
ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
state = drm_atomic_state_alloc(dev);
|
|
restore_state = drm_atomic_state_alloc(dev);
|
|
if (!state || !restore_state) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
state->acquire_ctx = ctx;
|
|
restore_state->acquire_ctx = ctx;
|
|
|
|
connector_state = drm_atomic_get_connector_state(state, connector);
|
|
if (IS_ERR(connector_state)) {
|
|
ret = PTR_ERR(connector_state);
|
|
goto fail;
|
|
}
|
|
|
|
ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
|
|
if (IS_ERR(crtc_state)) {
|
|
ret = PTR_ERR(crtc_state);
|
|
goto fail;
|
|
}
|
|
|
|
crtc_state->base.active = crtc_state->base.enable = true;
|
|
|
|
if (!mode)
|
|
mode = &load_detect_mode;
|
|
|
|
/* We need a framebuffer large enough to accommodate all accesses
|
|
* that the plane may generate whilst we perform load detection.
|
|
* We can not rely on the fbcon either being present (we get called
|
|
* during its initialisation to detect all boot displays, or it may
|
|
* not even exist) or that it is large enough to satisfy the
|
|
* requested mode.
|
|
*/
|
|
fb = mode_fits_in_fbdev(dev, mode);
|
|
if (fb == NULL) {
|
|
DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
|
|
fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
|
|
} else
|
|
DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
|
|
if (IS_ERR(fb)) {
|
|
DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
|
|
goto fail;
|
|
}
|
|
|
|
ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
drm_framebuffer_unreference(fb);
|
|
|
|
ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
|
|
if (!ret)
|
|
ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
|
|
if (!ret)
|
|
ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
|
|
if (ret) {
|
|
DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = drm_atomic_commit(state);
|
|
if (ret) {
|
|
DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
|
|
goto fail;
|
|
}
|
|
|
|
old->restore_state = restore_state;
|
|
|
|
/* let the connector get through one full cycle before testing */
|
|
intel_wait_for_vblank(dev, intel_crtc->pipe);
|
|
return true;
|
|
|
|
fail:
|
|
drm_atomic_state_free(state);
|
|
drm_atomic_state_free(restore_state);
|
|
restore_state = state = NULL;
|
|
|
|
if (ret == -EDEADLK) {
|
|
drm_modeset_backoff(ctx);
|
|
goto retry;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void intel_release_load_detect_pipe(struct drm_connector *connector,
|
|
struct intel_load_detect_pipe *old,
|
|
struct drm_modeset_acquire_ctx *ctx)
|
|
{
|
|
struct intel_encoder *intel_encoder =
|
|
intel_attached_encoder(connector);
|
|
struct drm_encoder *encoder = &intel_encoder->base;
|
|
struct drm_atomic_state *state = old->restore_state;
|
|
int ret;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
|
|
connector->base.id, connector->name,
|
|
encoder->base.id, encoder->name);
|
|
|
|
if (!state)
|
|
return;
|
|
|
|
ret = drm_atomic_commit(state);
|
|
if (ret) {
|
|
DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
|
|
drm_atomic_state_free(state);
|
|
}
|
|
}
|
|
|
|
static int i9xx_pll_refclk(struct drm_device *dev,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 dpll = pipe_config->dpll_hw_state.dpll;
|
|
|
|
if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
|
|
return dev_priv->vbt.lvds_ssc_freq;
|
|
else if (HAS_PCH_SPLIT(dev))
|
|
return 120000;
|
|
else if (!IS_GEN2(dev))
|
|
return 96000;
|
|
else
|
|
return 48000;
|
|
}
|
|
|
|
/* Returns the clock of the currently programmed mode of the given pipe. */
|
|
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int pipe = pipe_config->cpu_transcoder;
|
|
u32 dpll = pipe_config->dpll_hw_state.dpll;
|
|
u32 fp;
|
|
struct dpll clock;
|
|
int port_clock;
|
|
int refclk = i9xx_pll_refclk(dev, pipe_config);
|
|
|
|
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
|
|
fp = pipe_config->dpll_hw_state.fp0;
|
|
else
|
|
fp = pipe_config->dpll_hw_state.fp1;
|
|
|
|
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
|
|
if (IS_PINEVIEW(dev)) {
|
|
clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
|
|
clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
|
|
} else {
|
|
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
|
|
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
|
|
}
|
|
|
|
if (!IS_GEN2(dev)) {
|
|
if (IS_PINEVIEW(dev))
|
|
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
|
|
else
|
|
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT);
|
|
|
|
switch (dpll & DPLL_MODE_MASK) {
|
|
case DPLLB_MODE_DAC_SERIAL:
|
|
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
|
|
5 : 10;
|
|
break;
|
|
case DPLLB_MODE_LVDS:
|
|
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
|
|
7 : 14;
|
|
break;
|
|
default:
|
|
DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
|
|
"mode\n", (int)(dpll & DPLL_MODE_MASK));
|
|
return;
|
|
}
|
|
|
|
if (IS_PINEVIEW(dev))
|
|
port_clock = pnv_calc_dpll_params(refclk, &clock);
|
|
else
|
|
port_clock = i9xx_calc_dpll_params(refclk, &clock);
|
|
} else {
|
|
u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
|
|
bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
|
|
|
|
if (is_lvds) {
|
|
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT);
|
|
|
|
if (lvds & LVDS_CLKB_POWER_UP)
|
|
clock.p2 = 7;
|
|
else
|
|
clock.p2 = 14;
|
|
} else {
|
|
if (dpll & PLL_P1_DIVIDE_BY_TWO)
|
|
clock.p1 = 2;
|
|
else {
|
|
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
|
|
}
|
|
if (dpll & PLL_P2_DIVIDE_BY_4)
|
|
clock.p2 = 4;
|
|
else
|
|
clock.p2 = 2;
|
|
}
|
|
|
|
port_clock = i9xx_calc_dpll_params(refclk, &clock);
|
|
}
|
|
|
|
/*
|
|
* This value includes pixel_multiplier. We will use
|
|
* port_clock to compute adjusted_mode.crtc_clock in the
|
|
* encoder's get_config() function.
|
|
*/
|
|
pipe_config->port_clock = port_clock;
|
|
}
|
|
|
|
int intel_dotclock_calculate(int link_freq,
|
|
const struct intel_link_m_n *m_n)
|
|
{
|
|
/*
|
|
* The calculation for the data clock is:
|
|
* pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
|
|
* But we want to avoid losing precison if possible, so:
|
|
* pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
|
|
*
|
|
* and the link clock is simpler:
|
|
* link_clock = (m * link_clock) / n
|
|
*/
|
|
|
|
if (!m_n->link_n)
|
|
return 0;
|
|
|
|
return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
|
|
}
|
|
|
|
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
|
|
/* read out port_clock from the DPLL */
|
|
i9xx_crtc_clock_get(crtc, pipe_config);
|
|
|
|
/*
|
|
* In case there is an active pipe without active ports,
|
|
* we may need some idea for the dotclock anyway.
|
|
* Calculate one based on the FDI configuration.
|
|
*/
|
|
pipe_config->base.adjusted_mode.crtc_clock =
|
|
intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
|
|
&pipe_config->fdi_m_n);
|
|
}
|
|
|
|
/** Returns the currently programmed mode of the given pipe. */
|
|
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
|
|
struct drm_display_mode *mode;
|
|
struct intel_crtc_state *pipe_config;
|
|
int htot = I915_READ(HTOTAL(cpu_transcoder));
|
|
int hsync = I915_READ(HSYNC(cpu_transcoder));
|
|
int vtot = I915_READ(VTOTAL(cpu_transcoder));
|
|
int vsync = I915_READ(VSYNC(cpu_transcoder));
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
|
|
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
|
|
if (!mode)
|
|
return NULL;
|
|
|
|
pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
|
|
if (!pipe_config) {
|
|
kfree(mode);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Construct a pipe_config sufficient for getting the clock info
|
|
* back out of crtc_clock_get.
|
|
*
|
|
* Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
|
|
* to use a real value here instead.
|
|
*/
|
|
pipe_config->cpu_transcoder = (enum transcoder) pipe;
|
|
pipe_config->pixel_multiplier = 1;
|
|
pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
|
|
pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
|
|
pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
|
|
i9xx_crtc_clock_get(intel_crtc, pipe_config);
|
|
|
|
mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
|
|
mode->hdisplay = (htot & 0xffff) + 1;
|
|
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
|
|
mode->hsync_start = (hsync & 0xffff) + 1;
|
|
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
|
|
mode->vdisplay = (vtot & 0xffff) + 1;
|
|
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
|
|
mode->vsync_start = (vsync & 0xffff) + 1;
|
|
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
|
|
|
|
drm_mode_set_name(mode);
|
|
|
|
kfree(pipe_config);
|
|
|
|
return mode;
|
|
}
|
|
|
|
static void intel_crtc_destroy(struct drm_crtc *crtc)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_flip_work *work;
|
|
|
|
spin_lock_irq(&dev->event_lock);
|
|
work = intel_crtc->flip_work;
|
|
intel_crtc->flip_work = NULL;
|
|
spin_unlock_irq(&dev->event_lock);
|
|
|
|
if (work) {
|
|
cancel_work_sync(&work->mmio_work);
|
|
cancel_work_sync(&work->unpin_work);
|
|
kfree(work);
|
|
}
|
|
|
|
drm_crtc_cleanup(crtc);
|
|
|
|
kfree(intel_crtc);
|
|
}
|
|
|
|
static void intel_unpin_work_fn(struct work_struct *__work)
|
|
{
|
|
struct intel_flip_work *work =
|
|
container_of(__work, struct intel_flip_work, unpin_work);
|
|
struct intel_crtc *crtc = to_intel_crtc(work->crtc);
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_plane *primary = crtc->base.primary;
|
|
|
|
if (is_mmio_work(work))
|
|
flush_work(&work->mmio_work);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
|
|
i915_gem_object_put(work->pending_flip_obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
i915_gem_request_put(work->flip_queued_req);
|
|
|
|
intel_frontbuffer_flip_complete(to_i915(dev),
|
|
to_intel_plane(primary)->frontbuffer_bit);
|
|
intel_fbc_post_update(crtc);
|
|
drm_framebuffer_unreference(work->old_fb);
|
|
|
|
BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
|
|
atomic_dec(&crtc->unpin_work_count);
|
|
|
|
kfree(work);
|
|
}
|
|
|
|
/* Is 'a' after or equal to 'b'? */
|
|
static bool g4x_flip_count_after_eq(u32 a, u32 b)
|
|
{
|
|
return !((a - b) & 0x80000000);
|
|
}
|
|
|
|
static bool __pageflip_finished_cs(struct intel_crtc *crtc,
|
|
struct intel_flip_work *work)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
unsigned reset_counter;
|
|
|
|
reset_counter = i915_reset_counter(&dev_priv->gpu_error);
|
|
if (crtc->reset_counter != reset_counter)
|
|
return true;
|
|
|
|
/*
|
|
* The relevant registers doen't exist on pre-ctg.
|
|
* As the flip done interrupt doesn't trigger for mmio
|
|
* flips on gmch platforms, a flip count check isn't
|
|
* really needed there. But since ctg has the registers,
|
|
* include it in the check anyway.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
|
|
return true;
|
|
|
|
/*
|
|
* BDW signals flip done immediately if the plane
|
|
* is disabled, even if the plane enable is already
|
|
* armed to occur at the next vblank :(
|
|
*/
|
|
|
|
/*
|
|
* A DSPSURFLIVE check isn't enough in case the mmio and CS flips
|
|
* used the same base address. In that case the mmio flip might
|
|
* have completed, but the CS hasn't even executed the flip yet.
|
|
*
|
|
* A flip count check isn't enough as the CS might have updated
|
|
* the base address just after start of vblank, but before we
|
|
* managed to process the interrupt. This means we'd complete the
|
|
* CS flip too soon.
|
|
*
|
|
* Combining both checks should get us a good enough result. It may
|
|
* still happen that the CS flip has been executed, but has not
|
|
* yet actually completed. But in case the base address is the same
|
|
* anyway, we don't really care.
|
|
*/
|
|
return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
|
|
crtc->flip_work->gtt_offset &&
|
|
g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
|
|
crtc->flip_work->flip_count);
|
|
}
|
|
|
|
static bool
|
|
__pageflip_finished_mmio(struct intel_crtc *crtc,
|
|
struct intel_flip_work *work)
|
|
{
|
|
/*
|
|
* MMIO work completes when vblank is different from
|
|
* flip_queued_vblank.
|
|
*
|
|
* Reset counter value doesn't matter, this is handled by
|
|
* i915_wait_request finishing early, so no need to handle
|
|
* reset here.
|
|
*/
|
|
return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
|
|
}
|
|
|
|
|
|
static bool pageflip_finished(struct intel_crtc *crtc,
|
|
struct intel_flip_work *work)
|
|
{
|
|
if (!atomic_read(&work->pending))
|
|
return false;
|
|
|
|
smp_rmb();
|
|
|
|
if (is_mmio_work(work))
|
|
return __pageflip_finished_mmio(crtc, work);
|
|
else
|
|
return __pageflip_finished_cs(crtc, work);
|
|
}
|
|
|
|
void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_flip_work *work;
|
|
unsigned long flags;
|
|
|
|
/* Ignore early vblank irqs */
|
|
if (!crtc)
|
|
return;
|
|
|
|
/*
|
|
* This is called both by irq handlers and the reset code (to complete
|
|
* lost pageflips) so needs the full irqsave spinlocks.
|
|
*/
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
work = intel_crtc->flip_work;
|
|
|
|
if (work != NULL &&
|
|
!is_mmio_work(work) &&
|
|
pageflip_finished(intel_crtc, work))
|
|
page_flip_completed(intel_crtc);
|
|
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
}
|
|
|
|
void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_flip_work *work;
|
|
unsigned long flags;
|
|
|
|
/* Ignore early vblank irqs */
|
|
if (!crtc)
|
|
return;
|
|
|
|
/*
|
|
* This is called both by irq handlers and the reset code (to complete
|
|
* lost pageflips) so needs the full irqsave spinlocks.
|
|
*/
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
work = intel_crtc->flip_work;
|
|
|
|
if (work != NULL &&
|
|
is_mmio_work(work) &&
|
|
pageflip_finished(intel_crtc, work))
|
|
page_flip_completed(intel_crtc);
|
|
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
}
|
|
|
|
static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
|
|
struct intel_flip_work *work)
|
|
{
|
|
work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
|
|
|
|
/* Ensure that the work item is consistent when activating it ... */
|
|
smp_mb__before_atomic();
|
|
atomic_set(&work->pending, 1);
|
|
}
|
|
|
|
static int intel_gen2_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_request *req,
|
|
uint32_t flags)
|
|
{
|
|
struct intel_ring *ring = req->ring;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
u32 flip_mask;
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(req, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Can't queue multiple flips, so wait for the previous
|
|
* one to finish before executing the next.
|
|
*/
|
|
if (intel_crtc->plane)
|
|
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
|
|
else
|
|
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
|
|
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP |
|
|
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
|
|
intel_ring_emit(ring, fb->pitches[0]);
|
|
intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
|
|
intel_ring_emit(ring, 0); /* aux display base address, unused */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_gen3_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_request *req,
|
|
uint32_t flags)
|
|
{
|
|
struct intel_ring *ring = req->ring;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
u32 flip_mask;
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(req, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (intel_crtc->plane)
|
|
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
|
|
else
|
|
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
|
|
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
|
|
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
|
|
intel_ring_emit(ring, fb->pitches[0]);
|
|
intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_gen4_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_request *req,
|
|
uint32_t flags)
|
|
{
|
|
struct intel_ring *ring = req->ring;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
uint32_t pf, pipesrc;
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(req, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* i965+ uses the linear or tiled offsets from the
|
|
* Display Registers (which do not change across a page-flip)
|
|
* so we need only reprogram the base address.
|
|
*/
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP |
|
|
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
|
|
intel_ring_emit(ring, fb->pitches[0]);
|
|
intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
|
|
i915_gem_object_get_tiling(obj));
|
|
|
|
/* XXX Enabling the panel-fitter across page-flip is so far
|
|
* untested on non-native modes, so ignore it for now.
|
|
* pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
|
|
*/
|
|
pf = 0;
|
|
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
|
|
intel_ring_emit(ring, pf | pipesrc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_gen6_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_request *req,
|
|
uint32_t flags)
|
|
{
|
|
struct intel_ring *ring = req->ring;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
uint32_t pf, pipesrc;
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(req, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP |
|
|
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
|
|
intel_ring_emit(ring, fb->pitches[0] | i915_gem_object_get_tiling(obj));
|
|
intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
|
|
|
|
/* Contrary to the suggestions in the documentation,
|
|
* "Enable Panel Fitter" does not seem to be required when page
|
|
* flipping with a non-native mode, and worse causes a normal
|
|
* modeset to fail.
|
|
* pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
|
|
*/
|
|
pf = 0;
|
|
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
|
|
intel_ring_emit(ring, pf | pipesrc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_gen7_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_request *req,
|
|
uint32_t flags)
|
|
{
|
|
struct intel_ring *ring = req->ring;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
uint32_t plane_bit = 0;
|
|
int len, ret;
|
|
|
|
switch (intel_crtc->plane) {
|
|
case PLANE_A:
|
|
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
|
|
break;
|
|
case PLANE_B:
|
|
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
|
|
break;
|
|
case PLANE_C:
|
|
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
|
|
break;
|
|
default:
|
|
WARN_ONCE(1, "unknown plane in flip command\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
len = 4;
|
|
if (req->engine->id == RCS) {
|
|
len += 6;
|
|
/*
|
|
* On Gen 8, SRM is now taking an extra dword to accommodate
|
|
* 48bits addresses, and we need a NOOP for the batch size to
|
|
* stay even.
|
|
*/
|
|
if (IS_GEN8(dev))
|
|
len += 2;
|
|
}
|
|
|
|
/*
|
|
* BSpec MI_DISPLAY_FLIP for IVB:
|
|
* "The full packet must be contained within the same cache line."
|
|
*
|
|
* Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
|
|
* cacheline, if we ever start emitting more commands before
|
|
* the MI_DISPLAY_FLIP we may need to first emit everything else,
|
|
* then do the cacheline alignment, and finally emit the
|
|
* MI_DISPLAY_FLIP.
|
|
*/
|
|
ret = intel_ring_cacheline_align(req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_ring_begin(req, len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Unmask the flip-done completion message. Note that the bspec says that
|
|
* we should do this for both the BCS and RCS, and that we must not unmask
|
|
* more than one flip event at any time (or ensure that one flip message
|
|
* can be sent by waiting for flip-done prior to queueing new flips).
|
|
* Experimentation says that BCS works despite DERRMR masking all
|
|
* flip-done completion events and that unmasking all planes at once
|
|
* for the RCS also doesn't appear to drop events. Setting the DERRMR
|
|
* to zero does lead to lockups within MI_DISPLAY_FLIP.
|
|
*/
|
|
if (req->engine->id == RCS) {
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
|
|
intel_ring_emit_reg(ring, DERRMR);
|
|
intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
|
|
DERRMR_PIPEB_PRI_FLIP_DONE |
|
|
DERRMR_PIPEC_PRI_FLIP_DONE));
|
|
if (IS_GEN8(dev))
|
|
intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
|
|
MI_SRM_LRM_GLOBAL_GTT);
|
|
else
|
|
intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
|
|
MI_SRM_LRM_GLOBAL_GTT);
|
|
intel_ring_emit_reg(ring, DERRMR);
|
|
intel_ring_emit(ring, req->engine->scratch.gtt_offset + 256);
|
|
if (IS_GEN8(dev)) {
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
}
|
|
}
|
|
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
|
|
intel_ring_emit(ring, fb->pitches[0] | i915_gem_object_get_tiling(obj));
|
|
intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
|
|
intel_ring_emit(ring, (MI_NOOP));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool use_mmio_flip(struct intel_engine_cs *engine,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct reservation_object *resv;
|
|
|
|
/*
|
|
* This is not being used for older platforms, because
|
|
* non-availability of flip done interrupt forces us to use
|
|
* CS flips. Older platforms derive flip done using some clever
|
|
* tricks involving the flip_pending status bits and vblank irqs.
|
|
* So using MMIO flips there would disrupt this mechanism.
|
|
*/
|
|
|
|
if (engine == NULL)
|
|
return true;
|
|
|
|
if (INTEL_GEN(engine->i915) < 5)
|
|
return false;
|
|
|
|
if (i915.use_mmio_flip < 0)
|
|
return false;
|
|
else if (i915.use_mmio_flip > 0)
|
|
return true;
|
|
else if (i915.enable_execlists)
|
|
return true;
|
|
|
|
resv = i915_gem_object_get_dmabuf_resv(obj);
|
|
if (resv && !reservation_object_test_signaled_rcu(resv, false))
|
|
return true;
|
|
|
|
return engine != i915_gem_active_get_engine(&obj->last_write,
|
|
&obj->base.dev->struct_mutex);
|
|
}
|
|
|
|
static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
|
|
unsigned int rotation,
|
|
struct intel_flip_work *work)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
|
|
const enum pipe pipe = intel_crtc->pipe;
|
|
u32 ctl, stride, tile_height;
|
|
|
|
ctl = I915_READ(PLANE_CTL(pipe, 0));
|
|
ctl &= ~PLANE_CTL_TILED_MASK;
|
|
switch (fb->modifier[0]) {
|
|
case DRM_FORMAT_MOD_NONE:
|
|
break;
|
|
case I915_FORMAT_MOD_X_TILED:
|
|
ctl |= PLANE_CTL_TILED_X;
|
|
break;
|
|
case I915_FORMAT_MOD_Y_TILED:
|
|
ctl |= PLANE_CTL_TILED_Y;
|
|
break;
|
|
case I915_FORMAT_MOD_Yf_TILED:
|
|
ctl |= PLANE_CTL_TILED_YF;
|
|
break;
|
|
default:
|
|
MISSING_CASE(fb->modifier[0]);
|
|
}
|
|
|
|
/*
|
|
* The stride is either expressed as a multiple of 64 bytes chunks for
|
|
* linear buffers or in number of tiles for tiled buffers.
|
|
*/
|
|
if (intel_rotation_90_or_270(rotation)) {
|
|
/* stride = Surface height in tiles */
|
|
tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
|
|
stride = DIV_ROUND_UP(fb->height, tile_height);
|
|
} else {
|
|
stride = fb->pitches[0] /
|
|
intel_fb_stride_alignment(dev_priv, fb->modifier[0],
|
|
fb->pixel_format);
|
|
}
|
|
|
|
/*
|
|
* Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
|
|
* PLANE_SURF updates, the update is then guaranteed to be atomic.
|
|
*/
|
|
I915_WRITE(PLANE_CTL(pipe, 0), ctl);
|
|
I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
|
|
|
|
I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
|
|
POSTING_READ(PLANE_SURF(pipe, 0));
|
|
}
|
|
|
|
static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
|
|
struct intel_flip_work *work)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_framebuffer *intel_fb =
|
|
to_intel_framebuffer(intel_crtc->base.primary->fb);
|
|
struct drm_i915_gem_object *obj = intel_fb->obj;
|
|
i915_reg_t reg = DSPCNTR(intel_crtc->plane);
|
|
u32 dspcntr;
|
|
|
|
dspcntr = I915_READ(reg);
|
|
|
|
if (i915_gem_object_is_tiled(obj))
|
|
dspcntr |= DISPPLANE_TILED;
|
|
else
|
|
dspcntr &= ~DISPPLANE_TILED;
|
|
|
|
I915_WRITE(reg, dspcntr);
|
|
|
|
I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
|
|
POSTING_READ(DSPSURF(intel_crtc->plane));
|
|
}
|
|
|
|
static void intel_mmio_flip_work_func(struct work_struct *w)
|
|
{
|
|
struct intel_flip_work *work =
|
|
container_of(w, struct intel_flip_work, mmio_work);
|
|
struct intel_crtc *crtc = to_intel_crtc(work->crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
struct intel_framebuffer *intel_fb =
|
|
to_intel_framebuffer(crtc->base.primary->fb);
|
|
struct drm_i915_gem_object *obj = intel_fb->obj;
|
|
struct reservation_object *resv;
|
|
|
|
if (work->flip_queued_req)
|
|
WARN_ON(i915_wait_request(work->flip_queued_req,
|
|
false, NULL,
|
|
NO_WAITBOOST));
|
|
|
|
/* For framebuffer backed by dmabuf, wait for fence */
|
|
resv = i915_gem_object_get_dmabuf_resv(obj);
|
|
if (resv)
|
|
WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
|
|
MAX_SCHEDULE_TIMEOUT) < 0);
|
|
|
|
intel_pipe_update_start(crtc);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
skl_do_mmio_flip(crtc, work->rotation, work);
|
|
else
|
|
/* use_mmio_flip() retricts MMIO flips to ilk+ */
|
|
ilk_do_mmio_flip(crtc, work);
|
|
|
|
intel_pipe_update_end(crtc, work);
|
|
}
|
|
|
|
static int intel_default_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_request *req,
|
|
uint32_t flags)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
|
|
struct intel_crtc *intel_crtc,
|
|
struct intel_flip_work *work)
|
|
{
|
|
u32 addr, vblank;
|
|
|
|
if (!atomic_read(&work->pending))
|
|
return false;
|
|
|
|
smp_rmb();
|
|
|
|
vblank = intel_crtc_get_vblank_counter(intel_crtc);
|
|
if (work->flip_ready_vblank == 0) {
|
|
if (work->flip_queued_req &&
|
|
!i915_gem_request_completed(work->flip_queued_req))
|
|
return false;
|
|
|
|
work->flip_ready_vblank = vblank;
|
|
}
|
|
|
|
if (vblank - work->flip_ready_vblank < 3)
|
|
return false;
|
|
|
|
/* Potential stall - if we see that the flip has happened,
|
|
* assume a missed interrupt. */
|
|
if (INTEL_GEN(dev_priv) >= 4)
|
|
addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
|
|
else
|
|
addr = I915_READ(DSPADDR(intel_crtc->plane));
|
|
|
|
/* There is a potential issue here with a false positive after a flip
|
|
* to the same address. We could address this by checking for a
|
|
* non-incrementing frame counter.
|
|
*/
|
|
return addr == work->gtt_offset;
|
|
}
|
|
|
|
void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_flip_work *work;
|
|
|
|
WARN_ON(!in_interrupt());
|
|
|
|
if (crtc == NULL)
|
|
return;
|
|
|
|
spin_lock(&dev->event_lock);
|
|
work = intel_crtc->flip_work;
|
|
|
|
if (work != NULL && !is_mmio_work(work) &&
|
|
__pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
|
|
WARN_ONCE(1,
|
|
"Kicking stuck page flip: queued at %d, now %d\n",
|
|
work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
|
|
page_flip_completed(intel_crtc);
|
|
work = NULL;
|
|
}
|
|
|
|
if (work != NULL && !is_mmio_work(work) &&
|
|
intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
|
|
intel_queue_rps_boost_for_request(work->flip_queued_req);
|
|
spin_unlock(&dev->event_lock);
|
|
}
|
|
|
|
static int intel_crtc_page_flip(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_pending_vblank_event *event,
|
|
uint32_t page_flip_flags)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_framebuffer *old_fb = crtc->primary->fb;
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_plane *primary = crtc->primary;
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
struct intel_flip_work *work;
|
|
struct intel_engine_cs *engine;
|
|
bool mmio_flip;
|
|
struct drm_i915_gem_request *request;
|
|
int ret;
|
|
|
|
/*
|
|
* drm_mode_page_flip_ioctl() should already catch this, but double
|
|
* check to be safe. In the future we may enable pageflipping from
|
|
* a disabled primary plane.
|
|
*/
|
|
if (WARN_ON(intel_fb_obj(old_fb) == NULL))
|
|
return -EBUSY;
|
|
|
|
/* Can't change pixel format via MI display flips. */
|
|
if (fb->pixel_format != crtc->primary->fb->pixel_format)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* TILEOFF/LINOFF registers can't be changed via MI display flips.
|
|
* Note that pitch changes could also affect these register.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen > 3 &&
|
|
(fb->offsets[0] != crtc->primary->fb->offsets[0] ||
|
|
fb->pitches[0] != crtc->primary->fb->pitches[0]))
|
|
return -EINVAL;
|
|
|
|
if (i915_terminally_wedged(&dev_priv->gpu_error))
|
|
goto out_hang;
|
|
|
|
work = kzalloc(sizeof(*work), GFP_KERNEL);
|
|
if (work == NULL)
|
|
return -ENOMEM;
|
|
|
|
work->event = event;
|
|
work->crtc = crtc;
|
|
work->old_fb = old_fb;
|
|
INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
|
|
|
|
ret = drm_crtc_vblank_get(crtc);
|
|
if (ret)
|
|
goto free_work;
|
|
|
|
/* We borrow the event spin lock for protecting flip_work */
|
|
spin_lock_irq(&dev->event_lock);
|
|
if (intel_crtc->flip_work) {
|
|
/* Before declaring the flip queue wedged, check if
|
|
* the hardware completed the operation behind our backs.
|
|
*/
|
|
if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
|
|
DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
|
|
page_flip_completed(intel_crtc);
|
|
} else {
|
|
DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
|
|
spin_unlock_irq(&dev->event_lock);
|
|
|
|
drm_crtc_vblank_put(crtc);
|
|
kfree(work);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
intel_crtc->flip_work = work;
|
|
spin_unlock_irq(&dev->event_lock);
|
|
|
|
if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
|
|
flush_workqueue(dev_priv->wq);
|
|
|
|
/* Reference the objects for the scheduled work. */
|
|
drm_framebuffer_reference(work->old_fb);
|
|
|
|
crtc->primary->fb = fb;
|
|
update_state_fb(crtc->primary);
|
|
|
|
intel_fbc_pre_update(intel_crtc, intel_crtc->config,
|
|
to_intel_plane_state(primary->state));
|
|
|
|
work->pending_flip_obj = i915_gem_object_get(obj);
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
goto cleanup;
|
|
|
|
intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
|
|
if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
|
|
ret = -EIO;
|
|
goto cleanup;
|
|
}
|
|
|
|
atomic_inc(&intel_crtc->unpin_work_count);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
|
|
work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
|
|
|
|
if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
|
|
engine = &dev_priv->engine[BCS];
|
|
if (i915_gem_object_get_tiling(obj) !=
|
|
i915_gem_object_get_tiling(intel_fb_obj(work->old_fb)))
|
|
/* vlv: DISPLAY_FLIP fails to change tiling */
|
|
engine = NULL;
|
|
} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
|
|
engine = &dev_priv->engine[BCS];
|
|
} else if (INTEL_INFO(dev)->gen >= 7) {
|
|
engine = i915_gem_active_get_engine(&obj->last_write,
|
|
&obj->base.dev->struct_mutex);
|
|
if (engine == NULL || engine->id != RCS)
|
|
engine = &dev_priv->engine[BCS];
|
|
} else {
|
|
engine = &dev_priv->engine[RCS];
|
|
}
|
|
|
|
mmio_flip = use_mmio_flip(engine, obj);
|
|
|
|
ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
|
|
if (ret)
|
|
goto cleanup_pending;
|
|
|
|
work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
|
|
obj, 0);
|
|
work->gtt_offset += intel_crtc->dspaddr_offset;
|
|
work->rotation = crtc->primary->state->rotation;
|
|
|
|
if (mmio_flip) {
|
|
INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
|
|
|
|
work->flip_queued_req = i915_gem_active_get(&obj->last_write,
|
|
&obj->base.dev->struct_mutex);
|
|
schedule_work(&work->mmio_work);
|
|
} else {
|
|
request = i915_gem_request_alloc(engine, engine->last_context);
|
|
if (IS_ERR(request)) {
|
|
ret = PTR_ERR(request);
|
|
goto cleanup_unpin;
|
|
}
|
|
|
|
ret = i915_gem_object_sync(obj, request);
|
|
if (ret)
|
|
goto cleanup_request;
|
|
|
|
ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
|
|
page_flip_flags);
|
|
if (ret)
|
|
goto cleanup_request;
|
|
|
|
intel_mark_page_flip_active(intel_crtc, work);
|
|
|
|
work->flip_queued_req = i915_gem_request_get(request);
|
|
i915_add_request_no_flush(request);
|
|
}
|
|
|
|
i915_gem_track_fb(intel_fb_obj(old_fb), obj,
|
|
to_intel_plane(primary)->frontbuffer_bit);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
intel_frontbuffer_flip_prepare(to_i915(dev),
|
|
to_intel_plane(primary)->frontbuffer_bit);
|
|
|
|
trace_i915_flip_request(intel_crtc->plane, obj);
|
|
|
|
return 0;
|
|
|
|
cleanup_request:
|
|
i915_add_request_no_flush(request);
|
|
cleanup_unpin:
|
|
intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
|
|
cleanup_pending:
|
|
atomic_dec(&intel_crtc->unpin_work_count);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
cleanup:
|
|
crtc->primary->fb = old_fb;
|
|
update_state_fb(crtc->primary);
|
|
|
|
i915_gem_object_put_unlocked(obj);
|
|
drm_framebuffer_unreference(work->old_fb);
|
|
|
|
spin_lock_irq(&dev->event_lock);
|
|
intel_crtc->flip_work = NULL;
|
|
spin_unlock_irq(&dev->event_lock);
|
|
|
|
drm_crtc_vblank_put(crtc);
|
|
free_work:
|
|
kfree(work);
|
|
|
|
if (ret == -EIO) {
|
|
struct drm_atomic_state *state;
|
|
struct drm_plane_state *plane_state;
|
|
|
|
out_hang:
|
|
state = drm_atomic_state_alloc(dev);
|
|
if (!state)
|
|
return -ENOMEM;
|
|
state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
|
|
|
|
retry:
|
|
plane_state = drm_atomic_get_plane_state(state, primary);
|
|
ret = PTR_ERR_OR_ZERO(plane_state);
|
|
if (!ret) {
|
|
drm_atomic_set_fb_for_plane(plane_state, fb);
|
|
|
|
ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
|
|
if (!ret)
|
|
ret = drm_atomic_commit(state);
|
|
}
|
|
|
|
if (ret == -EDEADLK) {
|
|
drm_modeset_backoff(state->acquire_ctx);
|
|
drm_atomic_state_clear(state);
|
|
goto retry;
|
|
}
|
|
|
|
if (ret)
|
|
drm_atomic_state_free(state);
|
|
|
|
if (ret == 0 && event) {
|
|
spin_lock_irq(&dev->event_lock);
|
|
drm_crtc_send_vblank_event(crtc, event);
|
|
spin_unlock_irq(&dev->event_lock);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* intel_wm_need_update - Check whether watermarks need updating
|
|
* @plane: drm plane
|
|
* @state: new plane state
|
|
*
|
|
* Check current plane state versus the new one to determine whether
|
|
* watermarks need to be recalculated.
|
|
*
|
|
* Returns true or false.
|
|
*/
|
|
static bool intel_wm_need_update(struct drm_plane *plane,
|
|
struct drm_plane_state *state)
|
|
{
|
|
struct intel_plane_state *new = to_intel_plane_state(state);
|
|
struct intel_plane_state *cur = to_intel_plane_state(plane->state);
|
|
|
|
/* Update watermarks on tiling or size changes. */
|
|
if (new->visible != cur->visible)
|
|
return true;
|
|
|
|
if (!cur->base.fb || !new->base.fb)
|
|
return false;
|
|
|
|
if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
|
|
cur->base.rotation != new->base.rotation ||
|
|
drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
|
|
drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
|
|
drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
|
|
drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool needs_scaling(struct intel_plane_state *state)
|
|
{
|
|
int src_w = drm_rect_width(&state->src) >> 16;
|
|
int src_h = drm_rect_height(&state->src) >> 16;
|
|
int dst_w = drm_rect_width(&state->dst);
|
|
int dst_h = drm_rect_height(&state->dst);
|
|
|
|
return (src_w != dst_w || src_h != dst_h);
|
|
}
|
|
|
|
int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
|
|
struct drm_plane_state *plane_state)
|
|
{
|
|
struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
|
|
struct drm_crtc *crtc = crtc_state->crtc;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_plane *plane = plane_state->plane;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_plane_state *old_plane_state =
|
|
to_intel_plane_state(plane->state);
|
|
bool mode_changed = needs_modeset(crtc_state);
|
|
bool was_crtc_enabled = crtc->state->active;
|
|
bool is_crtc_enabled = crtc_state->active;
|
|
bool turn_off, turn_on, visible, was_visible;
|
|
struct drm_framebuffer *fb = plane_state->fb;
|
|
int ret;
|
|
|
|
if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
|
|
ret = skl_update_scaler_plane(
|
|
to_intel_crtc_state(crtc_state),
|
|
to_intel_plane_state(plane_state));
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
was_visible = old_plane_state->visible;
|
|
visible = to_intel_plane_state(plane_state)->visible;
|
|
|
|
if (!was_crtc_enabled && WARN_ON(was_visible))
|
|
was_visible = false;
|
|
|
|
/*
|
|
* Visibility is calculated as if the crtc was on, but
|
|
* after scaler setup everything depends on it being off
|
|
* when the crtc isn't active.
|
|
*
|
|
* FIXME this is wrong for watermarks. Watermarks should also
|
|
* be computed as if the pipe would be active. Perhaps move
|
|
* per-plane wm computation to the .check_plane() hook, and
|
|
* only combine the results from all planes in the current place?
|
|
*/
|
|
if (!is_crtc_enabled)
|
|
to_intel_plane_state(plane_state)->visible = visible = false;
|
|
|
|
if (!was_visible && !visible)
|
|
return 0;
|
|
|
|
if (fb != old_plane_state->base.fb)
|
|
pipe_config->fb_changed = true;
|
|
|
|
turn_off = was_visible && (!visible || mode_changed);
|
|
turn_on = visible && (!was_visible || mode_changed);
|
|
|
|
DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
|
|
intel_crtc->base.base.id,
|
|
intel_crtc->base.name,
|
|
plane->base.id, plane->name,
|
|
fb ? fb->base.id : -1);
|
|
|
|
DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
|
|
plane->base.id, plane->name,
|
|
was_visible, visible,
|
|
turn_off, turn_on, mode_changed);
|
|
|
|
if (turn_on) {
|
|
pipe_config->update_wm_pre = true;
|
|
|
|
/* must disable cxsr around plane enable/disable */
|
|
if (plane->type != DRM_PLANE_TYPE_CURSOR)
|
|
pipe_config->disable_cxsr = true;
|
|
} else if (turn_off) {
|
|
pipe_config->update_wm_post = true;
|
|
|
|
/* must disable cxsr around plane enable/disable */
|
|
if (plane->type != DRM_PLANE_TYPE_CURSOR)
|
|
pipe_config->disable_cxsr = true;
|
|
} else if (intel_wm_need_update(plane, plane_state)) {
|
|
/* FIXME bollocks */
|
|
pipe_config->update_wm_pre = true;
|
|
pipe_config->update_wm_post = true;
|
|
}
|
|
|
|
/* Pre-gen9 platforms need two-step watermark updates */
|
|
if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
|
|
INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
|
|
to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
|
|
|
|
if (visible || was_visible)
|
|
pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
|
|
|
|
/*
|
|
* WaCxSRDisabledForSpriteScaling:ivb
|
|
*
|
|
* cstate->update_wm was already set above, so this flag will
|
|
* take effect when we commit and program watermarks.
|
|
*/
|
|
if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
|
|
needs_scaling(to_intel_plane_state(plane_state)) &&
|
|
!needs_scaling(old_plane_state))
|
|
pipe_config->disable_lp_wm = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool encoders_cloneable(const struct intel_encoder *a,
|
|
const struct intel_encoder *b)
|
|
{
|
|
/* masks could be asymmetric, so check both ways */
|
|
return a == b || (a->cloneable & (1 << b->type) &&
|
|
b->cloneable & (1 << a->type));
|
|
}
|
|
|
|
static bool check_single_encoder_cloning(struct drm_atomic_state *state,
|
|
struct intel_crtc *crtc,
|
|
struct intel_encoder *encoder)
|
|
{
|
|
struct intel_encoder *source_encoder;
|
|
struct drm_connector *connector;
|
|
struct drm_connector_state *connector_state;
|
|
int i;
|
|
|
|
for_each_connector_in_state(state, connector, connector_state, i) {
|
|
if (connector_state->crtc != &crtc->base)
|
|
continue;
|
|
|
|
source_encoder =
|
|
to_intel_encoder(connector_state->best_encoder);
|
|
if (!encoders_cloneable(encoder, source_encoder))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int intel_crtc_atomic_check(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *crtc_state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_crtc_state *pipe_config =
|
|
to_intel_crtc_state(crtc_state);
|
|
struct drm_atomic_state *state = crtc_state->state;
|
|
int ret;
|
|
bool mode_changed = needs_modeset(crtc_state);
|
|
|
|
if (mode_changed && !crtc_state->active)
|
|
pipe_config->update_wm_post = true;
|
|
|
|
if (mode_changed && crtc_state->enable &&
|
|
dev_priv->display.crtc_compute_clock &&
|
|
!WARN_ON(pipe_config->shared_dpll)) {
|
|
ret = dev_priv->display.crtc_compute_clock(intel_crtc,
|
|
pipe_config);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (crtc_state->color_mgmt_changed) {
|
|
ret = intel_color_check(crtc, crtc_state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Changing color management on Intel hardware is
|
|
* handled as part of planes update.
|
|
*/
|
|
crtc_state->planes_changed = true;
|
|
}
|
|
|
|
ret = 0;
|
|
if (dev_priv->display.compute_pipe_wm) {
|
|
ret = dev_priv->display.compute_pipe_wm(pipe_config);
|
|
if (ret) {
|
|
DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (dev_priv->display.compute_intermediate_wm &&
|
|
!to_intel_atomic_state(state)->skip_intermediate_wm) {
|
|
if (WARN_ON(!dev_priv->display.compute_pipe_wm))
|
|
return 0;
|
|
|
|
/*
|
|
* Calculate 'intermediate' watermarks that satisfy both the
|
|
* old state and the new state. We can program these
|
|
* immediately.
|
|
*/
|
|
ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
|
|
intel_crtc,
|
|
pipe_config);
|
|
if (ret) {
|
|
DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
|
|
return ret;
|
|
}
|
|
} else if (dev_priv->display.compute_intermediate_wm) {
|
|
if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
|
|
pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->gen >= 9) {
|
|
if (mode_changed)
|
|
ret = skl_update_scaler_crtc(pipe_config);
|
|
|
|
if (!ret)
|
|
ret = intel_atomic_setup_scalers(dev, intel_crtc,
|
|
pipe_config);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct drm_crtc_helper_funcs intel_helper_funcs = {
|
|
.mode_set_base_atomic = intel_pipe_set_base_atomic,
|
|
.atomic_begin = intel_begin_crtc_commit,
|
|
.atomic_flush = intel_finish_crtc_commit,
|
|
.atomic_check = intel_crtc_atomic_check,
|
|
};
|
|
|
|
static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
|
|
{
|
|
struct intel_connector *connector;
|
|
|
|
for_each_intel_connector(dev, connector) {
|
|
if (connector->base.state->crtc)
|
|
drm_connector_unreference(&connector->base);
|
|
|
|
if (connector->base.encoder) {
|
|
connector->base.state->best_encoder =
|
|
connector->base.encoder;
|
|
connector->base.state->crtc =
|
|
connector->base.encoder->crtc;
|
|
|
|
drm_connector_reference(&connector->base);
|
|
} else {
|
|
connector->base.state->best_encoder = NULL;
|
|
connector->base.state->crtc = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
connected_sink_compute_bpp(struct intel_connector *connector,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
int bpp = pipe_config->pipe_bpp;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
|
|
connector->base.base.id,
|
|
connector->base.name);
|
|
|
|
/* Don't use an invalid EDID bpc value */
|
|
if (connector->base.display_info.bpc &&
|
|
connector->base.display_info.bpc * 3 < bpp) {
|
|
DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
|
|
bpp, connector->base.display_info.bpc*3);
|
|
pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
|
|
}
|
|
|
|
/* Clamp bpp to default limit on screens without EDID 1.4 */
|
|
if (connector->base.display_info.bpc == 0) {
|
|
int type = connector->base.connector_type;
|
|
int clamp_bpp = 24;
|
|
|
|
/* Fall back to 18 bpp when DP sink capability is unknown. */
|
|
if (type == DRM_MODE_CONNECTOR_DisplayPort ||
|
|
type == DRM_MODE_CONNECTOR_eDP)
|
|
clamp_bpp = 18;
|
|
|
|
if (bpp > clamp_bpp) {
|
|
DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
|
|
bpp, clamp_bpp);
|
|
pipe_config->pipe_bpp = clamp_bpp;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
compute_baseline_pipe_bpp(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_atomic_state *state;
|
|
struct drm_connector *connector;
|
|
struct drm_connector_state *connector_state;
|
|
int bpp, i;
|
|
|
|
if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
|
|
bpp = 10*3;
|
|
else if (INTEL_INFO(dev)->gen >= 5)
|
|
bpp = 12*3;
|
|
else
|
|
bpp = 8*3;
|
|
|
|
|
|
pipe_config->pipe_bpp = bpp;
|
|
|
|
state = pipe_config->base.state;
|
|
|
|
/* Clamp display bpp to EDID value */
|
|
for_each_connector_in_state(state, connector, connector_state, i) {
|
|
if (connector_state->crtc != &crtc->base)
|
|
continue;
|
|
|
|
connected_sink_compute_bpp(to_intel_connector(connector),
|
|
pipe_config);
|
|
}
|
|
|
|
return bpp;
|
|
}
|
|
|
|
static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
|
|
{
|
|
DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
|
|
"type: 0x%x flags: 0x%x\n",
|
|
mode->crtc_clock,
|
|
mode->crtc_hdisplay, mode->crtc_hsync_start,
|
|
mode->crtc_hsync_end, mode->crtc_htotal,
|
|
mode->crtc_vdisplay, mode->crtc_vsync_start,
|
|
mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
|
|
}
|
|
|
|
static void intel_dump_pipe_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config,
|
|
const char *context)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_plane *plane;
|
|
struct intel_plane *intel_plane;
|
|
struct intel_plane_state *state;
|
|
struct drm_framebuffer *fb;
|
|
|
|
DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
|
|
crtc->base.base.id, crtc->base.name,
|
|
context, pipe_config, pipe_name(crtc->pipe));
|
|
|
|
DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
|
|
DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
|
|
pipe_config->pipe_bpp, pipe_config->dither);
|
|
DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
|
|
pipe_config->has_pch_encoder,
|
|
pipe_config->fdi_lanes,
|
|
pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
|
|
pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
|
|
pipe_config->fdi_m_n.tu);
|
|
DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
|
|
intel_crtc_has_dp_encoder(pipe_config),
|
|
pipe_config->lane_count,
|
|
pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
|
|
pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
|
|
pipe_config->dp_m_n.tu);
|
|
|
|
DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
|
|
intel_crtc_has_dp_encoder(pipe_config),
|
|
pipe_config->lane_count,
|
|
pipe_config->dp_m2_n2.gmch_m,
|
|
pipe_config->dp_m2_n2.gmch_n,
|
|
pipe_config->dp_m2_n2.link_m,
|
|
pipe_config->dp_m2_n2.link_n,
|
|
pipe_config->dp_m2_n2.tu);
|
|
|
|
DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
|
|
pipe_config->has_audio,
|
|
pipe_config->has_infoframe);
|
|
|
|
DRM_DEBUG_KMS("requested mode:\n");
|
|
drm_mode_debug_printmodeline(&pipe_config->base.mode);
|
|
DRM_DEBUG_KMS("adjusted mode:\n");
|
|
drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
|
|
intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
|
|
DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
|
|
DRM_DEBUG_KMS("pipe src size: %dx%d\n",
|
|
pipe_config->pipe_src_w, pipe_config->pipe_src_h);
|
|
DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
|
|
crtc->num_scalers,
|
|
pipe_config->scaler_state.scaler_users,
|
|
pipe_config->scaler_state.scaler_id);
|
|
DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
|
|
pipe_config->gmch_pfit.control,
|
|
pipe_config->gmch_pfit.pgm_ratios,
|
|
pipe_config->gmch_pfit.lvds_border_bits);
|
|
DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
|
|
pipe_config->pch_pfit.pos,
|
|
pipe_config->pch_pfit.size,
|
|
pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
|
|
DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
|
|
DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
|
|
|
|
if (IS_BROXTON(dev)) {
|
|
DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
|
|
"pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
|
|
"pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
|
|
pipe_config->ddi_pll_sel,
|
|
pipe_config->dpll_hw_state.ebb0,
|
|
pipe_config->dpll_hw_state.ebb4,
|
|
pipe_config->dpll_hw_state.pll0,
|
|
pipe_config->dpll_hw_state.pll1,
|
|
pipe_config->dpll_hw_state.pll2,
|
|
pipe_config->dpll_hw_state.pll3,
|
|
pipe_config->dpll_hw_state.pll6,
|
|
pipe_config->dpll_hw_state.pll8,
|
|
pipe_config->dpll_hw_state.pll9,
|
|
pipe_config->dpll_hw_state.pll10,
|
|
pipe_config->dpll_hw_state.pcsdw12);
|
|
} else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
|
|
DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
|
|
"ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
|
|
pipe_config->ddi_pll_sel,
|
|
pipe_config->dpll_hw_state.ctrl1,
|
|
pipe_config->dpll_hw_state.cfgcr1,
|
|
pipe_config->dpll_hw_state.cfgcr2);
|
|
} else if (HAS_DDI(dev)) {
|
|
DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
|
|
pipe_config->ddi_pll_sel,
|
|
pipe_config->dpll_hw_state.wrpll,
|
|
pipe_config->dpll_hw_state.spll);
|
|
} else {
|
|
DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
|
|
"fp0: 0x%x, fp1: 0x%x\n",
|
|
pipe_config->dpll_hw_state.dpll,
|
|
pipe_config->dpll_hw_state.dpll_md,
|
|
pipe_config->dpll_hw_state.fp0,
|
|
pipe_config->dpll_hw_state.fp1);
|
|
}
|
|
|
|
DRM_DEBUG_KMS("planes on this crtc\n");
|
|
list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
|
|
intel_plane = to_intel_plane(plane);
|
|
if (intel_plane->pipe != crtc->pipe)
|
|
continue;
|
|
|
|
state = to_intel_plane_state(plane->state);
|
|
fb = state->base.fb;
|
|
if (!fb) {
|
|
DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
|
|
plane->base.id, plane->name, state->scaler_id);
|
|
continue;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
|
|
plane->base.id, plane->name);
|
|
DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
|
|
fb->base.id, fb->width, fb->height,
|
|
drm_get_format_name(fb->pixel_format));
|
|
DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
|
|
state->scaler_id,
|
|
state->src.x1 >> 16, state->src.y1 >> 16,
|
|
drm_rect_width(&state->src) >> 16,
|
|
drm_rect_height(&state->src) >> 16,
|
|
state->dst.x1, state->dst.y1,
|
|
drm_rect_width(&state->dst),
|
|
drm_rect_height(&state->dst));
|
|
}
|
|
}
|
|
|
|
static bool check_digital_port_conflicts(struct drm_atomic_state *state)
|
|
{
|
|
struct drm_device *dev = state->dev;
|
|
struct drm_connector *connector;
|
|
unsigned int used_ports = 0;
|
|
unsigned int used_mst_ports = 0;
|
|
|
|
/*
|
|
* Walk the connector list instead of the encoder
|
|
* list to detect the problem on ddi platforms
|
|
* where there's just one encoder per digital port.
|
|
*/
|
|
drm_for_each_connector(connector, dev) {
|
|
struct drm_connector_state *connector_state;
|
|
struct intel_encoder *encoder;
|
|
|
|
connector_state = drm_atomic_get_existing_connector_state(state, connector);
|
|
if (!connector_state)
|
|
connector_state = connector->state;
|
|
|
|
if (!connector_state->best_encoder)
|
|
continue;
|
|
|
|
encoder = to_intel_encoder(connector_state->best_encoder);
|
|
|
|
WARN_ON(!connector_state->crtc);
|
|
|
|
switch (encoder->type) {
|
|
unsigned int port_mask;
|
|
case INTEL_OUTPUT_UNKNOWN:
|
|
if (WARN_ON(!HAS_DDI(dev)))
|
|
break;
|
|
case INTEL_OUTPUT_DP:
|
|
case INTEL_OUTPUT_HDMI:
|
|
case INTEL_OUTPUT_EDP:
|
|
port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
|
|
|
|
/* the same port mustn't appear more than once */
|
|
if (used_ports & port_mask)
|
|
return false;
|
|
|
|
used_ports |= port_mask;
|
|
break;
|
|
case INTEL_OUTPUT_DP_MST:
|
|
used_mst_ports |=
|
|
1 << enc_to_mst(&encoder->base)->primary->port;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* can't mix MST and SST/HDMI on the same port */
|
|
if (used_ports & used_mst_ports)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_crtc_state tmp_state;
|
|
struct intel_crtc_scaler_state scaler_state;
|
|
struct intel_dpll_hw_state dpll_hw_state;
|
|
struct intel_shared_dpll *shared_dpll;
|
|
uint32_t ddi_pll_sel;
|
|
bool force_thru;
|
|
|
|
/* FIXME: before the switch to atomic started, a new pipe_config was
|
|
* kzalloc'd. Code that depends on any field being zero should be
|
|
* fixed, so that the crtc_state can be safely duplicated. For now,
|
|
* only fields that are know to not cause problems are preserved. */
|
|
|
|
tmp_state = crtc_state->base;
|
|
scaler_state = crtc_state->scaler_state;
|
|
shared_dpll = crtc_state->shared_dpll;
|
|
dpll_hw_state = crtc_state->dpll_hw_state;
|
|
ddi_pll_sel = crtc_state->ddi_pll_sel;
|
|
force_thru = crtc_state->pch_pfit.force_thru;
|
|
|
|
memset(crtc_state, 0, sizeof *crtc_state);
|
|
|
|
crtc_state->base = tmp_state;
|
|
crtc_state->scaler_state = scaler_state;
|
|
crtc_state->shared_dpll = shared_dpll;
|
|
crtc_state->dpll_hw_state = dpll_hw_state;
|
|
crtc_state->ddi_pll_sel = ddi_pll_sel;
|
|
crtc_state->pch_pfit.force_thru = force_thru;
|
|
}
|
|
|
|
static int
|
|
intel_modeset_pipe_config(struct drm_crtc *crtc,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_atomic_state *state = pipe_config->base.state;
|
|
struct intel_encoder *encoder;
|
|
struct drm_connector *connector;
|
|
struct drm_connector_state *connector_state;
|
|
int base_bpp, ret = -EINVAL;
|
|
int i;
|
|
bool retry = true;
|
|
|
|
clear_intel_crtc_state(pipe_config);
|
|
|
|
pipe_config->cpu_transcoder =
|
|
(enum transcoder) to_intel_crtc(crtc)->pipe;
|
|
|
|
/*
|
|
* Sanitize sync polarity flags based on requested ones. If neither
|
|
* positive or negative polarity is requested, treat this as meaning
|
|
* negative polarity.
|
|
*/
|
|
if (!(pipe_config->base.adjusted_mode.flags &
|
|
(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
|
|
pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
|
|
|
|
if (!(pipe_config->base.adjusted_mode.flags &
|
|
(DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
|
|
pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
|
|
|
|
base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
|
|
pipe_config);
|
|
if (base_bpp < 0)
|
|
goto fail;
|
|
|
|
/*
|
|
* Determine the real pipe dimensions. Note that stereo modes can
|
|
* increase the actual pipe size due to the frame doubling and
|
|
* insertion of additional space for blanks between the frame. This
|
|
* is stored in the crtc timings. We use the requested mode to do this
|
|
* computation to clearly distinguish it from the adjusted mode, which
|
|
* can be changed by the connectors in the below retry loop.
|
|
*/
|
|
drm_crtc_get_hv_timing(&pipe_config->base.mode,
|
|
&pipe_config->pipe_src_w,
|
|
&pipe_config->pipe_src_h);
|
|
|
|
for_each_connector_in_state(state, connector, connector_state, i) {
|
|
if (connector_state->crtc != crtc)
|
|
continue;
|
|
|
|
encoder = to_intel_encoder(connector_state->best_encoder);
|
|
|
|
if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
|
|
DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Determine output_types before calling the .compute_config()
|
|
* hooks so that the hooks can use this information safely.
|
|
*/
|
|
pipe_config->output_types |= 1 << encoder->type;
|
|
}
|
|
|
|
encoder_retry:
|
|
/* Ensure the port clock defaults are reset when retrying. */
|
|
pipe_config->port_clock = 0;
|
|
pipe_config->pixel_multiplier = 1;
|
|
|
|
/* Fill in default crtc timings, allow encoders to overwrite them. */
|
|
drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
|
|
CRTC_STEREO_DOUBLE);
|
|
|
|
/* Pass our mode to the connectors and the CRTC to give them a chance to
|
|
* adjust it according to limitations or connector properties, and also
|
|
* a chance to reject the mode entirely.
|
|
*/
|
|
for_each_connector_in_state(state, connector, connector_state, i) {
|
|
if (connector_state->crtc != crtc)
|
|
continue;
|
|
|
|
encoder = to_intel_encoder(connector_state->best_encoder);
|
|
|
|
if (!(encoder->compute_config(encoder, pipe_config))) {
|
|
DRM_DEBUG_KMS("Encoder config failure\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Set default port clock if not overwritten by the encoder. Needs to be
|
|
* done afterwards in case the encoder adjusts the mode. */
|
|
if (!pipe_config->port_clock)
|
|
pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
|
|
* pipe_config->pixel_multiplier;
|
|
|
|
ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
|
|
if (ret < 0) {
|
|
DRM_DEBUG_KMS("CRTC fixup failed\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (ret == RETRY) {
|
|
if (WARN(!retry, "loop in pipe configuration computation\n")) {
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
|
|
retry = false;
|
|
goto encoder_retry;
|
|
}
|
|
|
|
/* Dithering seems to not pass-through bits correctly when it should, so
|
|
* only enable it on 6bpc panels. */
|
|
pipe_config->dither = pipe_config->pipe_bpp == 6*3;
|
|
DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
|
|
base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
|
|
|
|
fail:
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
intel_modeset_update_crtc_state(struct drm_atomic_state *state)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
struct drm_crtc_state *crtc_state;
|
|
int i;
|
|
|
|
/* Double check state. */
|
|
for_each_crtc_in_state(state, crtc, crtc_state, i) {
|
|
to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
|
|
|
|
/* Update hwmode for vblank functions */
|
|
if (crtc->state->active)
|
|
crtc->hwmode = crtc->state->adjusted_mode;
|
|
else
|
|
crtc->hwmode.crtc_clock = 0;
|
|
|
|
/*
|
|
* Update legacy state to satisfy fbc code. This can
|
|
* be removed when fbc uses the atomic state.
|
|
*/
|
|
if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
|
|
struct drm_plane_state *plane_state = crtc->primary->state;
|
|
|
|
crtc->primary->fb = plane_state->fb;
|
|
crtc->x = plane_state->src_x >> 16;
|
|
crtc->y = plane_state->src_y >> 16;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool intel_fuzzy_clock_check(int clock1, int clock2)
|
|
{
|
|
int diff;
|
|
|
|
if (clock1 == clock2)
|
|
return true;
|
|
|
|
if (!clock1 || !clock2)
|
|
return false;
|
|
|
|
diff = abs(clock1 - clock2);
|
|
|
|
if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
|
|
list_for_each_entry((intel_crtc), \
|
|
&(dev)->mode_config.crtc_list, \
|
|
base.head) \
|
|
for_each_if (mask & (1 <<(intel_crtc)->pipe))
|
|
|
|
static bool
|
|
intel_compare_m_n(unsigned int m, unsigned int n,
|
|
unsigned int m2, unsigned int n2,
|
|
bool exact)
|
|
{
|
|
if (m == m2 && n == n2)
|
|
return true;
|
|
|
|
if (exact || !m || !n || !m2 || !n2)
|
|
return false;
|
|
|
|
BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
|
|
|
|
if (n > n2) {
|
|
while (n > n2) {
|
|
m2 <<= 1;
|
|
n2 <<= 1;
|
|
}
|
|
} else if (n < n2) {
|
|
while (n < n2) {
|
|
m <<= 1;
|
|
n <<= 1;
|
|
}
|
|
}
|
|
|
|
if (n != n2)
|
|
return false;
|
|
|
|
return intel_fuzzy_clock_check(m, m2);
|
|
}
|
|
|
|
static bool
|
|
intel_compare_link_m_n(const struct intel_link_m_n *m_n,
|
|
struct intel_link_m_n *m2_n2,
|
|
bool adjust)
|
|
{
|
|
if (m_n->tu == m2_n2->tu &&
|
|
intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
|
|
m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
|
|
intel_compare_m_n(m_n->link_m, m_n->link_n,
|
|
m2_n2->link_m, m2_n2->link_n, !adjust)) {
|
|
if (adjust)
|
|
*m2_n2 = *m_n;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
intel_pipe_config_compare(struct drm_device *dev,
|
|
struct intel_crtc_state *current_config,
|
|
struct intel_crtc_state *pipe_config,
|
|
bool adjust)
|
|
{
|
|
bool ret = true;
|
|
|
|
#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
|
|
do { \
|
|
if (!adjust) \
|
|
DRM_ERROR(fmt, ##__VA_ARGS__); \
|
|
else \
|
|
DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
|
|
} while (0)
|
|
|
|
#define PIPE_CONF_CHECK_X(name) \
|
|
if (current_config->name != pipe_config->name) { \
|
|
INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
|
|
"(expected 0x%08x, found 0x%08x)\n", \
|
|
current_config->name, \
|
|
pipe_config->name); \
|
|
ret = false; \
|
|
}
|
|
|
|
#define PIPE_CONF_CHECK_I(name) \
|
|
if (current_config->name != pipe_config->name) { \
|
|
INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
|
|
"(expected %i, found %i)\n", \
|
|
current_config->name, \
|
|
pipe_config->name); \
|
|
ret = false; \
|
|
}
|
|
|
|
#define PIPE_CONF_CHECK_P(name) \
|
|
if (current_config->name != pipe_config->name) { \
|
|
INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
|
|
"(expected %p, found %p)\n", \
|
|
current_config->name, \
|
|
pipe_config->name); \
|
|
ret = false; \
|
|
}
|
|
|
|
#define PIPE_CONF_CHECK_M_N(name) \
|
|
if (!intel_compare_link_m_n(¤t_config->name, \
|
|
&pipe_config->name,\
|
|
adjust)) { \
|
|
INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
|
|
"(expected tu %i gmch %i/%i link %i/%i, " \
|
|
"found tu %i, gmch %i/%i link %i/%i)\n", \
|
|
current_config->name.tu, \
|
|
current_config->name.gmch_m, \
|
|
current_config->name.gmch_n, \
|
|
current_config->name.link_m, \
|
|
current_config->name.link_n, \
|
|
pipe_config->name.tu, \
|
|
pipe_config->name.gmch_m, \
|
|
pipe_config->name.gmch_n, \
|
|
pipe_config->name.link_m, \
|
|
pipe_config->name.link_n); \
|
|
ret = false; \
|
|
}
|
|
|
|
/* This is required for BDW+ where there is only one set of registers for
|
|
* switching between high and low RR.
|
|
* This macro can be used whenever a comparison has to be made between one
|
|
* hw state and multiple sw state variables.
|
|
*/
|
|
#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
|
|
if (!intel_compare_link_m_n(¤t_config->name, \
|
|
&pipe_config->name, adjust) && \
|
|
!intel_compare_link_m_n(¤t_config->alt_name, \
|
|
&pipe_config->name, adjust)) { \
|
|
INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
|
|
"(expected tu %i gmch %i/%i link %i/%i, " \
|
|
"or tu %i gmch %i/%i link %i/%i, " \
|
|
"found tu %i, gmch %i/%i link %i/%i)\n", \
|
|
current_config->name.tu, \
|
|
current_config->name.gmch_m, \
|
|
current_config->name.gmch_n, \
|
|
current_config->name.link_m, \
|
|
current_config->name.link_n, \
|
|
current_config->alt_name.tu, \
|
|
current_config->alt_name.gmch_m, \
|
|
current_config->alt_name.gmch_n, \
|
|
current_config->alt_name.link_m, \
|
|
current_config->alt_name.link_n, \
|
|
pipe_config->name.tu, \
|
|
pipe_config->name.gmch_m, \
|
|
pipe_config->name.gmch_n, \
|
|
pipe_config->name.link_m, \
|
|
pipe_config->name.link_n); \
|
|
ret = false; \
|
|
}
|
|
|
|
#define PIPE_CONF_CHECK_FLAGS(name, mask) \
|
|
if ((current_config->name ^ pipe_config->name) & (mask)) { \
|
|
INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
|
|
"(expected %i, found %i)\n", \
|
|
current_config->name & (mask), \
|
|
pipe_config->name & (mask)); \
|
|
ret = false; \
|
|
}
|
|
|
|
#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
|
|
if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
|
|
INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
|
|
"(expected %i, found %i)\n", \
|
|
current_config->name, \
|
|
pipe_config->name); \
|
|
ret = false; \
|
|
}
|
|
|
|
#define PIPE_CONF_QUIRK(quirk) \
|
|
((current_config->quirks | pipe_config->quirks) & (quirk))
|
|
|
|
PIPE_CONF_CHECK_I(cpu_transcoder);
|
|
|
|
PIPE_CONF_CHECK_I(has_pch_encoder);
|
|
PIPE_CONF_CHECK_I(fdi_lanes);
|
|
PIPE_CONF_CHECK_M_N(fdi_m_n);
|
|
|
|
PIPE_CONF_CHECK_I(lane_count);
|
|
PIPE_CONF_CHECK_X(lane_lat_optim_mask);
|
|
|
|
if (INTEL_INFO(dev)->gen < 8) {
|
|
PIPE_CONF_CHECK_M_N(dp_m_n);
|
|
|
|
if (current_config->has_drrs)
|
|
PIPE_CONF_CHECK_M_N(dp_m2_n2);
|
|
} else
|
|
PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
|
|
|
|
PIPE_CONF_CHECK_X(output_types);
|
|
|
|
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
|
|
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
|
|
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
|
|
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
|
|
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
|
|
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
|
|
|
|
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
|
|
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
|
|
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
|
|
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
|
|
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
|
|
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
|
|
|
|
PIPE_CONF_CHECK_I(pixel_multiplier);
|
|
PIPE_CONF_CHECK_I(has_hdmi_sink);
|
|
if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
|
|
IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
|
|
PIPE_CONF_CHECK_I(limited_color_range);
|
|
PIPE_CONF_CHECK_I(has_infoframe);
|
|
|
|
PIPE_CONF_CHECK_I(has_audio);
|
|
|
|
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
|
|
DRM_MODE_FLAG_INTERLACE);
|
|
|
|
if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
|
|
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
|
|
DRM_MODE_FLAG_PHSYNC);
|
|
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
|
|
DRM_MODE_FLAG_NHSYNC);
|
|
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
|
|
DRM_MODE_FLAG_PVSYNC);
|
|
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
|
|
DRM_MODE_FLAG_NVSYNC);
|
|
}
|
|
|
|
PIPE_CONF_CHECK_X(gmch_pfit.control);
|
|
/* pfit ratios are autocomputed by the hw on gen4+ */
|
|
if (INTEL_INFO(dev)->gen < 4)
|
|
PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
|
|
PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
|
|
|
|
if (!adjust) {
|
|
PIPE_CONF_CHECK_I(pipe_src_w);
|
|
PIPE_CONF_CHECK_I(pipe_src_h);
|
|
|
|
PIPE_CONF_CHECK_I(pch_pfit.enabled);
|
|
if (current_config->pch_pfit.enabled) {
|
|
PIPE_CONF_CHECK_X(pch_pfit.pos);
|
|
PIPE_CONF_CHECK_X(pch_pfit.size);
|
|
}
|
|
|
|
PIPE_CONF_CHECK_I(scaler_state.scaler_id);
|
|
}
|
|
|
|
/* BDW+ don't expose a synchronous way to read the state */
|
|
if (IS_HASWELL(dev))
|
|
PIPE_CONF_CHECK_I(ips_enabled);
|
|
|
|
PIPE_CONF_CHECK_I(double_wide);
|
|
|
|
PIPE_CONF_CHECK_X(ddi_pll_sel);
|
|
|
|
PIPE_CONF_CHECK_P(shared_dpll);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.spll);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
|
|
|
|
PIPE_CONF_CHECK_X(dsi_pll.ctrl);
|
|
PIPE_CONF_CHECK_X(dsi_pll.div);
|
|
|
|
if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
|
|
PIPE_CONF_CHECK_I(pipe_bpp);
|
|
|
|
PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
|
|
PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
|
|
|
|
#undef PIPE_CONF_CHECK_X
|
|
#undef PIPE_CONF_CHECK_I
|
|
#undef PIPE_CONF_CHECK_P
|
|
#undef PIPE_CONF_CHECK_FLAGS
|
|
#undef PIPE_CONF_CHECK_CLOCK_FUZZY
|
|
#undef PIPE_CONF_QUIRK
|
|
#undef INTEL_ERR_OR_DBG_KMS
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
if (pipe_config->has_pch_encoder) {
|
|
int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
|
|
&pipe_config->fdi_m_n);
|
|
int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
|
|
|
|
/*
|
|
* FDI already provided one idea for the dotclock.
|
|
* Yell if the encoder disagrees.
|
|
*/
|
|
WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
|
|
"FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
|
|
fdi_dotclock, dotclock);
|
|
}
|
|
}
|
|
|
|
static void verify_wm_state(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *new_state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct skl_ddb_allocation hw_ddb, *sw_ddb;
|
|
struct skl_ddb_entry *hw_entry, *sw_entry;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
const enum pipe pipe = intel_crtc->pipe;
|
|
int plane;
|
|
|
|
if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
|
|
return;
|
|
|
|
skl_ddb_get_hw_state(dev_priv, &hw_ddb);
|
|
sw_ddb = &dev_priv->wm.skl_hw.ddb;
|
|
|
|
/* planes */
|
|
for_each_plane(dev_priv, pipe, plane) {
|
|
hw_entry = &hw_ddb.plane[pipe][plane];
|
|
sw_entry = &sw_ddb->plane[pipe][plane];
|
|
|
|
if (skl_ddb_entry_equal(hw_entry, sw_entry))
|
|
continue;
|
|
|
|
DRM_ERROR("mismatch in DDB state pipe %c plane %d "
|
|
"(expected (%u,%u), found (%u,%u))\n",
|
|
pipe_name(pipe), plane + 1,
|
|
sw_entry->start, sw_entry->end,
|
|
hw_entry->start, hw_entry->end);
|
|
}
|
|
|
|
/* cursor */
|
|
hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
|
|
sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
|
|
|
|
if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
|
|
DRM_ERROR("mismatch in DDB state pipe %c cursor "
|
|
"(expected (%u,%u), found (%u,%u))\n",
|
|
pipe_name(pipe),
|
|
sw_entry->start, sw_entry->end,
|
|
hw_entry->start, hw_entry->end);
|
|
}
|
|
}
|
|
|
|
static void
|
|
verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
|
|
{
|
|
struct drm_connector *connector;
|
|
|
|
drm_for_each_connector(connector, dev) {
|
|
struct drm_encoder *encoder = connector->encoder;
|
|
struct drm_connector_state *state = connector->state;
|
|
|
|
if (state->crtc != crtc)
|
|
continue;
|
|
|
|
intel_connector_verify_state(to_intel_connector(connector));
|
|
|
|
I915_STATE_WARN(state->best_encoder != encoder,
|
|
"connector's atomic encoder doesn't match legacy encoder\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
verify_encoder_state(struct drm_device *dev)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
bool enabled = false;
|
|
enum pipe pipe;
|
|
|
|
DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
|
|
encoder->base.base.id,
|
|
encoder->base.name);
|
|
|
|
for_each_intel_connector(dev, connector) {
|
|
if (connector->base.state->best_encoder != &encoder->base)
|
|
continue;
|
|
enabled = true;
|
|
|
|
I915_STATE_WARN(connector->base.state->crtc !=
|
|
encoder->base.crtc,
|
|
"connector's crtc doesn't match encoder crtc\n");
|
|
}
|
|
|
|
I915_STATE_WARN(!!encoder->base.crtc != enabled,
|
|
"encoder's enabled state mismatch "
|
|
"(expected %i, found %i)\n",
|
|
!!encoder->base.crtc, enabled);
|
|
|
|
if (!encoder->base.crtc) {
|
|
bool active;
|
|
|
|
active = encoder->get_hw_state(encoder, &pipe);
|
|
I915_STATE_WARN(active,
|
|
"encoder detached but still enabled on pipe %c.\n",
|
|
pipe_name(pipe));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
verify_crtc_state(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_crtc_state,
|
|
struct drm_crtc_state *new_crtc_state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_encoder *encoder;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_crtc_state *pipe_config, *sw_config;
|
|
struct drm_atomic_state *old_state;
|
|
bool active;
|
|
|
|
old_state = old_crtc_state->state;
|
|
__drm_atomic_helper_crtc_destroy_state(old_crtc_state);
|
|
pipe_config = to_intel_crtc_state(old_crtc_state);
|
|
memset(pipe_config, 0, sizeof(*pipe_config));
|
|
pipe_config->base.crtc = crtc;
|
|
pipe_config->base.state = old_state;
|
|
|
|
DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
|
|
|
|
active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
|
|
|
|
/* hw state is inconsistent with the pipe quirk */
|
|
if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
|
|
(intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
|
|
active = new_crtc_state->active;
|
|
|
|
I915_STATE_WARN(new_crtc_state->active != active,
|
|
"crtc active state doesn't match with hw state "
|
|
"(expected %i, found %i)\n", new_crtc_state->active, active);
|
|
|
|
I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
|
|
"transitional active state does not match atomic hw state "
|
|
"(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder) {
|
|
enum pipe pipe;
|
|
|
|
active = encoder->get_hw_state(encoder, &pipe);
|
|
I915_STATE_WARN(active != new_crtc_state->active,
|
|
"[ENCODER:%i] active %i with crtc active %i\n",
|
|
encoder->base.base.id, active, new_crtc_state->active);
|
|
|
|
I915_STATE_WARN(active && intel_crtc->pipe != pipe,
|
|
"Encoder connected to wrong pipe %c\n",
|
|
pipe_name(pipe));
|
|
|
|
if (active) {
|
|
pipe_config->output_types |= 1 << encoder->type;
|
|
encoder->get_config(encoder, pipe_config);
|
|
}
|
|
}
|
|
|
|
if (!new_crtc_state->active)
|
|
return;
|
|
|
|
intel_pipe_config_sanity_check(dev_priv, pipe_config);
|
|
|
|
sw_config = to_intel_crtc_state(crtc->state);
|
|
if (!intel_pipe_config_compare(dev, sw_config,
|
|
pipe_config, false)) {
|
|
I915_STATE_WARN(1, "pipe state doesn't match!\n");
|
|
intel_dump_pipe_config(intel_crtc, pipe_config,
|
|
"[hw state]");
|
|
intel_dump_pipe_config(intel_crtc, sw_config,
|
|
"[sw state]");
|
|
}
|
|
}
|
|
|
|
static void
|
|
verify_single_dpll_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct drm_crtc *crtc,
|
|
struct drm_crtc_state *new_state)
|
|
{
|
|
struct intel_dpll_hw_state dpll_hw_state;
|
|
unsigned crtc_mask;
|
|
bool active;
|
|
|
|
memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
|
|
|
|
DRM_DEBUG_KMS("%s\n", pll->name);
|
|
|
|
active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
|
|
|
|
if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
|
|
I915_STATE_WARN(!pll->on && pll->active_mask,
|
|
"pll in active use but not on in sw tracking\n");
|
|
I915_STATE_WARN(pll->on && !pll->active_mask,
|
|
"pll is on but not used by any active crtc\n");
|
|
I915_STATE_WARN(pll->on != active,
|
|
"pll on state mismatch (expected %i, found %i)\n",
|
|
pll->on, active);
|
|
}
|
|
|
|
if (!crtc) {
|
|
I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
|
|
"more active pll users than references: %x vs %x\n",
|
|
pll->active_mask, pll->config.crtc_mask);
|
|
|
|
return;
|
|
}
|
|
|
|
crtc_mask = 1 << drm_crtc_index(crtc);
|
|
|
|
if (new_state->active)
|
|
I915_STATE_WARN(!(pll->active_mask & crtc_mask),
|
|
"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
|
|
pipe_name(drm_crtc_index(crtc)), pll->active_mask);
|
|
else
|
|
I915_STATE_WARN(pll->active_mask & crtc_mask,
|
|
"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
|
|
pipe_name(drm_crtc_index(crtc)), pll->active_mask);
|
|
|
|
I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
|
|
"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
|
|
crtc_mask, pll->config.crtc_mask);
|
|
|
|
I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
|
|
&dpll_hw_state,
|
|
sizeof(dpll_hw_state)),
|
|
"pll hw state mismatch\n");
|
|
}
|
|
|
|
static void
|
|
verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_crtc_state,
|
|
struct drm_crtc_state *new_crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
|
|
struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
|
|
|
|
if (new_state->shared_dpll)
|
|
verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
|
|
|
|
if (old_state->shared_dpll &&
|
|
old_state->shared_dpll != new_state->shared_dpll) {
|
|
unsigned crtc_mask = 1 << drm_crtc_index(crtc);
|
|
struct intel_shared_dpll *pll = old_state->shared_dpll;
|
|
|
|
I915_STATE_WARN(pll->active_mask & crtc_mask,
|
|
"pll active mismatch (didn't expect pipe %c in active mask)\n",
|
|
pipe_name(drm_crtc_index(crtc)));
|
|
I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
|
|
"pll enabled crtcs mismatch (found %x in enabled mask)\n",
|
|
pipe_name(drm_crtc_index(crtc)));
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_modeset_verify_crtc(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_state,
|
|
struct drm_crtc_state *new_state)
|
|
{
|
|
if (!needs_modeset(new_state) &&
|
|
!to_intel_crtc_state(new_state)->update_pipe)
|
|
return;
|
|
|
|
verify_wm_state(crtc, new_state);
|
|
verify_connector_state(crtc->dev, crtc);
|
|
verify_crtc_state(crtc, old_state, new_state);
|
|
verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
|
|
}
|
|
|
|
static void
|
|
verify_disabled_dpll_state(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int i;
|
|
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++)
|
|
verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
|
|
}
|
|
|
|
static void
|
|
intel_modeset_verify_disabled(struct drm_device *dev)
|
|
{
|
|
verify_encoder_state(dev);
|
|
verify_connector_state(dev, NULL);
|
|
verify_disabled_dpll_state(dev);
|
|
}
|
|
|
|
static void update_scanline_offset(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
|
|
/*
|
|
* The scanline counter increments at the leading edge of hsync.
|
|
*
|
|
* On most platforms it starts counting from vtotal-1 on the
|
|
* first active line. That means the scanline counter value is
|
|
* always one less than what we would expect. Ie. just after
|
|
* start of vblank, which also occurs at start of hsync (on the
|
|
* last active line), the scanline counter will read vblank_start-1.
|
|
*
|
|
* On gen2 the scanline counter starts counting from 1 instead
|
|
* of vtotal-1, so we have to subtract one (or rather add vtotal-1
|
|
* to keep the value positive), instead of adding one.
|
|
*
|
|
* On HSW+ the behaviour of the scanline counter depends on the output
|
|
* type. For DP ports it behaves like most other platforms, but on HDMI
|
|
* there's an extra 1 line difference. So we need to add two instead of
|
|
* one to the value.
|
|
*/
|
|
if (IS_GEN2(dev)) {
|
|
const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
|
|
int vtotal;
|
|
|
|
vtotal = adjusted_mode->crtc_vtotal;
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
|
|
vtotal /= 2;
|
|
|
|
crtc->scanline_offset = vtotal - 1;
|
|
} else if (HAS_DDI(dev) &&
|
|
intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
|
|
crtc->scanline_offset = 2;
|
|
} else
|
|
crtc->scanline_offset = 1;
|
|
}
|
|
|
|
static void intel_modeset_clear_plls(struct drm_atomic_state *state)
|
|
{
|
|
struct drm_device *dev = state->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_shared_dpll_config *shared_dpll = NULL;
|
|
struct drm_crtc *crtc;
|
|
struct drm_crtc_state *crtc_state;
|
|
int i;
|
|
|
|
if (!dev_priv->display.crtc_compute_clock)
|
|
return;
|
|
|
|
for_each_crtc_in_state(state, crtc, crtc_state, i) {
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_shared_dpll *old_dpll =
|
|
to_intel_crtc_state(crtc->state)->shared_dpll;
|
|
|
|
if (!needs_modeset(crtc_state))
|
|
continue;
|
|
|
|
to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
|
|
|
|
if (!old_dpll)
|
|
continue;
|
|
|
|
if (!shared_dpll)
|
|
shared_dpll = intel_atomic_get_shared_dpll_state(state);
|
|
|
|
intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This implements the workaround described in the "notes" section of the mode
|
|
* set sequence documentation. When going from no pipes or single pipe to
|
|
* multiple pipes, and planes are enabled after the pipe, we need to wait at
|
|
* least 2 vblanks on the first pipe before enabling planes on the second pipe.
|
|
*/
|
|
static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
|
|
{
|
|
struct drm_crtc_state *crtc_state;
|
|
struct intel_crtc *intel_crtc;
|
|
struct drm_crtc *crtc;
|
|
struct intel_crtc_state *first_crtc_state = NULL;
|
|
struct intel_crtc_state *other_crtc_state = NULL;
|
|
enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
|
|
int i;
|
|
|
|
/* look at all crtc's that are going to be enabled in during modeset */
|
|
for_each_crtc_in_state(state, crtc, crtc_state, i) {
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
|
|
if (!crtc_state->active || !needs_modeset(crtc_state))
|
|
continue;
|
|
|
|
if (first_crtc_state) {
|
|
other_crtc_state = to_intel_crtc_state(crtc_state);
|
|
break;
|
|
} else {
|
|
first_crtc_state = to_intel_crtc_state(crtc_state);
|
|
first_pipe = intel_crtc->pipe;
|
|
}
|
|
}
|
|
|
|
/* No workaround needed? */
|
|
if (!first_crtc_state)
|
|
return 0;
|
|
|
|
/* w/a possibly needed, check how many crtc's are already enabled. */
|
|
for_each_intel_crtc(state->dev, intel_crtc) {
|
|
struct intel_crtc_state *pipe_config;
|
|
|
|
pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
|
|
if (IS_ERR(pipe_config))
|
|
return PTR_ERR(pipe_config);
|
|
|
|
pipe_config->hsw_workaround_pipe = INVALID_PIPE;
|
|
|
|
if (!pipe_config->base.active ||
|
|
needs_modeset(&pipe_config->base))
|
|
continue;
|
|
|
|
/* 2 or more enabled crtcs means no need for w/a */
|
|
if (enabled_pipe != INVALID_PIPE)
|
|
return 0;
|
|
|
|
enabled_pipe = intel_crtc->pipe;
|
|
}
|
|
|
|
if (enabled_pipe != INVALID_PIPE)
|
|
first_crtc_state->hsw_workaround_pipe = enabled_pipe;
|
|
else if (other_crtc_state)
|
|
other_crtc_state->hsw_workaround_pipe = first_pipe;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_modeset_all_pipes(struct drm_atomic_state *state)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
struct drm_crtc_state *crtc_state;
|
|
int ret = 0;
|
|
|
|
/* add all active pipes to the state */
|
|
for_each_crtc(state->dev, crtc) {
|
|
crtc_state = drm_atomic_get_crtc_state(state, crtc);
|
|
if (IS_ERR(crtc_state))
|
|
return PTR_ERR(crtc_state);
|
|
|
|
if (!crtc_state->active || needs_modeset(crtc_state))
|
|
continue;
|
|
|
|
crtc_state->mode_changed = true;
|
|
|
|
ret = drm_atomic_add_affected_connectors(state, crtc);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = drm_atomic_add_affected_planes(state, crtc);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int intel_modeset_checks(struct drm_atomic_state *state)
|
|
{
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
|
|
struct drm_i915_private *dev_priv = to_i915(state->dev);
|
|
struct drm_crtc *crtc;
|
|
struct drm_crtc_state *crtc_state;
|
|
int ret = 0, i;
|
|
|
|
if (!check_digital_port_conflicts(state)) {
|
|
DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
intel_state->modeset = true;
|
|
intel_state->active_crtcs = dev_priv->active_crtcs;
|
|
|
|
for_each_crtc_in_state(state, crtc, crtc_state, i) {
|
|
if (crtc_state->active)
|
|
intel_state->active_crtcs |= 1 << i;
|
|
else
|
|
intel_state->active_crtcs &= ~(1 << i);
|
|
|
|
if (crtc_state->active != crtc->state->active)
|
|
intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
|
|
}
|
|
|
|
/*
|
|
* See if the config requires any additional preparation, e.g.
|
|
* to adjust global state with pipes off. We need to do this
|
|
* here so we can get the modeset_pipe updated config for the new
|
|
* mode set on this crtc. For other crtcs we need to use the
|
|
* adjusted_mode bits in the crtc directly.
|
|
*/
|
|
if (dev_priv->display.modeset_calc_cdclk) {
|
|
if (!intel_state->cdclk_pll_vco)
|
|
intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
|
|
if (!intel_state->cdclk_pll_vco)
|
|
intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
|
|
|
|
ret = dev_priv->display.modeset_calc_cdclk(state);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
|
|
intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
|
|
ret = intel_modeset_all_pipes(state);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
|
|
intel_state->cdclk, intel_state->dev_cdclk);
|
|
} else
|
|
to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
|
|
|
|
intel_modeset_clear_plls(state);
|
|
|
|
if (IS_HASWELL(dev_priv))
|
|
return haswell_mode_set_planes_workaround(state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Handle calculation of various watermark data at the end of the atomic check
|
|
* phase. The code here should be run after the per-crtc and per-plane 'check'
|
|
* handlers to ensure that all derived state has been updated.
|
|
*/
|
|
static int calc_watermark_data(struct drm_atomic_state *state)
|
|
{
|
|
struct drm_device *dev = state->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
/* Is there platform-specific watermark information to calculate? */
|
|
if (dev_priv->display.compute_global_watermarks)
|
|
return dev_priv->display.compute_global_watermarks(state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_atomic_check - validate state object
|
|
* @dev: drm device
|
|
* @state: state to validate
|
|
*/
|
|
static int intel_atomic_check(struct drm_device *dev,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
|
|
struct drm_crtc *crtc;
|
|
struct drm_crtc_state *crtc_state;
|
|
int ret, i;
|
|
bool any_ms = false;
|
|
|
|
ret = drm_atomic_helper_check_modeset(dev, state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for_each_crtc_in_state(state, crtc, crtc_state, i) {
|
|
struct intel_crtc_state *pipe_config =
|
|
to_intel_crtc_state(crtc_state);
|
|
|
|
/* Catch I915_MODE_FLAG_INHERITED */
|
|
if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
|
|
crtc_state->mode_changed = true;
|
|
|
|
if (!needs_modeset(crtc_state))
|
|
continue;
|
|
|
|
if (!crtc_state->enable) {
|
|
any_ms = true;
|
|
continue;
|
|
}
|
|
|
|
/* FIXME: For only active_changed we shouldn't need to do any
|
|
* state recomputation at all. */
|
|
|
|
ret = drm_atomic_add_affected_connectors(state, crtc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_modeset_pipe_config(crtc, pipe_config);
|
|
if (ret) {
|
|
intel_dump_pipe_config(to_intel_crtc(crtc),
|
|
pipe_config, "[failed]");
|
|
return ret;
|
|
}
|
|
|
|
if (i915.fastboot &&
|
|
intel_pipe_config_compare(dev,
|
|
to_intel_crtc_state(crtc->state),
|
|
pipe_config, true)) {
|
|
crtc_state->mode_changed = false;
|
|
to_intel_crtc_state(crtc_state)->update_pipe = true;
|
|
}
|
|
|
|
if (needs_modeset(crtc_state))
|
|
any_ms = true;
|
|
|
|
ret = drm_atomic_add_affected_planes(state, crtc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
|
|
needs_modeset(crtc_state) ?
|
|
"[modeset]" : "[fastset]");
|
|
}
|
|
|
|
if (any_ms) {
|
|
ret = intel_modeset_checks(state);
|
|
|
|
if (ret)
|
|
return ret;
|
|
} else
|
|
intel_state->cdclk = dev_priv->cdclk_freq;
|
|
|
|
ret = drm_atomic_helper_check_planes(dev, state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_fbc_choose_crtc(dev_priv, state);
|
|
return calc_watermark_data(state);
|
|
}
|
|
|
|
static int intel_atomic_prepare_commit(struct drm_device *dev,
|
|
struct drm_atomic_state *state,
|
|
bool nonblock)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_plane_state *plane_state;
|
|
struct drm_crtc_state *crtc_state;
|
|
struct drm_plane *plane;
|
|
struct drm_crtc *crtc;
|
|
int i, ret;
|
|
|
|
for_each_crtc_in_state(state, crtc, crtc_state, i) {
|
|
if (state->legacy_cursor_update)
|
|
continue;
|
|
|
|
ret = intel_crtc_wait_for_pending_flips(crtc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
|
|
flush_workqueue(dev_priv->wq);
|
|
}
|
|
|
|
ret = mutex_lock_interruptible(&dev->struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = drm_atomic_helper_prepare_planes(dev, state);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
if (!ret && !nonblock) {
|
|
for_each_plane_in_state(state, plane, plane_state, i) {
|
|
struct intel_plane_state *intel_plane_state =
|
|
to_intel_plane_state(plane_state);
|
|
|
|
if (!intel_plane_state->wait_req)
|
|
continue;
|
|
|
|
ret = i915_wait_request(intel_plane_state->wait_req,
|
|
true, NULL, NULL);
|
|
if (ret) {
|
|
/* Any hang should be swallowed by the wait */
|
|
WARN_ON(ret == -EIO);
|
|
mutex_lock(&dev->struct_mutex);
|
|
drm_atomic_helper_cleanup_planes(dev, state);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
|
|
if (!dev->max_vblank_count)
|
|
return drm_accurate_vblank_count(&crtc->base);
|
|
|
|
return dev->driver->get_vblank_counter(dev, crtc->pipe);
|
|
}
|
|
|
|
static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
|
|
struct drm_i915_private *dev_priv,
|
|
unsigned crtc_mask)
|
|
{
|
|
unsigned last_vblank_count[I915_MAX_PIPES];
|
|
enum pipe pipe;
|
|
int ret;
|
|
|
|
if (!crtc_mask)
|
|
return;
|
|
|
|
for_each_pipe(dev_priv, pipe) {
|
|
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
|
|
if (!((1 << pipe) & crtc_mask))
|
|
continue;
|
|
|
|
ret = drm_crtc_vblank_get(crtc);
|
|
if (WARN_ON(ret != 0)) {
|
|
crtc_mask &= ~(1 << pipe);
|
|
continue;
|
|
}
|
|
|
|
last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
|
|
}
|
|
|
|
for_each_pipe(dev_priv, pipe) {
|
|
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
long lret;
|
|
|
|
if (!((1 << pipe) & crtc_mask))
|
|
continue;
|
|
|
|
lret = wait_event_timeout(dev->vblank[pipe].queue,
|
|
last_vblank_count[pipe] !=
|
|
drm_crtc_vblank_count(crtc),
|
|
msecs_to_jiffies(50));
|
|
|
|
WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
|
|
|
|
drm_crtc_vblank_put(crtc);
|
|
}
|
|
}
|
|
|
|
static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
|
|
{
|
|
/* fb updated, need to unpin old fb */
|
|
if (crtc_state->fb_changed)
|
|
return true;
|
|
|
|
/* wm changes, need vblank before final wm's */
|
|
if (crtc_state->update_wm_post)
|
|
return true;
|
|
|
|
/*
|
|
* cxsr is re-enabled after vblank.
|
|
* This is already handled by crtc_state->update_wm_post,
|
|
* but added for clarity.
|
|
*/
|
|
if (crtc_state->disable_cxsr)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void intel_atomic_commit_tail(struct drm_atomic_state *state)
|
|
{
|
|
struct drm_device *dev = state->dev;
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_crtc_state *old_crtc_state;
|
|
struct drm_crtc *crtc;
|
|
struct intel_crtc_state *intel_cstate;
|
|
struct drm_plane *plane;
|
|
struct drm_plane_state *plane_state;
|
|
bool hw_check = intel_state->modeset;
|
|
unsigned long put_domains[I915_MAX_PIPES] = {};
|
|
unsigned crtc_vblank_mask = 0;
|
|
int i, ret;
|
|
|
|
for_each_plane_in_state(state, plane, plane_state, i) {
|
|
struct intel_plane_state *intel_plane_state =
|
|
to_intel_plane_state(plane_state);
|
|
|
|
if (!intel_plane_state->wait_req)
|
|
continue;
|
|
|
|
ret = i915_wait_request(intel_plane_state->wait_req,
|
|
true, NULL, NULL);
|
|
/* EIO should be eaten, and we can't get interrupted in the
|
|
* worker, and blocking commits have waited already. */
|
|
WARN_ON(ret);
|
|
}
|
|
|
|
drm_atomic_helper_wait_for_dependencies(state);
|
|
|
|
if (intel_state->modeset) {
|
|
memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
|
|
sizeof(intel_state->min_pixclk));
|
|
dev_priv->active_crtcs = intel_state->active_crtcs;
|
|
dev_priv->atomic_cdclk_freq = intel_state->cdclk;
|
|
|
|
intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
|
|
}
|
|
|
|
for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
if (needs_modeset(crtc->state) ||
|
|
to_intel_crtc_state(crtc->state)->update_pipe) {
|
|
hw_check = true;
|
|
|
|
put_domains[to_intel_crtc(crtc)->pipe] =
|
|
modeset_get_crtc_power_domains(crtc,
|
|
to_intel_crtc_state(crtc->state));
|
|
}
|
|
|
|
if (!needs_modeset(crtc->state))
|
|
continue;
|
|
|
|
intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
|
|
|
|
if (old_crtc_state->active) {
|
|
intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
|
|
dev_priv->display.crtc_disable(crtc);
|
|
intel_crtc->active = false;
|
|
intel_fbc_disable(intel_crtc);
|
|
intel_disable_shared_dpll(intel_crtc);
|
|
|
|
/*
|
|
* Underruns don't always raise
|
|
* interrupts, so check manually.
|
|
*/
|
|
intel_check_cpu_fifo_underruns(dev_priv);
|
|
intel_check_pch_fifo_underruns(dev_priv);
|
|
|
|
if (!crtc->state->active)
|
|
intel_update_watermarks(crtc);
|
|
}
|
|
}
|
|
|
|
/* Only after disabling all output pipelines that will be changed can we
|
|
* update the the output configuration. */
|
|
intel_modeset_update_crtc_state(state);
|
|
|
|
if (intel_state->modeset) {
|
|
drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
|
|
|
|
if (dev_priv->display.modeset_commit_cdclk &&
|
|
(intel_state->dev_cdclk != dev_priv->cdclk_freq ||
|
|
intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
|
|
dev_priv->display.modeset_commit_cdclk(state);
|
|
|
|
intel_modeset_verify_disabled(dev);
|
|
}
|
|
|
|
/* Now enable the clocks, plane, pipe, and connectors that we set up. */
|
|
for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
bool modeset = needs_modeset(crtc->state);
|
|
struct intel_crtc_state *pipe_config =
|
|
to_intel_crtc_state(crtc->state);
|
|
|
|
if (modeset && crtc->state->active) {
|
|
update_scanline_offset(to_intel_crtc(crtc));
|
|
dev_priv->display.crtc_enable(crtc);
|
|
}
|
|
|
|
/* Complete events for now disable pipes here. */
|
|
if (modeset && !crtc->state->active && crtc->state->event) {
|
|
spin_lock_irq(&dev->event_lock);
|
|
drm_crtc_send_vblank_event(crtc, crtc->state->event);
|
|
spin_unlock_irq(&dev->event_lock);
|
|
|
|
crtc->state->event = NULL;
|
|
}
|
|
|
|
if (!modeset)
|
|
intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
|
|
|
|
if (crtc->state->active &&
|
|
drm_atomic_get_existing_plane_state(state, crtc->primary))
|
|
intel_fbc_enable(intel_crtc, pipe_config, to_intel_plane_state(crtc->primary->state));
|
|
|
|
if (crtc->state->active)
|
|
drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
|
|
|
|
if (pipe_config->base.active && needs_vblank_wait(pipe_config))
|
|
crtc_vblank_mask |= 1 << i;
|
|
}
|
|
|
|
/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
|
|
* already, but still need the state for the delayed optimization. To
|
|
* fix this:
|
|
* - wrap the optimization/post_plane_update stuff into a per-crtc work.
|
|
* - schedule that vblank worker _before_ calling hw_done
|
|
* - at the start of commit_tail, cancel it _synchrously
|
|
* - switch over to the vblank wait helper in the core after that since
|
|
* we don't need out special handling any more.
|
|
*/
|
|
if (!state->legacy_cursor_update)
|
|
intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
|
|
|
|
/*
|
|
* Now that the vblank has passed, we can go ahead and program the
|
|
* optimal watermarks on platforms that need two-step watermark
|
|
* programming.
|
|
*
|
|
* TODO: Move this (and other cleanup) to an async worker eventually.
|
|
*/
|
|
for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
|
|
intel_cstate = to_intel_crtc_state(crtc->state);
|
|
|
|
if (dev_priv->display.optimize_watermarks)
|
|
dev_priv->display.optimize_watermarks(intel_cstate);
|
|
}
|
|
|
|
for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
|
|
intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
|
|
|
|
if (put_domains[i])
|
|
modeset_put_power_domains(dev_priv, put_domains[i]);
|
|
|
|
intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
|
|
}
|
|
|
|
drm_atomic_helper_commit_hw_done(state);
|
|
|
|
if (intel_state->modeset)
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
drm_atomic_helper_cleanup_planes(dev, state);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
drm_atomic_helper_commit_cleanup_done(state);
|
|
|
|
drm_atomic_state_free(state);
|
|
|
|
/* As one of the primary mmio accessors, KMS has a high likelihood
|
|
* of triggering bugs in unclaimed access. After we finish
|
|
* modesetting, see if an error has been flagged, and if so
|
|
* enable debugging for the next modeset - and hope we catch
|
|
* the culprit.
|
|
*
|
|
* XXX note that we assume display power is on at this point.
|
|
* This might hold true now but we need to add pm helper to check
|
|
* unclaimed only when the hardware is on, as atomic commits
|
|
* can happen also when the device is completely off.
|
|
*/
|
|
intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
|
|
}
|
|
|
|
static void intel_atomic_commit_work(struct work_struct *work)
|
|
{
|
|
struct drm_atomic_state *state = container_of(work,
|
|
struct drm_atomic_state,
|
|
commit_work);
|
|
intel_atomic_commit_tail(state);
|
|
}
|
|
|
|
static void intel_atomic_track_fbs(struct drm_atomic_state *state)
|
|
{
|
|
struct drm_plane_state *old_plane_state;
|
|
struct drm_plane *plane;
|
|
int i;
|
|
|
|
for_each_plane_in_state(state, plane, old_plane_state, i)
|
|
i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
|
|
intel_fb_obj(plane->state->fb),
|
|
to_intel_plane(plane)->frontbuffer_bit);
|
|
}
|
|
|
|
/**
|
|
* intel_atomic_commit - commit validated state object
|
|
* @dev: DRM device
|
|
* @state: the top-level driver state object
|
|
* @nonblock: nonblocking commit
|
|
*
|
|
* This function commits a top-level state object that has been validated
|
|
* with drm_atomic_helper_check().
|
|
*
|
|
* FIXME: Atomic modeset support for i915 is not yet complete. At the moment
|
|
* nonblocking commits are only safe for pure plane updates. Everything else
|
|
* should work though.
|
|
*
|
|
* RETURNS
|
|
* Zero for success or -errno.
|
|
*/
|
|
static int intel_atomic_commit(struct drm_device *dev,
|
|
struct drm_atomic_state *state,
|
|
bool nonblock)
|
|
{
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int ret = 0;
|
|
|
|
if (intel_state->modeset && nonblock) {
|
|
DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = drm_atomic_helper_setup_commit(state, nonblock);
|
|
if (ret)
|
|
return ret;
|
|
|
|
INIT_WORK(&state->commit_work, intel_atomic_commit_work);
|
|
|
|
ret = intel_atomic_prepare_commit(dev, state, nonblock);
|
|
if (ret) {
|
|
DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
drm_atomic_helper_swap_state(state, true);
|
|
dev_priv->wm.distrust_bios_wm = false;
|
|
dev_priv->wm.skl_results = intel_state->wm_results;
|
|
intel_shared_dpll_commit(state);
|
|
intel_atomic_track_fbs(state);
|
|
|
|
if (nonblock)
|
|
queue_work(system_unbound_wq, &state->commit_work);
|
|
else
|
|
intel_atomic_commit_tail(state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_crtc_restore_mode(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_atomic_state *state;
|
|
struct drm_crtc_state *crtc_state;
|
|
int ret;
|
|
|
|
state = drm_atomic_state_alloc(dev);
|
|
if (!state) {
|
|
DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
|
|
crtc->base.id, crtc->name);
|
|
return;
|
|
}
|
|
|
|
state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
|
|
|
|
retry:
|
|
crtc_state = drm_atomic_get_crtc_state(state, crtc);
|
|
ret = PTR_ERR_OR_ZERO(crtc_state);
|
|
if (!ret) {
|
|
if (!crtc_state->active)
|
|
goto out;
|
|
|
|
crtc_state->mode_changed = true;
|
|
ret = drm_atomic_commit(state);
|
|
}
|
|
|
|
if (ret == -EDEADLK) {
|
|
drm_atomic_state_clear(state);
|
|
drm_modeset_backoff(state->acquire_ctx);
|
|
goto retry;
|
|
}
|
|
|
|
if (ret)
|
|
out:
|
|
drm_atomic_state_free(state);
|
|
}
|
|
|
|
#undef for_each_intel_crtc_masked
|
|
|
|
/*
|
|
* FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
|
|
* drm_atomic_helper_legacy_gamma_set() directly.
|
|
*/
|
|
static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
|
|
u16 *red, u16 *green, u16 *blue,
|
|
uint32_t size)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_mode_config *config = &dev->mode_config;
|
|
struct drm_crtc_state *state;
|
|
int ret;
|
|
|
|
ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Make sure we update the legacy properties so this works when
|
|
* atomic is not enabled.
|
|
*/
|
|
|
|
state = crtc->state;
|
|
|
|
drm_object_property_set_value(&crtc->base,
|
|
config->degamma_lut_property,
|
|
(state->degamma_lut) ?
|
|
state->degamma_lut->base.id : 0);
|
|
|
|
drm_object_property_set_value(&crtc->base,
|
|
config->ctm_property,
|
|
(state->ctm) ?
|
|
state->ctm->base.id : 0);
|
|
|
|
drm_object_property_set_value(&crtc->base,
|
|
config->gamma_lut_property,
|
|
(state->gamma_lut) ?
|
|
state->gamma_lut->base.id : 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct drm_crtc_funcs intel_crtc_funcs = {
|
|
.gamma_set = intel_atomic_legacy_gamma_set,
|
|
.set_config = drm_atomic_helper_set_config,
|
|
.set_property = drm_atomic_helper_crtc_set_property,
|
|
.destroy = intel_crtc_destroy,
|
|
.page_flip = intel_crtc_page_flip,
|
|
.atomic_duplicate_state = intel_crtc_duplicate_state,
|
|
.atomic_destroy_state = intel_crtc_destroy_state,
|
|
};
|
|
|
|
/**
|
|
* intel_prepare_plane_fb - Prepare fb for usage on plane
|
|
* @plane: drm plane to prepare for
|
|
* @fb: framebuffer to prepare for presentation
|
|
*
|
|
* Prepares a framebuffer for usage on a display plane. Generally this
|
|
* involves pinning the underlying object and updating the frontbuffer tracking
|
|
* bits. Some older platforms need special physical address handling for
|
|
* cursor planes.
|
|
*
|
|
* Must be called with struct_mutex held.
|
|
*
|
|
* Returns 0 on success, negative error code on failure.
|
|
*/
|
|
int
|
|
intel_prepare_plane_fb(struct drm_plane *plane,
|
|
const struct drm_plane_state *new_state)
|
|
{
|
|
struct drm_device *dev = plane->dev;
|
|
struct drm_framebuffer *fb = new_state->fb;
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
|
|
struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
|
|
struct reservation_object *resv;
|
|
int ret = 0;
|
|
|
|
if (!obj && !old_obj)
|
|
return 0;
|
|
|
|
if (old_obj) {
|
|
struct drm_crtc_state *crtc_state =
|
|
drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
|
|
|
|
/* Big Hammer, we also need to ensure that any pending
|
|
* MI_WAIT_FOR_EVENT inside a user batch buffer on the
|
|
* current scanout is retired before unpinning the old
|
|
* framebuffer. Note that we rely on userspace rendering
|
|
* into the buffer attached to the pipe they are waiting
|
|
* on. If not, userspace generates a GPU hang with IPEHR
|
|
* point to the MI_WAIT_FOR_EVENT.
|
|
*
|
|
* This should only fail upon a hung GPU, in which case we
|
|
* can safely continue.
|
|
*/
|
|
if (needs_modeset(crtc_state))
|
|
ret = i915_gem_object_wait_rendering(old_obj, true);
|
|
if (ret) {
|
|
/* GPU hangs should have been swallowed by the wait */
|
|
WARN_ON(ret == -EIO);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (!obj)
|
|
return 0;
|
|
|
|
/* For framebuffer backed by dmabuf, wait for fence */
|
|
resv = i915_gem_object_get_dmabuf_resv(obj);
|
|
if (resv) {
|
|
long lret;
|
|
|
|
lret = reservation_object_wait_timeout_rcu(resv, false, true,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
if (lret == -ERESTARTSYS)
|
|
return lret;
|
|
|
|
WARN(lret < 0, "waiting returns %li\n", lret);
|
|
}
|
|
|
|
if (plane->type == DRM_PLANE_TYPE_CURSOR &&
|
|
INTEL_INFO(dev)->cursor_needs_physical) {
|
|
int align = IS_I830(dev) ? 16 * 1024 : 256;
|
|
ret = i915_gem_object_attach_phys(obj, align);
|
|
if (ret)
|
|
DRM_DEBUG_KMS("failed to attach phys object\n");
|
|
} else {
|
|
ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
|
|
}
|
|
|
|
if (ret == 0) {
|
|
to_intel_plane_state(new_state)->wait_req =
|
|
i915_gem_active_get(&obj->last_write,
|
|
&obj->base.dev->struct_mutex);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* intel_cleanup_plane_fb - Cleans up an fb after plane use
|
|
* @plane: drm plane to clean up for
|
|
* @fb: old framebuffer that was on plane
|
|
*
|
|
* Cleans up a framebuffer that has just been removed from a plane.
|
|
*
|
|
* Must be called with struct_mutex held.
|
|
*/
|
|
void
|
|
intel_cleanup_plane_fb(struct drm_plane *plane,
|
|
const struct drm_plane_state *old_state)
|
|
{
|
|
struct drm_device *dev = plane->dev;
|
|
struct intel_plane_state *old_intel_state;
|
|
struct intel_plane_state *intel_state = to_intel_plane_state(plane->state);
|
|
struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
|
|
|
|
old_intel_state = to_intel_plane_state(old_state);
|
|
|
|
if (!obj && !old_obj)
|
|
return;
|
|
|
|
if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
|
|
!INTEL_INFO(dev)->cursor_needs_physical))
|
|
intel_unpin_fb_obj(old_state->fb, old_state->rotation);
|
|
|
|
i915_gem_request_assign(&intel_state->wait_req, NULL);
|
|
i915_gem_request_assign(&old_intel_state->wait_req, NULL);
|
|
}
|
|
|
|
int
|
|
skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
|
|
{
|
|
int max_scale;
|
|
int crtc_clock, cdclk;
|
|
|
|
if (!intel_crtc || !crtc_state->base.enable)
|
|
return DRM_PLANE_HELPER_NO_SCALING;
|
|
|
|
crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
|
|
cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
|
|
|
|
if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
|
|
return DRM_PLANE_HELPER_NO_SCALING;
|
|
|
|
/*
|
|
* skl max scale is lower of:
|
|
* close to 3 but not 3, -1 is for that purpose
|
|
* or
|
|
* cdclk/crtc_clock
|
|
*/
|
|
max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
|
|
|
|
return max_scale;
|
|
}
|
|
|
|
static int
|
|
intel_check_primary_plane(struct drm_plane *plane,
|
|
struct intel_crtc_state *crtc_state,
|
|
struct intel_plane_state *state)
|
|
{
|
|
struct drm_crtc *crtc = state->base.crtc;
|
|
struct drm_framebuffer *fb = state->base.fb;
|
|
int min_scale = DRM_PLANE_HELPER_NO_SCALING;
|
|
int max_scale = DRM_PLANE_HELPER_NO_SCALING;
|
|
bool can_position = false;
|
|
|
|
if (INTEL_INFO(plane->dev)->gen >= 9) {
|
|
/* use scaler when colorkey is not required */
|
|
if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
|
|
min_scale = 1;
|
|
max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
|
|
}
|
|
can_position = true;
|
|
}
|
|
|
|
return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
|
|
&state->dst, &state->clip,
|
|
state->base.rotation,
|
|
min_scale, max_scale,
|
|
can_position, true,
|
|
&state->visible);
|
|
}
|
|
|
|
static void intel_begin_crtc_commit(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_crtc_state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_crtc_state *old_intel_state =
|
|
to_intel_crtc_state(old_crtc_state);
|
|
bool modeset = needs_modeset(crtc->state);
|
|
|
|
/* Perform vblank evasion around commit operation */
|
|
intel_pipe_update_start(intel_crtc);
|
|
|
|
if (modeset)
|
|
return;
|
|
|
|
if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
|
|
intel_color_set_csc(crtc->state);
|
|
intel_color_load_luts(crtc->state);
|
|
}
|
|
|
|
if (to_intel_crtc_state(crtc->state)->update_pipe)
|
|
intel_update_pipe_config(intel_crtc, old_intel_state);
|
|
else if (INTEL_INFO(dev)->gen >= 9)
|
|
skl_detach_scalers(intel_crtc);
|
|
}
|
|
|
|
static void intel_finish_crtc_commit(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_crtc_state)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
intel_pipe_update_end(intel_crtc, NULL);
|
|
}
|
|
|
|
/**
|
|
* intel_plane_destroy - destroy a plane
|
|
* @plane: plane to destroy
|
|
*
|
|
* Common destruction function for all types of planes (primary, cursor,
|
|
* sprite).
|
|
*/
|
|
void intel_plane_destroy(struct drm_plane *plane)
|
|
{
|
|
if (!plane)
|
|
return;
|
|
|
|
drm_plane_cleanup(plane);
|
|
kfree(to_intel_plane(plane));
|
|
}
|
|
|
|
const struct drm_plane_funcs intel_plane_funcs = {
|
|
.update_plane = drm_atomic_helper_update_plane,
|
|
.disable_plane = drm_atomic_helper_disable_plane,
|
|
.destroy = intel_plane_destroy,
|
|
.set_property = drm_atomic_helper_plane_set_property,
|
|
.atomic_get_property = intel_plane_atomic_get_property,
|
|
.atomic_set_property = intel_plane_atomic_set_property,
|
|
.atomic_duplicate_state = intel_plane_duplicate_state,
|
|
.atomic_destroy_state = intel_plane_destroy_state,
|
|
|
|
};
|
|
|
|
static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
|
|
int pipe)
|
|
{
|
|
struct intel_plane *primary = NULL;
|
|
struct intel_plane_state *state = NULL;
|
|
const uint32_t *intel_primary_formats;
|
|
unsigned int num_formats;
|
|
int ret;
|
|
|
|
primary = kzalloc(sizeof(*primary), GFP_KERNEL);
|
|
if (!primary)
|
|
goto fail;
|
|
|
|
state = intel_create_plane_state(&primary->base);
|
|
if (!state)
|
|
goto fail;
|
|
primary->base.state = &state->base;
|
|
|
|
primary->can_scale = false;
|
|
primary->max_downscale = 1;
|
|
if (INTEL_INFO(dev)->gen >= 9) {
|
|
primary->can_scale = true;
|
|
state->scaler_id = -1;
|
|
}
|
|
primary->pipe = pipe;
|
|
primary->plane = pipe;
|
|
primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
|
|
primary->check_plane = intel_check_primary_plane;
|
|
if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
|
|
primary->plane = !pipe;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 9) {
|
|
intel_primary_formats = skl_primary_formats;
|
|
num_formats = ARRAY_SIZE(skl_primary_formats);
|
|
|
|
primary->update_plane = skylake_update_primary_plane;
|
|
primary->disable_plane = skylake_disable_primary_plane;
|
|
} else if (HAS_PCH_SPLIT(dev)) {
|
|
intel_primary_formats = i965_primary_formats;
|
|
num_formats = ARRAY_SIZE(i965_primary_formats);
|
|
|
|
primary->update_plane = ironlake_update_primary_plane;
|
|
primary->disable_plane = i9xx_disable_primary_plane;
|
|
} else if (INTEL_INFO(dev)->gen >= 4) {
|
|
intel_primary_formats = i965_primary_formats;
|
|
num_formats = ARRAY_SIZE(i965_primary_formats);
|
|
|
|
primary->update_plane = i9xx_update_primary_plane;
|
|
primary->disable_plane = i9xx_disable_primary_plane;
|
|
} else {
|
|
intel_primary_formats = i8xx_primary_formats;
|
|
num_formats = ARRAY_SIZE(i8xx_primary_formats);
|
|
|
|
primary->update_plane = i9xx_update_primary_plane;
|
|
primary->disable_plane = i9xx_disable_primary_plane;
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->gen >= 9)
|
|
ret = drm_universal_plane_init(dev, &primary->base, 0,
|
|
&intel_plane_funcs,
|
|
intel_primary_formats, num_formats,
|
|
DRM_PLANE_TYPE_PRIMARY,
|
|
"plane 1%c", pipe_name(pipe));
|
|
else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
|
|
ret = drm_universal_plane_init(dev, &primary->base, 0,
|
|
&intel_plane_funcs,
|
|
intel_primary_formats, num_formats,
|
|
DRM_PLANE_TYPE_PRIMARY,
|
|
"primary %c", pipe_name(pipe));
|
|
else
|
|
ret = drm_universal_plane_init(dev, &primary->base, 0,
|
|
&intel_plane_funcs,
|
|
intel_primary_formats, num_formats,
|
|
DRM_PLANE_TYPE_PRIMARY,
|
|
"plane %c", plane_name(primary->plane));
|
|
if (ret)
|
|
goto fail;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4)
|
|
intel_create_rotation_property(dev, primary);
|
|
|
|
drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
|
|
|
|
return &primary->base;
|
|
|
|
fail:
|
|
kfree(state);
|
|
kfree(primary);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
|
|
{
|
|
if (!dev->mode_config.rotation_property) {
|
|
unsigned long flags = BIT(DRM_ROTATE_0) |
|
|
BIT(DRM_ROTATE_180);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 9)
|
|
flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
|
|
|
|
dev->mode_config.rotation_property =
|
|
drm_mode_create_rotation_property(dev, flags);
|
|
}
|
|
if (dev->mode_config.rotation_property)
|
|
drm_object_attach_property(&plane->base.base,
|
|
dev->mode_config.rotation_property,
|
|
plane->base.state->rotation);
|
|
}
|
|
|
|
static int
|
|
intel_check_cursor_plane(struct drm_plane *plane,
|
|
struct intel_crtc_state *crtc_state,
|
|
struct intel_plane_state *state)
|
|
{
|
|
struct drm_crtc *crtc = crtc_state->base.crtc;
|
|
struct drm_framebuffer *fb = state->base.fb;
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
|
|
enum pipe pipe = to_intel_plane(plane)->pipe;
|
|
unsigned stride;
|
|
int ret;
|
|
|
|
ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
|
|
&state->dst, &state->clip,
|
|
state->base.rotation,
|
|
DRM_PLANE_HELPER_NO_SCALING,
|
|
DRM_PLANE_HELPER_NO_SCALING,
|
|
true, true, &state->visible);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* if we want to turn off the cursor ignore width and height */
|
|
if (!obj)
|
|
return 0;
|
|
|
|
/* Check for which cursor types we support */
|
|
if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
|
|
DRM_DEBUG("Cursor dimension %dx%d not supported\n",
|
|
state->base.crtc_w, state->base.crtc_h);
|
|
return -EINVAL;
|
|
}
|
|
|
|
stride = roundup_pow_of_two(state->base.crtc_w) * 4;
|
|
if (obj->base.size < stride * state->base.crtc_h) {
|
|
DRM_DEBUG_KMS("buffer is too small\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
|
|
DRM_DEBUG_KMS("cursor cannot be tiled\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* There's something wrong with the cursor on CHV pipe C.
|
|
* If it straddles the left edge of the screen then
|
|
* moving it away from the edge or disabling it often
|
|
* results in a pipe underrun, and often that can lead to
|
|
* dead pipe (constant underrun reported, and it scans
|
|
* out just a solid color). To recover from that, the
|
|
* display power well must be turned off and on again.
|
|
* Refuse the put the cursor into that compromised position.
|
|
*/
|
|
if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
|
|
state->visible && state->base.crtc_x < 0) {
|
|
DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
intel_disable_cursor_plane(struct drm_plane *plane,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
intel_crtc->cursor_addr = 0;
|
|
intel_crtc_update_cursor(crtc, NULL);
|
|
}
|
|
|
|
static void
|
|
intel_update_cursor_plane(struct drm_plane *plane,
|
|
const struct intel_crtc_state *crtc_state,
|
|
const struct intel_plane_state *state)
|
|
{
|
|
struct drm_crtc *crtc = crtc_state->base.crtc;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_device *dev = plane->dev;
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
|
|
uint32_t addr;
|
|
|
|
if (!obj)
|
|
addr = 0;
|
|
else if (!INTEL_INFO(dev)->cursor_needs_physical)
|
|
addr = i915_gem_obj_ggtt_offset(obj);
|
|
else
|
|
addr = obj->phys_handle->busaddr;
|
|
|
|
intel_crtc->cursor_addr = addr;
|
|
intel_crtc_update_cursor(crtc, state);
|
|
}
|
|
|
|
static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
|
|
int pipe)
|
|
{
|
|
struct intel_plane *cursor = NULL;
|
|
struct intel_plane_state *state = NULL;
|
|
int ret;
|
|
|
|
cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
|
|
if (!cursor)
|
|
goto fail;
|
|
|
|
state = intel_create_plane_state(&cursor->base);
|
|
if (!state)
|
|
goto fail;
|
|
cursor->base.state = &state->base;
|
|
|
|
cursor->can_scale = false;
|
|
cursor->max_downscale = 1;
|
|
cursor->pipe = pipe;
|
|
cursor->plane = pipe;
|
|
cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
|
|
cursor->check_plane = intel_check_cursor_plane;
|
|
cursor->update_plane = intel_update_cursor_plane;
|
|
cursor->disable_plane = intel_disable_cursor_plane;
|
|
|
|
ret = drm_universal_plane_init(dev, &cursor->base, 0,
|
|
&intel_plane_funcs,
|
|
intel_cursor_formats,
|
|
ARRAY_SIZE(intel_cursor_formats),
|
|
DRM_PLANE_TYPE_CURSOR,
|
|
"cursor %c", pipe_name(pipe));
|
|
if (ret)
|
|
goto fail;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
if (!dev->mode_config.rotation_property)
|
|
dev->mode_config.rotation_property =
|
|
drm_mode_create_rotation_property(dev,
|
|
BIT(DRM_ROTATE_0) |
|
|
BIT(DRM_ROTATE_180));
|
|
if (dev->mode_config.rotation_property)
|
|
drm_object_attach_property(&cursor->base.base,
|
|
dev->mode_config.rotation_property,
|
|
state->base.rotation);
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->gen >=9)
|
|
state->scaler_id = -1;
|
|
|
|
drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
|
|
|
|
return &cursor->base;
|
|
|
|
fail:
|
|
kfree(state);
|
|
kfree(cursor);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
int i;
|
|
struct intel_scaler *intel_scaler;
|
|
struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
|
|
|
|
for (i = 0; i < intel_crtc->num_scalers; i++) {
|
|
intel_scaler = &scaler_state->scalers[i];
|
|
intel_scaler->in_use = 0;
|
|
intel_scaler->mode = PS_SCALER_MODE_DYN;
|
|
}
|
|
|
|
scaler_state->scaler_id = -1;
|
|
}
|
|
|
|
static void intel_crtc_init(struct drm_device *dev, int pipe)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc;
|
|
struct intel_crtc_state *crtc_state = NULL;
|
|
struct drm_plane *primary = NULL;
|
|
struct drm_plane *cursor = NULL;
|
|
int ret;
|
|
|
|
intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
|
|
if (intel_crtc == NULL)
|
|
return;
|
|
|
|
crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
|
|
if (!crtc_state)
|
|
goto fail;
|
|
intel_crtc->config = crtc_state;
|
|
intel_crtc->base.state = &crtc_state->base;
|
|
crtc_state->base.crtc = &intel_crtc->base;
|
|
|
|
/* initialize shared scalers */
|
|
if (INTEL_INFO(dev)->gen >= 9) {
|
|
if (pipe == PIPE_C)
|
|
intel_crtc->num_scalers = 1;
|
|
else
|
|
intel_crtc->num_scalers = SKL_NUM_SCALERS;
|
|
|
|
skl_init_scalers(dev, intel_crtc, crtc_state);
|
|
}
|
|
|
|
primary = intel_primary_plane_create(dev, pipe);
|
|
if (!primary)
|
|
goto fail;
|
|
|
|
cursor = intel_cursor_plane_create(dev, pipe);
|
|
if (!cursor)
|
|
goto fail;
|
|
|
|
ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
|
|
cursor, &intel_crtc_funcs,
|
|
"pipe %c", pipe_name(pipe));
|
|
if (ret)
|
|
goto fail;
|
|
|
|
/*
|
|
* On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
|
|
* is hooked to pipe B. Hence we want plane A feeding pipe B.
|
|
*/
|
|
intel_crtc->pipe = pipe;
|
|
intel_crtc->plane = pipe;
|
|
if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
|
|
DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
|
|
intel_crtc->plane = !pipe;
|
|
}
|
|
|
|
intel_crtc->cursor_base = ~0;
|
|
intel_crtc->cursor_cntl = ~0;
|
|
intel_crtc->cursor_size = ~0;
|
|
|
|
intel_crtc->wm.cxsr_allowed = true;
|
|
|
|
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
|
|
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
|
|
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
|
|
dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
|
|
|
|
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
|
|
|
|
intel_color_init(&intel_crtc->base);
|
|
|
|
WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
|
|
return;
|
|
|
|
fail:
|
|
intel_plane_destroy(primary);
|
|
intel_plane_destroy(cursor);
|
|
kfree(crtc_state);
|
|
kfree(intel_crtc);
|
|
}
|
|
|
|
enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
|
|
{
|
|
struct drm_encoder *encoder = connector->base.encoder;
|
|
struct drm_device *dev = connector->base.dev;
|
|
|
|
WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
|
|
|
|
if (!encoder || WARN_ON(!encoder->crtc))
|
|
return INVALID_PIPE;
|
|
|
|
return to_intel_crtc(encoder->crtc)->pipe;
|
|
}
|
|
|
|
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
|
|
struct drm_crtc *drmmode_crtc;
|
|
struct intel_crtc *crtc;
|
|
|
|
drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
|
|
if (!drmmode_crtc)
|
|
return -ENOENT;
|
|
|
|
crtc = to_intel_crtc(drmmode_crtc);
|
|
pipe_from_crtc_id->pipe = crtc->pipe;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_encoder_clones(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct intel_encoder *source_encoder;
|
|
int index_mask = 0;
|
|
int entry = 0;
|
|
|
|
for_each_intel_encoder(dev, source_encoder) {
|
|
if (encoders_cloneable(encoder, source_encoder))
|
|
index_mask |= (1 << entry);
|
|
|
|
entry++;
|
|
}
|
|
|
|
return index_mask;
|
|
}
|
|
|
|
static bool has_edp_a(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (!IS_MOBILE(dev))
|
|
return false;
|
|
|
|
if ((I915_READ(DP_A) & DP_DETECTED) == 0)
|
|
return false;
|
|
|
|
if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool intel_crt_present(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 9)
|
|
return false;
|
|
|
|
if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
|
|
return false;
|
|
|
|
if (IS_CHERRYVIEW(dev))
|
|
return false;
|
|
|
|
if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
|
|
return false;
|
|
|
|
/* DDI E can't be used if DDI A requires 4 lanes */
|
|
if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
|
|
return false;
|
|
|
|
if (!dev_priv->vbt.int_crt_support)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
|
|
{
|
|
int pps_num;
|
|
int pps_idx;
|
|
|
|
if (HAS_DDI(dev_priv))
|
|
return;
|
|
/*
|
|
* This w/a is needed at least on CPT/PPT, but to be sure apply it
|
|
* everywhere where registers can be write protected.
|
|
*/
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
pps_num = 2;
|
|
else
|
|
pps_num = 1;
|
|
|
|
for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
|
|
u32 val = I915_READ(PP_CONTROL(pps_idx));
|
|
|
|
val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
|
|
I915_WRITE(PP_CONTROL(pps_idx), val);
|
|
}
|
|
}
|
|
|
|
static void intel_pps_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
|
|
dev_priv->pps_mmio_base = PCH_PPS_BASE;
|
|
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
dev_priv->pps_mmio_base = VLV_PPS_BASE;
|
|
else
|
|
dev_priv->pps_mmio_base = PPS_BASE;
|
|
|
|
intel_pps_unlock_regs_wa(dev_priv);
|
|
}
|
|
|
|
static void intel_setup_outputs(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_encoder *encoder;
|
|
bool dpd_is_edp = false;
|
|
|
|
intel_pps_init(dev_priv);
|
|
|
|
/*
|
|
* intel_edp_init_connector() depends on this completing first, to
|
|
* prevent the registeration of both eDP and LVDS and the incorrect
|
|
* sharing of the PPS.
|
|
*/
|
|
intel_lvds_init(dev);
|
|
|
|
if (intel_crt_present(dev))
|
|
intel_crt_init(dev);
|
|
|
|
if (IS_BROXTON(dev)) {
|
|
/*
|
|
* FIXME: Broxton doesn't support port detection via the
|
|
* DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
|
|
* detect the ports.
|
|
*/
|
|
intel_ddi_init(dev, PORT_A);
|
|
intel_ddi_init(dev, PORT_B);
|
|
intel_ddi_init(dev, PORT_C);
|
|
|
|
intel_dsi_init(dev);
|
|
} else if (HAS_DDI(dev)) {
|
|
int found;
|
|
|
|
/*
|
|
* Haswell uses DDI functions to detect digital outputs.
|
|
* On SKL pre-D0 the strap isn't connected, so we assume
|
|
* it's there.
|
|
*/
|
|
found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
|
|
/* WaIgnoreDDIAStrap: skl */
|
|
if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
|
|
intel_ddi_init(dev, PORT_A);
|
|
|
|
/* DDI B, C and D detection is indicated by the SFUSE_STRAP
|
|
* register */
|
|
found = I915_READ(SFUSE_STRAP);
|
|
|
|
if (found & SFUSE_STRAP_DDIB_DETECTED)
|
|
intel_ddi_init(dev, PORT_B);
|
|
if (found & SFUSE_STRAP_DDIC_DETECTED)
|
|
intel_ddi_init(dev, PORT_C);
|
|
if (found & SFUSE_STRAP_DDID_DETECTED)
|
|
intel_ddi_init(dev, PORT_D);
|
|
/*
|
|
* On SKL we don't have a way to detect DDI-E so we rely on VBT.
|
|
*/
|
|
if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
|
|
(dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
|
|
dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
|
|
dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
|
|
intel_ddi_init(dev, PORT_E);
|
|
|
|
} else if (HAS_PCH_SPLIT(dev)) {
|
|
int found;
|
|
dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
|
|
|
|
if (has_edp_a(dev))
|
|
intel_dp_init(dev, DP_A, PORT_A);
|
|
|
|
if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
|
|
/* PCH SDVOB multiplex with HDMIB */
|
|
found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
|
|
if (!found)
|
|
intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
|
|
if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
|
|
intel_dp_init(dev, PCH_DP_B, PORT_B);
|
|
}
|
|
|
|
if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
|
|
intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
|
|
|
|
if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
|
|
intel_hdmi_init(dev, PCH_HDMID, PORT_D);
|
|
|
|
if (I915_READ(PCH_DP_C) & DP_DETECTED)
|
|
intel_dp_init(dev, PCH_DP_C, PORT_C);
|
|
|
|
if (I915_READ(PCH_DP_D) & DP_DETECTED)
|
|
intel_dp_init(dev, PCH_DP_D, PORT_D);
|
|
} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
|
|
bool has_edp, has_port;
|
|
|
|
/*
|
|
* The DP_DETECTED bit is the latched state of the DDC
|
|
* SDA pin at boot. However since eDP doesn't require DDC
|
|
* (no way to plug in a DP->HDMI dongle) the DDC pins for
|
|
* eDP ports may have been muxed to an alternate function.
|
|
* Thus we can't rely on the DP_DETECTED bit alone to detect
|
|
* eDP ports. Consult the VBT as well as DP_DETECTED to
|
|
* detect eDP ports.
|
|
*
|
|
* Sadly the straps seem to be missing sometimes even for HDMI
|
|
* ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
|
|
* and VBT for the presence of the port. Additionally we can't
|
|
* trust the port type the VBT declares as we've seen at least
|
|
* HDMI ports that the VBT claim are DP or eDP.
|
|
*/
|
|
has_edp = intel_dp_is_edp(dev, PORT_B);
|
|
has_port = intel_bios_is_port_present(dev_priv, PORT_B);
|
|
if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
|
|
has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
|
|
if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
|
|
intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
|
|
|
|
has_edp = intel_dp_is_edp(dev, PORT_C);
|
|
has_port = intel_bios_is_port_present(dev_priv, PORT_C);
|
|
if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
|
|
has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
|
|
if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
|
|
intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
|
|
|
|
if (IS_CHERRYVIEW(dev)) {
|
|
/*
|
|
* eDP not supported on port D,
|
|
* so no need to worry about it
|
|
*/
|
|
has_port = intel_bios_is_port_present(dev_priv, PORT_D);
|
|
if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
|
|
intel_dp_init(dev, CHV_DP_D, PORT_D);
|
|
if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
|
|
intel_hdmi_init(dev, CHV_HDMID, PORT_D);
|
|
}
|
|
|
|
intel_dsi_init(dev);
|
|
} else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
|
|
bool found = false;
|
|
|
|
if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
|
|
DRM_DEBUG_KMS("probing SDVOB\n");
|
|
found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
|
|
if (!found && IS_G4X(dev)) {
|
|
DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
|
|
intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
|
|
}
|
|
|
|
if (!found && IS_G4X(dev))
|
|
intel_dp_init(dev, DP_B, PORT_B);
|
|
}
|
|
|
|
/* Before G4X SDVOC doesn't have its own detect register */
|
|
|
|
if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
|
|
DRM_DEBUG_KMS("probing SDVOC\n");
|
|
found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
|
|
}
|
|
|
|
if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
|
|
|
|
if (IS_G4X(dev)) {
|
|
DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
|
|
intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
|
|
}
|
|
if (IS_G4X(dev))
|
|
intel_dp_init(dev, DP_C, PORT_C);
|
|
}
|
|
|
|
if (IS_G4X(dev) &&
|
|
(I915_READ(DP_D) & DP_DETECTED))
|
|
intel_dp_init(dev, DP_D, PORT_D);
|
|
} else if (IS_GEN2(dev))
|
|
intel_dvo_init(dev);
|
|
|
|
if (SUPPORTS_TV(dev))
|
|
intel_tv_init(dev);
|
|
|
|
intel_psr_init(dev);
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
encoder->base.possible_crtcs = encoder->crtc_mask;
|
|
encoder->base.possible_clones =
|
|
intel_encoder_clones(encoder);
|
|
}
|
|
|
|
intel_init_pch_refclk(dev);
|
|
|
|
drm_helper_move_panel_connectors_to_head(dev);
|
|
}
|
|
|
|
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
|
|
{
|
|
struct drm_device *dev = fb->dev;
|
|
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
|
|
|
|
drm_framebuffer_cleanup(fb);
|
|
mutex_lock(&dev->struct_mutex);
|
|
WARN_ON(!intel_fb->obj->framebuffer_references--);
|
|
i915_gem_object_put(intel_fb->obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
kfree(intel_fb);
|
|
}
|
|
|
|
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
|
|
struct drm_file *file,
|
|
unsigned int *handle)
|
|
{
|
|
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
|
|
struct drm_i915_gem_object *obj = intel_fb->obj;
|
|
|
|
if (obj->userptr.mm) {
|
|
DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return drm_gem_handle_create(file, &obj->base, handle);
|
|
}
|
|
|
|
static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
|
|
struct drm_file *file,
|
|
unsigned flags, unsigned color,
|
|
struct drm_clip_rect *clips,
|
|
unsigned num_clips)
|
|
{
|
|
struct drm_device *dev = fb->dev;
|
|
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
|
|
struct drm_i915_gem_object *obj = intel_fb->obj;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct drm_framebuffer_funcs intel_fb_funcs = {
|
|
.destroy = intel_user_framebuffer_destroy,
|
|
.create_handle = intel_user_framebuffer_create_handle,
|
|
.dirty = intel_user_framebuffer_dirty,
|
|
};
|
|
|
|
static
|
|
u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
|
|
uint32_t pixel_format)
|
|
{
|
|
u32 gen = INTEL_INFO(dev)->gen;
|
|
|
|
if (gen >= 9) {
|
|
int cpp = drm_format_plane_cpp(pixel_format, 0);
|
|
|
|
/* "The stride in bytes must not exceed the of the size of 8K
|
|
* pixels and 32K bytes."
|
|
*/
|
|
return min(8192 * cpp, 32768);
|
|
} else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
|
|
return 32*1024;
|
|
} else if (gen >= 4) {
|
|
if (fb_modifier == I915_FORMAT_MOD_X_TILED)
|
|
return 16*1024;
|
|
else
|
|
return 32*1024;
|
|
} else if (gen >= 3) {
|
|
if (fb_modifier == I915_FORMAT_MOD_X_TILED)
|
|
return 8*1024;
|
|
else
|
|
return 16*1024;
|
|
} else {
|
|
/* XXX DSPC is limited to 4k tiled */
|
|
return 8*1024;
|
|
}
|
|
}
|
|
|
|
static int intel_framebuffer_init(struct drm_device *dev,
|
|
struct intel_framebuffer *intel_fb,
|
|
struct drm_mode_fb_cmd2 *mode_cmd,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
unsigned int aligned_height;
|
|
int ret;
|
|
u32 pitch_limit, stride_alignment;
|
|
|
|
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
|
|
|
|
if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
|
|
/* Enforce that fb modifier and tiling mode match, but only for
|
|
* X-tiled. This is needed for FBC. */
|
|
if (!!(i915_gem_object_get_tiling(obj) == I915_TILING_X) !=
|
|
!!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
|
|
DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (i915_gem_object_get_tiling(obj) == I915_TILING_X)
|
|
mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
|
|
else if (i915_gem_object_get_tiling(obj) == I915_TILING_Y) {
|
|
DRM_DEBUG("No Y tiling for legacy addfb\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Passed in modifier sanity checking. */
|
|
switch (mode_cmd->modifier[0]) {
|
|
case I915_FORMAT_MOD_Y_TILED:
|
|
case I915_FORMAT_MOD_Yf_TILED:
|
|
if (INTEL_INFO(dev)->gen < 9) {
|
|
DRM_DEBUG("Unsupported tiling 0x%llx!\n",
|
|
mode_cmd->modifier[0]);
|
|
return -EINVAL;
|
|
}
|
|
case DRM_FORMAT_MOD_NONE:
|
|
case I915_FORMAT_MOD_X_TILED:
|
|
break;
|
|
default:
|
|
DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
|
|
mode_cmd->modifier[0]);
|
|
return -EINVAL;
|
|
}
|
|
|
|
stride_alignment = intel_fb_stride_alignment(dev_priv,
|
|
mode_cmd->modifier[0],
|
|
mode_cmd->pixel_format);
|
|
if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
|
|
DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
|
|
mode_cmd->pitches[0], stride_alignment);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
|
|
mode_cmd->pixel_format);
|
|
if (mode_cmd->pitches[0] > pitch_limit) {
|
|
DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
|
|
mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
|
|
"tiled" : "linear",
|
|
mode_cmd->pitches[0], pitch_limit);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
|
|
mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
|
|
DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
|
|
mode_cmd->pitches[0],
|
|
i915_gem_object_get_stride(obj));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Reject formats not supported by any plane early. */
|
|
switch (mode_cmd->pixel_format) {
|
|
case DRM_FORMAT_C8:
|
|
case DRM_FORMAT_RGB565:
|
|
case DRM_FORMAT_XRGB8888:
|
|
case DRM_FORMAT_ARGB8888:
|
|
break;
|
|
case DRM_FORMAT_XRGB1555:
|
|
if (INTEL_INFO(dev)->gen > 3) {
|
|
DRM_DEBUG("unsupported pixel format: %s\n",
|
|
drm_get_format_name(mode_cmd->pixel_format));
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case DRM_FORMAT_ABGR8888:
|
|
if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
|
|
INTEL_INFO(dev)->gen < 9) {
|
|
DRM_DEBUG("unsupported pixel format: %s\n",
|
|
drm_get_format_name(mode_cmd->pixel_format));
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case DRM_FORMAT_XBGR8888:
|
|
case DRM_FORMAT_XRGB2101010:
|
|
case DRM_FORMAT_XBGR2101010:
|
|
if (INTEL_INFO(dev)->gen < 4) {
|
|
DRM_DEBUG("unsupported pixel format: %s\n",
|
|
drm_get_format_name(mode_cmd->pixel_format));
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case DRM_FORMAT_ABGR2101010:
|
|
if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
|
|
DRM_DEBUG("unsupported pixel format: %s\n",
|
|
drm_get_format_name(mode_cmd->pixel_format));
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case DRM_FORMAT_YUYV:
|
|
case DRM_FORMAT_UYVY:
|
|
case DRM_FORMAT_YVYU:
|
|
case DRM_FORMAT_VYUY:
|
|
if (INTEL_INFO(dev)->gen < 5) {
|
|
DRM_DEBUG("unsupported pixel format: %s\n",
|
|
drm_get_format_name(mode_cmd->pixel_format));
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
DRM_DEBUG("unsupported pixel format: %s\n",
|
|
drm_get_format_name(mode_cmd->pixel_format));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
|
|
if (mode_cmd->offsets[0] != 0)
|
|
return -EINVAL;
|
|
|
|
aligned_height = intel_fb_align_height(dev, mode_cmd->height,
|
|
mode_cmd->pixel_format,
|
|
mode_cmd->modifier[0]);
|
|
/* FIXME drm helper for size checks (especially planar formats)? */
|
|
if (obj->base.size < aligned_height * mode_cmd->pitches[0])
|
|
return -EINVAL;
|
|
|
|
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
|
|
intel_fb->obj = obj;
|
|
|
|
intel_fill_fb_info(dev_priv, &intel_fb->base);
|
|
|
|
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
|
|
if (ret) {
|
|
DRM_ERROR("framebuffer init failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
intel_fb->obj->framebuffer_references++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct drm_framebuffer *
|
|
intel_user_framebuffer_create(struct drm_device *dev,
|
|
struct drm_file *filp,
|
|
const struct drm_mode_fb_cmd2 *user_mode_cmd)
|
|
{
|
|
struct drm_framebuffer *fb;
|
|
struct drm_i915_gem_object *obj;
|
|
struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
|
|
|
|
obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
|
|
if (!obj)
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
fb = intel_framebuffer_create(dev, &mode_cmd, obj);
|
|
if (IS_ERR(fb))
|
|
i915_gem_object_put_unlocked(obj);
|
|
|
|
return fb;
|
|
}
|
|
|
|
#ifndef CONFIG_DRM_FBDEV_EMULATION
|
|
static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static const struct drm_mode_config_funcs intel_mode_funcs = {
|
|
.fb_create = intel_user_framebuffer_create,
|
|
.output_poll_changed = intel_fbdev_output_poll_changed,
|
|
.atomic_check = intel_atomic_check,
|
|
.atomic_commit = intel_atomic_commit,
|
|
.atomic_state_alloc = intel_atomic_state_alloc,
|
|
.atomic_state_clear = intel_atomic_state_clear,
|
|
};
|
|
|
|
/**
|
|
* intel_init_display_hooks - initialize the display modesetting hooks
|
|
* @dev_priv: device private
|
|
*/
|
|
void intel_init_display_hooks(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (INTEL_INFO(dev_priv)->gen >= 9) {
|
|
dev_priv->display.get_pipe_config = haswell_get_pipe_config;
|
|
dev_priv->display.get_initial_plane_config =
|
|
skylake_get_initial_plane_config;
|
|
dev_priv->display.crtc_compute_clock =
|
|
haswell_crtc_compute_clock;
|
|
dev_priv->display.crtc_enable = haswell_crtc_enable;
|
|
dev_priv->display.crtc_disable = haswell_crtc_disable;
|
|
} else if (HAS_DDI(dev_priv)) {
|
|
dev_priv->display.get_pipe_config = haswell_get_pipe_config;
|
|
dev_priv->display.get_initial_plane_config =
|
|
ironlake_get_initial_plane_config;
|
|
dev_priv->display.crtc_compute_clock =
|
|
haswell_crtc_compute_clock;
|
|
dev_priv->display.crtc_enable = haswell_crtc_enable;
|
|
dev_priv->display.crtc_disable = haswell_crtc_disable;
|
|
} else if (HAS_PCH_SPLIT(dev_priv)) {
|
|
dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
|
|
dev_priv->display.get_initial_plane_config =
|
|
ironlake_get_initial_plane_config;
|
|
dev_priv->display.crtc_compute_clock =
|
|
ironlake_crtc_compute_clock;
|
|
dev_priv->display.crtc_enable = ironlake_crtc_enable;
|
|
dev_priv->display.crtc_disable = ironlake_crtc_disable;
|
|
} else if (IS_CHERRYVIEW(dev_priv)) {
|
|
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
|
|
dev_priv->display.get_initial_plane_config =
|
|
i9xx_get_initial_plane_config;
|
|
dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
|
|
dev_priv->display.crtc_enable = valleyview_crtc_enable;
|
|
dev_priv->display.crtc_disable = i9xx_crtc_disable;
|
|
} else if (IS_VALLEYVIEW(dev_priv)) {
|
|
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
|
|
dev_priv->display.get_initial_plane_config =
|
|
i9xx_get_initial_plane_config;
|
|
dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
|
|
dev_priv->display.crtc_enable = valleyview_crtc_enable;
|
|
dev_priv->display.crtc_disable = i9xx_crtc_disable;
|
|
} else if (IS_G4X(dev_priv)) {
|
|
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
|
|
dev_priv->display.get_initial_plane_config =
|
|
i9xx_get_initial_plane_config;
|
|
dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
|
|
dev_priv->display.crtc_enable = i9xx_crtc_enable;
|
|
dev_priv->display.crtc_disable = i9xx_crtc_disable;
|
|
} else if (IS_PINEVIEW(dev_priv)) {
|
|
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
|
|
dev_priv->display.get_initial_plane_config =
|
|
i9xx_get_initial_plane_config;
|
|
dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
|
|
dev_priv->display.crtc_enable = i9xx_crtc_enable;
|
|
dev_priv->display.crtc_disable = i9xx_crtc_disable;
|
|
} else if (!IS_GEN2(dev_priv)) {
|
|
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
|
|
dev_priv->display.get_initial_plane_config =
|
|
i9xx_get_initial_plane_config;
|
|
dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
|
|
dev_priv->display.crtc_enable = i9xx_crtc_enable;
|
|
dev_priv->display.crtc_disable = i9xx_crtc_disable;
|
|
} else {
|
|
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
|
|
dev_priv->display.get_initial_plane_config =
|
|
i9xx_get_initial_plane_config;
|
|
dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
|
|
dev_priv->display.crtc_enable = i9xx_crtc_enable;
|
|
dev_priv->display.crtc_disable = i9xx_crtc_disable;
|
|
}
|
|
|
|
/* Returns the core display clock speed */
|
|
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
skylake_get_display_clock_speed;
|
|
else if (IS_BROXTON(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
broxton_get_display_clock_speed;
|
|
else if (IS_BROADWELL(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
broadwell_get_display_clock_speed;
|
|
else if (IS_HASWELL(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
haswell_get_display_clock_speed;
|
|
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
valleyview_get_display_clock_speed;
|
|
else if (IS_GEN5(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
ilk_get_display_clock_speed;
|
|
else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
|
|
IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i945_get_display_clock_speed;
|
|
else if (IS_GM45(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
gm45_get_display_clock_speed;
|
|
else if (IS_CRESTLINE(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i965gm_get_display_clock_speed;
|
|
else if (IS_PINEVIEW(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
pnv_get_display_clock_speed;
|
|
else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
g33_get_display_clock_speed;
|
|
else if (IS_I915G(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i915_get_display_clock_speed;
|
|
else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i9xx_misc_get_display_clock_speed;
|
|
else if (IS_I915GM(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i915gm_get_display_clock_speed;
|
|
else if (IS_I865G(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i865_get_display_clock_speed;
|
|
else if (IS_I85X(dev_priv))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i85x_get_display_clock_speed;
|
|
else { /* 830 */
|
|
WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
|
|
dev_priv->display.get_display_clock_speed =
|
|
i830_get_display_clock_speed;
|
|
}
|
|
|
|
if (IS_GEN5(dev_priv)) {
|
|
dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
|
|
} else if (IS_GEN6(dev_priv)) {
|
|
dev_priv->display.fdi_link_train = gen6_fdi_link_train;
|
|
} else if (IS_IVYBRIDGE(dev_priv)) {
|
|
/* FIXME: detect B0+ stepping and use auto training */
|
|
dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
|
|
} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
|
|
dev_priv->display.fdi_link_train = hsw_fdi_link_train;
|
|
}
|
|
|
|
if (IS_BROADWELL(dev_priv)) {
|
|
dev_priv->display.modeset_commit_cdclk =
|
|
broadwell_modeset_commit_cdclk;
|
|
dev_priv->display.modeset_calc_cdclk =
|
|
broadwell_modeset_calc_cdclk;
|
|
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
dev_priv->display.modeset_commit_cdclk =
|
|
valleyview_modeset_commit_cdclk;
|
|
dev_priv->display.modeset_calc_cdclk =
|
|
valleyview_modeset_calc_cdclk;
|
|
} else if (IS_BROXTON(dev_priv)) {
|
|
dev_priv->display.modeset_commit_cdclk =
|
|
bxt_modeset_commit_cdclk;
|
|
dev_priv->display.modeset_calc_cdclk =
|
|
bxt_modeset_calc_cdclk;
|
|
} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
|
|
dev_priv->display.modeset_commit_cdclk =
|
|
skl_modeset_commit_cdclk;
|
|
dev_priv->display.modeset_calc_cdclk =
|
|
skl_modeset_calc_cdclk;
|
|
}
|
|
|
|
switch (INTEL_INFO(dev_priv)->gen) {
|
|
case 2:
|
|
dev_priv->display.queue_flip = intel_gen2_queue_flip;
|
|
break;
|
|
|
|
case 3:
|
|
dev_priv->display.queue_flip = intel_gen3_queue_flip;
|
|
break;
|
|
|
|
case 4:
|
|
case 5:
|
|
dev_priv->display.queue_flip = intel_gen4_queue_flip;
|
|
break;
|
|
|
|
case 6:
|
|
dev_priv->display.queue_flip = intel_gen6_queue_flip;
|
|
break;
|
|
case 7:
|
|
case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
|
|
dev_priv->display.queue_flip = intel_gen7_queue_flip;
|
|
break;
|
|
case 9:
|
|
/* Drop through - unsupported since execlist only. */
|
|
default:
|
|
/* Default just returns -ENODEV to indicate unsupported */
|
|
dev_priv->display.queue_flip = intel_default_queue_flip;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
|
|
* resume, or other times. This quirk makes sure that's the case for
|
|
* affected systems.
|
|
*/
|
|
static void quirk_pipea_force(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
dev_priv->quirks |= QUIRK_PIPEA_FORCE;
|
|
DRM_INFO("applying pipe a force quirk\n");
|
|
}
|
|
|
|
static void quirk_pipeb_force(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
dev_priv->quirks |= QUIRK_PIPEB_FORCE;
|
|
DRM_INFO("applying pipe b force quirk\n");
|
|
}
|
|
|
|
/*
|
|
* Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
|
|
*/
|
|
static void quirk_ssc_force_disable(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
|
|
DRM_INFO("applying lvds SSC disable quirk\n");
|
|
}
|
|
|
|
/*
|
|
* A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
|
|
* brightness value
|
|
*/
|
|
static void quirk_invert_brightness(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
|
|
DRM_INFO("applying inverted panel brightness quirk\n");
|
|
}
|
|
|
|
/* Some VBT's incorrectly indicate no backlight is present */
|
|
static void quirk_backlight_present(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
|
|
DRM_INFO("applying backlight present quirk\n");
|
|
}
|
|
|
|
struct intel_quirk {
|
|
int device;
|
|
int subsystem_vendor;
|
|
int subsystem_device;
|
|
void (*hook)(struct drm_device *dev);
|
|
};
|
|
|
|
/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
|
|
struct intel_dmi_quirk {
|
|
void (*hook)(struct drm_device *dev);
|
|
const struct dmi_system_id (*dmi_id_list)[];
|
|
};
|
|
|
|
static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
|
|
{
|
|
DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
|
|
return 1;
|
|
}
|
|
|
|
static const struct intel_dmi_quirk intel_dmi_quirks[] = {
|
|
{
|
|
.dmi_id_list = &(const struct dmi_system_id[]) {
|
|
{
|
|
.callback = intel_dmi_reverse_brightness,
|
|
.ident = "NCR Corporation",
|
|
.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, ""),
|
|
},
|
|
},
|
|
{ } /* terminating entry */
|
|
},
|
|
.hook = quirk_invert_brightness,
|
|
},
|
|
};
|
|
|
|
static struct intel_quirk intel_quirks[] = {
|
|
/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
|
|
{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
|
|
|
|
/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
|
|
{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
|
|
|
|
/* 830 needs to leave pipe A & dpll A up */
|
|
{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
|
|
|
|
/* 830 needs to leave pipe B & dpll B up */
|
|
{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
|
|
|
|
/* Lenovo U160 cannot use SSC on LVDS */
|
|
{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
|
|
|
|
/* Sony Vaio Y cannot use SSC on LVDS */
|
|
{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
|
|
|
|
/* Acer Aspire 5734Z must invert backlight brightness */
|
|
{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
|
|
|
|
/* Acer/eMachines G725 */
|
|
{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
|
|
|
|
/* Acer/eMachines e725 */
|
|
{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
|
|
|
|
/* Acer/Packard Bell NCL20 */
|
|
{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
|
|
|
|
/* Acer Aspire 4736Z */
|
|
{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
|
|
|
|
/* Acer Aspire 5336 */
|
|
{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
|
|
|
|
/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
|
|
{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
|
|
|
|
/* Acer C720 Chromebook (Core i3 4005U) */
|
|
{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
|
|
|
|
/* Apple Macbook 2,1 (Core 2 T7400) */
|
|
{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
|
|
|
|
/* Apple Macbook 4,1 */
|
|
{ 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
|
|
|
|
/* Toshiba CB35 Chromebook (Celeron 2955U) */
|
|
{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
|
|
|
|
/* HP Chromebook 14 (Celeron 2955U) */
|
|
{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
|
|
|
|
/* Dell Chromebook 11 */
|
|
{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
|
|
|
|
/* Dell Chromebook 11 (2015 version) */
|
|
{ 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
|
|
};
|
|
|
|
static void intel_init_quirks(struct drm_device *dev)
|
|
{
|
|
struct pci_dev *d = dev->pdev;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
|
|
struct intel_quirk *q = &intel_quirks[i];
|
|
|
|
if (d->device == q->device &&
|
|
(d->subsystem_vendor == q->subsystem_vendor ||
|
|
q->subsystem_vendor == PCI_ANY_ID) &&
|
|
(d->subsystem_device == q->subsystem_device ||
|
|
q->subsystem_device == PCI_ANY_ID))
|
|
q->hook(dev);
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
|
|
if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
|
|
intel_dmi_quirks[i].hook(dev);
|
|
}
|
|
}
|
|
|
|
/* Disable the VGA plane that we never use */
|
|
static void i915_disable_vga(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u8 sr1;
|
|
i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
|
|
|
|
/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
|
|
vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
|
|
outb(SR01, VGA_SR_INDEX);
|
|
sr1 = inb(VGA_SR_DATA);
|
|
outb(sr1 | 1<<5, VGA_SR_DATA);
|
|
vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
|
|
udelay(300);
|
|
|
|
I915_WRITE(vga_reg, VGA_DISP_DISABLE);
|
|
POSTING_READ(vga_reg);
|
|
}
|
|
|
|
void intel_modeset_init_hw(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
intel_update_cdclk(dev);
|
|
|
|
dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
|
|
|
|
intel_init_clock_gating(dev);
|
|
}
|
|
|
|
/*
|
|
* Calculate what we think the watermarks should be for the state we've read
|
|
* out of the hardware and then immediately program those watermarks so that
|
|
* we ensure the hardware settings match our internal state.
|
|
*
|
|
* We can calculate what we think WM's should be by creating a duplicate of the
|
|
* current state (which was constructed during hardware readout) and running it
|
|
* through the atomic check code to calculate new watermark values in the
|
|
* state object.
|
|
*/
|
|
static void sanitize_watermarks(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_atomic_state *state;
|
|
struct drm_crtc *crtc;
|
|
struct drm_crtc_state *cstate;
|
|
struct drm_modeset_acquire_ctx ctx;
|
|
int ret;
|
|
int i;
|
|
|
|
/* Only supported on platforms that use atomic watermark design */
|
|
if (!dev_priv->display.optimize_watermarks)
|
|
return;
|
|
|
|
/*
|
|
* We need to hold connection_mutex before calling duplicate_state so
|
|
* that the connector loop is protected.
|
|
*/
|
|
drm_modeset_acquire_init(&ctx, 0);
|
|
retry:
|
|
ret = drm_modeset_lock_all_ctx(dev, &ctx);
|
|
if (ret == -EDEADLK) {
|
|
drm_modeset_backoff(&ctx);
|
|
goto retry;
|
|
} else if (WARN_ON(ret)) {
|
|
goto fail;
|
|
}
|
|
|
|
state = drm_atomic_helper_duplicate_state(dev, &ctx);
|
|
if (WARN_ON(IS_ERR(state)))
|
|
goto fail;
|
|
|
|
/*
|
|
* Hardware readout is the only time we don't want to calculate
|
|
* intermediate watermarks (since we don't trust the current
|
|
* watermarks).
|
|
*/
|
|
to_intel_atomic_state(state)->skip_intermediate_wm = true;
|
|
|
|
ret = intel_atomic_check(dev, state);
|
|
if (ret) {
|
|
/*
|
|
* If we fail here, it means that the hardware appears to be
|
|
* programmed in a way that shouldn't be possible, given our
|
|
* understanding of watermark requirements. This might mean a
|
|
* mistake in the hardware readout code or a mistake in the
|
|
* watermark calculations for a given platform. Raise a WARN
|
|
* so that this is noticeable.
|
|
*
|
|
* If this actually happens, we'll have to just leave the
|
|
* BIOS-programmed watermarks untouched and hope for the best.
|
|
*/
|
|
WARN(true, "Could not determine valid watermarks for inherited state\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Write calculated watermark values back */
|
|
for_each_crtc_in_state(state, crtc, cstate, i) {
|
|
struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
|
|
|
|
cs->wm.need_postvbl_update = true;
|
|
dev_priv->display.optimize_watermarks(cs);
|
|
}
|
|
|
|
drm_atomic_state_free(state);
|
|
fail:
|
|
drm_modeset_drop_locks(&ctx);
|
|
drm_modeset_acquire_fini(&ctx);
|
|
}
|
|
|
|
void intel_modeset_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
int sprite, ret;
|
|
enum pipe pipe;
|
|
struct intel_crtc *crtc;
|
|
|
|
drm_mode_config_init(dev);
|
|
|
|
dev->mode_config.min_width = 0;
|
|
dev->mode_config.min_height = 0;
|
|
|
|
dev->mode_config.preferred_depth = 24;
|
|
dev->mode_config.prefer_shadow = 1;
|
|
|
|
dev->mode_config.allow_fb_modifiers = true;
|
|
|
|
dev->mode_config.funcs = &intel_mode_funcs;
|
|
|
|
intel_init_quirks(dev);
|
|
|
|
intel_init_pm(dev);
|
|
|
|
if (INTEL_INFO(dev)->num_pipes == 0)
|
|
return;
|
|
|
|
/*
|
|
* There may be no VBT; and if the BIOS enabled SSC we can
|
|
* just keep using it to avoid unnecessary flicker. Whereas if the
|
|
* BIOS isn't using it, don't assume it will work even if the VBT
|
|
* indicates as much.
|
|
*/
|
|
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
|
|
bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
|
|
DREF_SSC1_ENABLE);
|
|
|
|
if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
|
|
DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
|
|
bios_lvds_use_ssc ? "en" : "dis",
|
|
dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
|
|
dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
|
|
}
|
|
}
|
|
|
|
if (IS_GEN2(dev)) {
|
|
dev->mode_config.max_width = 2048;
|
|
dev->mode_config.max_height = 2048;
|
|
} else if (IS_GEN3(dev)) {
|
|
dev->mode_config.max_width = 4096;
|
|
dev->mode_config.max_height = 4096;
|
|
} else {
|
|
dev->mode_config.max_width = 8192;
|
|
dev->mode_config.max_height = 8192;
|
|
}
|
|
|
|
if (IS_845G(dev) || IS_I865G(dev)) {
|
|
dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
|
|
dev->mode_config.cursor_height = 1023;
|
|
} else if (IS_GEN2(dev)) {
|
|
dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
|
|
dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
|
|
} else {
|
|
dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
|
|
dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
|
|
}
|
|
|
|
dev->mode_config.fb_base = ggtt->mappable_base;
|
|
|
|
DRM_DEBUG_KMS("%d display pipe%s available.\n",
|
|
INTEL_INFO(dev)->num_pipes,
|
|
INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
|
|
|
|
for_each_pipe(dev_priv, pipe) {
|
|
intel_crtc_init(dev, pipe);
|
|
for_each_sprite(dev_priv, pipe, sprite) {
|
|
ret = intel_plane_init(dev, pipe, sprite);
|
|
if (ret)
|
|
DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
|
|
pipe_name(pipe), sprite_name(pipe, sprite), ret);
|
|
}
|
|
}
|
|
|
|
intel_update_czclk(dev_priv);
|
|
intel_update_cdclk(dev);
|
|
|
|
intel_shared_dpll_init(dev);
|
|
|
|
if (dev_priv->max_cdclk_freq == 0)
|
|
intel_update_max_cdclk(dev);
|
|
|
|
/* Just disable it once at startup */
|
|
i915_disable_vga(dev);
|
|
intel_setup_outputs(dev);
|
|
|
|
drm_modeset_lock_all(dev);
|
|
intel_modeset_setup_hw_state(dev);
|
|
drm_modeset_unlock_all(dev);
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
struct intel_initial_plane_config plane_config = {};
|
|
|
|
if (!crtc->active)
|
|
continue;
|
|
|
|
/*
|
|
* Note that reserving the BIOS fb up front prevents us
|
|
* from stuffing other stolen allocations like the ring
|
|
* on top. This prevents some ugliness at boot time, and
|
|
* can even allow for smooth boot transitions if the BIOS
|
|
* fb is large enough for the active pipe configuration.
|
|
*/
|
|
dev_priv->display.get_initial_plane_config(crtc,
|
|
&plane_config);
|
|
|
|
/*
|
|
* If the fb is shared between multiple heads, we'll
|
|
* just get the first one.
|
|
*/
|
|
intel_find_initial_plane_obj(crtc, &plane_config);
|
|
}
|
|
|
|
/*
|
|
* Make sure hardware watermarks really match the state we read out.
|
|
* Note that we need to do this after reconstructing the BIOS fb's
|
|
* since the watermark calculation done here will use pstate->fb.
|
|
*/
|
|
sanitize_watermarks(dev);
|
|
}
|
|
|
|
static void intel_enable_pipe_a(struct drm_device *dev)
|
|
{
|
|
struct intel_connector *connector;
|
|
struct drm_connector *crt = NULL;
|
|
struct intel_load_detect_pipe load_detect_temp;
|
|
struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
|
|
|
|
/* We can't just switch on the pipe A, we need to set things up with a
|
|
* proper mode and output configuration. As a gross hack, enable pipe A
|
|
* by enabling the load detect pipe once. */
|
|
for_each_intel_connector(dev, connector) {
|
|
if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
|
|
crt = &connector->base;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!crt)
|
|
return;
|
|
|
|
if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
|
|
intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
|
|
}
|
|
|
|
static bool
|
|
intel_check_plane_mapping(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 val;
|
|
|
|
if (INTEL_INFO(dev)->num_pipes == 1)
|
|
return true;
|
|
|
|
val = I915_READ(DSPCNTR(!crtc->plane));
|
|
|
|
if ((val & DISPLAY_PLANE_ENABLE) &&
|
|
(!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct intel_encoder *encoder;
|
|
|
|
for_each_encoder_on_crtc(dev, &crtc->base, encoder)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct intel_connector *connector;
|
|
|
|
for_each_connector_on_encoder(dev, &encoder->base, connector)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
|
|
enum transcoder pch_transcoder)
|
|
{
|
|
return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
|
|
(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
|
|
}
|
|
|
|
static void intel_sanitize_crtc(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
|
|
|
|
/* Clear any frame start delays used for debugging left by the BIOS */
|
|
if (!transcoder_is_dsi(cpu_transcoder)) {
|
|
i915_reg_t reg = PIPECONF(cpu_transcoder);
|
|
|
|
I915_WRITE(reg,
|
|
I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
|
|
}
|
|
|
|
/* restore vblank interrupts to correct state */
|
|
drm_crtc_vblank_reset(&crtc->base);
|
|
if (crtc->active) {
|
|
struct intel_plane *plane;
|
|
|
|
drm_crtc_vblank_on(&crtc->base);
|
|
|
|
/* Disable everything but the primary plane */
|
|
for_each_intel_plane_on_crtc(dev, crtc, plane) {
|
|
if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
|
|
continue;
|
|
|
|
plane->disable_plane(&plane->base, &crtc->base);
|
|
}
|
|
}
|
|
|
|
/* We need to sanitize the plane -> pipe mapping first because this will
|
|
* disable the crtc (and hence change the state) if it is wrong. Note
|
|
* that gen4+ has a fixed plane -> pipe mapping. */
|
|
if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
|
|
bool plane;
|
|
|
|
DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
|
|
crtc->base.base.id, crtc->base.name);
|
|
|
|
/* Pipe has the wrong plane attached and the plane is active.
|
|
* Temporarily change the plane mapping and disable everything
|
|
* ... */
|
|
plane = crtc->plane;
|
|
to_intel_plane_state(crtc->base.primary->state)->visible = true;
|
|
crtc->plane = !plane;
|
|
intel_crtc_disable_noatomic(&crtc->base);
|
|
crtc->plane = plane;
|
|
}
|
|
|
|
if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
|
|
crtc->pipe == PIPE_A && !crtc->active) {
|
|
/* BIOS forgot to enable pipe A, this mostly happens after
|
|
* resume. Force-enable the pipe to fix this, the update_dpms
|
|
* call below we restore the pipe to the right state, but leave
|
|
* the required bits on. */
|
|
intel_enable_pipe_a(dev);
|
|
}
|
|
|
|
/* Adjust the state of the output pipe according to whether we
|
|
* have active connectors/encoders. */
|
|
if (crtc->active && !intel_crtc_has_encoders(crtc))
|
|
intel_crtc_disable_noatomic(&crtc->base);
|
|
|
|
if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
|
|
/*
|
|
* We start out with underrun reporting disabled to avoid races.
|
|
* For correct bookkeeping mark this on active crtcs.
|
|
*
|
|
* Also on gmch platforms we dont have any hardware bits to
|
|
* disable the underrun reporting. Which means we need to start
|
|
* out with underrun reporting disabled also on inactive pipes,
|
|
* since otherwise we'll complain about the garbage we read when
|
|
* e.g. coming up after runtime pm.
|
|
*
|
|
* No protection against concurrent access is required - at
|
|
* worst a fifo underrun happens which also sets this to false.
|
|
*/
|
|
crtc->cpu_fifo_underrun_disabled = true;
|
|
/*
|
|
* We track the PCH trancoder underrun reporting state
|
|
* within the crtc. With crtc for pipe A housing the underrun
|
|
* reporting state for PCH transcoder A, crtc for pipe B housing
|
|
* it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
|
|
* and marking underrun reporting as disabled for the non-existing
|
|
* PCH transcoders B and C would prevent enabling the south
|
|
* error interrupt (see cpt_can_enable_serr_int()).
|
|
*/
|
|
if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
|
|
crtc->pch_fifo_underrun_disabled = true;
|
|
}
|
|
}
|
|
|
|
static void intel_sanitize_encoder(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_connector *connector;
|
|
struct drm_device *dev = encoder->base.dev;
|
|
|
|
/* We need to check both for a crtc link (meaning that the
|
|
* encoder is active and trying to read from a pipe) and the
|
|
* pipe itself being active. */
|
|
bool has_active_crtc = encoder->base.crtc &&
|
|
to_intel_crtc(encoder->base.crtc)->active;
|
|
|
|
if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
|
|
DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
|
|
encoder->base.base.id,
|
|
encoder->base.name);
|
|
|
|
/* Connector is active, but has no active pipe. This is
|
|
* fallout from our resume register restoring. Disable
|
|
* the encoder manually again. */
|
|
if (encoder->base.crtc) {
|
|
DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
|
|
encoder->base.base.id,
|
|
encoder->base.name);
|
|
encoder->disable(encoder);
|
|
if (encoder->post_disable)
|
|
encoder->post_disable(encoder);
|
|
}
|
|
encoder->base.crtc = NULL;
|
|
|
|
/* Inconsistent output/port/pipe state happens presumably due to
|
|
* a bug in one of the get_hw_state functions. Or someplace else
|
|
* in our code, like the register restore mess on resume. Clamp
|
|
* things to off as a safer default. */
|
|
for_each_intel_connector(dev, connector) {
|
|
if (connector->encoder != encoder)
|
|
continue;
|
|
connector->base.dpms = DRM_MODE_DPMS_OFF;
|
|
connector->base.encoder = NULL;
|
|
}
|
|
}
|
|
/* Enabled encoders without active connectors will be fixed in
|
|
* the crtc fixup. */
|
|
}
|
|
|
|
void i915_redisable_vga_power_on(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
|
|
|
|
if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
|
|
DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
|
|
i915_disable_vga(dev);
|
|
}
|
|
}
|
|
|
|
void i915_redisable_vga(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
/* This function can be called both from intel_modeset_setup_hw_state or
|
|
* at a very early point in our resume sequence, where the power well
|
|
* structures are not yet restored. Since this function is at a very
|
|
* paranoid "someone might have enabled VGA while we were not looking"
|
|
* level, just check if the power well is enabled instead of trying to
|
|
* follow the "don't touch the power well if we don't need it" policy
|
|
* the rest of the driver uses. */
|
|
if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
|
|
return;
|
|
|
|
i915_redisable_vga_power_on(dev);
|
|
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
|
|
}
|
|
|
|
static bool primary_get_hw_state(struct intel_plane *plane)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
|
|
|
|
return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
|
|
}
|
|
|
|
/* FIXME read out full plane state for all planes */
|
|
static void readout_plane_state(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_plane *primary = crtc->base.primary;
|
|
struct intel_plane_state *plane_state =
|
|
to_intel_plane_state(primary->state);
|
|
|
|
plane_state->visible = crtc->active &&
|
|
primary_get_hw_state(to_intel_plane(primary));
|
|
|
|
if (plane_state->visible)
|
|
crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
|
|
}
|
|
|
|
static void intel_modeset_readout_hw_state(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum pipe pipe;
|
|
struct intel_crtc *crtc;
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
int i;
|
|
|
|
dev_priv->active_crtcs = 0;
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
struct intel_crtc_state *crtc_state = crtc->config;
|
|
int pixclk = 0;
|
|
|
|
__drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
|
|
memset(crtc_state, 0, sizeof(*crtc_state));
|
|
crtc_state->base.crtc = &crtc->base;
|
|
|
|
crtc_state->base.active = crtc_state->base.enable =
|
|
dev_priv->display.get_pipe_config(crtc, crtc_state);
|
|
|
|
crtc->base.enabled = crtc_state->base.enable;
|
|
crtc->active = crtc_state->base.active;
|
|
|
|
if (crtc_state->base.active) {
|
|
dev_priv->active_crtcs |= 1 << crtc->pipe;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
|
|
pixclk = ilk_pipe_pixel_rate(crtc_state);
|
|
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
pixclk = crtc_state->base.adjusted_mode.crtc_clock;
|
|
else
|
|
WARN_ON(dev_priv->display.modeset_calc_cdclk);
|
|
|
|
/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
|
|
if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
|
|
pixclk = DIV_ROUND_UP(pixclk * 100, 95);
|
|
}
|
|
|
|
dev_priv->min_pixclk[crtc->pipe] = pixclk;
|
|
|
|
readout_plane_state(crtc);
|
|
|
|
DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
|
|
crtc->base.base.id, crtc->base.name,
|
|
crtc->active ? "enabled" : "disabled");
|
|
}
|
|
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
|
|
|
|
pll->on = pll->funcs.get_hw_state(dev_priv, pll,
|
|
&pll->config.hw_state);
|
|
pll->config.crtc_mask = 0;
|
|
for_each_intel_crtc(dev, crtc) {
|
|
if (crtc->active && crtc->config->shared_dpll == pll)
|
|
pll->config.crtc_mask |= 1 << crtc->pipe;
|
|
}
|
|
pll->active_mask = pll->config.crtc_mask;
|
|
|
|
DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
|
|
pll->name, pll->config.crtc_mask, pll->on);
|
|
}
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
pipe = 0;
|
|
|
|
if (encoder->get_hw_state(encoder, &pipe)) {
|
|
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
|
|
encoder->base.crtc = &crtc->base;
|
|
crtc->config->output_types |= 1 << encoder->type;
|
|
encoder->get_config(encoder, crtc->config);
|
|
} else {
|
|
encoder->base.crtc = NULL;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
|
|
encoder->base.base.id,
|
|
encoder->base.name,
|
|
encoder->base.crtc ? "enabled" : "disabled",
|
|
pipe_name(pipe));
|
|
}
|
|
|
|
for_each_intel_connector(dev, connector) {
|
|
if (connector->get_hw_state(connector)) {
|
|
connector->base.dpms = DRM_MODE_DPMS_ON;
|
|
|
|
encoder = connector->encoder;
|
|
connector->base.encoder = &encoder->base;
|
|
|
|
if (encoder->base.crtc &&
|
|
encoder->base.crtc->state->active) {
|
|
/*
|
|
* This has to be done during hardware readout
|
|
* because anything calling .crtc_disable may
|
|
* rely on the connector_mask being accurate.
|
|
*/
|
|
encoder->base.crtc->state->connector_mask |=
|
|
1 << drm_connector_index(&connector->base);
|
|
encoder->base.crtc->state->encoder_mask |=
|
|
1 << drm_encoder_index(&encoder->base);
|
|
}
|
|
|
|
} else {
|
|
connector->base.dpms = DRM_MODE_DPMS_OFF;
|
|
connector->base.encoder = NULL;
|
|
}
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
|
|
connector->base.base.id,
|
|
connector->base.name,
|
|
connector->base.encoder ? "enabled" : "disabled");
|
|
}
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
crtc->base.hwmode = crtc->config->base.adjusted_mode;
|
|
|
|
memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
|
|
if (crtc->base.state->active) {
|
|
intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
|
|
intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
|
|
WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
|
|
|
|
/*
|
|
* The initial mode needs to be set in order to keep
|
|
* the atomic core happy. It wants a valid mode if the
|
|
* crtc's enabled, so we do the above call.
|
|
*
|
|
* At this point some state updated by the connectors
|
|
* in their ->detect() callback has not run yet, so
|
|
* no recalculation can be done yet.
|
|
*
|
|
* Even if we could do a recalculation and modeset
|
|
* right now it would cause a double modeset if
|
|
* fbdev or userspace chooses a different initial mode.
|
|
*
|
|
* If that happens, someone indicated they wanted a
|
|
* mode change, which means it's safe to do a full
|
|
* recalculation.
|
|
*/
|
|
crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
|
|
|
|
drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
|
|
update_scanline_offset(crtc);
|
|
}
|
|
|
|
intel_pipe_config_sanity_check(dev_priv, crtc->config);
|
|
}
|
|
}
|
|
|
|
/* Scan out the current hw modeset state,
|
|
* and sanitizes it to the current state
|
|
*/
|
|
static void
|
|
intel_modeset_setup_hw_state(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum pipe pipe;
|
|
struct intel_crtc *crtc;
|
|
struct intel_encoder *encoder;
|
|
int i;
|
|
|
|
intel_modeset_readout_hw_state(dev);
|
|
|
|
/* HW state is read out, now we need to sanitize this mess. */
|
|
for_each_intel_encoder(dev, encoder) {
|
|
intel_sanitize_encoder(encoder);
|
|
}
|
|
|
|
for_each_pipe(dev_priv, pipe) {
|
|
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
|
|
intel_sanitize_crtc(crtc);
|
|
intel_dump_pipe_config(crtc, crtc->config,
|
|
"[setup_hw_state]");
|
|
}
|
|
|
|
intel_modeset_update_connector_atomic_state(dev);
|
|
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
|
|
|
|
if (!pll->on || pll->active_mask)
|
|
continue;
|
|
|
|
DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
|
|
|
|
pll->funcs.disable(dev_priv, pll);
|
|
pll->on = false;
|
|
}
|
|
|
|
if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
|
|
vlv_wm_get_hw_state(dev);
|
|
else if (IS_GEN9(dev))
|
|
skl_wm_get_hw_state(dev);
|
|
else if (HAS_PCH_SPLIT(dev))
|
|
ilk_wm_get_hw_state(dev);
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
unsigned long put_domains;
|
|
|
|
put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
|
|
if (WARN_ON(put_domains))
|
|
modeset_put_power_domains(dev_priv, put_domains);
|
|
}
|
|
intel_display_set_init_power(dev_priv, false);
|
|
|
|
intel_fbc_init_pipe_state(dev_priv);
|
|
}
|
|
|
|
void intel_display_resume(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_atomic_state *state = dev_priv->modeset_restore_state;
|
|
struct drm_modeset_acquire_ctx ctx;
|
|
int ret;
|
|
|
|
dev_priv->modeset_restore_state = NULL;
|
|
if (state)
|
|
state->acquire_ctx = &ctx;
|
|
|
|
/*
|
|
* This is a cludge because with real atomic modeset mode_config.mutex
|
|
* won't be taken. Unfortunately some probed state like
|
|
* audio_codec_enable is still protected by mode_config.mutex, so lock
|
|
* it here for now.
|
|
*/
|
|
mutex_lock(&dev->mode_config.mutex);
|
|
drm_modeset_acquire_init(&ctx, 0);
|
|
|
|
while (1) {
|
|
ret = drm_modeset_lock_all_ctx(dev, &ctx);
|
|
if (ret != -EDEADLK)
|
|
break;
|
|
|
|
drm_modeset_backoff(&ctx);
|
|
}
|
|
|
|
if (!ret)
|
|
ret = __intel_display_resume(dev, state);
|
|
|
|
drm_modeset_drop_locks(&ctx);
|
|
drm_modeset_acquire_fini(&ctx);
|
|
mutex_unlock(&dev->mode_config.mutex);
|
|
|
|
if (ret) {
|
|
DRM_ERROR("Restoring old state failed with %i\n", ret);
|
|
drm_atomic_state_free(state);
|
|
}
|
|
}
|
|
|
|
void intel_modeset_gem_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_crtc *c;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
intel_init_gt_powersave(dev_priv);
|
|
|
|
intel_modeset_init_hw(dev);
|
|
|
|
intel_setup_overlay(dev_priv);
|
|
|
|
/*
|
|
* Make sure any fbs we allocated at startup are properly
|
|
* pinned & fenced. When we do the allocation it's too early
|
|
* for this.
|
|
*/
|
|
for_each_crtc(dev, c) {
|
|
obj = intel_fb_obj(c->primary->fb);
|
|
if (obj == NULL)
|
|
continue;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
ret = intel_pin_and_fence_fb_obj(c->primary->fb,
|
|
c->primary->state->rotation);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
if (ret) {
|
|
DRM_ERROR("failed to pin boot fb on pipe %d\n",
|
|
to_intel_crtc(c)->pipe);
|
|
drm_framebuffer_unreference(c->primary->fb);
|
|
c->primary->fb = NULL;
|
|
c->primary->crtc = c->primary->state->crtc = NULL;
|
|
update_state_fb(c->primary);
|
|
c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
|
|
}
|
|
}
|
|
}
|
|
|
|
int intel_connector_register(struct drm_connector *connector)
|
|
{
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
int ret;
|
|
|
|
ret = intel_backlight_device_register(intel_connector);
|
|
if (ret)
|
|
goto err;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
void intel_connector_unregister(struct drm_connector *connector)
|
|
{
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
|
|
intel_backlight_device_unregister(intel_connector);
|
|
intel_panel_destroy_backlight(connector);
|
|
}
|
|
|
|
void intel_modeset_cleanup(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
intel_disable_gt_powersave(dev_priv);
|
|
|
|
/*
|
|
* Interrupts and polling as the first thing to avoid creating havoc.
|
|
* Too much stuff here (turning of connectors, ...) would
|
|
* experience fancy races otherwise.
|
|
*/
|
|
intel_irq_uninstall(dev_priv);
|
|
|
|
/*
|
|
* Due to the hpd irq storm handling the hotplug work can re-arm the
|
|
* poll handlers. Hence disable polling after hpd handling is shut down.
|
|
*/
|
|
drm_kms_helper_poll_fini(dev);
|
|
|
|
intel_unregister_dsm_handler();
|
|
|
|
intel_fbc_global_disable(dev_priv);
|
|
|
|
/* flush any delayed tasks or pending work */
|
|
flush_scheduled_work();
|
|
|
|
drm_mode_config_cleanup(dev);
|
|
|
|
intel_cleanup_overlay(dev_priv);
|
|
|
|
intel_cleanup_gt_powersave(dev_priv);
|
|
|
|
intel_teardown_gmbus(dev);
|
|
}
|
|
|
|
void intel_connector_attach_encoder(struct intel_connector *connector,
|
|
struct intel_encoder *encoder)
|
|
{
|
|
connector->encoder = encoder;
|
|
drm_mode_connector_attach_encoder(&connector->base,
|
|
&encoder->base);
|
|
}
|
|
|
|
/*
|
|
* set vga decode state - true == enable VGA decode
|
|
*/
|
|
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
|
|
u16 gmch_ctrl;
|
|
|
|
if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
|
|
DRM_ERROR("failed to read control word\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
|
|
return 0;
|
|
|
|
if (state)
|
|
gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
|
|
else
|
|
gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
|
|
|
|
if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
|
|
DRM_ERROR("failed to write control word\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct intel_display_error_state {
|
|
|
|
u32 power_well_driver;
|
|
|
|
int num_transcoders;
|
|
|
|
struct intel_cursor_error_state {
|
|
u32 control;
|
|
u32 position;
|
|
u32 base;
|
|
u32 size;
|
|
} cursor[I915_MAX_PIPES];
|
|
|
|
struct intel_pipe_error_state {
|
|
bool power_domain_on;
|
|
u32 source;
|
|
u32 stat;
|
|
} pipe[I915_MAX_PIPES];
|
|
|
|
struct intel_plane_error_state {
|
|
u32 control;
|
|
u32 stride;
|
|
u32 size;
|
|
u32 pos;
|
|
u32 addr;
|
|
u32 surface;
|
|
u32 tile_offset;
|
|
} plane[I915_MAX_PIPES];
|
|
|
|
struct intel_transcoder_error_state {
|
|
bool power_domain_on;
|
|
enum transcoder cpu_transcoder;
|
|
|
|
u32 conf;
|
|
|
|
u32 htotal;
|
|
u32 hblank;
|
|
u32 hsync;
|
|
u32 vtotal;
|
|
u32 vblank;
|
|
u32 vsync;
|
|
} transcoder[4];
|
|
};
|
|
|
|
struct intel_display_error_state *
|
|
intel_display_capture_error_state(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_display_error_state *error;
|
|
int transcoders[] = {
|
|
TRANSCODER_A,
|
|
TRANSCODER_B,
|
|
TRANSCODER_C,
|
|
TRANSCODER_EDP,
|
|
};
|
|
int i;
|
|
|
|
if (INTEL_INFO(dev_priv)->num_pipes == 0)
|
|
return NULL;
|
|
|
|
error = kzalloc(sizeof(*error), GFP_ATOMIC);
|
|
if (error == NULL)
|
|
return NULL;
|
|
|
|
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
|
|
error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
|
|
|
|
for_each_pipe(dev_priv, i) {
|
|
error->pipe[i].power_domain_on =
|
|
__intel_display_power_is_enabled(dev_priv,
|
|
POWER_DOMAIN_PIPE(i));
|
|
if (!error->pipe[i].power_domain_on)
|
|
continue;
|
|
|
|
error->cursor[i].control = I915_READ(CURCNTR(i));
|
|
error->cursor[i].position = I915_READ(CURPOS(i));
|
|
error->cursor[i].base = I915_READ(CURBASE(i));
|
|
|
|
error->plane[i].control = I915_READ(DSPCNTR(i));
|
|
error->plane[i].stride = I915_READ(DSPSTRIDE(i));
|
|
if (INTEL_GEN(dev_priv) <= 3) {
|
|
error->plane[i].size = I915_READ(DSPSIZE(i));
|
|
error->plane[i].pos = I915_READ(DSPPOS(i));
|
|
}
|
|
if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
|
|
error->plane[i].addr = I915_READ(DSPADDR(i));
|
|
if (INTEL_GEN(dev_priv) >= 4) {
|
|
error->plane[i].surface = I915_READ(DSPSURF(i));
|
|
error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
|
|
}
|
|
|
|
error->pipe[i].source = I915_READ(PIPESRC(i));
|
|
|
|
if (HAS_GMCH_DISPLAY(dev_priv))
|
|
error->pipe[i].stat = I915_READ(PIPESTAT(i));
|
|
}
|
|
|
|
/* Note: this does not include DSI transcoders. */
|
|
error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
|
|
if (HAS_DDI(dev_priv))
|
|
error->num_transcoders++; /* Account for eDP. */
|
|
|
|
for (i = 0; i < error->num_transcoders; i++) {
|
|
enum transcoder cpu_transcoder = transcoders[i];
|
|
|
|
error->transcoder[i].power_domain_on =
|
|
__intel_display_power_is_enabled(dev_priv,
|
|
POWER_DOMAIN_TRANSCODER(cpu_transcoder));
|
|
if (!error->transcoder[i].power_domain_on)
|
|
continue;
|
|
|
|
error->transcoder[i].cpu_transcoder = cpu_transcoder;
|
|
|
|
error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
|
|
error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
|
|
error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
|
|
error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
|
|
error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
|
|
error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
|
|
error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
|
|
|
|
void
|
|
intel_display_print_error_state(struct drm_i915_error_state_buf *m,
|
|
struct drm_device *dev,
|
|
struct intel_display_error_state *error)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int i;
|
|
|
|
if (!error)
|
|
return;
|
|
|
|
err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
|
|
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
|
|
err_printf(m, "PWR_WELL_CTL2: %08x\n",
|
|
error->power_well_driver);
|
|
for_each_pipe(dev_priv, i) {
|
|
err_printf(m, "Pipe [%d]:\n", i);
|
|
err_printf(m, " Power: %s\n",
|
|
onoff(error->pipe[i].power_domain_on));
|
|
err_printf(m, " SRC: %08x\n", error->pipe[i].source);
|
|
err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
|
|
|
|
err_printf(m, "Plane [%d]:\n", i);
|
|
err_printf(m, " CNTR: %08x\n", error->plane[i].control);
|
|
err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
|
|
if (INTEL_INFO(dev)->gen <= 3) {
|
|
err_printf(m, " SIZE: %08x\n", error->plane[i].size);
|
|
err_printf(m, " POS: %08x\n", error->plane[i].pos);
|
|
}
|
|
if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
|
|
err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
err_printf(m, " SURF: %08x\n", error->plane[i].surface);
|
|
err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
|
|
}
|
|
|
|
err_printf(m, "Cursor [%d]:\n", i);
|
|
err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
|
|
err_printf(m, " POS: %08x\n", error->cursor[i].position);
|
|
err_printf(m, " BASE: %08x\n", error->cursor[i].base);
|
|
}
|
|
|
|
for (i = 0; i < error->num_transcoders; i++) {
|
|
err_printf(m, "CPU transcoder: %s\n",
|
|
transcoder_name(error->transcoder[i].cpu_transcoder));
|
|
err_printf(m, " Power: %s\n",
|
|
onoff(error->transcoder[i].power_domain_on));
|
|
err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
|
|
err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
|
|
err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
|
|
err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
|
|
err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
|
|
err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
|
|
err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
|
|
}
|
|
}
|