1654 lines
42 KiB
C
1654 lines
42 KiB
C
/* Driver for SanDisk SDDR-09 SmartMedia reader
|
|
*
|
|
* $Id: sddr09.c,v 1.24 2002/04/22 03:39:43 mdharm Exp $
|
|
* (c) 2000, 2001 Robert Baruch (autophile@starband.net)
|
|
* (c) 2002 Andries Brouwer (aeb@cwi.nl)
|
|
* Developed with the assistance of:
|
|
* (c) 2002 Alan Stern <stern@rowland.org>
|
|
*
|
|
* The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
|
|
* This chip is a programmable USB controller. In the SDDR-09, it has
|
|
* been programmed to obey a certain limited set of SCSI commands.
|
|
* This driver translates the "real" SCSI commands to the SDDR-09 SCSI
|
|
* commands.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2, or (at your option) any
|
|
* later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
/*
|
|
* Known vendor commands: 12 bytes, first byte is opcode
|
|
*
|
|
* E7: read scatter gather
|
|
* E8: read
|
|
* E9: write
|
|
* EA: erase
|
|
* EB: reset
|
|
* EC: read status
|
|
* ED: read ID
|
|
* EE: write CIS (?)
|
|
* EF: compute checksum (?)
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
|
|
#include "usb.h"
|
|
#include "transport.h"
|
|
#include "protocol.h"
|
|
#include "debug.h"
|
|
#include "sddr09.h"
|
|
|
|
|
|
#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
|
|
#define LSB_of(s) ((s)&0xFF)
|
|
#define MSB_of(s) ((s)>>8)
|
|
|
|
/* #define US_DEBUGP printk */
|
|
|
|
/*
|
|
* First some stuff that does not belong here:
|
|
* data on SmartMedia and other cards, completely
|
|
* unrelated to this driver.
|
|
* Similar stuff occurs in <linux/mtd/nand_ids.h>.
|
|
*/
|
|
|
|
struct nand_flash_dev {
|
|
int model_id;
|
|
int chipshift; /* 1<<cs bytes total capacity */
|
|
char pageshift; /* 1<<ps bytes in a page */
|
|
char blockshift; /* 1<<bs pages in an erase block */
|
|
char zoneshift; /* 1<<zs blocks in a zone */
|
|
/* # of logical blocks is 125/128 of this */
|
|
char pageadrlen; /* length of an address in bytes - 1 */
|
|
};
|
|
|
|
/*
|
|
* NAND Flash Manufacturer ID Codes
|
|
*/
|
|
#define NAND_MFR_AMD 0x01
|
|
#define NAND_MFR_NATSEMI 0x8f
|
|
#define NAND_MFR_TOSHIBA 0x98
|
|
#define NAND_MFR_SAMSUNG 0xec
|
|
|
|
static inline char *nand_flash_manufacturer(int manuf_id) {
|
|
switch(manuf_id) {
|
|
case NAND_MFR_AMD:
|
|
return "AMD";
|
|
case NAND_MFR_NATSEMI:
|
|
return "NATSEMI";
|
|
case NAND_MFR_TOSHIBA:
|
|
return "Toshiba";
|
|
case NAND_MFR_SAMSUNG:
|
|
return "Samsung";
|
|
default:
|
|
return "unknown";
|
|
}
|
|
}
|
|
|
|
/*
|
|
* It looks like it is unnecessary to attach manufacturer to the
|
|
* remaining data: SSFDC prescribes manufacturer-independent id codes.
|
|
*
|
|
* 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
|
|
*/
|
|
|
|
static struct nand_flash_dev nand_flash_ids[] = {
|
|
/* NAND flash */
|
|
{ 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
|
|
{ 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
|
|
{ 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
|
|
{ 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
|
|
{ 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
|
|
{ 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
|
|
{ 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
|
|
{ 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
|
|
{ 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
|
|
{ 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
|
|
{ 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
|
|
{ 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
|
|
{ 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
|
|
|
|
/* MASK ROM */
|
|
{ 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
|
|
{ 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
|
|
{ 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
|
|
{ 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
|
|
{ 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
|
|
{ 0,}
|
|
};
|
|
|
|
static struct nand_flash_dev *
|
|
nand_find_id(unsigned char id) {
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
|
|
if (nand_flash_ids[i].model_id == id)
|
|
return &(nand_flash_ids[i]);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ECC computation.
|
|
*/
|
|
static unsigned char parity[256];
|
|
static unsigned char ecc2[256];
|
|
|
|
static void nand_init_ecc(void) {
|
|
int i, j, a;
|
|
|
|
parity[0] = 0;
|
|
for (i = 1; i < 256; i++)
|
|
parity[i] = (parity[i&(i-1)] ^ 1);
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
a = 0;
|
|
for (j = 0; j < 8; j++) {
|
|
if (i & (1<<j)) {
|
|
if ((j & 1) == 0)
|
|
a ^= 0x04;
|
|
if ((j & 2) == 0)
|
|
a ^= 0x10;
|
|
if ((j & 4) == 0)
|
|
a ^= 0x40;
|
|
}
|
|
}
|
|
ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
|
|
}
|
|
}
|
|
|
|
/* compute 3-byte ecc on 256 bytes */
|
|
static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
|
|
int i, j, a;
|
|
unsigned char par, bit, bits[8];
|
|
|
|
par = 0;
|
|
for (j = 0; j < 8; j++)
|
|
bits[j] = 0;
|
|
|
|
/* collect 16 checksum bits */
|
|
for (i = 0; i < 256; i++) {
|
|
par ^= data[i];
|
|
bit = parity[data[i]];
|
|
for (j = 0; j < 8; j++)
|
|
if ((i & (1<<j)) == 0)
|
|
bits[j] ^= bit;
|
|
}
|
|
|
|
/* put 4+4+4 = 12 bits in the ecc */
|
|
a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
|
|
ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
|
|
|
|
a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
|
|
ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
|
|
|
|
ecc[2] = ecc2[par];
|
|
}
|
|
|
|
static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
|
|
return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
|
|
}
|
|
|
|
static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
|
|
memcpy(data, ecc, 3);
|
|
}
|
|
|
|
/*
|
|
* The actual driver starts here.
|
|
*/
|
|
|
|
struct sddr09_card_info {
|
|
unsigned long capacity; /* Size of card in bytes */
|
|
int pagesize; /* Size of page in bytes */
|
|
int pageshift; /* log2 of pagesize */
|
|
int blocksize; /* Size of block in pages */
|
|
int blockshift; /* log2 of blocksize */
|
|
int blockmask; /* 2^blockshift - 1 */
|
|
int *lba_to_pba; /* logical to physical map */
|
|
int *pba_to_lba; /* physical to logical map */
|
|
int lbact; /* number of available pages */
|
|
int flags;
|
|
#define SDDR09_WP 1 /* write protected */
|
|
};
|
|
|
|
/*
|
|
* On my 16MB card, control blocks have size 64 (16 real control bytes,
|
|
* and 48 junk bytes). In reality of course the card uses 16 control bytes,
|
|
* so the reader makes up the remaining 48. Don't know whether these numbers
|
|
* depend on the card. For now a constant.
|
|
*/
|
|
#define CONTROL_SHIFT 6
|
|
|
|
/*
|
|
* On my Combo CF/SM reader, the SM reader has LUN 1.
|
|
* (and things fail with LUN 0).
|
|
* It seems LUN is irrelevant for others.
|
|
*/
|
|
#define LUN 1
|
|
#define LUNBITS (LUN << 5)
|
|
|
|
/*
|
|
* LBA and PBA are unsigned ints. Special values.
|
|
*/
|
|
#define UNDEF 0xffffffff
|
|
#define SPARE 0xfffffffe
|
|
#define UNUSABLE 0xfffffffd
|
|
|
|
static const int erase_bad_lba_entries = 0;
|
|
|
|
/* send vendor interface command (0x41) */
|
|
/* called for requests 0, 1, 8 */
|
|
static int
|
|
sddr09_send_command(struct us_data *us,
|
|
unsigned char request,
|
|
unsigned char direction,
|
|
unsigned char *xfer_data,
|
|
unsigned int xfer_len) {
|
|
unsigned int pipe;
|
|
unsigned char requesttype = (0x41 | direction);
|
|
int rc;
|
|
|
|
// Get the receive or send control pipe number
|
|
|
|
if (direction == USB_DIR_IN)
|
|
pipe = us->recv_ctrl_pipe;
|
|
else
|
|
pipe = us->send_ctrl_pipe;
|
|
|
|
rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
|
|
0, 0, xfer_data, xfer_len);
|
|
switch (rc) {
|
|
case USB_STOR_XFER_GOOD: return 0;
|
|
case USB_STOR_XFER_STALLED: return -EPIPE;
|
|
default: return -EIO;
|
|
}
|
|
}
|
|
|
|
static int
|
|
sddr09_send_scsi_command(struct us_data *us,
|
|
unsigned char *command,
|
|
unsigned int command_len) {
|
|
return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Test Unit Ready Command: 12 bytes.
|
|
* byte 0: opcode: 00
|
|
*/
|
|
static int
|
|
sddr09_test_unit_ready(struct us_data *us) {
|
|
unsigned char *command = us->iobuf;
|
|
int result;
|
|
|
|
memset(command, 0, 6);
|
|
command[1] = LUNBITS;
|
|
|
|
result = sddr09_send_scsi_command(us, command, 6);
|
|
|
|
US_DEBUGP("sddr09_test_unit_ready returns %d\n", result);
|
|
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Request Sense Command: 12 bytes.
|
|
* byte 0: opcode: 03
|
|
* byte 4: data length
|
|
*/
|
|
static int
|
|
sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
|
|
unsigned char *command = us->iobuf;
|
|
int result;
|
|
|
|
memset(command, 0, 12);
|
|
command[0] = 0x03;
|
|
command[1] = LUNBITS;
|
|
command[4] = buflen;
|
|
|
|
result = sddr09_send_scsi_command(us, command, 12);
|
|
if (result)
|
|
return result;
|
|
|
|
result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
|
|
sensebuf, buflen, NULL);
|
|
return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
|
|
}
|
|
|
|
/*
|
|
* Read Command: 12 bytes.
|
|
* byte 0: opcode: E8
|
|
* byte 1: last two bits: 00: read data, 01: read blockwise control,
|
|
* 10: read both, 11: read pagewise control.
|
|
* It turns out we need values 20, 21, 22, 23 here (LUN 1).
|
|
* bytes 2-5: address (interpretation depends on byte 1, see below)
|
|
* bytes 10-11: count (idem)
|
|
*
|
|
* A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
|
|
* A read data command gets data in 512-byte pages.
|
|
* A read control command gets control in 64-byte chunks.
|
|
* A read both command gets data+control in 576-byte chunks.
|
|
*
|
|
* Blocks are groups of 32 pages, and read blockwise control jumps to the
|
|
* next block, while read pagewise control jumps to the next page after
|
|
* reading a group of 64 control bytes.
|
|
* [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
|
|
*
|
|
* (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
|
|
*/
|
|
|
|
static int
|
|
sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
|
|
int nr_of_pages, int bulklen, unsigned char *buf,
|
|
int use_sg) {
|
|
|
|
unsigned char *command = us->iobuf;
|
|
int result;
|
|
|
|
command[0] = 0xE8;
|
|
command[1] = LUNBITS | x;
|
|
command[2] = MSB_of(fromaddress>>16);
|
|
command[3] = LSB_of(fromaddress>>16);
|
|
command[4] = MSB_of(fromaddress & 0xFFFF);
|
|
command[5] = LSB_of(fromaddress & 0xFFFF);
|
|
command[6] = 0;
|
|
command[7] = 0;
|
|
command[8] = 0;
|
|
command[9] = 0;
|
|
command[10] = MSB_of(nr_of_pages);
|
|
command[11] = LSB_of(nr_of_pages);
|
|
|
|
result = sddr09_send_scsi_command(us, command, 12);
|
|
|
|
if (result) {
|
|
US_DEBUGP("Result for send_control in sddr09_read2%d %d\n",
|
|
x, result);
|
|
return result;
|
|
}
|
|
|
|
result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
|
|
buf, bulklen, use_sg, NULL);
|
|
|
|
if (result != USB_STOR_XFER_GOOD) {
|
|
US_DEBUGP("Result for bulk_transfer in sddr09_read2%d %d\n",
|
|
x, result);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read Data
|
|
*
|
|
* fromaddress counts data shorts:
|
|
* increasing it by 256 shifts the bytestream by 512 bytes;
|
|
* the last 8 bits are ignored.
|
|
*
|
|
* nr_of_pages counts pages of size (1 << pageshift).
|
|
*/
|
|
static int
|
|
sddr09_read20(struct us_data *us, unsigned long fromaddress,
|
|
int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
|
|
int bulklen = nr_of_pages << pageshift;
|
|
|
|
/* The last 8 bits of fromaddress are ignored. */
|
|
return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
|
|
buf, use_sg);
|
|
}
|
|
|
|
/*
|
|
* Read Blockwise Control
|
|
*
|
|
* fromaddress gives the starting position (as in read data;
|
|
* the last 8 bits are ignored); increasing it by 32*256 shifts
|
|
* the output stream by 64 bytes.
|
|
*
|
|
* count counts control groups of size (1 << controlshift).
|
|
* For me, controlshift = 6. Is this constant?
|
|
*
|
|
* After getting one control group, jump to the next block
|
|
* (fromaddress += 8192).
|
|
*/
|
|
static int
|
|
sddr09_read21(struct us_data *us, unsigned long fromaddress,
|
|
int count, int controlshift, unsigned char *buf, int use_sg) {
|
|
|
|
int bulklen = (count << controlshift);
|
|
return sddr09_readX(us, 1, fromaddress, count, bulklen,
|
|
buf, use_sg);
|
|
}
|
|
|
|
/*
|
|
* Read both Data and Control
|
|
*
|
|
* fromaddress counts data shorts, ignoring control:
|
|
* increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
|
|
* the last 8 bits are ignored.
|
|
*
|
|
* nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
|
|
*/
|
|
static int
|
|
sddr09_read22(struct us_data *us, unsigned long fromaddress,
|
|
int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
|
|
|
|
int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
|
|
US_DEBUGP("sddr09_read22: reading %d pages, %d bytes\n",
|
|
nr_of_pages, bulklen);
|
|
return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
|
|
buf, use_sg);
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Read Pagewise Control
|
|
*
|
|
* fromaddress gives the starting position (as in read data;
|
|
* the last 8 bits are ignored); increasing it by 256 shifts
|
|
* the output stream by 64 bytes.
|
|
*
|
|
* count counts control groups of size (1 << controlshift).
|
|
* For me, controlshift = 6. Is this constant?
|
|
*
|
|
* After getting one control group, jump to the next page
|
|
* (fromaddress += 256).
|
|
*/
|
|
static int
|
|
sddr09_read23(struct us_data *us, unsigned long fromaddress,
|
|
int count, int controlshift, unsigned char *buf, int use_sg) {
|
|
|
|
int bulklen = (count << controlshift);
|
|
return sddr09_readX(us, 3, fromaddress, count, bulklen,
|
|
buf, use_sg);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Erase Command: 12 bytes.
|
|
* byte 0: opcode: EA
|
|
* bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
|
|
*
|
|
* Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
|
|
* The byte address being erased is 2*Eaddress.
|
|
* The CIS cannot be erased.
|
|
*/
|
|
static int
|
|
sddr09_erase(struct us_data *us, unsigned long Eaddress) {
|
|
unsigned char *command = us->iobuf;
|
|
int result;
|
|
|
|
US_DEBUGP("sddr09_erase: erase address %lu\n", Eaddress);
|
|
|
|
memset(command, 0, 12);
|
|
command[0] = 0xEA;
|
|
command[1] = LUNBITS;
|
|
command[6] = MSB_of(Eaddress>>16);
|
|
command[7] = LSB_of(Eaddress>>16);
|
|
command[8] = MSB_of(Eaddress & 0xFFFF);
|
|
command[9] = LSB_of(Eaddress & 0xFFFF);
|
|
|
|
result = sddr09_send_scsi_command(us, command, 12);
|
|
|
|
if (result)
|
|
US_DEBUGP("Result for send_control in sddr09_erase %d\n",
|
|
result);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Write CIS Command: 12 bytes.
|
|
* byte 0: opcode: EE
|
|
* bytes 2-5: write address in shorts
|
|
* bytes 10-11: sector count
|
|
*
|
|
* This writes at the indicated address. Don't know how it differs
|
|
* from E9. Maybe it does not erase? However, it will also write to
|
|
* the CIS.
|
|
*
|
|
* When two such commands on the same page follow each other directly,
|
|
* the second one is not done.
|
|
*/
|
|
|
|
/*
|
|
* Write Command: 12 bytes.
|
|
* byte 0: opcode: E9
|
|
* bytes 2-5: write address (big-endian, counting shorts, sector aligned).
|
|
* bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
|
|
* bytes 10-11: sector count (big-endian, in 512-byte sectors).
|
|
*
|
|
* If write address equals erase address, the erase is done first,
|
|
* otherwise the write is done first. When erase address equals zero
|
|
* no erase is done?
|
|
*/
|
|
static int
|
|
sddr09_writeX(struct us_data *us,
|
|
unsigned long Waddress, unsigned long Eaddress,
|
|
int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
|
|
|
|
unsigned char *command = us->iobuf;
|
|
int result;
|
|
|
|
command[0] = 0xE9;
|
|
command[1] = LUNBITS;
|
|
|
|
command[2] = MSB_of(Waddress>>16);
|
|
command[3] = LSB_of(Waddress>>16);
|
|
command[4] = MSB_of(Waddress & 0xFFFF);
|
|
command[5] = LSB_of(Waddress & 0xFFFF);
|
|
|
|
command[6] = MSB_of(Eaddress>>16);
|
|
command[7] = LSB_of(Eaddress>>16);
|
|
command[8] = MSB_of(Eaddress & 0xFFFF);
|
|
command[9] = LSB_of(Eaddress & 0xFFFF);
|
|
|
|
command[10] = MSB_of(nr_of_pages);
|
|
command[11] = LSB_of(nr_of_pages);
|
|
|
|
result = sddr09_send_scsi_command(us, command, 12);
|
|
|
|
if (result) {
|
|
US_DEBUGP("Result for send_control in sddr09_writeX %d\n",
|
|
result);
|
|
return result;
|
|
}
|
|
|
|
result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
|
|
buf, bulklen, use_sg, NULL);
|
|
|
|
if (result != USB_STOR_XFER_GOOD) {
|
|
US_DEBUGP("Result for bulk_transfer in sddr09_writeX %d\n",
|
|
result);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* erase address, write same address */
|
|
static int
|
|
sddr09_write_inplace(struct us_data *us, unsigned long address,
|
|
int nr_of_pages, int pageshift, unsigned char *buf,
|
|
int use_sg) {
|
|
int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
|
|
return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
|
|
buf, use_sg);
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Read Scatter Gather Command: 3+4n bytes.
|
|
* byte 0: opcode E7
|
|
* byte 2: n
|
|
* bytes 4i-1,4i,4i+1: page address
|
|
* byte 4i+2: page count
|
|
* (i=1..n)
|
|
*
|
|
* This reads several pages from the card to a single memory buffer.
|
|
* The last two bits of byte 1 have the same meaning as for E8.
|
|
*/
|
|
static int
|
|
sddr09_read_sg_test_only(struct us_data *us) {
|
|
unsigned char *command = us->iobuf;
|
|
int result, bulklen, nsg, ct;
|
|
unsigned char *buf;
|
|
unsigned long address;
|
|
|
|
nsg = bulklen = 0;
|
|
command[0] = 0xE7;
|
|
command[1] = LUNBITS;
|
|
command[2] = 0;
|
|
address = 040000; ct = 1;
|
|
nsg++;
|
|
bulklen += (ct << 9);
|
|
command[4*nsg+2] = ct;
|
|
command[4*nsg+1] = ((address >> 9) & 0xFF);
|
|
command[4*nsg+0] = ((address >> 17) & 0xFF);
|
|
command[4*nsg-1] = ((address >> 25) & 0xFF);
|
|
|
|
address = 0340000; ct = 1;
|
|
nsg++;
|
|
bulklen += (ct << 9);
|
|
command[4*nsg+2] = ct;
|
|
command[4*nsg+1] = ((address >> 9) & 0xFF);
|
|
command[4*nsg+0] = ((address >> 17) & 0xFF);
|
|
command[4*nsg-1] = ((address >> 25) & 0xFF);
|
|
|
|
address = 01000000; ct = 2;
|
|
nsg++;
|
|
bulklen += (ct << 9);
|
|
command[4*nsg+2] = ct;
|
|
command[4*nsg+1] = ((address >> 9) & 0xFF);
|
|
command[4*nsg+0] = ((address >> 17) & 0xFF);
|
|
command[4*nsg-1] = ((address >> 25) & 0xFF);
|
|
|
|
command[2] = nsg;
|
|
|
|
result = sddr09_send_scsi_command(us, command, 4*nsg+3);
|
|
|
|
if (result) {
|
|
US_DEBUGP("Result for send_control in sddr09_read_sg %d\n",
|
|
result);
|
|
return result;
|
|
}
|
|
|
|
buf = kmalloc(bulklen, GFP_NOIO);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
|
|
buf, bulklen, NULL);
|
|
kfree(buf);
|
|
if (result != USB_STOR_XFER_GOOD) {
|
|
US_DEBUGP("Result for bulk_transfer in sddr09_read_sg %d\n",
|
|
result);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Read Status Command: 12 bytes.
|
|
* byte 0: opcode: EC
|
|
*
|
|
* Returns 64 bytes, all zero except for the first.
|
|
* bit 0: 1: Error
|
|
* bit 5: 1: Suspended
|
|
* bit 6: 1: Ready
|
|
* bit 7: 1: Not write-protected
|
|
*/
|
|
|
|
static int
|
|
sddr09_read_status(struct us_data *us, unsigned char *status) {
|
|
|
|
unsigned char *command = us->iobuf;
|
|
unsigned char *data = us->iobuf;
|
|
int result;
|
|
|
|
US_DEBUGP("Reading status...\n");
|
|
|
|
memset(command, 0, 12);
|
|
command[0] = 0xEC;
|
|
command[1] = LUNBITS;
|
|
|
|
result = sddr09_send_scsi_command(us, command, 12);
|
|
if (result)
|
|
return result;
|
|
|
|
result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
|
|
data, 64, NULL);
|
|
*status = data[0];
|
|
return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
|
|
}
|
|
|
|
static int
|
|
sddr09_read_data(struct us_data *us,
|
|
unsigned long address,
|
|
unsigned int sectors) {
|
|
|
|
struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
|
|
unsigned char *buffer;
|
|
unsigned int lba, maxlba, pba;
|
|
unsigned int page, pages;
|
|
unsigned int len, index, offset;
|
|
int result;
|
|
|
|
// Figure out the initial LBA and page
|
|
lba = address >> info->blockshift;
|
|
page = (address & info->blockmask);
|
|
maxlba = info->capacity >> (info->pageshift + info->blockshift);
|
|
if (lba >= maxlba)
|
|
return -EIO;
|
|
|
|
// Since we only read in one block at a time, we have to create
|
|
// a bounce buffer and move the data a piece at a time between the
|
|
// bounce buffer and the actual transfer buffer.
|
|
|
|
len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
|
|
buffer = kmalloc(len, GFP_NOIO);
|
|
if (buffer == NULL) {
|
|
printk("sddr09_read_data: Out of memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
// This could be made much more efficient by checking for
|
|
// contiguous LBA's. Another exercise left to the student.
|
|
|
|
result = 0;
|
|
index = offset = 0;
|
|
|
|
while (sectors > 0) {
|
|
|
|
/* Find number of pages we can read in this block */
|
|
pages = min(sectors, info->blocksize - page);
|
|
len = pages << info->pageshift;
|
|
|
|
/* Not overflowing capacity? */
|
|
if (lba >= maxlba) {
|
|
US_DEBUGP("Error: Requested lba %u exceeds "
|
|
"maximum %u\n", lba, maxlba);
|
|
result = -EIO;
|
|
break;
|
|
}
|
|
|
|
/* Find where this lba lives on disk */
|
|
pba = info->lba_to_pba[lba];
|
|
|
|
if (pba == UNDEF) { /* this lba was never written */
|
|
|
|
US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
|
|
pages, lba, page);
|
|
|
|
/* This is not really an error. It just means
|
|
that the block has never been written.
|
|
Instead of returning an error
|
|
it is better to return all zero data. */
|
|
|
|
memset(buffer, 0, len);
|
|
|
|
} else {
|
|
US_DEBUGP("Read %d pages, from PBA %d"
|
|
" (LBA %d) page %d\n",
|
|
pages, pba, lba, page);
|
|
|
|
address = ((pba << info->blockshift) + page) <<
|
|
info->pageshift;
|
|
|
|
result = sddr09_read20(us, address>>1,
|
|
pages, info->pageshift, buffer, 0);
|
|
if (result)
|
|
break;
|
|
}
|
|
|
|
// Store the data in the transfer buffer
|
|
usb_stor_access_xfer_buf(buffer, len, us->srb,
|
|
&index, &offset, TO_XFER_BUF);
|
|
|
|
page = 0;
|
|
lba++;
|
|
sectors -= pages;
|
|
}
|
|
|
|
kfree(buffer);
|
|
return result;
|
|
}
|
|
|
|
static unsigned int
|
|
sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
|
|
static unsigned int lastpba = 1;
|
|
int zonestart, end, i;
|
|
|
|
zonestart = (lba/1000) << 10;
|
|
end = info->capacity >> (info->blockshift + info->pageshift);
|
|
end -= zonestart;
|
|
if (end > 1024)
|
|
end = 1024;
|
|
|
|
for (i = lastpba+1; i < end; i++) {
|
|
if (info->pba_to_lba[zonestart+i] == UNDEF) {
|
|
lastpba = i;
|
|
return zonestart+i;
|
|
}
|
|
}
|
|
for (i = 0; i <= lastpba; i++) {
|
|
if (info->pba_to_lba[zonestart+i] == UNDEF) {
|
|
lastpba = i;
|
|
return zonestart+i;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sddr09_write_lba(struct us_data *us, unsigned int lba,
|
|
unsigned int page, unsigned int pages,
|
|
unsigned char *ptr, unsigned char *blockbuffer) {
|
|
|
|
struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
|
|
unsigned long address;
|
|
unsigned int pba, lbap;
|
|
unsigned int pagelen;
|
|
unsigned char *bptr, *cptr, *xptr;
|
|
unsigned char ecc[3];
|
|
int i, result, isnew;
|
|
|
|
lbap = ((lba % 1000) << 1) | 0x1000;
|
|
if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
|
|
lbap ^= 1;
|
|
pba = info->lba_to_pba[lba];
|
|
isnew = 0;
|
|
|
|
if (pba == UNDEF) {
|
|
pba = sddr09_find_unused_pba(info, lba);
|
|
if (!pba) {
|
|
printk("sddr09_write_lba: Out of unused blocks\n");
|
|
return -ENOSPC;
|
|
}
|
|
info->pba_to_lba[pba] = lba;
|
|
info->lba_to_pba[lba] = pba;
|
|
isnew = 1;
|
|
}
|
|
|
|
if (pba == 1) {
|
|
/* Maybe it is impossible to write to PBA 1.
|
|
Fake success, but don't do anything. */
|
|
printk("sddr09: avoid writing to pba 1\n");
|
|
return 0;
|
|
}
|
|
|
|
pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
|
|
|
|
/* read old contents */
|
|
address = (pba << (info->pageshift + info->blockshift));
|
|
result = sddr09_read22(us, address>>1, info->blocksize,
|
|
info->pageshift, blockbuffer, 0);
|
|
if (result)
|
|
return result;
|
|
|
|
/* check old contents and fill lba */
|
|
for (i = 0; i < info->blocksize; i++) {
|
|
bptr = blockbuffer + i*pagelen;
|
|
cptr = bptr + info->pagesize;
|
|
nand_compute_ecc(bptr, ecc);
|
|
if (!nand_compare_ecc(cptr+13, ecc)) {
|
|
US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
|
|
i, pba);
|
|
nand_store_ecc(cptr+13, ecc);
|
|
}
|
|
nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
|
|
if (!nand_compare_ecc(cptr+8, ecc)) {
|
|
US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
|
|
i, pba);
|
|
nand_store_ecc(cptr+8, ecc);
|
|
}
|
|
cptr[6] = cptr[11] = MSB_of(lbap);
|
|
cptr[7] = cptr[12] = LSB_of(lbap);
|
|
}
|
|
|
|
/* copy in new stuff and compute ECC */
|
|
xptr = ptr;
|
|
for (i = page; i < page+pages; i++) {
|
|
bptr = blockbuffer + i*pagelen;
|
|
cptr = bptr + info->pagesize;
|
|
memcpy(bptr, xptr, info->pagesize);
|
|
xptr += info->pagesize;
|
|
nand_compute_ecc(bptr, ecc);
|
|
nand_store_ecc(cptr+13, ecc);
|
|
nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
|
|
nand_store_ecc(cptr+8, ecc);
|
|
}
|
|
|
|
US_DEBUGP("Rewrite PBA %d (LBA %d)\n", pba, lba);
|
|
|
|
result = sddr09_write_inplace(us, address>>1, info->blocksize,
|
|
info->pageshift, blockbuffer, 0);
|
|
|
|
US_DEBUGP("sddr09_write_inplace returns %d\n", result);
|
|
|
|
#if 0
|
|
{
|
|
unsigned char status = 0;
|
|
int result2 = sddr09_read_status(us, &status);
|
|
if (result2)
|
|
US_DEBUGP("sddr09_write_inplace: cannot read status\n");
|
|
else if (status != 0xc0)
|
|
US_DEBUGP("sddr09_write_inplace: status after write: 0x%x\n",
|
|
status);
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
{
|
|
int result2 = sddr09_test_unit_ready(us);
|
|
}
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
static int
|
|
sddr09_write_data(struct us_data *us,
|
|
unsigned long address,
|
|
unsigned int sectors) {
|
|
|
|
struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
|
|
unsigned int lba, maxlba, page, pages;
|
|
unsigned int pagelen, blocklen;
|
|
unsigned char *blockbuffer;
|
|
unsigned char *buffer;
|
|
unsigned int len, index, offset;
|
|
int result;
|
|
|
|
// Figure out the initial LBA and page
|
|
lba = address >> info->blockshift;
|
|
page = (address & info->blockmask);
|
|
maxlba = info->capacity >> (info->pageshift + info->blockshift);
|
|
if (lba >= maxlba)
|
|
return -EIO;
|
|
|
|
// blockbuffer is used for reading in the old data, overwriting
|
|
// with the new data, and performing ECC calculations
|
|
|
|
/* TODO: instead of doing kmalloc/kfree for each write,
|
|
add a bufferpointer to the info structure */
|
|
|
|
pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
|
|
blocklen = (pagelen << info->blockshift);
|
|
blockbuffer = kmalloc(blocklen, GFP_NOIO);
|
|
if (!blockbuffer) {
|
|
printk("sddr09_write_data: Out of memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
// Since we don't write the user data directly to the device,
|
|
// we have to create a bounce buffer and move the data a piece
|
|
// at a time between the bounce buffer and the actual transfer buffer.
|
|
|
|
len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
|
|
buffer = kmalloc(len, GFP_NOIO);
|
|
if (buffer == NULL) {
|
|
printk("sddr09_write_data: Out of memory\n");
|
|
kfree(blockbuffer);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
result = 0;
|
|
index = offset = 0;
|
|
|
|
while (sectors > 0) {
|
|
|
|
// Write as many sectors as possible in this block
|
|
|
|
pages = min(sectors, info->blocksize - page);
|
|
len = (pages << info->pageshift);
|
|
|
|
/* Not overflowing capacity? */
|
|
if (lba >= maxlba) {
|
|
US_DEBUGP("Error: Requested lba %u exceeds "
|
|
"maximum %u\n", lba, maxlba);
|
|
result = -EIO;
|
|
break;
|
|
}
|
|
|
|
// Get the data from the transfer buffer
|
|
usb_stor_access_xfer_buf(buffer, len, us->srb,
|
|
&index, &offset, FROM_XFER_BUF);
|
|
|
|
result = sddr09_write_lba(us, lba, page, pages,
|
|
buffer, blockbuffer);
|
|
if (result)
|
|
break;
|
|
|
|
page = 0;
|
|
lba++;
|
|
sectors -= pages;
|
|
}
|
|
|
|
kfree(buffer);
|
|
kfree(blockbuffer);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int
|
|
sddr09_read_control(struct us_data *us,
|
|
unsigned long address,
|
|
unsigned int blocks,
|
|
unsigned char *content,
|
|
int use_sg) {
|
|
|
|
US_DEBUGP("Read control address %lu, blocks %d\n",
|
|
address, blocks);
|
|
|
|
return sddr09_read21(us, address, blocks,
|
|
CONTROL_SHIFT, content, use_sg);
|
|
}
|
|
|
|
/*
|
|
* Read Device ID Command: 12 bytes.
|
|
* byte 0: opcode: ED
|
|
*
|
|
* Returns 2 bytes: Manufacturer ID and Device ID.
|
|
* On more recent cards 3 bytes: the third byte is an option code A5
|
|
* signifying that the secret command to read an 128-bit ID is available.
|
|
* On still more recent cards 4 bytes: the fourth byte C0 means that
|
|
* a second read ID cmd is available.
|
|
*/
|
|
static int
|
|
sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
|
|
unsigned char *command = us->iobuf;
|
|
unsigned char *content = us->iobuf;
|
|
int result, i;
|
|
|
|
memset(command, 0, 12);
|
|
command[0] = 0xED;
|
|
command[1] = LUNBITS;
|
|
|
|
result = sddr09_send_scsi_command(us, command, 12);
|
|
if (result)
|
|
return result;
|
|
|
|
result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
|
|
content, 64, NULL);
|
|
|
|
for (i = 0; i < 4; i++)
|
|
deviceID[i] = content[i];
|
|
|
|
return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
|
|
}
|
|
|
|
static int
|
|
sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
|
|
int result;
|
|
unsigned char status;
|
|
|
|
result = sddr09_read_status(us, &status);
|
|
if (result) {
|
|
US_DEBUGP("sddr09_get_wp: read_status fails\n");
|
|
return result;
|
|
}
|
|
US_DEBUGP("sddr09_get_wp: status 0x%02X", status);
|
|
if ((status & 0x80) == 0) {
|
|
info->flags |= SDDR09_WP; /* write protected */
|
|
US_DEBUGP(" WP");
|
|
}
|
|
if (status & 0x40)
|
|
US_DEBUGP(" Ready");
|
|
if (status & LUNBITS)
|
|
US_DEBUGP(" Suspended");
|
|
if (status & 0x1)
|
|
US_DEBUGP(" Error");
|
|
US_DEBUGP("\n");
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Reset Command: 12 bytes.
|
|
* byte 0: opcode: EB
|
|
*/
|
|
static int
|
|
sddr09_reset(struct us_data *us) {
|
|
|
|
unsigned char *command = us->iobuf;
|
|
|
|
memset(command, 0, 12);
|
|
command[0] = 0xEB;
|
|
command[1] = LUNBITS;
|
|
|
|
return sddr09_send_scsi_command(us, command, 12);
|
|
}
|
|
#endif
|
|
|
|
static struct nand_flash_dev *
|
|
sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
|
|
struct nand_flash_dev *cardinfo;
|
|
unsigned char deviceID[4];
|
|
char blurbtxt[256];
|
|
int result;
|
|
|
|
US_DEBUGP("Reading capacity...\n");
|
|
|
|
result = sddr09_read_deviceID(us, deviceID);
|
|
|
|
if (result) {
|
|
US_DEBUGP("Result of read_deviceID is %d\n", result);
|
|
printk("sddr09: could not read card info\n");
|
|
return NULL;
|
|
}
|
|
|
|
sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
|
|
deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
|
|
|
|
/* Byte 0 is the manufacturer */
|
|
sprintf(blurbtxt + strlen(blurbtxt),
|
|
": Manuf. %s",
|
|
nand_flash_manufacturer(deviceID[0]));
|
|
|
|
/* Byte 1 is the device type */
|
|
cardinfo = nand_find_id(deviceID[1]);
|
|
if (cardinfo) {
|
|
/* MB or MiB? It is neither. A 16 MB card has
|
|
17301504 raw bytes, of which 16384000 are
|
|
usable for user data. */
|
|
sprintf(blurbtxt + strlen(blurbtxt),
|
|
", %d MB", 1<<(cardinfo->chipshift - 20));
|
|
} else {
|
|
sprintf(blurbtxt + strlen(blurbtxt),
|
|
", type unrecognized");
|
|
}
|
|
|
|
/* Byte 2 is code to signal availability of 128-bit ID */
|
|
if (deviceID[2] == 0xa5) {
|
|
sprintf(blurbtxt + strlen(blurbtxt),
|
|
", 128-bit ID");
|
|
}
|
|
|
|
/* Byte 3 announces the availability of another read ID command */
|
|
if (deviceID[3] == 0xc0) {
|
|
sprintf(blurbtxt + strlen(blurbtxt),
|
|
", extra cmd");
|
|
}
|
|
|
|
if (flags & SDDR09_WP)
|
|
sprintf(blurbtxt + strlen(blurbtxt),
|
|
", WP");
|
|
|
|
printk("%s\n", blurbtxt);
|
|
|
|
return cardinfo;
|
|
}
|
|
|
|
static int
|
|
sddr09_read_map(struct us_data *us) {
|
|
|
|
struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
|
|
int numblocks, alloc_len, alloc_blocks;
|
|
int i, j, result;
|
|
unsigned char *buffer, *buffer_end, *ptr;
|
|
unsigned int lba, lbact;
|
|
|
|
if (!info->capacity)
|
|
return -1;
|
|
|
|
// size of a block is 1 << (blockshift + pageshift) bytes
|
|
// divide into the total capacity to get the number of blocks
|
|
|
|
numblocks = info->capacity >> (info->blockshift + info->pageshift);
|
|
|
|
// read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
|
|
// but only use a 64 KB buffer
|
|
// buffer size used must be a multiple of (1 << CONTROL_SHIFT)
|
|
#define SDDR09_READ_MAP_BUFSZ 65536
|
|
|
|
alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
|
|
alloc_len = (alloc_blocks << CONTROL_SHIFT);
|
|
buffer = kmalloc(alloc_len, GFP_NOIO);
|
|
if (buffer == NULL) {
|
|
printk("sddr09_read_map: out of memory\n");
|
|
result = -1;
|
|
goto done;
|
|
}
|
|
buffer_end = buffer + alloc_len;
|
|
|
|
#undef SDDR09_READ_MAP_BUFSZ
|
|
|
|
kfree(info->lba_to_pba);
|
|
kfree(info->pba_to_lba);
|
|
info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
|
|
info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
|
|
|
|
if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
|
|
printk("sddr09_read_map: out of memory\n");
|
|
result = -1;
|
|
goto done;
|
|
}
|
|
|
|
for (i = 0; i < numblocks; i++)
|
|
info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
|
|
|
|
/*
|
|
* Define lba-pba translation table
|
|
*/
|
|
|
|
ptr = buffer_end;
|
|
for (i = 0; i < numblocks; i++) {
|
|
ptr += (1 << CONTROL_SHIFT);
|
|
if (ptr >= buffer_end) {
|
|
unsigned long address;
|
|
|
|
address = i << (info->pageshift + info->blockshift);
|
|
result = sddr09_read_control(
|
|
us, address>>1,
|
|
min(alloc_blocks, numblocks - i),
|
|
buffer, 0);
|
|
if (result) {
|
|
result = -1;
|
|
goto done;
|
|
}
|
|
ptr = buffer;
|
|
}
|
|
|
|
if (i == 0 || i == 1) {
|
|
info->pba_to_lba[i] = UNUSABLE;
|
|
continue;
|
|
}
|
|
|
|
/* special PBAs have control field 0^16 */
|
|
for (j = 0; j < 16; j++)
|
|
if (ptr[j] != 0)
|
|
goto nonz;
|
|
info->pba_to_lba[i] = UNUSABLE;
|
|
printk("sddr09: PBA %d has no logical mapping\n", i);
|
|
continue;
|
|
|
|
nonz:
|
|
/* unwritten PBAs have control field FF^16 */
|
|
for (j = 0; j < 16; j++)
|
|
if (ptr[j] != 0xff)
|
|
goto nonff;
|
|
continue;
|
|
|
|
nonff:
|
|
/* normal PBAs start with six FFs */
|
|
if (j < 6) {
|
|
printk("sddr09: PBA %d has no logical mapping: "
|
|
"reserved area = %02X%02X%02X%02X "
|
|
"data status %02X block status %02X\n",
|
|
i, ptr[0], ptr[1], ptr[2], ptr[3],
|
|
ptr[4], ptr[5]);
|
|
info->pba_to_lba[i] = UNUSABLE;
|
|
continue;
|
|
}
|
|
|
|
if ((ptr[6] >> 4) != 0x01) {
|
|
printk("sddr09: PBA %d has invalid address field "
|
|
"%02X%02X/%02X%02X\n",
|
|
i, ptr[6], ptr[7], ptr[11], ptr[12]);
|
|
info->pba_to_lba[i] = UNUSABLE;
|
|
continue;
|
|
}
|
|
|
|
/* check even parity */
|
|
if (parity[ptr[6] ^ ptr[7]]) {
|
|
printk("sddr09: Bad parity in LBA for block %d"
|
|
" (%02X %02X)\n", i, ptr[6], ptr[7]);
|
|
info->pba_to_lba[i] = UNUSABLE;
|
|
continue;
|
|
}
|
|
|
|
lba = short_pack(ptr[7], ptr[6]);
|
|
lba = (lba & 0x07FF) >> 1;
|
|
|
|
/*
|
|
* Every 1024 physical blocks ("zone"), the LBA numbers
|
|
* go back to zero, but are within a higher block of LBA's.
|
|
* Also, there is a maximum of 1000 LBA's per zone.
|
|
* In other words, in PBA 1024-2047 you will find LBA 0-999
|
|
* which are really LBA 1000-1999. This allows for 24 bad
|
|
* or special physical blocks per zone.
|
|
*/
|
|
|
|
if (lba >= 1000) {
|
|
printk("sddr09: Bad low LBA %d for block %d\n",
|
|
lba, i);
|
|
goto possibly_erase;
|
|
}
|
|
|
|
lba += 1000*(i/0x400);
|
|
|
|
if (info->lba_to_pba[lba] != UNDEF) {
|
|
printk("sddr09: LBA %d seen for PBA %d and %d\n",
|
|
lba, info->lba_to_pba[lba], i);
|
|
goto possibly_erase;
|
|
}
|
|
|
|
info->pba_to_lba[i] = lba;
|
|
info->lba_to_pba[lba] = i;
|
|
continue;
|
|
|
|
possibly_erase:
|
|
if (erase_bad_lba_entries) {
|
|
unsigned long address;
|
|
|
|
address = (i << (info->pageshift + info->blockshift));
|
|
sddr09_erase(us, address>>1);
|
|
info->pba_to_lba[i] = UNDEF;
|
|
} else
|
|
info->pba_to_lba[i] = UNUSABLE;
|
|
}
|
|
|
|
/*
|
|
* Approximate capacity. This is not entirely correct yet,
|
|
* since a zone with less than 1000 usable pages leads to
|
|
* missing LBAs. Especially if it is the last zone, some
|
|
* LBAs can be past capacity.
|
|
*/
|
|
lbact = 0;
|
|
for (i = 0; i < numblocks; i += 1024) {
|
|
int ct = 0;
|
|
|
|
for (j = 0; j < 1024 && i+j < numblocks; j++) {
|
|
if (info->pba_to_lba[i+j] != UNUSABLE) {
|
|
if (ct >= 1000)
|
|
info->pba_to_lba[i+j] = SPARE;
|
|
else
|
|
ct++;
|
|
}
|
|
}
|
|
lbact += ct;
|
|
}
|
|
info->lbact = lbact;
|
|
US_DEBUGP("Found %d LBA's\n", lbact);
|
|
result = 0;
|
|
|
|
done:
|
|
if (result != 0) {
|
|
kfree(info->lba_to_pba);
|
|
kfree(info->pba_to_lba);
|
|
info->lba_to_pba = NULL;
|
|
info->pba_to_lba = NULL;
|
|
}
|
|
kfree(buffer);
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
sddr09_card_info_destructor(void *extra) {
|
|
struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
|
|
|
|
if (!info)
|
|
return;
|
|
|
|
kfree(info->lba_to_pba);
|
|
kfree(info->pba_to_lba);
|
|
}
|
|
|
|
static int
|
|
sddr09_common_init(struct us_data *us) {
|
|
int result;
|
|
|
|
/* set the configuration -- STALL is an acceptable response here */
|
|
if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
|
|
US_DEBUGP("active config #%d != 1 ??\n", us->pusb_dev
|
|
->actconfig->desc.bConfigurationValue);
|
|
return -EINVAL;
|
|
}
|
|
|
|
result = usb_reset_configuration(us->pusb_dev);
|
|
US_DEBUGP("Result of usb_reset_configuration is %d\n", result);
|
|
if (result == -EPIPE) {
|
|
US_DEBUGP("-- stall on control interface\n");
|
|
} else if (result != 0) {
|
|
/* it's not a stall, but another error -- time to bail */
|
|
US_DEBUGP("-- Unknown error. Rejecting device\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
|
|
if (!us->extra)
|
|
return -ENOMEM;
|
|
us->extra_destructor = sddr09_card_info_destructor;
|
|
|
|
nand_init_ecc();
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* This is needed at a very early stage. If this is not listed in the
|
|
* unusual devices list but called from here then LUN 0 of the combo reader
|
|
* is not recognized. But I do not know what precisely these calls do.
|
|
*/
|
|
int
|
|
usb_stor_sddr09_dpcm_init(struct us_data *us) {
|
|
int result;
|
|
unsigned char *data = us->iobuf;
|
|
|
|
result = sddr09_common_init(us);
|
|
if (result)
|
|
return result;
|
|
|
|
result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
|
|
if (result) {
|
|
US_DEBUGP("sddr09_init: send_command fails\n");
|
|
return result;
|
|
}
|
|
|
|
US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
|
|
// get 07 02
|
|
|
|
result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
|
|
if (result) {
|
|
US_DEBUGP("sddr09_init: 2nd send_command fails\n");
|
|
return result;
|
|
}
|
|
|
|
US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
|
|
// get 07 00
|
|
|
|
result = sddr09_request_sense(us, data, 18);
|
|
if (result == 0 && data[2] != 0) {
|
|
int j;
|
|
for (j=0; j<18; j++)
|
|
printk(" %02X", data[j]);
|
|
printk("\n");
|
|
// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
|
|
// 70: current command
|
|
// sense key 0, sense code 0, extd sense code 0
|
|
// additional transfer length * = sizeof(data) - 7
|
|
// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
|
|
// sense key 06, sense code 28: unit attention,
|
|
// not ready to ready transition
|
|
}
|
|
|
|
// test unit ready
|
|
|
|
return 0; /* not result */
|
|
}
|
|
|
|
/*
|
|
* Transport for the Sandisk SDDR-09
|
|
*/
|
|
int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
|
|
{
|
|
static unsigned char sensekey = 0, sensecode = 0;
|
|
static unsigned char havefakesense = 0;
|
|
int result, i;
|
|
unsigned char *ptr = us->iobuf;
|
|
unsigned long capacity;
|
|
unsigned int page, pages;
|
|
|
|
struct sddr09_card_info *info;
|
|
|
|
static unsigned char inquiry_response[8] = {
|
|
0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
|
|
};
|
|
|
|
/* note: no block descriptor support */
|
|
static unsigned char mode_page_01[19] = {
|
|
0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
|
|
0x01, 0x0A,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
|
|
};
|
|
|
|
info = (struct sddr09_card_info *)us->extra;
|
|
|
|
if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
|
|
/* for a faked command, we have to follow with a faked sense */
|
|
memset(ptr, 0, 18);
|
|
ptr[0] = 0x70;
|
|
ptr[2] = sensekey;
|
|
ptr[7] = 11;
|
|
ptr[12] = sensecode;
|
|
usb_stor_set_xfer_buf(ptr, 18, srb);
|
|
sensekey = sensecode = havefakesense = 0;
|
|
return USB_STOR_TRANSPORT_GOOD;
|
|
}
|
|
|
|
havefakesense = 1;
|
|
|
|
/* Dummy up a response for INQUIRY since SDDR09 doesn't
|
|
respond to INQUIRY commands */
|
|
|
|
if (srb->cmnd[0] == INQUIRY) {
|
|
memcpy(ptr, inquiry_response, 8);
|
|
fill_inquiry_response(us, ptr, 36);
|
|
return USB_STOR_TRANSPORT_GOOD;
|
|
}
|
|
|
|
if (srb->cmnd[0] == READ_CAPACITY) {
|
|
struct nand_flash_dev *cardinfo;
|
|
|
|
sddr09_get_wp(us, info); /* read WP bit */
|
|
|
|
cardinfo = sddr09_get_cardinfo(us, info->flags);
|
|
if (!cardinfo) {
|
|
/* probably no media */
|
|
init_error:
|
|
sensekey = 0x02; /* not ready */
|
|
sensecode = 0x3a; /* medium not present */
|
|
return USB_STOR_TRANSPORT_FAILED;
|
|
}
|
|
|
|
info->capacity = (1 << cardinfo->chipshift);
|
|
info->pageshift = cardinfo->pageshift;
|
|
info->pagesize = (1 << info->pageshift);
|
|
info->blockshift = cardinfo->blockshift;
|
|
info->blocksize = (1 << info->blockshift);
|
|
info->blockmask = info->blocksize - 1;
|
|
|
|
// map initialization, must follow get_cardinfo()
|
|
if (sddr09_read_map(us)) {
|
|
/* probably out of memory */
|
|
goto init_error;
|
|
}
|
|
|
|
// Report capacity
|
|
|
|
capacity = (info->lbact << info->blockshift) - 1;
|
|
|
|
((__be32 *) ptr)[0] = cpu_to_be32(capacity);
|
|
|
|
// Report page size
|
|
|
|
((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
|
|
usb_stor_set_xfer_buf(ptr, 8, srb);
|
|
|
|
return USB_STOR_TRANSPORT_GOOD;
|
|
}
|
|
|
|
if (srb->cmnd[0] == MODE_SENSE_10) {
|
|
int modepage = (srb->cmnd[2] & 0x3F);
|
|
|
|
/* They ask for the Read/Write error recovery page,
|
|
or for all pages. */
|
|
/* %% We should check DBD %% */
|
|
if (modepage == 0x01 || modepage == 0x3F) {
|
|
US_DEBUGP("SDDR09: Dummy up request for "
|
|
"mode page 0x%x\n", modepage);
|
|
|
|
memcpy(ptr, mode_page_01, sizeof(mode_page_01));
|
|
((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
|
|
ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
|
|
usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
|
|
return USB_STOR_TRANSPORT_GOOD;
|
|
}
|
|
|
|
sensekey = 0x05; /* illegal request */
|
|
sensecode = 0x24; /* invalid field in CDB */
|
|
return USB_STOR_TRANSPORT_FAILED;
|
|
}
|
|
|
|
if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
|
|
return USB_STOR_TRANSPORT_GOOD;
|
|
|
|
havefakesense = 0;
|
|
|
|
if (srb->cmnd[0] == READ_10) {
|
|
|
|
page = short_pack(srb->cmnd[3], srb->cmnd[2]);
|
|
page <<= 16;
|
|
page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
|
|
pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
|
|
|
|
US_DEBUGP("READ_10: read page %d pagect %d\n",
|
|
page, pages);
|
|
|
|
result = sddr09_read_data(us, page, pages);
|
|
return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
|
|
USB_STOR_TRANSPORT_ERROR);
|
|
}
|
|
|
|
if (srb->cmnd[0] == WRITE_10) {
|
|
|
|
page = short_pack(srb->cmnd[3], srb->cmnd[2]);
|
|
page <<= 16;
|
|
page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
|
|
pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
|
|
|
|
US_DEBUGP("WRITE_10: write page %d pagect %d\n",
|
|
page, pages);
|
|
|
|
result = sddr09_write_data(us, page, pages);
|
|
return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
|
|
USB_STOR_TRANSPORT_ERROR);
|
|
}
|
|
|
|
/* catch-all for all other commands, except
|
|
* pass TEST_UNIT_READY and REQUEST_SENSE through
|
|
*/
|
|
if (srb->cmnd[0] != TEST_UNIT_READY &&
|
|
srb->cmnd[0] != REQUEST_SENSE) {
|
|
sensekey = 0x05; /* illegal request */
|
|
sensecode = 0x20; /* invalid command */
|
|
havefakesense = 1;
|
|
return USB_STOR_TRANSPORT_FAILED;
|
|
}
|
|
|
|
for (; srb->cmd_len<12; srb->cmd_len++)
|
|
srb->cmnd[srb->cmd_len] = 0;
|
|
|
|
srb->cmnd[1] = LUNBITS;
|
|
|
|
ptr[0] = 0;
|
|
for (i=0; i<12; i++)
|
|
sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
|
|
|
|
US_DEBUGP("SDDR09: Send control for command %s\n", ptr);
|
|
|
|
result = sddr09_send_scsi_command(us, srb->cmnd, 12);
|
|
if (result) {
|
|
US_DEBUGP("sddr09_transport: sddr09_send_scsi_command "
|
|
"returns %d\n", result);
|
|
return USB_STOR_TRANSPORT_ERROR;
|
|
}
|
|
|
|
if (srb->request_bufflen == 0)
|
|
return USB_STOR_TRANSPORT_GOOD;
|
|
|
|
if (srb->sc_data_direction == DMA_TO_DEVICE ||
|
|
srb->sc_data_direction == DMA_FROM_DEVICE) {
|
|
unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
|
|
? us->send_bulk_pipe : us->recv_bulk_pipe;
|
|
|
|
US_DEBUGP("SDDR09: %s %d bytes\n",
|
|
(srb->sc_data_direction == DMA_TO_DEVICE) ?
|
|
"sending" : "receiving",
|
|
srb->request_bufflen);
|
|
|
|
result = usb_stor_bulk_transfer_sg(us, pipe,
|
|
srb->request_buffer,
|
|
srb->request_bufflen,
|
|
srb->use_sg, &srb->resid);
|
|
|
|
return (result == USB_STOR_XFER_GOOD ?
|
|
USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
|
|
}
|
|
|
|
return USB_STOR_TRANSPORT_GOOD;
|
|
}
|
|
|
|
/*
|
|
* Initialization routine for the sddr09 subdriver
|
|
*/
|
|
int
|
|
usb_stor_sddr09_init(struct us_data *us) {
|
|
return sddr09_common_init(us);
|
|
}
|