787 lines
22 KiB
C
787 lines
22 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare Solarstorm network controllers and boards
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
|
* Copyright 2005-2011 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include <linux/socket.h>
|
|
#include <linux/in.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/iommu.h>
|
|
#include <net/ip.h>
|
|
#include <net/checksum.h>
|
|
#include "net_driver.h"
|
|
#include "efx.h"
|
|
#include "nic.h"
|
|
#include "selftest.h"
|
|
#include "workarounds.h"
|
|
|
|
/* Number of RX descriptors pushed at once. */
|
|
#define EFX_RX_BATCH 8
|
|
|
|
/* Number of RX buffers to recycle pages for. When creating the RX page recycle
|
|
* ring, this number is divided by the number of buffers per page to calculate
|
|
* the number of pages to store in the RX page recycle ring.
|
|
*/
|
|
#define EFX_RECYCLE_RING_SIZE_IOMMU 4096
|
|
#define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_BATCH)
|
|
|
|
/* Maximum length for an RX descriptor sharing a page */
|
|
#define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state) \
|
|
- EFX_PAGE_IP_ALIGN)
|
|
|
|
/* Size of buffer allocated for skb header area. */
|
|
#define EFX_SKB_HEADERS 64u
|
|
|
|
/* This is the percentage fill level below which new RX descriptors
|
|
* will be added to the RX descriptor ring.
|
|
*/
|
|
static unsigned int rx_refill_threshold;
|
|
|
|
/* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
|
|
#define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
|
|
EFX_RX_USR_BUF_SIZE)
|
|
|
|
/*
|
|
* RX maximum head room required.
|
|
*
|
|
* This must be at least 1 to prevent overflow, plus one packet-worth
|
|
* to allow pipelined receives.
|
|
*/
|
|
#define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
|
|
|
|
static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
|
|
{
|
|
return page_address(buf->page) + buf->page_offset;
|
|
}
|
|
|
|
static inline u32 efx_rx_buf_hash(const u8 *eh)
|
|
{
|
|
/* The ethernet header is always directly after any hash. */
|
|
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
|
|
return __le32_to_cpup((const __le32 *)(eh - 4));
|
|
#else
|
|
const u8 *data = eh - 4;
|
|
return (u32)data[0] |
|
|
(u32)data[1] << 8 |
|
|
(u32)data[2] << 16 |
|
|
(u32)data[3] << 24;
|
|
#endif
|
|
}
|
|
|
|
static inline struct efx_rx_buffer *
|
|
efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
|
|
{
|
|
if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
|
|
return efx_rx_buffer(rx_queue, 0);
|
|
else
|
|
return rx_buf + 1;
|
|
}
|
|
|
|
static inline void efx_sync_rx_buffer(struct efx_nic *efx,
|
|
struct efx_rx_buffer *rx_buf,
|
|
unsigned int len)
|
|
{
|
|
dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
|
|
/* Check the RX page recycle ring for a page that can be reused. */
|
|
static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct page *page;
|
|
struct efx_rx_page_state *state;
|
|
unsigned index;
|
|
|
|
index = rx_queue->page_remove & rx_queue->page_ptr_mask;
|
|
page = rx_queue->page_ring[index];
|
|
if (page == NULL)
|
|
return NULL;
|
|
|
|
rx_queue->page_ring[index] = NULL;
|
|
/* page_remove cannot exceed page_add. */
|
|
if (rx_queue->page_remove != rx_queue->page_add)
|
|
++rx_queue->page_remove;
|
|
|
|
/* If page_count is 1 then we hold the only reference to this page. */
|
|
if (page_count(page) == 1) {
|
|
++rx_queue->page_recycle_count;
|
|
return page;
|
|
} else {
|
|
state = page_address(page);
|
|
dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
|
|
PAGE_SIZE << efx->rx_buffer_order,
|
|
DMA_FROM_DEVICE);
|
|
put_page(page);
|
|
++rx_queue->page_recycle_failed;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
|
|
*
|
|
* @rx_queue: Efx RX queue
|
|
*
|
|
* This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
|
|
* and populates struct efx_rx_buffers for each one. Return a negative error
|
|
* code or 0 on success. If a single page can be split between two buffers,
|
|
* then the page will either be inserted fully, or not at at all.
|
|
*/
|
|
static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_rx_buffer *rx_buf;
|
|
struct page *page;
|
|
unsigned int page_offset;
|
|
struct efx_rx_page_state *state;
|
|
dma_addr_t dma_addr;
|
|
unsigned index, count;
|
|
|
|
/* We can split a page between two buffers */
|
|
BUILD_BUG_ON(EFX_RX_BATCH & 1);
|
|
|
|
for (count = 0; count < EFX_RX_BATCH; ++count) {
|
|
page = efx_reuse_page(rx_queue);
|
|
if (page == NULL) {
|
|
page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
|
|
efx->rx_buffer_order);
|
|
if (unlikely(page == NULL))
|
|
return -ENOMEM;
|
|
dma_addr =
|
|
dma_map_page(&efx->pci_dev->dev, page, 0,
|
|
PAGE_SIZE << efx->rx_buffer_order,
|
|
DMA_FROM_DEVICE);
|
|
if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
|
|
dma_addr))) {
|
|
__free_pages(page, efx->rx_buffer_order);
|
|
return -EIO;
|
|
}
|
|
state = page_address(page);
|
|
state->dma_addr = dma_addr;
|
|
} else {
|
|
state = page_address(page);
|
|
dma_addr = state->dma_addr;
|
|
}
|
|
get_page(page);
|
|
|
|
dma_addr += sizeof(struct efx_rx_page_state);
|
|
page_offset = sizeof(struct efx_rx_page_state);
|
|
|
|
split:
|
|
index = rx_queue->added_count & rx_queue->ptr_mask;
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
|
|
rx_buf->page = page;
|
|
rx_buf->page_offset = page_offset + EFX_PAGE_IP_ALIGN;
|
|
rx_buf->len = efx->rx_dma_len;
|
|
++rx_queue->added_count;
|
|
|
|
if ((~count & 1) && (efx->rx_dma_len <= EFX_RX_HALF_PAGE)) {
|
|
/* Use the second half of the page */
|
|
get_page(page);
|
|
rx_buf->flags = 0;
|
|
dma_addr += (PAGE_SIZE >> 1);
|
|
page_offset += (PAGE_SIZE >> 1);
|
|
++count;
|
|
goto split;
|
|
}
|
|
|
|
rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Unmap a DMA-mapped page. This function is only called for the final RX
|
|
* buffer in a page.
|
|
*/
|
|
static void efx_unmap_rx_buffer(struct efx_nic *efx,
|
|
struct efx_rx_buffer *rx_buf)
|
|
{
|
|
struct page *page = rx_buf->page;
|
|
|
|
if (page) {
|
|
struct efx_rx_page_state *state = page_address(page);
|
|
dma_unmap_page(&efx->pci_dev->dev,
|
|
state->dma_addr,
|
|
PAGE_SIZE << efx->rx_buffer_order,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
}
|
|
|
|
static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
|
|
{
|
|
if (rx_buf->page) {
|
|
put_page(rx_buf->page);
|
|
rx_buf->page = NULL;
|
|
}
|
|
}
|
|
|
|
/* Attempt to recycle the page if there is an RX recycle ring; the page can
|
|
* only be added if this is the final RX buffer, to prevent pages being used in
|
|
* the descriptor ring and appearing in the recycle ring simultaneously.
|
|
*/
|
|
static void efx_recycle_rx_page(struct efx_channel *channel,
|
|
struct efx_rx_buffer *rx_buf)
|
|
{
|
|
struct page *page = rx_buf->page;
|
|
struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned index;
|
|
|
|
/* Only recycle the page after processing the final buffer. */
|
|
if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
|
|
return;
|
|
|
|
index = rx_queue->page_add & rx_queue->page_ptr_mask;
|
|
if (rx_queue->page_ring[index] == NULL) {
|
|
unsigned read_index = rx_queue->page_remove &
|
|
rx_queue->page_ptr_mask;
|
|
|
|
/* The next slot in the recycle ring is available, but
|
|
* increment page_remove if the read pointer currently
|
|
* points here.
|
|
*/
|
|
if (read_index == index)
|
|
++rx_queue->page_remove;
|
|
rx_queue->page_ring[index] = page;
|
|
++rx_queue->page_add;
|
|
return;
|
|
}
|
|
++rx_queue->page_recycle_full;
|
|
efx_unmap_rx_buffer(efx, rx_buf);
|
|
put_page(rx_buf->page);
|
|
}
|
|
|
|
static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
|
|
struct efx_rx_buffer *rx_buf)
|
|
{
|
|
/* Release the page reference we hold for the buffer. */
|
|
if (rx_buf->page)
|
|
put_page(rx_buf->page);
|
|
|
|
/* If this is the last buffer in a page, unmap and free it. */
|
|
if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
|
|
efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
|
|
efx_free_rx_buffer(rx_buf);
|
|
}
|
|
rx_buf->page = NULL;
|
|
}
|
|
|
|
/* Recycle the pages that are used by buffers that have just been received. */
|
|
static void efx_recycle_rx_buffers(struct efx_channel *channel,
|
|
struct efx_rx_buffer *rx_buf,
|
|
unsigned int n_frags)
|
|
{
|
|
struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
|
|
|
|
do {
|
|
efx_recycle_rx_page(channel, rx_buf);
|
|
rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
|
|
} while (--n_frags);
|
|
}
|
|
|
|
/**
|
|
* efx_fast_push_rx_descriptors - push new RX descriptors quickly
|
|
* @rx_queue: RX descriptor queue
|
|
*
|
|
* This will aim to fill the RX descriptor queue up to
|
|
* @rx_queue->@max_fill. If there is insufficient atomic
|
|
* memory to do so, a slow fill will be scheduled.
|
|
*
|
|
* The caller must provide serialisation (none is used here). In practise,
|
|
* this means this function must run from the NAPI handler, or be called
|
|
* when NAPI is disabled.
|
|
*/
|
|
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
|
|
{
|
|
unsigned fill_level;
|
|
int space, rc = 0;
|
|
|
|
/* Calculate current fill level, and exit if we don't need to fill */
|
|
fill_level = (rx_queue->added_count - rx_queue->removed_count);
|
|
EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
|
|
if (fill_level >= rx_queue->fast_fill_trigger)
|
|
goto out;
|
|
|
|
/* Record minimum fill level */
|
|
if (unlikely(fill_level < rx_queue->min_fill)) {
|
|
if (fill_level)
|
|
rx_queue->min_fill = fill_level;
|
|
}
|
|
|
|
space = rx_queue->max_fill - fill_level;
|
|
EFX_BUG_ON_PARANOID(space < EFX_RX_BATCH);
|
|
|
|
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
|
|
"RX queue %d fast-filling descriptor ring from"
|
|
" level %d to level %d\n",
|
|
efx_rx_queue_index(rx_queue), fill_level,
|
|
rx_queue->max_fill);
|
|
|
|
|
|
do {
|
|
rc = efx_init_rx_buffers(rx_queue);
|
|
if (unlikely(rc)) {
|
|
/* Ensure that we don't leave the rx queue empty */
|
|
if (rx_queue->added_count == rx_queue->removed_count)
|
|
efx_schedule_slow_fill(rx_queue);
|
|
goto out;
|
|
}
|
|
} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
|
|
|
|
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
|
|
"RX queue %d fast-filled descriptor ring "
|
|
"to level %d\n", efx_rx_queue_index(rx_queue),
|
|
rx_queue->added_count - rx_queue->removed_count);
|
|
|
|
out:
|
|
if (rx_queue->notified_count != rx_queue->added_count)
|
|
efx_nic_notify_rx_desc(rx_queue);
|
|
}
|
|
|
|
void efx_rx_slow_fill(unsigned long context)
|
|
{
|
|
struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
|
|
|
|
/* Post an event to cause NAPI to run and refill the queue */
|
|
efx_nic_generate_fill_event(rx_queue);
|
|
++rx_queue->slow_fill_count;
|
|
}
|
|
|
|
static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
|
|
struct efx_rx_buffer *rx_buf,
|
|
int len)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
|
|
|
|
if (likely(len <= max_len))
|
|
return;
|
|
|
|
/* The packet must be discarded, but this is only a fatal error
|
|
* if the caller indicated it was
|
|
*/
|
|
rx_buf->flags |= EFX_RX_PKT_DISCARD;
|
|
|
|
if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
|
|
if (net_ratelimit())
|
|
netif_err(efx, rx_err, efx->net_dev,
|
|
" RX queue %d seriously overlength "
|
|
"RX event (0x%x > 0x%x+0x%x). Leaking\n",
|
|
efx_rx_queue_index(rx_queue), len, max_len,
|
|
efx->type->rx_buffer_padding);
|
|
efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
|
|
} else {
|
|
if (net_ratelimit())
|
|
netif_err(efx, rx_err, efx->net_dev,
|
|
" RX queue %d overlength RX event "
|
|
"(0x%x > 0x%x)\n",
|
|
efx_rx_queue_index(rx_queue), len, max_len);
|
|
}
|
|
|
|
efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
|
|
}
|
|
|
|
/* Pass a received packet up through GRO. GRO can handle pages
|
|
* regardless of checksum state and skbs with a good checksum.
|
|
*/
|
|
static void
|
|
efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
|
|
unsigned int n_frags, u8 *eh)
|
|
{
|
|
struct napi_struct *napi = &channel->napi_str;
|
|
gro_result_t gro_result;
|
|
struct efx_nic *efx = channel->efx;
|
|
struct sk_buff *skb;
|
|
|
|
skb = napi_get_frags(napi);
|
|
if (unlikely(!skb)) {
|
|
while (n_frags--) {
|
|
put_page(rx_buf->page);
|
|
rx_buf->page = NULL;
|
|
rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (efx->net_dev->features & NETIF_F_RXHASH)
|
|
skb->rxhash = efx_rx_buf_hash(eh);
|
|
skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
|
|
CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
|
|
|
|
for (;;) {
|
|
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
|
|
rx_buf->page, rx_buf->page_offset,
|
|
rx_buf->len);
|
|
rx_buf->page = NULL;
|
|
skb->len += rx_buf->len;
|
|
if (skb_shinfo(skb)->nr_frags == n_frags)
|
|
break;
|
|
|
|
rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
|
|
}
|
|
|
|
skb->data_len = skb->len;
|
|
skb->truesize += n_frags * efx->rx_buffer_truesize;
|
|
|
|
skb_record_rx_queue(skb, channel->rx_queue.core_index);
|
|
|
|
gro_result = napi_gro_frags(napi);
|
|
if (gro_result != GRO_DROP)
|
|
channel->irq_mod_score += 2;
|
|
}
|
|
|
|
/* Allocate and construct an SKB around page fragments */
|
|
static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
|
|
struct efx_rx_buffer *rx_buf,
|
|
unsigned int n_frags,
|
|
u8 *eh, int hdr_len)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct sk_buff *skb;
|
|
|
|
/* Allocate an SKB to store the headers */
|
|
skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
|
|
if (unlikely(skb == NULL))
|
|
return NULL;
|
|
|
|
EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
|
|
|
|
skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
|
|
memcpy(__skb_put(skb, hdr_len), eh, hdr_len);
|
|
|
|
/* Append the remaining page(s) onto the frag list */
|
|
if (rx_buf->len > hdr_len) {
|
|
rx_buf->page_offset += hdr_len;
|
|
rx_buf->len -= hdr_len;
|
|
|
|
for (;;) {
|
|
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
|
|
rx_buf->page, rx_buf->page_offset,
|
|
rx_buf->len);
|
|
rx_buf->page = NULL;
|
|
skb->len += rx_buf->len;
|
|
skb->data_len += rx_buf->len;
|
|
if (skb_shinfo(skb)->nr_frags == n_frags)
|
|
break;
|
|
|
|
rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
|
|
}
|
|
} else {
|
|
__free_pages(rx_buf->page, efx->rx_buffer_order);
|
|
rx_buf->page = NULL;
|
|
n_frags = 0;
|
|
}
|
|
|
|
skb->truesize += n_frags * efx->rx_buffer_truesize;
|
|
|
|
/* Move past the ethernet header */
|
|
skb->protocol = eth_type_trans(skb, efx->net_dev);
|
|
|
|
return skb;
|
|
}
|
|
|
|
void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
|
|
unsigned int n_frags, unsigned int len, u16 flags)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
|
|
struct efx_rx_buffer *rx_buf;
|
|
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
rx_buf->flags |= flags;
|
|
|
|
/* Validate the number of fragments and completed length */
|
|
if (n_frags == 1) {
|
|
efx_rx_packet__check_len(rx_queue, rx_buf, len);
|
|
} else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
|
|
unlikely(len <= (n_frags - 1) * EFX_RX_USR_BUF_SIZE) ||
|
|
unlikely(len > n_frags * EFX_RX_USR_BUF_SIZE) ||
|
|
unlikely(!efx->rx_scatter)) {
|
|
/* If this isn't an explicit discard request, either
|
|
* the hardware or the driver is broken.
|
|
*/
|
|
WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
|
|
rx_buf->flags |= EFX_RX_PKT_DISCARD;
|
|
}
|
|
|
|
netif_vdbg(efx, rx_status, efx->net_dev,
|
|
"RX queue %d received ids %x-%x len %d %s%s\n",
|
|
efx_rx_queue_index(rx_queue), index,
|
|
(index + n_frags - 1) & rx_queue->ptr_mask, len,
|
|
(rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
|
|
(rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
|
|
|
|
/* Discard packet, if instructed to do so. Process the
|
|
* previous receive first.
|
|
*/
|
|
if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
|
|
efx_rx_flush_packet(channel);
|
|
put_page(rx_buf->page);
|
|
efx_recycle_rx_buffers(channel, rx_buf, n_frags);
|
|
return;
|
|
}
|
|
|
|
if (n_frags == 1)
|
|
rx_buf->len = len;
|
|
|
|
/* Release and/or sync the DMA mapping - assumes all RX buffers
|
|
* consumed in-order per RX queue.
|
|
*/
|
|
efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
|
|
|
|
/* Prefetch nice and early so data will (hopefully) be in cache by
|
|
* the time we look at it.
|
|
*/
|
|
prefetch(efx_rx_buf_va(rx_buf));
|
|
|
|
rx_buf->page_offset += efx->type->rx_buffer_hash_size;
|
|
rx_buf->len -= efx->type->rx_buffer_hash_size;
|
|
|
|
if (n_frags > 1) {
|
|
/* Release/sync DMA mapping for additional fragments.
|
|
* Fix length for last fragment.
|
|
*/
|
|
unsigned int tail_frags = n_frags - 1;
|
|
|
|
for (;;) {
|
|
rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
|
|
if (--tail_frags == 0)
|
|
break;
|
|
efx_sync_rx_buffer(efx, rx_buf, EFX_RX_USR_BUF_SIZE);
|
|
}
|
|
rx_buf->len = len - (n_frags - 1) * EFX_RX_USR_BUF_SIZE;
|
|
efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
|
|
}
|
|
|
|
/* All fragments have been DMA-synced, so recycle buffers and pages. */
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
efx_recycle_rx_buffers(channel, rx_buf, n_frags);
|
|
|
|
/* Pipeline receives so that we give time for packet headers to be
|
|
* prefetched into cache.
|
|
*/
|
|
efx_rx_flush_packet(channel);
|
|
channel->rx_pkt_n_frags = n_frags;
|
|
channel->rx_pkt_index = index;
|
|
}
|
|
|
|
static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
|
|
struct efx_rx_buffer *rx_buf,
|
|
unsigned int n_frags)
|
|
{
|
|
struct sk_buff *skb;
|
|
u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
|
|
|
|
skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
|
|
if (unlikely(skb == NULL)) {
|
|
efx_free_rx_buffer(rx_buf);
|
|
return;
|
|
}
|
|
skb_record_rx_queue(skb, channel->rx_queue.core_index);
|
|
|
|
/* Set the SKB flags */
|
|
skb_checksum_none_assert(skb);
|
|
|
|
if (channel->type->receive_skb)
|
|
if (channel->type->receive_skb(channel, skb))
|
|
return;
|
|
|
|
/* Pass the packet up */
|
|
netif_receive_skb(skb);
|
|
}
|
|
|
|
/* Handle a received packet. Second half: Touches packet payload. */
|
|
void __efx_rx_packet(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct efx_rx_buffer *rx_buf =
|
|
efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
|
|
u8 *eh = efx_rx_buf_va(rx_buf);
|
|
|
|
/* If we're in loopback test, then pass the packet directly to the
|
|
* loopback layer, and free the rx_buf here
|
|
*/
|
|
if (unlikely(efx->loopback_selftest)) {
|
|
efx_loopback_rx_packet(efx, eh, rx_buf->len);
|
|
efx_free_rx_buffer(rx_buf);
|
|
goto out;
|
|
}
|
|
|
|
if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
|
|
rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
|
|
|
|
if (!channel->type->receive_skb)
|
|
efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
|
|
else
|
|
efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
|
|
out:
|
|
channel->rx_pkt_n_frags = 0;
|
|
}
|
|
|
|
int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned int entries;
|
|
int rc;
|
|
|
|
/* Create the smallest power-of-two aligned ring */
|
|
entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
|
|
EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
|
|
rx_queue->ptr_mask = entries - 1;
|
|
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"creating RX queue %d size %#x mask %#x\n",
|
|
efx_rx_queue_index(rx_queue), efx->rxq_entries,
|
|
rx_queue->ptr_mask);
|
|
|
|
/* Allocate RX buffers */
|
|
rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
|
|
GFP_KERNEL);
|
|
if (!rx_queue->buffer)
|
|
return -ENOMEM;
|
|
|
|
rc = efx_nic_probe_rx(rx_queue);
|
|
if (rc) {
|
|
kfree(rx_queue->buffer);
|
|
rx_queue->buffer = NULL;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void efx_init_rx_recycle_ring(struct efx_nic *efx,
|
|
struct efx_rx_queue *rx_queue)
|
|
{
|
|
unsigned int bufs_in_recycle_ring, page_ring_size;
|
|
|
|
/* Set the RX recycle ring size */
|
|
#ifdef CONFIG_PPC64
|
|
bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
|
|
#else
|
|
if (efx->pci_dev->dev.iommu_group)
|
|
bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
|
|
else
|
|
bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
|
|
efx->rx_bufs_per_page);
|
|
rx_queue->page_ring = kcalloc(page_ring_size,
|
|
sizeof(*rx_queue->page_ring), GFP_KERNEL);
|
|
rx_queue->page_ptr_mask = page_ring_size - 1;
|
|
}
|
|
|
|
void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned int max_fill, trigger, max_trigger;
|
|
|
|
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
|
|
"initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
|
|
|
|
/* Initialise ptr fields */
|
|
rx_queue->added_count = 0;
|
|
rx_queue->notified_count = 0;
|
|
rx_queue->removed_count = 0;
|
|
rx_queue->min_fill = -1U;
|
|
efx_init_rx_recycle_ring(efx, rx_queue);
|
|
|
|
rx_queue->page_remove = 0;
|
|
rx_queue->page_add = rx_queue->page_ptr_mask + 1;
|
|
rx_queue->page_recycle_count = 0;
|
|
rx_queue->page_recycle_failed = 0;
|
|
rx_queue->page_recycle_full = 0;
|
|
|
|
/* Initialise limit fields */
|
|
max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
|
|
max_trigger = max_fill - EFX_RX_BATCH;
|
|
if (rx_refill_threshold != 0) {
|
|
trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
|
|
if (trigger > max_trigger)
|
|
trigger = max_trigger;
|
|
} else {
|
|
trigger = max_trigger;
|
|
}
|
|
|
|
rx_queue->max_fill = max_fill;
|
|
rx_queue->fast_fill_trigger = trigger;
|
|
|
|
/* Set up RX descriptor ring */
|
|
rx_queue->enabled = true;
|
|
efx_nic_init_rx(rx_queue);
|
|
}
|
|
|
|
void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
int i;
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_rx_buffer *rx_buf;
|
|
|
|
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
|
|
"shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
|
|
|
|
/* A flush failure might have left rx_queue->enabled */
|
|
rx_queue->enabled = false;
|
|
|
|
del_timer_sync(&rx_queue->slow_fill);
|
|
efx_nic_fini_rx(rx_queue);
|
|
|
|
/* Release RX buffers from the current read ptr to the write ptr */
|
|
if (rx_queue->buffer) {
|
|
for (i = rx_queue->removed_count; i < rx_queue->added_count;
|
|
i++) {
|
|
unsigned index = i & rx_queue->ptr_mask;
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
efx_fini_rx_buffer(rx_queue, rx_buf);
|
|
}
|
|
}
|
|
|
|
/* Unmap and release the pages in the recycle ring. Remove the ring. */
|
|
for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
|
|
struct page *page = rx_queue->page_ring[i];
|
|
struct efx_rx_page_state *state;
|
|
|
|
if (page == NULL)
|
|
continue;
|
|
|
|
state = page_address(page);
|
|
dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
|
|
PAGE_SIZE << efx->rx_buffer_order,
|
|
DMA_FROM_DEVICE);
|
|
put_page(page);
|
|
}
|
|
kfree(rx_queue->page_ring);
|
|
rx_queue->page_ring = NULL;
|
|
}
|
|
|
|
void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
|
|
"destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
|
|
|
|
efx_nic_remove_rx(rx_queue);
|
|
|
|
kfree(rx_queue->buffer);
|
|
rx_queue->buffer = NULL;
|
|
}
|
|
|
|
|
|
module_param(rx_refill_threshold, uint, 0444);
|
|
MODULE_PARM_DESC(rx_refill_threshold,
|
|
"RX descriptor ring refill threshold (%)");
|
|
|