4863 lines
126 KiB
C
4863 lines
126 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/**
|
|
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com
|
|
*
|
|
* Copyright 2008 Openmoko, Inc.
|
|
* Copyright 2008 Simtec Electronics
|
|
* Ben Dooks <ben@simtec.co.uk>
|
|
* http://armlinux.simtec.co.uk/
|
|
*
|
|
* S3C USB2.0 High-speed / OtG driver
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/of_platform.h>
|
|
|
|
#include <linux/usb/ch9.h>
|
|
#include <linux/usb/gadget.h>
|
|
#include <linux/usb/phy.h>
|
|
|
|
#include "core.h"
|
|
#include "hw.h"
|
|
|
|
/* conversion functions */
|
|
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
|
|
{
|
|
return container_of(req, struct dwc2_hsotg_req, req);
|
|
}
|
|
|
|
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
|
|
{
|
|
return container_of(ep, struct dwc2_hsotg_ep, ep);
|
|
}
|
|
|
|
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
|
|
{
|
|
return container_of(gadget, struct dwc2_hsotg, gadget);
|
|
}
|
|
|
|
static inline void __orr32(void __iomem *ptr, u32 val)
|
|
{
|
|
dwc2_writel(dwc2_readl(ptr) | val, ptr);
|
|
}
|
|
|
|
static inline void __bic32(void __iomem *ptr, u32 val)
|
|
{
|
|
dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
|
|
}
|
|
|
|
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
|
|
u32 ep_index, u32 dir_in)
|
|
{
|
|
if (dir_in)
|
|
return hsotg->eps_in[ep_index];
|
|
else
|
|
return hsotg->eps_out[ep_index];
|
|
}
|
|
|
|
/* forward declaration of functions */
|
|
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
|
|
|
|
/**
|
|
* using_dma - return the DMA status of the driver.
|
|
* @hsotg: The driver state.
|
|
*
|
|
* Return true if we're using DMA.
|
|
*
|
|
* Currently, we have the DMA support code worked into everywhere
|
|
* that needs it, but the AMBA DMA implementation in the hardware can
|
|
* only DMA from 32bit aligned addresses. This means that gadgets such
|
|
* as the CDC Ethernet cannot work as they often pass packets which are
|
|
* not 32bit aligned.
|
|
*
|
|
* Unfortunately the choice to use DMA or not is global to the controller
|
|
* and seems to be only settable when the controller is being put through
|
|
* a core reset. This means we either need to fix the gadgets to take
|
|
* account of DMA alignment, or add bounce buffers (yuerk).
|
|
*
|
|
* g_using_dma is set depending on dts flag.
|
|
*/
|
|
static inline bool using_dma(struct dwc2_hsotg *hsotg)
|
|
{
|
|
return hsotg->params.g_dma;
|
|
}
|
|
|
|
/*
|
|
* using_desc_dma - return the descriptor DMA status of the driver.
|
|
* @hsotg: The driver state.
|
|
*
|
|
* Return true if we're using descriptor DMA.
|
|
*/
|
|
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
|
|
{
|
|
return hsotg->params.g_dma_desc;
|
|
}
|
|
|
|
/**
|
|
* dwc2_gadget_incr_frame_num - Increments the targeted frame number.
|
|
* @hs_ep: The endpoint
|
|
* @increment: The value to increment by
|
|
*
|
|
* This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
|
|
* If an overrun occurs it will wrap the value and set the frame_overrun flag.
|
|
*/
|
|
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
hs_ep->target_frame += hs_ep->interval;
|
|
if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
|
|
hs_ep->frame_overrun = 1;
|
|
hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
|
|
} else {
|
|
hs_ep->frame_overrun = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_en_gsint - enable one or more of the general interrupt
|
|
* @hsotg: The device state
|
|
* @ints: A bitmask of the interrupts to enable
|
|
*/
|
|
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
|
|
{
|
|
u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
|
|
u32 new_gsintmsk;
|
|
|
|
new_gsintmsk = gsintmsk | ints;
|
|
|
|
if (new_gsintmsk != gsintmsk) {
|
|
dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
|
|
dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
|
|
* @hsotg: The device state
|
|
* @ints: A bitmask of the interrupts to enable
|
|
*/
|
|
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
|
|
{
|
|
u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
|
|
u32 new_gsintmsk;
|
|
|
|
new_gsintmsk = gsintmsk & ~ints;
|
|
|
|
if (new_gsintmsk != gsintmsk)
|
|
dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
|
|
* @hsotg: The device state
|
|
* @ep: The endpoint index
|
|
* @dir_in: True if direction is in.
|
|
* @en: The enable value, true to enable
|
|
*
|
|
* Set or clear the mask for an individual endpoint's interrupt
|
|
* request.
|
|
*/
|
|
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
|
|
unsigned int ep, unsigned int dir_in,
|
|
unsigned int en)
|
|
{
|
|
unsigned long flags;
|
|
u32 bit = 1 << ep;
|
|
u32 daint;
|
|
|
|
if (!dir_in)
|
|
bit <<= 16;
|
|
|
|
local_irq_save(flags);
|
|
daint = dwc2_readl(hsotg->regs + DAINTMSK);
|
|
if (en)
|
|
daint |= bit;
|
|
else
|
|
daint &= ~bit;
|
|
dwc2_writel(daint, hsotg->regs + DAINTMSK);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
|
|
*/
|
|
int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
|
|
{
|
|
if (hsotg->hw_params.en_multiple_tx_fifo)
|
|
/* In dedicated FIFO mode we need count of IN EPs */
|
|
return hsotg->hw_params.num_dev_in_eps;
|
|
else
|
|
/* In shared FIFO mode we need count of Periodic IN EPs */
|
|
return hsotg->hw_params.num_dev_perio_in_ep;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
|
|
* device mode TX FIFOs
|
|
*/
|
|
int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
|
|
{
|
|
int addr;
|
|
int tx_addr_max;
|
|
u32 np_tx_fifo_size;
|
|
|
|
np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
|
|
hsotg->params.g_np_tx_fifo_size);
|
|
|
|
/* Get Endpoint Info Control block size in DWORDs. */
|
|
tx_addr_max = hsotg->hw_params.total_fifo_size;
|
|
|
|
addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
|
|
if (tx_addr_max <= addr)
|
|
return 0;
|
|
|
|
return tx_addr_max - addr;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
|
|
* TX FIFOs
|
|
*/
|
|
int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
|
|
{
|
|
int tx_fifo_count;
|
|
int tx_fifo_depth;
|
|
|
|
tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
|
|
|
|
tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
|
|
|
|
if (!tx_fifo_count)
|
|
return tx_fifo_depth;
|
|
else
|
|
return tx_fifo_depth / tx_fifo_count;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
|
|
* @hsotg: The device instance.
|
|
*/
|
|
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
|
|
{
|
|
unsigned int ep;
|
|
unsigned int addr;
|
|
int timeout;
|
|
u32 val;
|
|
u32 *txfsz = hsotg->params.g_tx_fifo_size;
|
|
|
|
/* Reset fifo map if not correctly cleared during previous session */
|
|
WARN_ON(hsotg->fifo_map);
|
|
hsotg->fifo_map = 0;
|
|
|
|
/* set RX/NPTX FIFO sizes */
|
|
dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
|
|
dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
|
|
(hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
|
|
hsotg->regs + GNPTXFSIZ);
|
|
|
|
/*
|
|
* arange all the rest of the TX FIFOs, as some versions of this
|
|
* block have overlapping default addresses. This also ensures
|
|
* that if the settings have been changed, then they are set to
|
|
* known values.
|
|
*/
|
|
|
|
/* start at the end of the GNPTXFSIZ, rounded up */
|
|
addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
|
|
|
|
/*
|
|
* Configure fifos sizes from provided configuration and assign
|
|
* them to endpoints dynamically according to maxpacket size value of
|
|
* given endpoint.
|
|
*/
|
|
for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
|
|
if (!txfsz[ep])
|
|
continue;
|
|
val = addr;
|
|
val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
|
|
WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
|
|
"insufficient fifo memory");
|
|
addr += txfsz[ep];
|
|
|
|
dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
|
|
val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
|
|
}
|
|
|
|
dwc2_writel(hsotg->hw_params.total_fifo_size |
|
|
addr << GDFIFOCFG_EPINFOBASE_SHIFT,
|
|
hsotg->regs + GDFIFOCFG);
|
|
/*
|
|
* according to p428 of the design guide, we need to ensure that
|
|
* all fifos are flushed before continuing
|
|
*/
|
|
|
|
dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
|
|
GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
|
|
|
|
/* wait until the fifos are both flushed */
|
|
timeout = 100;
|
|
while (1) {
|
|
val = dwc2_readl(hsotg->regs + GRSTCTL);
|
|
|
|
if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
|
|
break;
|
|
|
|
if (--timeout == 0) {
|
|
dev_err(hsotg->dev,
|
|
"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
|
|
__func__, val);
|
|
break;
|
|
}
|
|
|
|
udelay(1);
|
|
}
|
|
|
|
dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
|
|
}
|
|
|
|
/**
|
|
* @ep: USB endpoint to allocate request for.
|
|
* @flags: Allocation flags
|
|
*
|
|
* Allocate a new USB request structure appropriate for the specified endpoint
|
|
*/
|
|
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
|
|
gfp_t flags)
|
|
{
|
|
struct dwc2_hsotg_req *req;
|
|
|
|
req = kzalloc(sizeof(*req), flags);
|
|
if (!req)
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&req->queue);
|
|
|
|
return &req->req;
|
|
}
|
|
|
|
/**
|
|
* is_ep_periodic - return true if the endpoint is in periodic mode.
|
|
* @hs_ep: The endpoint to query.
|
|
*
|
|
* Returns true if the endpoint is in periodic mode, meaning it is being
|
|
* used for an Interrupt or ISO transfer.
|
|
*/
|
|
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
return hs_ep->periodic;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
|
|
* @hsotg: The device state.
|
|
* @hs_ep: The endpoint for the request
|
|
* @hs_req: The request being processed.
|
|
*
|
|
* This is the reverse of dwc2_hsotg_map_dma(), called for the completion
|
|
* of a request to ensure the buffer is ready for access by the caller.
|
|
*/
|
|
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *hs_ep,
|
|
struct dwc2_hsotg_req *hs_req)
|
|
{
|
|
struct usb_request *req = &hs_req->req;
|
|
|
|
usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
|
|
}
|
|
|
|
/*
|
|
* dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
|
|
* for Control endpoint
|
|
* @hsotg: The device state.
|
|
*
|
|
* This function will allocate 4 descriptor chains for EP 0: 2 for
|
|
* Setup stage, per one for IN and OUT data/status transactions.
|
|
*/
|
|
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
|
|
{
|
|
hsotg->setup_desc[0] =
|
|
dmam_alloc_coherent(hsotg->dev,
|
|
sizeof(struct dwc2_dma_desc),
|
|
&hsotg->setup_desc_dma[0],
|
|
GFP_KERNEL);
|
|
if (!hsotg->setup_desc[0])
|
|
goto fail;
|
|
|
|
hsotg->setup_desc[1] =
|
|
dmam_alloc_coherent(hsotg->dev,
|
|
sizeof(struct dwc2_dma_desc),
|
|
&hsotg->setup_desc_dma[1],
|
|
GFP_KERNEL);
|
|
if (!hsotg->setup_desc[1])
|
|
goto fail;
|
|
|
|
hsotg->ctrl_in_desc =
|
|
dmam_alloc_coherent(hsotg->dev,
|
|
sizeof(struct dwc2_dma_desc),
|
|
&hsotg->ctrl_in_desc_dma,
|
|
GFP_KERNEL);
|
|
if (!hsotg->ctrl_in_desc)
|
|
goto fail;
|
|
|
|
hsotg->ctrl_out_desc =
|
|
dmam_alloc_coherent(hsotg->dev,
|
|
sizeof(struct dwc2_dma_desc),
|
|
&hsotg->ctrl_out_desc_dma,
|
|
GFP_KERNEL);
|
|
if (!hsotg->ctrl_out_desc)
|
|
goto fail;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
|
|
* @hsotg: The controller state.
|
|
* @hs_ep: The endpoint we're going to write for.
|
|
* @hs_req: The request to write data for.
|
|
*
|
|
* This is called when the TxFIFO has some space in it to hold a new
|
|
* transmission and we have something to give it. The actual setup of
|
|
* the data size is done elsewhere, so all we have to do is to actually
|
|
* write the data.
|
|
*
|
|
* The return value is zero if there is more space (or nothing was done)
|
|
* otherwise -ENOSPC is returned if the FIFO space was used up.
|
|
*
|
|
* This routine is only needed for PIO
|
|
*/
|
|
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *hs_ep,
|
|
struct dwc2_hsotg_req *hs_req)
|
|
{
|
|
bool periodic = is_ep_periodic(hs_ep);
|
|
u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
|
|
int buf_pos = hs_req->req.actual;
|
|
int to_write = hs_ep->size_loaded;
|
|
void *data;
|
|
int can_write;
|
|
int pkt_round;
|
|
int max_transfer;
|
|
|
|
to_write -= (buf_pos - hs_ep->last_load);
|
|
|
|
/* if there's nothing to write, get out early */
|
|
if (to_write == 0)
|
|
return 0;
|
|
|
|
if (periodic && !hsotg->dedicated_fifos) {
|
|
u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
|
|
int size_left;
|
|
int size_done;
|
|
|
|
/*
|
|
* work out how much data was loaded so we can calculate
|
|
* how much data is left in the fifo.
|
|
*/
|
|
|
|
size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
|
|
|
|
/*
|
|
* if shared fifo, we cannot write anything until the
|
|
* previous data has been completely sent.
|
|
*/
|
|
if (hs_ep->fifo_load != 0) {
|
|
dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
|
|
__func__, size_left,
|
|
hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
|
|
|
|
/* how much of the data has moved */
|
|
size_done = hs_ep->size_loaded - size_left;
|
|
|
|
/* how much data is left in the fifo */
|
|
can_write = hs_ep->fifo_load - size_done;
|
|
dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
|
|
__func__, can_write);
|
|
|
|
can_write = hs_ep->fifo_size - can_write;
|
|
dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
|
|
__func__, can_write);
|
|
|
|
if (can_write <= 0) {
|
|
dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
|
|
return -ENOSPC;
|
|
}
|
|
} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
|
|
can_write = dwc2_readl(hsotg->regs +
|
|
DTXFSTS(hs_ep->fifo_index));
|
|
|
|
can_write &= 0xffff;
|
|
can_write *= 4;
|
|
} else {
|
|
if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
|
|
dev_dbg(hsotg->dev,
|
|
"%s: no queue slots available (0x%08x)\n",
|
|
__func__, gnptxsts);
|
|
|
|
dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
|
|
can_write *= 4; /* fifo size is in 32bit quantities. */
|
|
}
|
|
|
|
max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
|
|
|
|
dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
|
|
__func__, gnptxsts, can_write, to_write, max_transfer);
|
|
|
|
/*
|
|
* limit to 512 bytes of data, it seems at least on the non-periodic
|
|
* FIFO, requests of >512 cause the endpoint to get stuck with a
|
|
* fragment of the end of the transfer in it.
|
|
*/
|
|
if (can_write > 512 && !periodic)
|
|
can_write = 512;
|
|
|
|
/*
|
|
* limit the write to one max-packet size worth of data, but allow
|
|
* the transfer to return that it did not run out of fifo space
|
|
* doing it.
|
|
*/
|
|
if (to_write > max_transfer) {
|
|
to_write = max_transfer;
|
|
|
|
/* it's needed only when we do not use dedicated fifos */
|
|
if (!hsotg->dedicated_fifos)
|
|
dwc2_hsotg_en_gsint(hsotg,
|
|
periodic ? GINTSTS_PTXFEMP :
|
|
GINTSTS_NPTXFEMP);
|
|
}
|
|
|
|
/* see if we can write data */
|
|
|
|
if (to_write > can_write) {
|
|
to_write = can_write;
|
|
pkt_round = to_write % max_transfer;
|
|
|
|
/*
|
|
* Round the write down to an
|
|
* exact number of packets.
|
|
*
|
|
* Note, we do not currently check to see if we can ever
|
|
* write a full packet or not to the FIFO.
|
|
*/
|
|
|
|
if (pkt_round)
|
|
to_write -= pkt_round;
|
|
|
|
/*
|
|
* enable correct FIFO interrupt to alert us when there
|
|
* is more room left.
|
|
*/
|
|
|
|
/* it's needed only when we do not use dedicated fifos */
|
|
if (!hsotg->dedicated_fifos)
|
|
dwc2_hsotg_en_gsint(hsotg,
|
|
periodic ? GINTSTS_PTXFEMP :
|
|
GINTSTS_NPTXFEMP);
|
|
}
|
|
|
|
dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
|
|
to_write, hs_req->req.length, can_write, buf_pos);
|
|
|
|
if (to_write <= 0)
|
|
return -ENOSPC;
|
|
|
|
hs_req->req.actual = buf_pos + to_write;
|
|
hs_ep->total_data += to_write;
|
|
|
|
if (periodic)
|
|
hs_ep->fifo_load += to_write;
|
|
|
|
to_write = DIV_ROUND_UP(to_write, 4);
|
|
data = hs_req->req.buf + buf_pos;
|
|
|
|
iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
|
|
|
|
return (to_write >= can_write) ? -ENOSPC : 0;
|
|
}
|
|
|
|
/**
|
|
* get_ep_limit - get the maximum data legnth for this endpoint
|
|
* @hs_ep: The endpoint
|
|
*
|
|
* Return the maximum data that can be queued in one go on a given endpoint
|
|
* so that transfers that are too long can be split.
|
|
*/
|
|
static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
int index = hs_ep->index;
|
|
unsigned int maxsize;
|
|
unsigned int maxpkt;
|
|
|
|
if (index != 0) {
|
|
maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
|
|
maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
|
|
} else {
|
|
maxsize = 64 + 64;
|
|
if (hs_ep->dir_in)
|
|
maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
|
|
else
|
|
maxpkt = 2;
|
|
}
|
|
|
|
/* we made the constant loading easier above by using +1 */
|
|
maxpkt--;
|
|
maxsize--;
|
|
|
|
/*
|
|
* constrain by packet count if maxpkts*pktsize is greater
|
|
* than the length register size.
|
|
*/
|
|
|
|
if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
|
|
maxsize = maxpkt * hs_ep->ep.maxpacket;
|
|
|
|
return maxsize;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_read_frameno - read current frame number
|
|
* @hsotg: The device instance
|
|
*
|
|
* Return the current frame number
|
|
*/
|
|
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
|
|
{
|
|
u32 dsts;
|
|
|
|
dsts = dwc2_readl(hsotg->regs + DSTS);
|
|
dsts &= DSTS_SOFFN_MASK;
|
|
dsts >>= DSTS_SOFFN_SHIFT;
|
|
|
|
return dsts;
|
|
}
|
|
|
|
/**
|
|
* dwc2_gadget_get_chain_limit - get the maximum data payload value of the
|
|
* DMA descriptor chain prepared for specific endpoint
|
|
* @hs_ep: The endpoint
|
|
*
|
|
* Return the maximum data that can be queued in one go on a given endpoint
|
|
* depending on its descriptor chain capacity so that transfers that
|
|
* are too long can be split.
|
|
*/
|
|
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
int is_isoc = hs_ep->isochronous;
|
|
unsigned int maxsize;
|
|
|
|
if (is_isoc)
|
|
maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
|
|
DEV_DMA_ISOC_RX_NBYTES_LIMIT;
|
|
else
|
|
maxsize = DEV_DMA_NBYTES_LIMIT;
|
|
|
|
/* Above size of one descriptor was chosen, multiple it */
|
|
maxsize *= MAX_DMA_DESC_NUM_GENERIC;
|
|
|
|
return maxsize;
|
|
}
|
|
|
|
/*
|
|
* dwc2_gadget_get_desc_params - get DMA descriptor parameters.
|
|
* @hs_ep: The endpoint
|
|
* @mask: RX/TX bytes mask to be defined
|
|
*
|
|
* Returns maximum data payload for one descriptor after analyzing endpoint
|
|
* characteristics.
|
|
* DMA descriptor transfer bytes limit depends on EP type:
|
|
* Control out - MPS,
|
|
* Isochronous - descriptor rx/tx bytes bitfield limit,
|
|
* Control In/Bulk/Interrupt - multiple of mps. This will allow to not
|
|
* have concatenations from various descriptors within one packet.
|
|
*
|
|
* Selects corresponding mask for RX/TX bytes as well.
|
|
*/
|
|
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
|
|
{
|
|
u32 mps = hs_ep->ep.maxpacket;
|
|
int dir_in = hs_ep->dir_in;
|
|
u32 desc_size = 0;
|
|
|
|
if (!hs_ep->index && !dir_in) {
|
|
desc_size = mps;
|
|
*mask = DEV_DMA_NBYTES_MASK;
|
|
} else if (hs_ep->isochronous) {
|
|
if (dir_in) {
|
|
desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
|
|
*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
|
|
} else {
|
|
desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
|
|
*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
|
|
}
|
|
} else {
|
|
desc_size = DEV_DMA_NBYTES_LIMIT;
|
|
*mask = DEV_DMA_NBYTES_MASK;
|
|
|
|
/* Round down desc_size to be mps multiple */
|
|
desc_size -= desc_size % mps;
|
|
}
|
|
|
|
return desc_size;
|
|
}
|
|
|
|
/*
|
|
* dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
|
|
* @hs_ep: The endpoint
|
|
* @dma_buff: DMA address to use
|
|
* @len: Length of the transfer
|
|
*
|
|
* This function will iterate over descriptor chain and fill its entries
|
|
* with corresponding information based on transfer data.
|
|
*/
|
|
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
|
|
dma_addr_t dma_buff,
|
|
unsigned int len)
|
|
{
|
|
struct dwc2_hsotg *hsotg = hs_ep->parent;
|
|
int dir_in = hs_ep->dir_in;
|
|
struct dwc2_dma_desc *desc = hs_ep->desc_list;
|
|
u32 mps = hs_ep->ep.maxpacket;
|
|
u32 maxsize = 0;
|
|
u32 offset = 0;
|
|
u32 mask = 0;
|
|
int i;
|
|
|
|
maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
|
|
|
|
hs_ep->desc_count = (len / maxsize) +
|
|
((len % maxsize) ? 1 : 0);
|
|
if (len == 0)
|
|
hs_ep->desc_count = 1;
|
|
|
|
for (i = 0; i < hs_ep->desc_count; ++i) {
|
|
desc->status = 0;
|
|
desc->status |= (DEV_DMA_BUFF_STS_HBUSY
|
|
<< DEV_DMA_BUFF_STS_SHIFT);
|
|
|
|
if (len > maxsize) {
|
|
if (!hs_ep->index && !dir_in)
|
|
desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
|
|
|
|
desc->status |= (maxsize <<
|
|
DEV_DMA_NBYTES_SHIFT & mask);
|
|
desc->buf = dma_buff + offset;
|
|
|
|
len -= maxsize;
|
|
offset += maxsize;
|
|
} else {
|
|
desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
|
|
|
|
if (dir_in)
|
|
desc->status |= (len % mps) ? DEV_DMA_SHORT :
|
|
((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
|
|
if (len > maxsize)
|
|
dev_err(hsotg->dev, "wrong len %d\n", len);
|
|
|
|
desc->status |=
|
|
len << DEV_DMA_NBYTES_SHIFT & mask;
|
|
desc->buf = dma_buff + offset;
|
|
}
|
|
|
|
desc->status &= ~DEV_DMA_BUFF_STS_MASK;
|
|
desc->status |= (DEV_DMA_BUFF_STS_HREADY
|
|
<< DEV_DMA_BUFF_STS_SHIFT);
|
|
desc++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
|
|
* @hs_ep: The isochronous endpoint.
|
|
* @dma_buff: usb requests dma buffer.
|
|
* @len: usb request transfer length.
|
|
*
|
|
* Finds out index of first free entry either in the bottom or up half of
|
|
* descriptor chain depend on which is under SW control and not processed
|
|
* by HW. Then fills that descriptor with the data of the arrived usb request,
|
|
* frame info, sets Last and IOC bits increments next_desc. If filled
|
|
* descriptor is not the first one, removes L bit from the previous descriptor
|
|
* status.
|
|
*/
|
|
static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
|
|
dma_addr_t dma_buff, unsigned int len)
|
|
{
|
|
struct dwc2_dma_desc *desc;
|
|
struct dwc2_hsotg *hsotg = hs_ep->parent;
|
|
u32 index;
|
|
u32 maxsize = 0;
|
|
u32 mask = 0;
|
|
|
|
maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
|
|
if (len > maxsize) {
|
|
dev_err(hsotg->dev, "wrong len %d\n", len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If SW has already filled half of chain, then return and wait for
|
|
* the other chain to be processed by HW.
|
|
*/
|
|
if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
|
|
return -EBUSY;
|
|
|
|
/* Increment frame number by interval for IN */
|
|
if (hs_ep->dir_in)
|
|
dwc2_gadget_incr_frame_num(hs_ep);
|
|
|
|
index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
|
|
hs_ep->next_desc;
|
|
|
|
/* Sanity check of calculated index */
|
|
if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
|
|
(!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
|
|
dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
|
|
return -EINVAL;
|
|
}
|
|
|
|
desc = &hs_ep->desc_list[index];
|
|
|
|
/* Clear L bit of previous desc if more than one entries in the chain */
|
|
if (hs_ep->next_desc)
|
|
hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
|
|
|
|
dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
|
|
__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
|
|
|
|
desc->status = 0;
|
|
desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
|
|
|
|
desc->buf = dma_buff;
|
|
desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
|
|
((len << DEV_DMA_NBYTES_SHIFT) & mask));
|
|
|
|
if (hs_ep->dir_in) {
|
|
desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
|
|
DEV_DMA_ISOC_PID_MASK) |
|
|
((len % hs_ep->ep.maxpacket) ?
|
|
DEV_DMA_SHORT : 0) |
|
|
((hs_ep->target_frame <<
|
|
DEV_DMA_ISOC_FRNUM_SHIFT) &
|
|
DEV_DMA_ISOC_FRNUM_MASK);
|
|
}
|
|
|
|
desc->status &= ~DEV_DMA_BUFF_STS_MASK;
|
|
desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
|
|
|
|
/* Update index of last configured entry in the chain */
|
|
hs_ep->next_desc++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
|
|
* @hs_ep: The isochronous endpoint.
|
|
*
|
|
* Prepare first descriptor chain for isochronous endpoints. Afterwards
|
|
* write DMA address to HW and enable the endpoint.
|
|
*
|
|
* Switch between descriptor chains via isoc_chain_num to give SW opportunity
|
|
* to prepare second descriptor chain while first one is being processed by HW.
|
|
*/
|
|
static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
struct dwc2_hsotg *hsotg = hs_ep->parent;
|
|
struct dwc2_hsotg_req *hs_req, *treq;
|
|
int index = hs_ep->index;
|
|
int ret;
|
|
u32 dma_reg;
|
|
u32 depctl;
|
|
u32 ctrl;
|
|
|
|
if (list_empty(&hs_ep->queue)) {
|
|
dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
|
|
return;
|
|
}
|
|
|
|
list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
|
|
ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
|
|
hs_req->req.length);
|
|
if (ret) {
|
|
dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
|
|
break;
|
|
}
|
|
}
|
|
|
|
depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
|
|
dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
|
|
|
|
/* write descriptor chain address to control register */
|
|
dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
|
|
|
|
ctrl = dwc2_readl(hsotg->regs + depctl);
|
|
ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
|
|
dwc2_writel(ctrl, hsotg->regs + depctl);
|
|
|
|
/* Switch ISOC descriptor chain number being processed by SW*/
|
|
hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
|
|
hs_ep->next_desc = 0;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_start_req - start a USB request from an endpoint's queue
|
|
* @hsotg: The controller state.
|
|
* @hs_ep: The endpoint to process a request for
|
|
* @hs_req: The request to start.
|
|
* @continuing: True if we are doing more for the current request.
|
|
*
|
|
* Start the given request running by setting the endpoint registers
|
|
* appropriately, and writing any data to the FIFOs.
|
|
*/
|
|
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *hs_ep,
|
|
struct dwc2_hsotg_req *hs_req,
|
|
bool continuing)
|
|
{
|
|
struct usb_request *ureq = &hs_req->req;
|
|
int index = hs_ep->index;
|
|
int dir_in = hs_ep->dir_in;
|
|
u32 epctrl_reg;
|
|
u32 epsize_reg;
|
|
u32 epsize;
|
|
u32 ctrl;
|
|
unsigned int length;
|
|
unsigned int packets;
|
|
unsigned int maxreq;
|
|
unsigned int dma_reg;
|
|
|
|
if (index != 0) {
|
|
if (hs_ep->req && !continuing) {
|
|
dev_err(hsotg->dev, "%s: active request\n", __func__);
|
|
WARN_ON(1);
|
|
return;
|
|
} else if (hs_ep->req != hs_req && continuing) {
|
|
dev_err(hsotg->dev,
|
|
"%s: continue different req\n", __func__);
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
|
|
epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
|
|
epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
|
|
|
|
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
|
|
__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
|
|
hs_ep->dir_in ? "in" : "out");
|
|
|
|
/* If endpoint is stalled, we will restart request later */
|
|
ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
|
|
|
|
if (index && ctrl & DXEPCTL_STALL) {
|
|
dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
|
|
return;
|
|
}
|
|
|
|
length = ureq->length - ureq->actual;
|
|
dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
|
|
ureq->length, ureq->actual);
|
|
|
|
if (!using_desc_dma(hsotg))
|
|
maxreq = get_ep_limit(hs_ep);
|
|
else
|
|
maxreq = dwc2_gadget_get_chain_limit(hs_ep);
|
|
|
|
if (length > maxreq) {
|
|
int round = maxreq % hs_ep->ep.maxpacket;
|
|
|
|
dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
|
|
__func__, length, maxreq, round);
|
|
|
|
/* round down to multiple of packets */
|
|
if (round)
|
|
maxreq -= round;
|
|
|
|
length = maxreq;
|
|
}
|
|
|
|
if (length)
|
|
packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
|
|
else
|
|
packets = 1; /* send one packet if length is zero. */
|
|
|
|
if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
|
|
dev_err(hsotg->dev, "req length > maxpacket*mc\n");
|
|
return;
|
|
}
|
|
|
|
if (dir_in && index != 0)
|
|
if (hs_ep->isochronous)
|
|
epsize = DXEPTSIZ_MC(packets);
|
|
else
|
|
epsize = DXEPTSIZ_MC(1);
|
|
else
|
|
epsize = 0;
|
|
|
|
/*
|
|
* zero length packet should be programmed on its own and should not
|
|
* be counted in DIEPTSIZ.PktCnt with other packets.
|
|
*/
|
|
if (dir_in && ureq->zero && !continuing) {
|
|
/* Test if zlp is actually required. */
|
|
if ((ureq->length >= hs_ep->ep.maxpacket) &&
|
|
!(ureq->length % hs_ep->ep.maxpacket))
|
|
hs_ep->send_zlp = 1;
|
|
}
|
|
|
|
epsize |= DXEPTSIZ_PKTCNT(packets);
|
|
epsize |= DXEPTSIZ_XFERSIZE(length);
|
|
|
|
dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
|
|
__func__, packets, length, ureq->length, epsize, epsize_reg);
|
|
|
|
/* store the request as the current one we're doing */
|
|
hs_ep->req = hs_req;
|
|
|
|
if (using_desc_dma(hsotg)) {
|
|
u32 offset = 0;
|
|
u32 mps = hs_ep->ep.maxpacket;
|
|
|
|
/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
|
|
if (!dir_in) {
|
|
if (!index)
|
|
length = mps;
|
|
else if (length % mps)
|
|
length += (mps - (length % mps));
|
|
}
|
|
|
|
/*
|
|
* If more data to send, adjust DMA for EP0 out data stage.
|
|
* ureq->dma stays unchanged, hence increment it by already
|
|
* passed passed data count before starting new transaction.
|
|
*/
|
|
if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
|
|
continuing)
|
|
offset = ureq->actual;
|
|
|
|
/* Fill DDMA chain entries */
|
|
dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
|
|
length);
|
|
|
|
/* write descriptor chain address to control register */
|
|
dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
|
|
|
|
dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
|
|
__func__, (u32)hs_ep->desc_list_dma, dma_reg);
|
|
} else {
|
|
/* write size / packets */
|
|
dwc2_writel(epsize, hsotg->regs + epsize_reg);
|
|
|
|
if (using_dma(hsotg) && !continuing && (length != 0)) {
|
|
/*
|
|
* write DMA address to control register, buffer
|
|
* already synced by dwc2_hsotg_ep_queue().
|
|
*/
|
|
|
|
dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
|
|
|
|
dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
|
|
__func__, &ureq->dma, dma_reg);
|
|
}
|
|
}
|
|
|
|
if (hs_ep->isochronous && hs_ep->interval == 1) {
|
|
hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
|
|
dwc2_gadget_incr_frame_num(hs_ep);
|
|
|
|
if (hs_ep->target_frame & 0x1)
|
|
ctrl |= DXEPCTL_SETODDFR;
|
|
else
|
|
ctrl |= DXEPCTL_SETEVENFR;
|
|
}
|
|
|
|
ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
|
|
|
|
dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
|
|
|
|
/* For Setup request do not clear NAK */
|
|
if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
|
|
ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
|
|
|
|
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
|
|
dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
|
|
|
|
/*
|
|
* set these, it seems that DMA support increments past the end
|
|
* of the packet buffer so we need to calculate the length from
|
|
* this information.
|
|
*/
|
|
hs_ep->size_loaded = length;
|
|
hs_ep->last_load = ureq->actual;
|
|
|
|
if (dir_in && !using_dma(hsotg)) {
|
|
/* set these anyway, we may need them for non-periodic in */
|
|
hs_ep->fifo_load = 0;
|
|
|
|
dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
|
|
}
|
|
|
|
/*
|
|
* Note, trying to clear the NAK here causes problems with transmit
|
|
* on the S3C6400 ending up with the TXFIFO becoming full.
|
|
*/
|
|
|
|
/* check ep is enabled */
|
|
if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
|
|
dev_dbg(hsotg->dev,
|
|
"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
|
|
index, dwc2_readl(hsotg->regs + epctrl_reg));
|
|
|
|
dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
|
|
__func__, dwc2_readl(hsotg->regs + epctrl_reg));
|
|
|
|
/* enable ep interrupts */
|
|
dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_map_dma - map the DMA memory being used for the request
|
|
* @hsotg: The device state.
|
|
* @hs_ep: The endpoint the request is on.
|
|
* @req: The request being processed.
|
|
*
|
|
* We've been asked to queue a request, so ensure that the memory buffer
|
|
* is correctly setup for DMA. If we've been passed an extant DMA address
|
|
* then ensure the buffer has been synced to memory. If our buffer has no
|
|
* DMA memory, then we map the memory and mark our request to allow us to
|
|
* cleanup on completion.
|
|
*/
|
|
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *hs_ep,
|
|
struct usb_request *req)
|
|
{
|
|
int ret;
|
|
|
|
ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
|
|
if (ret)
|
|
goto dma_error;
|
|
|
|
return 0;
|
|
|
|
dma_error:
|
|
dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
|
|
__func__, req->buf, req->length);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *hs_ep,
|
|
struct dwc2_hsotg_req *hs_req)
|
|
{
|
|
void *req_buf = hs_req->req.buf;
|
|
|
|
/* If dma is not being used or buffer is aligned */
|
|
if (!using_dma(hsotg) || !((long)req_buf & 3))
|
|
return 0;
|
|
|
|
WARN_ON(hs_req->saved_req_buf);
|
|
|
|
dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
|
|
hs_ep->ep.name, req_buf, hs_req->req.length);
|
|
|
|
hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
|
|
if (!hs_req->req.buf) {
|
|
hs_req->req.buf = req_buf;
|
|
dev_err(hsotg->dev,
|
|
"%s: unable to allocate memory for bounce buffer\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Save actual buffer */
|
|
hs_req->saved_req_buf = req_buf;
|
|
|
|
if (hs_ep->dir_in)
|
|
memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *hs_ep,
|
|
struct dwc2_hsotg_req *hs_req)
|
|
{
|
|
/* If dma is not being used or buffer was aligned */
|
|
if (!using_dma(hsotg) || !hs_req->saved_req_buf)
|
|
return;
|
|
|
|
dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
|
|
hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
|
|
|
|
/* Copy data from bounce buffer on successful out transfer */
|
|
if (!hs_ep->dir_in && !hs_req->req.status)
|
|
memcpy(hs_req->saved_req_buf, hs_req->req.buf,
|
|
hs_req->req.actual);
|
|
|
|
/* Free bounce buffer */
|
|
kfree(hs_req->req.buf);
|
|
|
|
hs_req->req.buf = hs_req->saved_req_buf;
|
|
hs_req->saved_req_buf = NULL;
|
|
}
|
|
|
|
/**
|
|
* dwc2_gadget_target_frame_elapsed - Checks target frame
|
|
* @hs_ep: The driver endpoint to check
|
|
*
|
|
* Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
|
|
* corresponding transfer.
|
|
*/
|
|
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
struct dwc2_hsotg *hsotg = hs_ep->parent;
|
|
u32 target_frame = hs_ep->target_frame;
|
|
u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
|
|
bool frame_overrun = hs_ep->frame_overrun;
|
|
|
|
if (!frame_overrun && current_frame >= target_frame)
|
|
return true;
|
|
|
|
if (frame_overrun && current_frame >= target_frame &&
|
|
((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
|
|
* @hsotg: The driver state
|
|
* @hs_ep: the ep descriptor chain is for
|
|
*
|
|
* Called to update EP0 structure's pointers depend on stage of
|
|
* control transfer.
|
|
*/
|
|
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
switch (hsotg->ep0_state) {
|
|
case DWC2_EP0_SETUP:
|
|
case DWC2_EP0_STATUS_OUT:
|
|
hs_ep->desc_list = hsotg->setup_desc[0];
|
|
hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
|
|
break;
|
|
case DWC2_EP0_DATA_IN:
|
|
case DWC2_EP0_STATUS_IN:
|
|
hs_ep->desc_list = hsotg->ctrl_in_desc;
|
|
hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
|
|
break;
|
|
case DWC2_EP0_DATA_OUT:
|
|
hs_ep->desc_list = hsotg->ctrl_out_desc;
|
|
hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
|
|
break;
|
|
default:
|
|
dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
|
|
hsotg->ep0_state);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
|
|
gfp_t gfp_flags)
|
|
{
|
|
struct dwc2_hsotg_req *hs_req = our_req(req);
|
|
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
|
|
struct dwc2_hsotg *hs = hs_ep->parent;
|
|
bool first;
|
|
int ret;
|
|
|
|
dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
|
|
ep->name, req, req->length, req->buf, req->no_interrupt,
|
|
req->zero, req->short_not_ok);
|
|
|
|
/* Prevent new request submission when controller is suspended */
|
|
if (hs->lx_state == DWC2_L2) {
|
|
dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
|
|
__func__);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/* initialise status of the request */
|
|
INIT_LIST_HEAD(&hs_req->queue);
|
|
req->actual = 0;
|
|
req->status = -EINPROGRESS;
|
|
|
|
ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* if we're using DMA, sync the buffers as necessary */
|
|
if (using_dma(hs)) {
|
|
ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
/* If using descriptor DMA configure EP0 descriptor chain pointers */
|
|
if (using_desc_dma(hs) && !hs_ep->index) {
|
|
ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
first = list_empty(&hs_ep->queue);
|
|
list_add_tail(&hs_req->queue, &hs_ep->queue);
|
|
|
|
/*
|
|
* Handle DDMA isochronous transfers separately - just add new entry
|
|
* to the half of descriptor chain that is not processed by HW.
|
|
* Transfer will be started once SW gets either one of NAK or
|
|
* OutTknEpDis interrupts.
|
|
*/
|
|
if (using_desc_dma(hs) && hs_ep->isochronous &&
|
|
hs_ep->target_frame != TARGET_FRAME_INITIAL) {
|
|
ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
|
|
hs_req->req.length);
|
|
if (ret)
|
|
dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (first) {
|
|
if (!hs_ep->isochronous) {
|
|
dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
|
|
return 0;
|
|
}
|
|
|
|
while (dwc2_gadget_target_frame_elapsed(hs_ep))
|
|
dwc2_gadget_incr_frame_num(hs_ep);
|
|
|
|
if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
|
|
dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
|
|
gfp_t gfp_flags)
|
|
{
|
|
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
|
|
struct dwc2_hsotg *hs = hs_ep->parent;
|
|
unsigned long flags = 0;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(&hs->lock, flags);
|
|
ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
|
|
spin_unlock_irqrestore(&hs->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
|
|
struct usb_request *req)
|
|
{
|
|
struct dwc2_hsotg_req *hs_req = our_req(req);
|
|
|
|
kfree(hs_req);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_complete_oursetup - setup completion callback
|
|
* @ep: The endpoint the request was on.
|
|
* @req: The request completed.
|
|
*
|
|
* Called on completion of any requests the driver itself
|
|
* submitted that need cleaning up.
|
|
*/
|
|
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
|
|
struct usb_request *req)
|
|
{
|
|
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
|
|
struct dwc2_hsotg *hsotg = hs_ep->parent;
|
|
|
|
dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
|
|
|
|
dwc2_hsotg_ep_free_request(ep, req);
|
|
}
|
|
|
|
/**
|
|
* ep_from_windex - convert control wIndex value to endpoint
|
|
* @hsotg: The driver state.
|
|
* @windex: The control request wIndex field (in host order).
|
|
*
|
|
* Convert the given wIndex into a pointer to an driver endpoint
|
|
* structure, or return NULL if it is not a valid endpoint.
|
|
*/
|
|
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
|
|
u32 windex)
|
|
{
|
|
struct dwc2_hsotg_ep *ep;
|
|
int dir = (windex & USB_DIR_IN) ? 1 : 0;
|
|
int idx = windex & 0x7F;
|
|
|
|
if (windex >= 0x100)
|
|
return NULL;
|
|
|
|
if (idx > hsotg->num_of_eps)
|
|
return NULL;
|
|
|
|
ep = index_to_ep(hsotg, idx, dir);
|
|
|
|
if (idx && ep->dir_in != dir)
|
|
return NULL;
|
|
|
|
return ep;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_set_test_mode - Enable usb Test Modes
|
|
* @hsotg: The driver state.
|
|
* @testmode: requested usb test mode
|
|
* Enable usb Test Mode requested by the Host.
|
|
*/
|
|
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
|
|
{
|
|
int dctl = dwc2_readl(hsotg->regs + DCTL);
|
|
|
|
dctl &= ~DCTL_TSTCTL_MASK;
|
|
switch (testmode) {
|
|
case TEST_J:
|
|
case TEST_K:
|
|
case TEST_SE0_NAK:
|
|
case TEST_PACKET:
|
|
case TEST_FORCE_EN:
|
|
dctl |= testmode << DCTL_TSTCTL_SHIFT;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
dwc2_writel(dctl, hsotg->regs + DCTL);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_send_reply - send reply to control request
|
|
* @hsotg: The device state
|
|
* @ep: Endpoint 0
|
|
* @buff: Buffer for request
|
|
* @length: Length of reply.
|
|
*
|
|
* Create a request and queue it on the given endpoint. This is useful as
|
|
* an internal method of sending replies to certain control requests, etc.
|
|
*/
|
|
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *ep,
|
|
void *buff,
|
|
int length)
|
|
{
|
|
struct usb_request *req;
|
|
int ret;
|
|
|
|
dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
|
|
|
|
req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
|
|
hsotg->ep0_reply = req;
|
|
if (!req) {
|
|
dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
req->buf = hsotg->ep0_buff;
|
|
req->length = length;
|
|
/*
|
|
* zero flag is for sending zlp in DATA IN stage. It has no impact on
|
|
* STATUS stage.
|
|
*/
|
|
req->zero = 0;
|
|
req->complete = dwc2_hsotg_complete_oursetup;
|
|
|
|
if (length)
|
|
memcpy(req->buf, buff, length);
|
|
|
|
ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
|
|
if (ret) {
|
|
dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_process_req_status - process request GET_STATUS
|
|
* @hsotg: The device state
|
|
* @ctrl: USB control request
|
|
*/
|
|
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
|
|
struct usb_ctrlrequest *ctrl)
|
|
{
|
|
struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
|
|
struct dwc2_hsotg_ep *ep;
|
|
__le16 reply;
|
|
int ret;
|
|
|
|
dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
|
|
|
|
if (!ep0->dir_in) {
|
|
dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (ctrl->bRequestType & USB_RECIP_MASK) {
|
|
case USB_RECIP_DEVICE:
|
|
/*
|
|
* bit 0 => self powered
|
|
* bit 1 => remote wakeup
|
|
*/
|
|
reply = cpu_to_le16(0);
|
|
break;
|
|
|
|
case USB_RECIP_INTERFACE:
|
|
/* currently, the data result should be zero */
|
|
reply = cpu_to_le16(0);
|
|
break;
|
|
|
|
case USB_RECIP_ENDPOINT:
|
|
ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
|
|
if (!ep)
|
|
return -ENOENT;
|
|
|
|
reply = cpu_to_le16(ep->halted ? 1 : 0);
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if (le16_to_cpu(ctrl->wLength) != 2)
|
|
return -EINVAL;
|
|
|
|
ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
|
|
if (ret) {
|
|
dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
|
|
|
|
/**
|
|
* get_ep_head - return the first request on the endpoint
|
|
* @hs_ep: The controller endpoint to get
|
|
*
|
|
* Get the first request on the endpoint.
|
|
*/
|
|
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
|
|
queue);
|
|
}
|
|
|
|
/**
|
|
* dwc2_gadget_start_next_request - Starts next request from ep queue
|
|
* @hs_ep: Endpoint structure
|
|
*
|
|
* If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
|
|
* in its handler. Hence we need to unmask it here to be able to do
|
|
* resynchronization.
|
|
*/
|
|
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
u32 mask;
|
|
struct dwc2_hsotg *hsotg = hs_ep->parent;
|
|
int dir_in = hs_ep->dir_in;
|
|
struct dwc2_hsotg_req *hs_req;
|
|
u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
|
|
|
|
if (!list_empty(&hs_ep->queue)) {
|
|
hs_req = get_ep_head(hs_ep);
|
|
dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
|
|
return;
|
|
}
|
|
if (!hs_ep->isochronous)
|
|
return;
|
|
|
|
if (dir_in) {
|
|
dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
|
|
__func__);
|
|
} else {
|
|
dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
|
|
__func__);
|
|
mask = dwc2_readl(hsotg->regs + epmsk_reg);
|
|
mask |= DOEPMSK_OUTTKNEPDISMSK;
|
|
dwc2_writel(mask, hsotg->regs + epmsk_reg);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
|
|
* @hsotg: The device state
|
|
* @ctrl: USB control request
|
|
*/
|
|
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
|
|
struct usb_ctrlrequest *ctrl)
|
|
{
|
|
struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
|
|
struct dwc2_hsotg_req *hs_req;
|
|
bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
|
|
struct dwc2_hsotg_ep *ep;
|
|
int ret;
|
|
bool halted;
|
|
u32 recip;
|
|
u32 wValue;
|
|
u32 wIndex;
|
|
|
|
dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
|
|
__func__, set ? "SET" : "CLEAR");
|
|
|
|
wValue = le16_to_cpu(ctrl->wValue);
|
|
wIndex = le16_to_cpu(ctrl->wIndex);
|
|
recip = ctrl->bRequestType & USB_RECIP_MASK;
|
|
|
|
switch (recip) {
|
|
case USB_RECIP_DEVICE:
|
|
switch (wValue) {
|
|
case USB_DEVICE_TEST_MODE:
|
|
if ((wIndex & 0xff) != 0)
|
|
return -EINVAL;
|
|
if (!set)
|
|
return -EINVAL;
|
|
|
|
hsotg->test_mode = wIndex >> 8;
|
|
ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
|
|
if (ret) {
|
|
dev_err(hsotg->dev,
|
|
"%s: failed to send reply\n", __func__);
|
|
return ret;
|
|
}
|
|
break;
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
break;
|
|
|
|
case USB_RECIP_ENDPOINT:
|
|
ep = ep_from_windex(hsotg, wIndex);
|
|
if (!ep) {
|
|
dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
|
|
__func__, wIndex);
|
|
return -ENOENT;
|
|
}
|
|
|
|
switch (wValue) {
|
|
case USB_ENDPOINT_HALT:
|
|
halted = ep->halted;
|
|
|
|
dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
|
|
|
|
ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
|
|
if (ret) {
|
|
dev_err(hsotg->dev,
|
|
"%s: failed to send reply\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* we have to complete all requests for ep if it was
|
|
* halted, and the halt was cleared by CLEAR_FEATURE
|
|
*/
|
|
|
|
if (!set && halted) {
|
|
/*
|
|
* If we have request in progress,
|
|
* then complete it
|
|
*/
|
|
if (ep->req) {
|
|
hs_req = ep->req;
|
|
ep->req = NULL;
|
|
list_del_init(&hs_req->queue);
|
|
if (hs_req->req.complete) {
|
|
spin_unlock(&hsotg->lock);
|
|
usb_gadget_giveback_request(
|
|
&ep->ep, &hs_req->req);
|
|
spin_lock(&hsotg->lock);
|
|
}
|
|
}
|
|
|
|
/* If we have pending request, then start it */
|
|
if (!ep->req)
|
|
dwc2_gadget_start_next_request(ep);
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
break;
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
|
|
|
|
/**
|
|
* dwc2_hsotg_stall_ep0 - stall ep0
|
|
* @hsotg: The device state
|
|
*
|
|
* Set stall for ep0 as response for setup request.
|
|
*/
|
|
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
|
|
{
|
|
struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
|
|
u32 reg;
|
|
u32 ctrl;
|
|
|
|
dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
|
|
reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
|
|
|
|
/*
|
|
* DxEPCTL_Stall will be cleared by EP once it has
|
|
* taken effect, so no need to clear later.
|
|
*/
|
|
|
|
ctrl = dwc2_readl(hsotg->regs + reg);
|
|
ctrl |= DXEPCTL_STALL;
|
|
ctrl |= DXEPCTL_CNAK;
|
|
dwc2_writel(ctrl, hsotg->regs + reg);
|
|
|
|
dev_dbg(hsotg->dev,
|
|
"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
|
|
ctrl, reg, dwc2_readl(hsotg->regs + reg));
|
|
|
|
/*
|
|
* complete won't be called, so we enqueue
|
|
* setup request here
|
|
*/
|
|
dwc2_hsotg_enqueue_setup(hsotg);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_process_control - process a control request
|
|
* @hsotg: The device state
|
|
* @ctrl: The control request received
|
|
*
|
|
* The controller has received the SETUP phase of a control request, and
|
|
* needs to work out what to do next (and whether to pass it on to the
|
|
* gadget driver).
|
|
*/
|
|
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
|
|
struct usb_ctrlrequest *ctrl)
|
|
{
|
|
struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
|
|
int ret = 0;
|
|
u32 dcfg;
|
|
|
|
dev_dbg(hsotg->dev,
|
|
"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
|
|
ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
|
|
ctrl->wIndex, ctrl->wLength);
|
|
|
|
if (ctrl->wLength == 0) {
|
|
ep0->dir_in = 1;
|
|
hsotg->ep0_state = DWC2_EP0_STATUS_IN;
|
|
} else if (ctrl->bRequestType & USB_DIR_IN) {
|
|
ep0->dir_in = 1;
|
|
hsotg->ep0_state = DWC2_EP0_DATA_IN;
|
|
} else {
|
|
ep0->dir_in = 0;
|
|
hsotg->ep0_state = DWC2_EP0_DATA_OUT;
|
|
}
|
|
|
|
if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
|
|
switch (ctrl->bRequest) {
|
|
case USB_REQ_SET_ADDRESS:
|
|
hsotg->connected = 1;
|
|
dcfg = dwc2_readl(hsotg->regs + DCFG);
|
|
dcfg &= ~DCFG_DEVADDR_MASK;
|
|
dcfg |= (le16_to_cpu(ctrl->wValue) <<
|
|
DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
|
|
dwc2_writel(dcfg, hsotg->regs + DCFG);
|
|
|
|
dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
|
|
|
|
ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
|
|
return;
|
|
|
|
case USB_REQ_GET_STATUS:
|
|
ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
|
|
break;
|
|
|
|
case USB_REQ_CLEAR_FEATURE:
|
|
case USB_REQ_SET_FEATURE:
|
|
ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* as a fallback, try delivering it to the driver to deal with */
|
|
|
|
if (ret == 0 && hsotg->driver) {
|
|
spin_unlock(&hsotg->lock);
|
|
ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
|
|
spin_lock(&hsotg->lock);
|
|
if (ret < 0)
|
|
dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
|
|
}
|
|
|
|
/*
|
|
* the request is either unhandlable, or is not formatted correctly
|
|
* so respond with a STALL for the status stage to indicate failure.
|
|
*/
|
|
|
|
if (ret < 0)
|
|
dwc2_hsotg_stall_ep0(hsotg);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_complete_setup - completion of a setup transfer
|
|
* @ep: The endpoint the request was on.
|
|
* @req: The request completed.
|
|
*
|
|
* Called on completion of any requests the driver itself submitted for
|
|
* EP0 setup packets
|
|
*/
|
|
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
|
|
struct usb_request *req)
|
|
{
|
|
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
|
|
struct dwc2_hsotg *hsotg = hs_ep->parent;
|
|
|
|
if (req->status < 0) {
|
|
dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
|
|
return;
|
|
}
|
|
|
|
spin_lock(&hsotg->lock);
|
|
if (req->actual == 0)
|
|
dwc2_hsotg_enqueue_setup(hsotg);
|
|
else
|
|
dwc2_hsotg_process_control(hsotg, req->buf);
|
|
spin_unlock(&hsotg->lock);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_enqueue_setup - start a request for EP0 packets
|
|
* @hsotg: The device state.
|
|
*
|
|
* Enqueue a request on EP0 if necessary to received any SETUP packets
|
|
* received from the host.
|
|
*/
|
|
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
|
|
{
|
|
struct usb_request *req = hsotg->ctrl_req;
|
|
struct dwc2_hsotg_req *hs_req = our_req(req);
|
|
int ret;
|
|
|
|
dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
|
|
|
|
req->zero = 0;
|
|
req->length = 8;
|
|
req->buf = hsotg->ctrl_buff;
|
|
req->complete = dwc2_hsotg_complete_setup;
|
|
|
|
if (!list_empty(&hs_req->queue)) {
|
|
dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
|
|
return;
|
|
}
|
|
|
|
hsotg->eps_out[0]->dir_in = 0;
|
|
hsotg->eps_out[0]->send_zlp = 0;
|
|
hsotg->ep0_state = DWC2_EP0_SETUP;
|
|
|
|
ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
|
|
if (ret < 0) {
|
|
dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
|
|
/*
|
|
* Don't think there's much we can do other than watch the
|
|
* driver fail.
|
|
*/
|
|
}
|
|
}
|
|
|
|
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
u32 ctrl;
|
|
u8 index = hs_ep->index;
|
|
u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
|
|
u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
|
|
|
|
if (hs_ep->dir_in)
|
|
dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
|
|
index);
|
|
else
|
|
dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
|
|
index);
|
|
if (using_desc_dma(hsotg)) {
|
|
/* Not specific buffer needed for ep0 ZLP */
|
|
dma_addr_t dma = hs_ep->desc_list_dma;
|
|
|
|
if (!index)
|
|
dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
|
|
|
|
dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
|
|
} else {
|
|
dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
|
|
DXEPTSIZ_XFERSIZE(0), hsotg->regs +
|
|
epsiz_reg);
|
|
}
|
|
|
|
ctrl = dwc2_readl(hsotg->regs + epctl_reg);
|
|
ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
|
|
ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
|
|
ctrl |= DXEPCTL_USBACTEP;
|
|
dwc2_writel(ctrl, hsotg->regs + epctl_reg);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_complete_request - complete a request given to us
|
|
* @hsotg: The device state.
|
|
* @hs_ep: The endpoint the request was on.
|
|
* @hs_req: The request to complete.
|
|
* @result: The result code (0 => Ok, otherwise errno)
|
|
*
|
|
* The given request has finished, so call the necessary completion
|
|
* if it has one and then look to see if we can start a new request
|
|
* on the endpoint.
|
|
*
|
|
* Note, expects the ep to already be locked as appropriate.
|
|
*/
|
|
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *hs_ep,
|
|
struct dwc2_hsotg_req *hs_req,
|
|
int result)
|
|
{
|
|
if (!hs_req) {
|
|
dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
|
|
return;
|
|
}
|
|
|
|
dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
|
|
hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
|
|
|
|
/*
|
|
* only replace the status if we've not already set an error
|
|
* from a previous transaction
|
|
*/
|
|
|
|
if (hs_req->req.status == -EINPROGRESS)
|
|
hs_req->req.status = result;
|
|
|
|
if (using_dma(hsotg))
|
|
dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
|
|
|
|
dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
|
|
|
|
hs_ep->req = NULL;
|
|
list_del_init(&hs_req->queue);
|
|
|
|
/*
|
|
* call the complete request with the locks off, just in case the
|
|
* request tries to queue more work for this endpoint.
|
|
*/
|
|
|
|
if (hs_req->req.complete) {
|
|
spin_unlock(&hsotg->lock);
|
|
usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
|
|
spin_lock(&hsotg->lock);
|
|
}
|
|
|
|
/* In DDMA don't need to proceed to starting of next ISOC request */
|
|
if (using_desc_dma(hsotg) && hs_ep->isochronous)
|
|
return;
|
|
|
|
/*
|
|
* Look to see if there is anything else to do. Note, the completion
|
|
* of the previous request may have caused a new request to be started
|
|
* so be careful when doing this.
|
|
*/
|
|
|
|
if (!hs_ep->req && result >= 0)
|
|
dwc2_gadget_start_next_request(hs_ep);
|
|
}
|
|
|
|
/*
|
|
* dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
|
|
* @hs_ep: The endpoint the request was on.
|
|
*
|
|
* Get first request from the ep queue, determine descriptor on which complete
|
|
* happened. SW based on isoc_chain_num discovers which half of the descriptor
|
|
* chain is currently in use by HW, adjusts dma_address and calculates index
|
|
* of completed descriptor based on the value of DEPDMA register. Update actual
|
|
* length of request, giveback to gadget.
|
|
*/
|
|
static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
struct dwc2_hsotg *hsotg = hs_ep->parent;
|
|
struct dwc2_hsotg_req *hs_req;
|
|
struct usb_request *ureq;
|
|
int index;
|
|
dma_addr_t dma_addr;
|
|
u32 dma_reg;
|
|
u32 depdma;
|
|
u32 desc_sts;
|
|
u32 mask;
|
|
|
|
hs_req = get_ep_head(hs_ep);
|
|
if (!hs_req) {
|
|
dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
|
|
return;
|
|
}
|
|
ureq = &hs_req->req;
|
|
|
|
dma_addr = hs_ep->desc_list_dma;
|
|
|
|
/*
|
|
* If lower half of descriptor chain is currently use by SW,
|
|
* that means higher half is being processed by HW, so shift
|
|
* DMA address to higher half of descriptor chain.
|
|
*/
|
|
if (!hs_ep->isoc_chain_num)
|
|
dma_addr += sizeof(struct dwc2_dma_desc) *
|
|
(MAX_DMA_DESC_NUM_GENERIC / 2);
|
|
|
|
dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
|
|
depdma = dwc2_readl(hsotg->regs + dma_reg);
|
|
|
|
index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
|
|
desc_sts = hs_ep->desc_list[index].status;
|
|
|
|
mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
|
|
DEV_DMA_ISOC_RX_NBYTES_MASK;
|
|
ureq->actual = ureq->length -
|
|
((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
|
|
|
|
/* Adjust actual length for ISOC Out if length is not align of 4 */
|
|
if (!hs_ep->dir_in && ureq->length & 0x3)
|
|
ureq->actual += 4 - (ureq->length & 0x3);
|
|
|
|
dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
|
|
}
|
|
|
|
/*
|
|
* dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
|
|
* @hs_ep: The isochronous endpoint to be re-enabled.
|
|
*
|
|
* If ep has been disabled due to last descriptor servicing (IN endpoint) or
|
|
* BNA (OUT endpoint) check the status of other half of descriptor chain that
|
|
* was under SW control till HW was busy and restart the endpoint if needed.
|
|
*/
|
|
static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
struct dwc2_hsotg *hsotg = hs_ep->parent;
|
|
u32 depctl;
|
|
u32 dma_reg;
|
|
u32 ctrl;
|
|
u32 dma_addr = hs_ep->desc_list_dma;
|
|
unsigned char index = hs_ep->index;
|
|
|
|
dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
|
|
depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
|
|
|
|
ctrl = dwc2_readl(hsotg->regs + depctl);
|
|
|
|
/*
|
|
* EP was disabled if HW has processed last descriptor or BNA was set.
|
|
* So restart ep if SW has prepared new descriptor chain in ep_queue
|
|
* routine while HW was busy.
|
|
*/
|
|
if (!(ctrl & DXEPCTL_EPENA)) {
|
|
if (!hs_ep->next_desc) {
|
|
dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
|
|
__func__);
|
|
return;
|
|
}
|
|
|
|
dma_addr += sizeof(struct dwc2_dma_desc) *
|
|
(MAX_DMA_DESC_NUM_GENERIC / 2) *
|
|
hs_ep->isoc_chain_num;
|
|
dwc2_writel(dma_addr, hsotg->regs + dma_reg);
|
|
|
|
ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
|
|
dwc2_writel(ctrl, hsotg->regs + depctl);
|
|
|
|
/* Switch ISOC descriptor chain number being processed by SW*/
|
|
hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
|
|
hs_ep->next_desc = 0;
|
|
|
|
dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
|
|
__func__);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
|
|
* @hsotg: The device state.
|
|
* @ep_idx: The endpoint index for the data
|
|
* @size: The size of data in the fifo, in bytes
|
|
*
|
|
* The FIFO status shows there is data to read from the FIFO for a given
|
|
* endpoint, so sort out whether we need to read the data into a request
|
|
* that has been made for that endpoint.
|
|
*/
|
|
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
|
|
{
|
|
struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
|
|
struct dwc2_hsotg_req *hs_req = hs_ep->req;
|
|
void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
|
|
int to_read;
|
|
int max_req;
|
|
int read_ptr;
|
|
|
|
if (!hs_req) {
|
|
u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
|
|
int ptr;
|
|
|
|
dev_dbg(hsotg->dev,
|
|
"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
|
|
__func__, size, ep_idx, epctl);
|
|
|
|
/* dump the data from the FIFO, we've nothing we can do */
|
|
for (ptr = 0; ptr < size; ptr += 4)
|
|
(void)dwc2_readl(fifo);
|
|
|
|
return;
|
|
}
|
|
|
|
to_read = size;
|
|
read_ptr = hs_req->req.actual;
|
|
max_req = hs_req->req.length - read_ptr;
|
|
|
|
dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
|
|
__func__, to_read, max_req, read_ptr, hs_req->req.length);
|
|
|
|
if (to_read > max_req) {
|
|
/*
|
|
* more data appeared than we where willing
|
|
* to deal with in this request.
|
|
*/
|
|
|
|
/* currently we don't deal this */
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
|
|
hs_ep->total_data += to_read;
|
|
hs_req->req.actual += to_read;
|
|
to_read = DIV_ROUND_UP(to_read, 4);
|
|
|
|
/*
|
|
* note, we might over-write the buffer end by 3 bytes depending on
|
|
* alignment of the data.
|
|
*/
|
|
ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
|
|
* @hsotg: The device instance
|
|
* @dir_in: If IN zlp
|
|
*
|
|
* Generate a zero-length IN packet request for terminating a SETUP
|
|
* transaction.
|
|
*
|
|
* Note, since we don't write any data to the TxFIFO, then it is
|
|
* currently believed that we do not need to wait for any space in
|
|
* the TxFIFO.
|
|
*/
|
|
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
|
|
{
|
|
/* eps_out[0] is used in both directions */
|
|
hsotg->eps_out[0]->dir_in = dir_in;
|
|
hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
|
|
|
|
dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
|
|
}
|
|
|
|
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
|
|
u32 epctl_reg)
|
|
{
|
|
u32 ctrl;
|
|
|
|
ctrl = dwc2_readl(hsotg->regs + epctl_reg);
|
|
if (ctrl & DXEPCTL_EOFRNUM)
|
|
ctrl |= DXEPCTL_SETEVENFR;
|
|
else
|
|
ctrl |= DXEPCTL_SETODDFR;
|
|
dwc2_writel(ctrl, hsotg->regs + epctl_reg);
|
|
}
|
|
|
|
/*
|
|
* dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
|
|
* @hs_ep - The endpoint on which transfer went
|
|
*
|
|
* Iterate over endpoints descriptor chain and get info on bytes remained
|
|
* in DMA descriptors after transfer has completed. Used for non isoc EPs.
|
|
*/
|
|
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
struct dwc2_hsotg *hsotg = hs_ep->parent;
|
|
unsigned int bytes_rem = 0;
|
|
struct dwc2_dma_desc *desc = hs_ep->desc_list;
|
|
int i;
|
|
u32 status;
|
|
|
|
if (!desc)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < hs_ep->desc_count; ++i) {
|
|
status = desc->status;
|
|
bytes_rem += status & DEV_DMA_NBYTES_MASK;
|
|
|
|
if (status & DEV_DMA_STS_MASK)
|
|
dev_err(hsotg->dev, "descriptor %d closed with %x\n",
|
|
i, status & DEV_DMA_STS_MASK);
|
|
}
|
|
|
|
return bytes_rem;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
|
|
* @hsotg: The device instance
|
|
* @epnum: The endpoint received from
|
|
*
|
|
* The RXFIFO has delivered an OutDone event, which means that the data
|
|
* transfer for an OUT endpoint has been completed, either by a short
|
|
* packet or by the finish of a transfer.
|
|
*/
|
|
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
|
|
{
|
|
u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
|
|
struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
|
|
struct dwc2_hsotg_req *hs_req = hs_ep->req;
|
|
struct usb_request *req = &hs_req->req;
|
|
unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
|
|
int result = 0;
|
|
|
|
if (!hs_req) {
|
|
dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
|
|
return;
|
|
}
|
|
|
|
if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
|
|
dev_dbg(hsotg->dev, "zlp packet received\n");
|
|
dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
|
|
dwc2_hsotg_enqueue_setup(hsotg);
|
|
return;
|
|
}
|
|
|
|
if (using_desc_dma(hsotg))
|
|
size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
|
|
|
|
if (using_dma(hsotg)) {
|
|
unsigned int size_done;
|
|
|
|
/*
|
|
* Calculate the size of the transfer by checking how much
|
|
* is left in the endpoint size register and then working it
|
|
* out from the amount we loaded for the transfer.
|
|
*
|
|
* We need to do this as DMA pointers are always 32bit aligned
|
|
* so may overshoot/undershoot the transfer.
|
|
*/
|
|
|
|
size_done = hs_ep->size_loaded - size_left;
|
|
size_done += hs_ep->last_load;
|
|
|
|
req->actual = size_done;
|
|
}
|
|
|
|
/* if there is more request to do, schedule new transfer */
|
|
if (req->actual < req->length && size_left == 0) {
|
|
dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
|
|
return;
|
|
}
|
|
|
|
if (req->actual < req->length && req->short_not_ok) {
|
|
dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
|
|
__func__, req->actual, req->length);
|
|
|
|
/*
|
|
* todo - what should we return here? there's no one else
|
|
* even bothering to check the status.
|
|
*/
|
|
}
|
|
|
|
/* DDMA IN status phase will start from StsPhseRcvd interrupt */
|
|
if (!using_desc_dma(hsotg) && epnum == 0 &&
|
|
hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
|
|
/* Move to STATUS IN */
|
|
dwc2_hsotg_ep0_zlp(hsotg, true);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Slave mode OUT transfers do not go through XferComplete so
|
|
* adjust the ISOC parity here.
|
|
*/
|
|
if (!using_dma(hsotg)) {
|
|
if (hs_ep->isochronous && hs_ep->interval == 1)
|
|
dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
|
|
else if (hs_ep->isochronous && hs_ep->interval > 1)
|
|
dwc2_gadget_incr_frame_num(hs_ep);
|
|
}
|
|
|
|
dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_handle_rx - RX FIFO has data
|
|
* @hsotg: The device instance
|
|
*
|
|
* The IRQ handler has detected that the RX FIFO has some data in it
|
|
* that requires processing, so find out what is in there and do the
|
|
* appropriate read.
|
|
*
|
|
* The RXFIFO is a true FIFO, the packets coming out are still in packet
|
|
* chunks, so if you have x packets received on an endpoint you'll get x
|
|
* FIFO events delivered, each with a packet's worth of data in it.
|
|
*
|
|
* When using DMA, we should not be processing events from the RXFIFO
|
|
* as the actual data should be sent to the memory directly and we turn
|
|
* on the completion interrupts to get notifications of transfer completion.
|
|
*/
|
|
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
|
|
{
|
|
u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
|
|
u32 epnum, status, size;
|
|
|
|
WARN_ON(using_dma(hsotg));
|
|
|
|
epnum = grxstsr & GRXSTS_EPNUM_MASK;
|
|
status = grxstsr & GRXSTS_PKTSTS_MASK;
|
|
|
|
size = grxstsr & GRXSTS_BYTECNT_MASK;
|
|
size >>= GRXSTS_BYTECNT_SHIFT;
|
|
|
|
dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
|
|
__func__, grxstsr, size, epnum);
|
|
|
|
switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
|
|
case GRXSTS_PKTSTS_GLOBALOUTNAK:
|
|
dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
|
|
break;
|
|
|
|
case GRXSTS_PKTSTS_OUTDONE:
|
|
dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
|
|
dwc2_hsotg_read_frameno(hsotg));
|
|
|
|
if (!using_dma(hsotg))
|
|
dwc2_hsotg_handle_outdone(hsotg, epnum);
|
|
break;
|
|
|
|
case GRXSTS_PKTSTS_SETUPDONE:
|
|
dev_dbg(hsotg->dev,
|
|
"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
|
|
dwc2_hsotg_read_frameno(hsotg),
|
|
dwc2_readl(hsotg->regs + DOEPCTL(0)));
|
|
/*
|
|
* Call dwc2_hsotg_handle_outdone here if it was not called from
|
|
* GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
|
|
* generate GRXSTS_PKTSTS_OUTDONE for setup packet.
|
|
*/
|
|
if (hsotg->ep0_state == DWC2_EP0_SETUP)
|
|
dwc2_hsotg_handle_outdone(hsotg, epnum);
|
|
break;
|
|
|
|
case GRXSTS_PKTSTS_OUTRX:
|
|
dwc2_hsotg_rx_data(hsotg, epnum, size);
|
|
break;
|
|
|
|
case GRXSTS_PKTSTS_SETUPRX:
|
|
dev_dbg(hsotg->dev,
|
|
"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
|
|
dwc2_hsotg_read_frameno(hsotg),
|
|
dwc2_readl(hsotg->regs + DOEPCTL(0)));
|
|
|
|
WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
|
|
|
|
dwc2_hsotg_rx_data(hsotg, epnum, size);
|
|
break;
|
|
|
|
default:
|
|
dev_warn(hsotg->dev, "%s: unknown status %08x\n",
|
|
__func__, grxstsr);
|
|
|
|
dwc2_hsotg_dump(hsotg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_ep0_mps - turn max packet size into register setting
|
|
* @mps: The maximum packet size in bytes.
|
|
*/
|
|
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
|
|
{
|
|
switch (mps) {
|
|
case 64:
|
|
return D0EPCTL_MPS_64;
|
|
case 32:
|
|
return D0EPCTL_MPS_32;
|
|
case 16:
|
|
return D0EPCTL_MPS_16;
|
|
case 8:
|
|
return D0EPCTL_MPS_8;
|
|
}
|
|
|
|
/* bad max packet size, warn and return invalid result */
|
|
WARN_ON(1);
|
|
return (u32)-1;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
|
|
* @hsotg: The driver state.
|
|
* @ep: The index number of the endpoint
|
|
* @mps: The maximum packet size in bytes
|
|
* @mc: The multicount value
|
|
*
|
|
* Configure the maximum packet size for the given endpoint, updating
|
|
* the hardware control registers to reflect this.
|
|
*/
|
|
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
|
|
unsigned int ep, unsigned int mps,
|
|
unsigned int mc, unsigned int dir_in)
|
|
{
|
|
struct dwc2_hsotg_ep *hs_ep;
|
|
void __iomem *regs = hsotg->regs;
|
|
u32 reg;
|
|
|
|
hs_ep = index_to_ep(hsotg, ep, dir_in);
|
|
if (!hs_ep)
|
|
return;
|
|
|
|
if (ep == 0) {
|
|
u32 mps_bytes = mps;
|
|
|
|
/* EP0 is a special case */
|
|
mps = dwc2_hsotg_ep0_mps(mps_bytes);
|
|
if (mps > 3)
|
|
goto bad_mps;
|
|
hs_ep->ep.maxpacket = mps_bytes;
|
|
hs_ep->mc = 1;
|
|
} else {
|
|
if (mps > 1024)
|
|
goto bad_mps;
|
|
hs_ep->mc = mc;
|
|
if (mc > 3)
|
|
goto bad_mps;
|
|
hs_ep->ep.maxpacket = mps;
|
|
}
|
|
|
|
if (dir_in) {
|
|
reg = dwc2_readl(regs + DIEPCTL(ep));
|
|
reg &= ~DXEPCTL_MPS_MASK;
|
|
reg |= mps;
|
|
dwc2_writel(reg, regs + DIEPCTL(ep));
|
|
} else {
|
|
reg = dwc2_readl(regs + DOEPCTL(ep));
|
|
reg &= ~DXEPCTL_MPS_MASK;
|
|
reg |= mps;
|
|
dwc2_writel(reg, regs + DOEPCTL(ep));
|
|
}
|
|
|
|
return;
|
|
|
|
bad_mps:
|
|
dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_txfifo_flush - flush Tx FIFO
|
|
* @hsotg: The driver state
|
|
* @idx: The index for the endpoint (0..15)
|
|
*/
|
|
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
|
|
{
|
|
int timeout;
|
|
int val;
|
|
|
|
dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
|
|
hsotg->regs + GRSTCTL);
|
|
|
|
/* wait until the fifo is flushed */
|
|
timeout = 100;
|
|
|
|
while (1) {
|
|
val = dwc2_readl(hsotg->regs + GRSTCTL);
|
|
|
|
if ((val & (GRSTCTL_TXFFLSH)) == 0)
|
|
break;
|
|
|
|
if (--timeout == 0) {
|
|
dev_err(hsotg->dev,
|
|
"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
|
|
__func__, val);
|
|
break;
|
|
}
|
|
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_trytx - check to see if anything needs transmitting
|
|
* @hsotg: The driver state
|
|
* @hs_ep: The driver endpoint to check.
|
|
*
|
|
* Check to see if there is a request that has data to send, and if so
|
|
* make an attempt to write data into the FIFO.
|
|
*/
|
|
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
struct dwc2_hsotg_req *hs_req = hs_ep->req;
|
|
|
|
if (!hs_ep->dir_in || !hs_req) {
|
|
/**
|
|
* if request is not enqueued, we disable interrupts
|
|
* for endpoints, excepting ep0
|
|
*/
|
|
if (hs_ep->index != 0)
|
|
dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
|
|
hs_ep->dir_in, 0);
|
|
return 0;
|
|
}
|
|
|
|
if (hs_req->req.actual < hs_req->req.length) {
|
|
dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
|
|
hs_ep->index);
|
|
return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_complete_in - complete IN transfer
|
|
* @hsotg: The device state.
|
|
* @hs_ep: The endpoint that has just completed.
|
|
*
|
|
* An IN transfer has been completed, update the transfer's state and then
|
|
* call the relevant completion routines.
|
|
*/
|
|
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
struct dwc2_hsotg_req *hs_req = hs_ep->req;
|
|
u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
|
|
int size_left, size_done;
|
|
|
|
if (!hs_req) {
|
|
dev_dbg(hsotg->dev, "XferCompl but no req\n");
|
|
return;
|
|
}
|
|
|
|
/* Finish ZLP handling for IN EP0 transactions */
|
|
if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
|
|
dev_dbg(hsotg->dev, "zlp packet sent\n");
|
|
|
|
/*
|
|
* While send zlp for DWC2_EP0_STATUS_IN EP direction was
|
|
* changed to IN. Change back to complete OUT transfer request
|
|
*/
|
|
hs_ep->dir_in = 0;
|
|
|
|
dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
|
|
if (hsotg->test_mode) {
|
|
int ret;
|
|
|
|
ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
|
|
if (ret < 0) {
|
|
dev_dbg(hsotg->dev, "Invalid Test #%d\n",
|
|
hsotg->test_mode);
|
|
dwc2_hsotg_stall_ep0(hsotg);
|
|
return;
|
|
}
|
|
}
|
|
dwc2_hsotg_enqueue_setup(hsotg);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Calculate the size of the transfer by checking how much is left
|
|
* in the endpoint size register and then working it out from
|
|
* the amount we loaded for the transfer.
|
|
*
|
|
* We do this even for DMA, as the transfer may have incremented
|
|
* past the end of the buffer (DMA transfers are always 32bit
|
|
* aligned).
|
|
*/
|
|
if (using_desc_dma(hsotg)) {
|
|
size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
|
|
if (size_left < 0)
|
|
dev_err(hsotg->dev, "error parsing DDMA results %d\n",
|
|
size_left);
|
|
} else {
|
|
size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
|
|
}
|
|
|
|
size_done = hs_ep->size_loaded - size_left;
|
|
size_done += hs_ep->last_load;
|
|
|
|
if (hs_req->req.actual != size_done)
|
|
dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
|
|
__func__, hs_req->req.actual, size_done);
|
|
|
|
hs_req->req.actual = size_done;
|
|
dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
|
|
hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
|
|
|
|
if (!size_left && hs_req->req.actual < hs_req->req.length) {
|
|
dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
|
|
dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
|
|
return;
|
|
}
|
|
|
|
/* Zlp for all endpoints, for ep0 only in DATA IN stage */
|
|
if (hs_ep->send_zlp) {
|
|
dwc2_hsotg_program_zlp(hsotg, hs_ep);
|
|
hs_ep->send_zlp = 0;
|
|
/* transfer will be completed on next complete interrupt */
|
|
return;
|
|
}
|
|
|
|
if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
|
|
/* Move to STATUS OUT */
|
|
dwc2_hsotg_ep0_zlp(hsotg, false);
|
|
return;
|
|
}
|
|
|
|
dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
|
|
}
|
|
|
|
/**
|
|
* dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
|
|
* @hsotg: The device state.
|
|
* @idx: Index of ep.
|
|
* @dir_in: Endpoint direction 1-in 0-out.
|
|
*
|
|
* Reads for endpoint with given index and direction, by masking
|
|
* epint_reg with coresponding mask.
|
|
*/
|
|
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
|
|
unsigned int idx, int dir_in)
|
|
{
|
|
u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
|
|
u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
|
|
u32 ints;
|
|
u32 mask;
|
|
u32 diepempmsk;
|
|
|
|
mask = dwc2_readl(hsotg->regs + epmsk_reg);
|
|
diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
|
|
mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
|
|
mask |= DXEPINT_SETUP_RCVD;
|
|
|
|
ints = dwc2_readl(hsotg->regs + epint_reg);
|
|
ints &= mask;
|
|
return ints;
|
|
}
|
|
|
|
/**
|
|
* dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
|
|
* @hs_ep: The endpoint on which interrupt is asserted.
|
|
*
|
|
* This interrupt indicates that the endpoint has been disabled per the
|
|
* application's request.
|
|
*
|
|
* For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
|
|
* in case of ISOC completes current request.
|
|
*
|
|
* For ISOC-OUT endpoints completes expired requests. If there is remaining
|
|
* request starts it.
|
|
*/
|
|
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
struct dwc2_hsotg *hsotg = hs_ep->parent;
|
|
struct dwc2_hsotg_req *hs_req;
|
|
unsigned char idx = hs_ep->index;
|
|
int dir_in = hs_ep->dir_in;
|
|
u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
|
|
int dctl = dwc2_readl(hsotg->regs + DCTL);
|
|
|
|
dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
|
|
|
|
if (dir_in) {
|
|
int epctl = dwc2_readl(hsotg->regs + epctl_reg);
|
|
|
|
dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
|
|
|
|
if (hs_ep->isochronous) {
|
|
dwc2_hsotg_complete_in(hsotg, hs_ep);
|
|
return;
|
|
}
|
|
|
|
if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
|
|
int dctl = dwc2_readl(hsotg->regs + DCTL);
|
|
|
|
dctl |= DCTL_CGNPINNAK;
|
|
dwc2_writel(dctl, hsotg->regs + DCTL);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (dctl & DCTL_GOUTNAKSTS) {
|
|
dctl |= DCTL_CGOUTNAK;
|
|
dwc2_writel(dctl, hsotg->regs + DCTL);
|
|
}
|
|
|
|
if (!hs_ep->isochronous)
|
|
return;
|
|
|
|
if (list_empty(&hs_ep->queue)) {
|
|
dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
|
|
__func__, hs_ep);
|
|
return;
|
|
}
|
|
|
|
do {
|
|
hs_req = get_ep_head(hs_ep);
|
|
if (hs_req)
|
|
dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
|
|
-ENODATA);
|
|
dwc2_gadget_incr_frame_num(hs_ep);
|
|
} while (dwc2_gadget_target_frame_elapsed(hs_ep));
|
|
|
|
dwc2_gadget_start_next_request(hs_ep);
|
|
}
|
|
|
|
/**
|
|
* dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
|
|
* @hs_ep: The endpoint on which interrupt is asserted.
|
|
*
|
|
* This is starting point for ISOC-OUT transfer, synchronization done with
|
|
* first out token received from host while corresponding EP is disabled.
|
|
*
|
|
* Device does not know initial frame in which out token will come. For this
|
|
* HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
|
|
* getting this interrupt SW starts calculation for next transfer frame.
|
|
*/
|
|
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
|
|
{
|
|
struct dwc2_hsotg *hsotg = ep->parent;
|
|
int dir_in = ep->dir_in;
|
|
u32 doepmsk;
|
|
u32 tmp;
|
|
|
|
if (dir_in || !ep->isochronous)
|
|
return;
|
|
|
|
/*
|
|
* Store frame in which irq was asserted here, as
|
|
* it can change while completing request below.
|
|
*/
|
|
tmp = dwc2_hsotg_read_frameno(hsotg);
|
|
|
|
dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
|
|
|
|
if (using_desc_dma(hsotg)) {
|
|
if (ep->target_frame == TARGET_FRAME_INITIAL) {
|
|
/* Start first ISO Out */
|
|
ep->target_frame = tmp;
|
|
dwc2_gadget_start_isoc_ddma(ep);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ep->interval > 1 &&
|
|
ep->target_frame == TARGET_FRAME_INITIAL) {
|
|
u32 dsts;
|
|
u32 ctrl;
|
|
|
|
dsts = dwc2_readl(hsotg->regs + DSTS);
|
|
ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
|
|
dwc2_gadget_incr_frame_num(ep);
|
|
|
|
ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
|
|
if (ep->target_frame & 0x1)
|
|
ctrl |= DXEPCTL_SETODDFR;
|
|
else
|
|
ctrl |= DXEPCTL_SETEVENFR;
|
|
|
|
dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
|
|
}
|
|
|
|
dwc2_gadget_start_next_request(ep);
|
|
doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
|
|
doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
|
|
dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
|
|
}
|
|
|
|
/**
|
|
* dwc2_gadget_handle_nak - handle NAK interrupt
|
|
* @hs_ep: The endpoint on which interrupt is asserted.
|
|
*
|
|
* This is starting point for ISOC-IN transfer, synchronization done with
|
|
* first IN token received from host while corresponding EP is disabled.
|
|
*
|
|
* Device does not know when first one token will arrive from host. On first
|
|
* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
|
|
* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
|
|
* sent in response to that as there was no data in FIFO. SW is basing on this
|
|
* interrupt to obtain frame in which token has come and then based on the
|
|
* interval calculates next frame for transfer.
|
|
*/
|
|
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
struct dwc2_hsotg *hsotg = hs_ep->parent;
|
|
int dir_in = hs_ep->dir_in;
|
|
|
|
if (!dir_in || !hs_ep->isochronous)
|
|
return;
|
|
|
|
if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
|
|
hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
|
|
|
|
if (using_desc_dma(hsotg)) {
|
|
dwc2_gadget_start_isoc_ddma(hs_ep);
|
|
return;
|
|
}
|
|
|
|
if (hs_ep->interval > 1) {
|
|
u32 ctrl = dwc2_readl(hsotg->regs +
|
|
DIEPCTL(hs_ep->index));
|
|
if (hs_ep->target_frame & 0x1)
|
|
ctrl |= DXEPCTL_SETODDFR;
|
|
else
|
|
ctrl |= DXEPCTL_SETEVENFR;
|
|
|
|
dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
|
|
}
|
|
|
|
dwc2_hsotg_complete_request(hsotg, hs_ep,
|
|
get_ep_head(hs_ep), 0);
|
|
}
|
|
|
|
dwc2_gadget_incr_frame_num(hs_ep);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_epint - handle an in/out endpoint interrupt
|
|
* @hsotg: The driver state
|
|
* @idx: The index for the endpoint (0..15)
|
|
* @dir_in: Set if this is an IN endpoint
|
|
*
|
|
* Process and clear any interrupt pending for an individual endpoint
|
|
*/
|
|
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
|
|
int dir_in)
|
|
{
|
|
struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
|
|
u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
|
|
u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
|
|
u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
|
|
u32 ints;
|
|
u32 ctrl;
|
|
|
|
ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
|
|
ctrl = dwc2_readl(hsotg->regs + epctl_reg);
|
|
|
|
/* Clear endpoint interrupts */
|
|
dwc2_writel(ints, hsotg->regs + epint_reg);
|
|
|
|
if (!hs_ep) {
|
|
dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
|
|
__func__, idx, dir_in ? "in" : "out");
|
|
return;
|
|
}
|
|
|
|
dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
|
|
__func__, idx, dir_in ? "in" : "out", ints);
|
|
|
|
/* Don't process XferCompl interrupt if it is a setup packet */
|
|
if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
|
|
ints &= ~DXEPINT_XFERCOMPL;
|
|
|
|
/*
|
|
* Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
|
|
* stage and xfercomplete was generated without SETUP phase done
|
|
* interrupt. SW should parse received setup packet only after host's
|
|
* exit from setup phase of control transfer.
|
|
*/
|
|
if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
|
|
hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
|
|
ints &= ~DXEPINT_XFERCOMPL;
|
|
|
|
if (ints & DXEPINT_XFERCOMPL) {
|
|
dev_dbg(hsotg->dev,
|
|
"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
|
|
__func__, dwc2_readl(hsotg->regs + epctl_reg),
|
|
dwc2_readl(hsotg->regs + epsiz_reg));
|
|
|
|
/* In DDMA handle isochronous requests separately */
|
|
if (using_desc_dma(hsotg) && hs_ep->isochronous) {
|
|
dwc2_gadget_complete_isoc_request_ddma(hs_ep);
|
|
/* Try to start next isoc request */
|
|
dwc2_gadget_start_next_isoc_ddma(hs_ep);
|
|
} else if (dir_in) {
|
|
/*
|
|
* We get OutDone from the FIFO, so we only
|
|
* need to look at completing IN requests here
|
|
* if operating slave mode
|
|
*/
|
|
if (hs_ep->isochronous && hs_ep->interval > 1)
|
|
dwc2_gadget_incr_frame_num(hs_ep);
|
|
|
|
dwc2_hsotg_complete_in(hsotg, hs_ep);
|
|
if (ints & DXEPINT_NAKINTRPT)
|
|
ints &= ~DXEPINT_NAKINTRPT;
|
|
|
|
if (idx == 0 && !hs_ep->req)
|
|
dwc2_hsotg_enqueue_setup(hsotg);
|
|
} else if (using_dma(hsotg)) {
|
|
/*
|
|
* We're using DMA, we need to fire an OutDone here
|
|
* as we ignore the RXFIFO.
|
|
*/
|
|
if (hs_ep->isochronous && hs_ep->interval > 1)
|
|
dwc2_gadget_incr_frame_num(hs_ep);
|
|
|
|
dwc2_hsotg_handle_outdone(hsotg, idx);
|
|
}
|
|
}
|
|
|
|
if (ints & DXEPINT_EPDISBLD)
|
|
dwc2_gadget_handle_ep_disabled(hs_ep);
|
|
|
|
if (ints & DXEPINT_OUTTKNEPDIS)
|
|
dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
|
|
|
|
if (ints & DXEPINT_NAKINTRPT)
|
|
dwc2_gadget_handle_nak(hs_ep);
|
|
|
|
if (ints & DXEPINT_AHBERR)
|
|
dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
|
|
|
|
if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
|
|
dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
|
|
|
|
if (using_dma(hsotg) && idx == 0) {
|
|
/*
|
|
* this is the notification we've received a
|
|
* setup packet. In non-DMA mode we'd get this
|
|
* from the RXFIFO, instead we need to process
|
|
* the setup here.
|
|
*/
|
|
|
|
if (dir_in)
|
|
WARN_ON_ONCE(1);
|
|
else
|
|
dwc2_hsotg_handle_outdone(hsotg, 0);
|
|
}
|
|
}
|
|
|
|
if (ints & DXEPINT_STSPHSERCVD) {
|
|
dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
|
|
|
|
/* Safety check EP0 state when STSPHSERCVD asserted */
|
|
if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
|
|
/* Move to STATUS IN for DDMA */
|
|
if (using_desc_dma(hsotg))
|
|
dwc2_hsotg_ep0_zlp(hsotg, true);
|
|
}
|
|
|
|
}
|
|
|
|
if (ints & DXEPINT_BACK2BACKSETUP)
|
|
dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
|
|
|
|
if (ints & DXEPINT_BNAINTR) {
|
|
dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
|
|
|
|
/*
|
|
* Try to start next isoc request, if any.
|
|
* Sometimes the endpoint remains enabled after BNA interrupt
|
|
* assertion, which is not expected, hence we can enter here
|
|
* couple of times.
|
|
*/
|
|
if (hs_ep->isochronous)
|
|
dwc2_gadget_start_next_isoc_ddma(hs_ep);
|
|
}
|
|
|
|
if (dir_in && !hs_ep->isochronous) {
|
|
/* not sure if this is important, but we'll clear it anyway */
|
|
if (ints & DXEPINT_INTKNTXFEMP) {
|
|
dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
|
|
__func__, idx);
|
|
}
|
|
|
|
/* this probably means something bad is happening */
|
|
if (ints & DXEPINT_INTKNEPMIS) {
|
|
dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
|
|
__func__, idx);
|
|
}
|
|
|
|
/* FIFO has space or is empty (see GAHBCFG) */
|
|
if (hsotg->dedicated_fifos &&
|
|
ints & DXEPINT_TXFEMP) {
|
|
dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
|
|
__func__, idx);
|
|
if (!using_dma(hsotg))
|
|
dwc2_hsotg_trytx(hsotg, hs_ep);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
|
|
* @hsotg: The device state.
|
|
*
|
|
* Handle updating the device settings after the enumeration phase has
|
|
* been completed.
|
|
*/
|
|
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
|
|
{
|
|
u32 dsts = dwc2_readl(hsotg->regs + DSTS);
|
|
int ep0_mps = 0, ep_mps = 8;
|
|
|
|
/*
|
|
* This should signal the finish of the enumeration phase
|
|
* of the USB handshaking, so we should now know what rate
|
|
* we connected at.
|
|
*/
|
|
|
|
dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
|
|
|
|
/*
|
|
* note, since we're limited by the size of transfer on EP0, and
|
|
* it seems IN transfers must be a even number of packets we do
|
|
* not advertise a 64byte MPS on EP0.
|
|
*/
|
|
|
|
/* catch both EnumSpd_FS and EnumSpd_FS48 */
|
|
switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
|
|
case DSTS_ENUMSPD_FS:
|
|
case DSTS_ENUMSPD_FS48:
|
|
hsotg->gadget.speed = USB_SPEED_FULL;
|
|
ep0_mps = EP0_MPS_LIMIT;
|
|
ep_mps = 1023;
|
|
break;
|
|
|
|
case DSTS_ENUMSPD_HS:
|
|
hsotg->gadget.speed = USB_SPEED_HIGH;
|
|
ep0_mps = EP0_MPS_LIMIT;
|
|
ep_mps = 1024;
|
|
break;
|
|
|
|
case DSTS_ENUMSPD_LS:
|
|
hsotg->gadget.speed = USB_SPEED_LOW;
|
|
ep0_mps = 8;
|
|
ep_mps = 8;
|
|
/*
|
|
* note, we don't actually support LS in this driver at the
|
|
* moment, and the documentation seems to imply that it isn't
|
|
* supported by the PHYs on some of the devices.
|
|
*/
|
|
break;
|
|
}
|
|
dev_info(hsotg->dev, "new device is %s\n",
|
|
usb_speed_string(hsotg->gadget.speed));
|
|
|
|
/*
|
|
* we should now know the maximum packet size for an
|
|
* endpoint, so set the endpoints to a default value.
|
|
*/
|
|
|
|
if (ep0_mps) {
|
|
int i;
|
|
/* Initialize ep0 for both in and out directions */
|
|
dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
|
|
dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
|
|
for (i = 1; i < hsotg->num_of_eps; i++) {
|
|
if (hsotg->eps_in[i])
|
|
dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
|
|
0, 1);
|
|
if (hsotg->eps_out[i])
|
|
dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
|
|
0, 0);
|
|
}
|
|
}
|
|
|
|
/* ensure after enumeration our EP0 is active */
|
|
|
|
dwc2_hsotg_enqueue_setup(hsotg);
|
|
|
|
dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
|
|
dwc2_readl(hsotg->regs + DIEPCTL0),
|
|
dwc2_readl(hsotg->regs + DOEPCTL0));
|
|
}
|
|
|
|
/**
|
|
* kill_all_requests - remove all requests from the endpoint's queue
|
|
* @hsotg: The device state.
|
|
* @ep: The endpoint the requests may be on.
|
|
* @result: The result code to use.
|
|
*
|
|
* Go through the requests on the given endpoint and mark them
|
|
* completed with the given result code.
|
|
*/
|
|
static void kill_all_requests(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *ep,
|
|
int result)
|
|
{
|
|
struct dwc2_hsotg_req *req, *treq;
|
|
unsigned int size;
|
|
|
|
ep->req = NULL;
|
|
|
|
list_for_each_entry_safe(req, treq, &ep->queue, queue)
|
|
dwc2_hsotg_complete_request(hsotg, ep, req,
|
|
result);
|
|
|
|
if (!hsotg->dedicated_fifos)
|
|
return;
|
|
size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
|
|
if (size < ep->fifo_size)
|
|
dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_disconnect - disconnect service
|
|
* @hsotg: The device state.
|
|
*
|
|
* The device has been disconnected. Remove all current
|
|
* transactions and signal the gadget driver that this
|
|
* has happened.
|
|
*/
|
|
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
|
|
{
|
|
unsigned int ep;
|
|
|
|
if (!hsotg->connected)
|
|
return;
|
|
|
|
hsotg->connected = 0;
|
|
hsotg->test_mode = 0;
|
|
|
|
for (ep = 0; ep < hsotg->num_of_eps; ep++) {
|
|
if (hsotg->eps_in[ep])
|
|
kill_all_requests(hsotg, hsotg->eps_in[ep],
|
|
-ESHUTDOWN);
|
|
if (hsotg->eps_out[ep])
|
|
kill_all_requests(hsotg, hsotg->eps_out[ep],
|
|
-ESHUTDOWN);
|
|
}
|
|
|
|
call_gadget(hsotg, disconnect);
|
|
hsotg->lx_state = DWC2_L3;
|
|
|
|
usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
|
|
* @hsotg: The device state:
|
|
* @periodic: True if this is a periodic FIFO interrupt
|
|
*/
|
|
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
|
|
{
|
|
struct dwc2_hsotg_ep *ep;
|
|
int epno, ret;
|
|
|
|
/* look through for any more data to transmit */
|
|
for (epno = 0; epno < hsotg->num_of_eps; epno++) {
|
|
ep = index_to_ep(hsotg, epno, 1);
|
|
|
|
if (!ep)
|
|
continue;
|
|
|
|
if (!ep->dir_in)
|
|
continue;
|
|
|
|
if ((periodic && !ep->periodic) ||
|
|
(!periodic && ep->periodic))
|
|
continue;
|
|
|
|
ret = dwc2_hsotg_trytx(hsotg, ep);
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* IRQ flags which will trigger a retry around the IRQ loop */
|
|
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
|
|
GINTSTS_PTXFEMP | \
|
|
GINTSTS_RXFLVL)
|
|
|
|
/**
|
|
* dwc2_hsotg_core_init - issue softreset to the core
|
|
* @hsotg: The device state
|
|
*
|
|
* Issue a soft reset to the core, and await the core finishing it.
|
|
*/
|
|
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
|
|
bool is_usb_reset)
|
|
{
|
|
u32 intmsk;
|
|
u32 val;
|
|
u32 usbcfg;
|
|
u32 dcfg = 0;
|
|
|
|
/* Kill any ep0 requests as controller will be reinitialized */
|
|
kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
|
|
|
|
if (!is_usb_reset)
|
|
if (dwc2_core_reset(hsotg, true))
|
|
return;
|
|
|
|
/*
|
|
* we must now enable ep0 ready for host detection and then
|
|
* set configuration.
|
|
*/
|
|
|
|
/* keep other bits untouched (so e.g. forced modes are not lost) */
|
|
usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
|
|
usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
|
|
GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
|
|
|
|
if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
|
|
(hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
|
|
hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
|
|
/* FS/LS Dedicated Transceiver Interface */
|
|
usbcfg |= GUSBCFG_PHYSEL;
|
|
} else {
|
|
/* set the PLL on, remove the HNP/SRP and set the PHY */
|
|
val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
|
|
usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
|
|
(val << GUSBCFG_USBTRDTIM_SHIFT);
|
|
}
|
|
dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
|
|
|
|
dwc2_hsotg_init_fifo(hsotg);
|
|
|
|
if (!is_usb_reset)
|
|
__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
|
|
|
|
dcfg |= DCFG_EPMISCNT(1);
|
|
|
|
switch (hsotg->params.speed) {
|
|
case DWC2_SPEED_PARAM_LOW:
|
|
dcfg |= DCFG_DEVSPD_LS;
|
|
break;
|
|
case DWC2_SPEED_PARAM_FULL:
|
|
if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
|
|
dcfg |= DCFG_DEVSPD_FS48;
|
|
else
|
|
dcfg |= DCFG_DEVSPD_FS;
|
|
break;
|
|
default:
|
|
dcfg |= DCFG_DEVSPD_HS;
|
|
}
|
|
|
|
dwc2_writel(dcfg, hsotg->regs + DCFG);
|
|
|
|
/* Clear any pending OTG interrupts */
|
|
dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
|
|
|
|
/* Clear any pending interrupts */
|
|
dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
|
|
intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
|
|
GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
|
|
GINTSTS_USBRST | GINTSTS_RESETDET |
|
|
GINTSTS_ENUMDONE | GINTSTS_OTGINT |
|
|
GINTSTS_USBSUSP | GINTSTS_WKUPINT;
|
|
|
|
if (!using_desc_dma(hsotg))
|
|
intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
|
|
|
|
if (!hsotg->params.external_id_pin_ctl)
|
|
intmsk |= GINTSTS_CONIDSTSCHNG;
|
|
|
|
dwc2_writel(intmsk, hsotg->regs + GINTMSK);
|
|
|
|
if (using_dma(hsotg)) {
|
|
dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
|
|
(GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
|
|
hsotg->regs + GAHBCFG);
|
|
|
|
/* Set DDMA mode support in the core if needed */
|
|
if (using_desc_dma(hsotg))
|
|
__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
|
|
|
|
} else {
|
|
dwc2_writel(((hsotg->dedicated_fifos) ?
|
|
(GAHBCFG_NP_TXF_EMP_LVL |
|
|
GAHBCFG_P_TXF_EMP_LVL) : 0) |
|
|
GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
|
|
}
|
|
|
|
/*
|
|
* If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
|
|
* when we have no data to transfer. Otherwise we get being flooded by
|
|
* interrupts.
|
|
*/
|
|
|
|
dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
|
|
DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
|
|
DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
|
|
DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
|
|
hsotg->regs + DIEPMSK);
|
|
|
|
/*
|
|
* don't need XferCompl, we get that from RXFIFO in slave mode. In
|
|
* DMA mode we may need this and StsPhseRcvd.
|
|
*/
|
|
dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
|
|
DOEPMSK_STSPHSERCVDMSK) : 0) |
|
|
DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
|
|
DOEPMSK_SETUPMSK,
|
|
hsotg->regs + DOEPMSK);
|
|
|
|
/* Enable BNA interrupt for DDMA */
|
|
if (using_desc_dma(hsotg))
|
|
__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
|
|
|
|
dwc2_writel(0, hsotg->regs + DAINTMSK);
|
|
|
|
dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
|
|
dwc2_readl(hsotg->regs + DIEPCTL0),
|
|
dwc2_readl(hsotg->regs + DOEPCTL0));
|
|
|
|
/* enable in and out endpoint interrupts */
|
|
dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
|
|
|
|
/*
|
|
* Enable the RXFIFO when in slave mode, as this is how we collect
|
|
* the data. In DMA mode, we get events from the FIFO but also
|
|
* things we cannot process, so do not use it.
|
|
*/
|
|
if (!using_dma(hsotg))
|
|
dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
|
|
|
|
/* Enable interrupts for EP0 in and out */
|
|
dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
|
|
dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
|
|
|
|
if (!is_usb_reset) {
|
|
__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
|
|
udelay(10); /* see openiboot */
|
|
__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
|
|
}
|
|
|
|
dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
|
|
|
|
/*
|
|
* DxEPCTL_USBActEp says RO in manual, but seems to be set by
|
|
* writing to the EPCTL register..
|
|
*/
|
|
|
|
/* set to read 1 8byte packet */
|
|
dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
|
|
DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
|
|
|
|
dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
|
|
DXEPCTL_CNAK | DXEPCTL_EPENA |
|
|
DXEPCTL_USBACTEP,
|
|
hsotg->regs + DOEPCTL0);
|
|
|
|
/* enable, but don't activate EP0in */
|
|
dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
|
|
DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
|
|
|
|
/* clear global NAKs */
|
|
val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
|
|
if (!is_usb_reset)
|
|
val |= DCTL_SFTDISCON;
|
|
__orr32(hsotg->regs + DCTL, val);
|
|
|
|
/* must be at-least 3ms to allow bus to see disconnect */
|
|
mdelay(3);
|
|
|
|
hsotg->lx_state = DWC2_L0;
|
|
|
|
dwc2_hsotg_enqueue_setup(hsotg);
|
|
|
|
dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
|
|
dwc2_readl(hsotg->regs + DIEPCTL0),
|
|
dwc2_readl(hsotg->regs + DOEPCTL0));
|
|
}
|
|
|
|
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
|
|
{
|
|
/* set the soft-disconnect bit */
|
|
__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
|
|
}
|
|
|
|
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
|
|
{
|
|
/* remove the soft-disconnect and let's go */
|
|
__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
|
|
}
|
|
|
|
/**
|
|
* dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
|
|
* @hsotg: The device state:
|
|
*
|
|
* This interrupt indicates one of the following conditions occurred while
|
|
* transmitting an ISOC transaction.
|
|
* - Corrupted IN Token for ISOC EP.
|
|
* - Packet not complete in FIFO.
|
|
*
|
|
* The following actions will be taken:
|
|
* - Determine the EP
|
|
* - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
|
|
*/
|
|
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
|
|
{
|
|
struct dwc2_hsotg_ep *hs_ep;
|
|
u32 epctrl;
|
|
u32 idx;
|
|
|
|
dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
|
|
|
|
for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
|
|
hs_ep = hsotg->eps_in[idx];
|
|
epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
|
|
if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
|
|
dwc2_gadget_target_frame_elapsed(hs_ep)) {
|
|
epctrl |= DXEPCTL_SNAK;
|
|
epctrl |= DXEPCTL_EPDIS;
|
|
dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
|
|
}
|
|
}
|
|
|
|
/* Clear interrupt */
|
|
dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
|
|
}
|
|
|
|
/**
|
|
* dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
|
|
* @hsotg: The device state:
|
|
*
|
|
* This interrupt indicates one of the following conditions occurred while
|
|
* transmitting an ISOC transaction.
|
|
* - Corrupted OUT Token for ISOC EP.
|
|
* - Packet not complete in FIFO.
|
|
*
|
|
* The following actions will be taken:
|
|
* - Determine the EP
|
|
* - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
|
|
*/
|
|
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
|
|
{
|
|
u32 gintsts;
|
|
u32 gintmsk;
|
|
u32 epctrl;
|
|
struct dwc2_hsotg_ep *hs_ep;
|
|
int idx;
|
|
|
|
dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
|
|
|
|
for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
|
|
hs_ep = hsotg->eps_out[idx];
|
|
epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
|
|
if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
|
|
dwc2_gadget_target_frame_elapsed(hs_ep)) {
|
|
/* Unmask GOUTNAKEFF interrupt */
|
|
gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
|
|
gintmsk |= GINTSTS_GOUTNAKEFF;
|
|
dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
|
|
|
|
gintsts = dwc2_readl(hsotg->regs + GINTSTS);
|
|
if (!(gintsts & GINTSTS_GOUTNAKEFF))
|
|
__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
|
|
}
|
|
}
|
|
|
|
/* Clear interrupt */
|
|
dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_irq - handle device interrupt
|
|
* @irq: The IRQ number triggered
|
|
* @pw: The pw value when registered the handler.
|
|
*/
|
|
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
|
|
{
|
|
struct dwc2_hsotg *hsotg = pw;
|
|
int retry_count = 8;
|
|
u32 gintsts;
|
|
u32 gintmsk;
|
|
|
|
if (!dwc2_is_device_mode(hsotg))
|
|
return IRQ_NONE;
|
|
|
|
spin_lock(&hsotg->lock);
|
|
irq_retry:
|
|
gintsts = dwc2_readl(hsotg->regs + GINTSTS);
|
|
gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
|
|
|
|
dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
|
|
__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
|
|
|
|
gintsts &= gintmsk;
|
|
|
|
if (gintsts & GINTSTS_RESETDET) {
|
|
dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
|
|
|
|
dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
|
|
|
|
/* This event must be used only if controller is suspended */
|
|
if (hsotg->lx_state == DWC2_L2) {
|
|
dwc2_exit_hibernation(hsotg, true);
|
|
hsotg->lx_state = DWC2_L0;
|
|
}
|
|
}
|
|
|
|
if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
|
|
u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
|
|
u32 connected = hsotg->connected;
|
|
|
|
dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
|
|
dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
|
|
dwc2_readl(hsotg->regs + GNPTXSTS));
|
|
|
|
dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
|
|
|
|
/* Report disconnection if it is not already done. */
|
|
dwc2_hsotg_disconnect(hsotg);
|
|
|
|
/* Reset device address to zero */
|
|
__bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
|
|
|
|
if (usb_status & GOTGCTL_BSESVLD && connected)
|
|
dwc2_hsotg_core_init_disconnected(hsotg, true);
|
|
}
|
|
|
|
if (gintsts & GINTSTS_ENUMDONE) {
|
|
dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
|
|
|
|
dwc2_hsotg_irq_enumdone(hsotg);
|
|
}
|
|
|
|
if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
|
|
u32 daint = dwc2_readl(hsotg->regs + DAINT);
|
|
u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
|
|
u32 daint_out, daint_in;
|
|
int ep;
|
|
|
|
daint &= daintmsk;
|
|
daint_out = daint >> DAINT_OUTEP_SHIFT;
|
|
daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
|
|
|
|
dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
|
|
|
|
for (ep = 0; ep < hsotg->num_of_eps && daint_out;
|
|
ep++, daint_out >>= 1) {
|
|
if (daint_out & 1)
|
|
dwc2_hsotg_epint(hsotg, ep, 0);
|
|
}
|
|
|
|
for (ep = 0; ep < hsotg->num_of_eps && daint_in;
|
|
ep++, daint_in >>= 1) {
|
|
if (daint_in & 1)
|
|
dwc2_hsotg_epint(hsotg, ep, 1);
|
|
}
|
|
}
|
|
|
|
/* check both FIFOs */
|
|
|
|
if (gintsts & GINTSTS_NPTXFEMP) {
|
|
dev_dbg(hsotg->dev, "NPTxFEmp\n");
|
|
|
|
/*
|
|
* Disable the interrupt to stop it happening again
|
|
* unless one of these endpoint routines decides that
|
|
* it needs re-enabling
|
|
*/
|
|
|
|
dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
|
|
dwc2_hsotg_irq_fifoempty(hsotg, false);
|
|
}
|
|
|
|
if (gintsts & GINTSTS_PTXFEMP) {
|
|
dev_dbg(hsotg->dev, "PTxFEmp\n");
|
|
|
|
/* See note in GINTSTS_NPTxFEmp */
|
|
|
|
dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
|
|
dwc2_hsotg_irq_fifoempty(hsotg, true);
|
|
}
|
|
|
|
if (gintsts & GINTSTS_RXFLVL) {
|
|
/*
|
|
* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
|
|
* we need to retry dwc2_hsotg_handle_rx if this is still
|
|
* set.
|
|
*/
|
|
|
|
dwc2_hsotg_handle_rx(hsotg);
|
|
}
|
|
|
|
if (gintsts & GINTSTS_ERLYSUSP) {
|
|
dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
|
|
dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
|
|
}
|
|
|
|
/*
|
|
* these next two seem to crop-up occasionally causing the core
|
|
* to shutdown the USB transfer, so try clearing them and logging
|
|
* the occurrence.
|
|
*/
|
|
|
|
if (gintsts & GINTSTS_GOUTNAKEFF) {
|
|
u8 idx;
|
|
u32 epctrl;
|
|
u32 gintmsk;
|
|
struct dwc2_hsotg_ep *hs_ep;
|
|
|
|
/* Mask this interrupt */
|
|
gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
|
|
gintmsk &= ~GINTSTS_GOUTNAKEFF;
|
|
dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
|
|
|
|
dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
|
|
for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
|
|
hs_ep = hsotg->eps_out[idx];
|
|
epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
|
|
|
|
if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
|
|
epctrl |= DXEPCTL_SNAK;
|
|
epctrl |= DXEPCTL_EPDIS;
|
|
dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
|
|
}
|
|
}
|
|
|
|
/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
|
|
}
|
|
|
|
if (gintsts & GINTSTS_GINNAKEFF) {
|
|
dev_info(hsotg->dev, "GINNakEff triggered\n");
|
|
|
|
__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
|
|
|
|
dwc2_hsotg_dump(hsotg);
|
|
}
|
|
|
|
if (gintsts & GINTSTS_INCOMPL_SOIN)
|
|
dwc2_gadget_handle_incomplete_isoc_in(hsotg);
|
|
|
|
if (gintsts & GINTSTS_INCOMPL_SOOUT)
|
|
dwc2_gadget_handle_incomplete_isoc_out(hsotg);
|
|
|
|
/*
|
|
* if we've had fifo events, we should try and go around the
|
|
* loop again to see if there's any point in returning yet.
|
|
*/
|
|
|
|
if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
|
|
goto irq_retry;
|
|
|
|
spin_unlock(&hsotg->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
|
|
u32 bit, u32 timeout)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < timeout; i++) {
|
|
if (dwc2_readl(hs_otg->regs + reg) & bit)
|
|
return 0;
|
|
udelay(1);
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *hs_ep)
|
|
{
|
|
u32 epctrl_reg;
|
|
u32 epint_reg;
|
|
|
|
epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
|
|
DOEPCTL(hs_ep->index);
|
|
epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
|
|
DOEPINT(hs_ep->index);
|
|
|
|
dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
|
|
hs_ep->name);
|
|
|
|
if (hs_ep->dir_in) {
|
|
if (hsotg->dedicated_fifos || hs_ep->periodic) {
|
|
__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
|
|
/* Wait for Nak effect */
|
|
if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
|
|
DXEPINT_INEPNAKEFF, 100))
|
|
dev_warn(hsotg->dev,
|
|
"%s: timeout DIEPINT.NAKEFF\n",
|
|
__func__);
|
|
} else {
|
|
__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
|
|
/* Wait for Nak effect */
|
|
if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
|
|
GINTSTS_GINNAKEFF, 100))
|
|
dev_warn(hsotg->dev,
|
|
"%s: timeout GINTSTS.GINNAKEFF\n",
|
|
__func__);
|
|
}
|
|
} else {
|
|
if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
|
|
__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
|
|
|
|
/* Wait for global nak to take effect */
|
|
if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
|
|
GINTSTS_GOUTNAKEFF, 100))
|
|
dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
|
|
__func__);
|
|
}
|
|
|
|
/* Disable ep */
|
|
__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
|
|
|
|
/* Wait for ep to be disabled */
|
|
if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
|
|
dev_warn(hsotg->dev,
|
|
"%s: timeout DOEPCTL.EPDisable\n", __func__);
|
|
|
|
/* Clear EPDISBLD interrupt */
|
|
__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
|
|
|
|
if (hs_ep->dir_in) {
|
|
unsigned short fifo_index;
|
|
|
|
if (hsotg->dedicated_fifos || hs_ep->periodic)
|
|
fifo_index = hs_ep->fifo_index;
|
|
else
|
|
fifo_index = 0;
|
|
|
|
/* Flush TX FIFO */
|
|
dwc2_flush_tx_fifo(hsotg, fifo_index);
|
|
|
|
/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
|
|
if (!hsotg->dedicated_fifos && !hs_ep->periodic)
|
|
__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
|
|
|
|
} else {
|
|
/* Remove global NAKs */
|
|
__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_ep_enable - enable the given endpoint
|
|
* @ep: The USB endpint to configure
|
|
* @desc: The USB endpoint descriptor to configure with.
|
|
*
|
|
* This is called from the USB gadget code's usb_ep_enable().
|
|
*/
|
|
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
|
|
const struct usb_endpoint_descriptor *desc)
|
|
{
|
|
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
|
|
struct dwc2_hsotg *hsotg = hs_ep->parent;
|
|
unsigned long flags;
|
|
unsigned int index = hs_ep->index;
|
|
u32 epctrl_reg;
|
|
u32 epctrl;
|
|
u32 mps;
|
|
u32 mc;
|
|
u32 mask;
|
|
unsigned int dir_in;
|
|
unsigned int i, val, size;
|
|
int ret = 0;
|
|
|
|
dev_dbg(hsotg->dev,
|
|
"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
|
|
__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
|
|
desc->wMaxPacketSize, desc->bInterval);
|
|
|
|
/* not to be called for EP0 */
|
|
if (index == 0) {
|
|
dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
|
|
if (dir_in != hs_ep->dir_in) {
|
|
dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mps = usb_endpoint_maxp(desc);
|
|
mc = usb_endpoint_maxp_mult(desc);
|
|
|
|
/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
|
|
|
|
epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
|
|
epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
|
|
|
|
dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
|
|
__func__, epctrl, epctrl_reg);
|
|
|
|
/* Allocate DMA descriptor chain for non-ctrl endpoints */
|
|
if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
|
|
hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
|
|
MAX_DMA_DESC_NUM_GENERIC *
|
|
sizeof(struct dwc2_dma_desc),
|
|
&hs_ep->desc_list_dma, GFP_ATOMIC);
|
|
if (!hs_ep->desc_list) {
|
|
ret = -ENOMEM;
|
|
goto error2;
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(&hsotg->lock, flags);
|
|
|
|
epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
|
|
epctrl |= DXEPCTL_MPS(mps);
|
|
|
|
/*
|
|
* mark the endpoint as active, otherwise the core may ignore
|
|
* transactions entirely for this endpoint
|
|
*/
|
|
epctrl |= DXEPCTL_USBACTEP;
|
|
|
|
/* update the endpoint state */
|
|
dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
|
|
|
|
/* default, set to non-periodic */
|
|
hs_ep->isochronous = 0;
|
|
hs_ep->periodic = 0;
|
|
hs_ep->halted = 0;
|
|
hs_ep->interval = desc->bInterval;
|
|
|
|
switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
epctrl |= DXEPCTL_EPTYPE_ISO;
|
|
epctrl |= DXEPCTL_SETEVENFR;
|
|
hs_ep->isochronous = 1;
|
|
hs_ep->interval = 1 << (desc->bInterval - 1);
|
|
hs_ep->target_frame = TARGET_FRAME_INITIAL;
|
|
hs_ep->isoc_chain_num = 0;
|
|
hs_ep->next_desc = 0;
|
|
if (dir_in) {
|
|
hs_ep->periodic = 1;
|
|
mask = dwc2_readl(hsotg->regs + DIEPMSK);
|
|
mask |= DIEPMSK_NAKMSK;
|
|
dwc2_writel(mask, hsotg->regs + DIEPMSK);
|
|
} else {
|
|
mask = dwc2_readl(hsotg->regs + DOEPMSK);
|
|
mask |= DOEPMSK_OUTTKNEPDISMSK;
|
|
dwc2_writel(mask, hsotg->regs + DOEPMSK);
|
|
}
|
|
break;
|
|
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
epctrl |= DXEPCTL_EPTYPE_BULK;
|
|
break;
|
|
|
|
case USB_ENDPOINT_XFER_INT:
|
|
if (dir_in)
|
|
hs_ep->periodic = 1;
|
|
|
|
if (hsotg->gadget.speed == USB_SPEED_HIGH)
|
|
hs_ep->interval = 1 << (desc->bInterval - 1);
|
|
|
|
epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
|
|
break;
|
|
|
|
case USB_ENDPOINT_XFER_CONTROL:
|
|
epctrl |= DXEPCTL_EPTYPE_CONTROL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* if the hardware has dedicated fifos, we must give each IN EP
|
|
* a unique tx-fifo even if it is non-periodic.
|
|
*/
|
|
if (dir_in && hsotg->dedicated_fifos) {
|
|
u32 fifo_index = 0;
|
|
u32 fifo_size = UINT_MAX;
|
|
|
|
size = hs_ep->ep.maxpacket * hs_ep->mc;
|
|
for (i = 1; i < hsotg->num_of_eps; ++i) {
|
|
if (hsotg->fifo_map & (1 << i))
|
|
continue;
|
|
val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
|
|
val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
|
|
if (val < size)
|
|
continue;
|
|
/* Search for smallest acceptable fifo */
|
|
if (val < fifo_size) {
|
|
fifo_size = val;
|
|
fifo_index = i;
|
|
}
|
|
}
|
|
if (!fifo_index) {
|
|
dev_err(hsotg->dev,
|
|
"%s: No suitable fifo found\n", __func__);
|
|
ret = -ENOMEM;
|
|
goto error1;
|
|
}
|
|
hsotg->fifo_map |= 1 << fifo_index;
|
|
epctrl |= DXEPCTL_TXFNUM(fifo_index);
|
|
hs_ep->fifo_index = fifo_index;
|
|
hs_ep->fifo_size = fifo_size;
|
|
}
|
|
|
|
/* for non control endpoints, set PID to D0 */
|
|
if (index && !hs_ep->isochronous)
|
|
epctrl |= DXEPCTL_SETD0PID;
|
|
|
|
dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
|
|
__func__, epctrl);
|
|
|
|
dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
|
|
dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
|
|
__func__, dwc2_readl(hsotg->regs + epctrl_reg));
|
|
|
|
/* enable the endpoint interrupt */
|
|
dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
|
|
|
|
error1:
|
|
spin_unlock_irqrestore(&hsotg->lock, flags);
|
|
|
|
error2:
|
|
if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
|
|
dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
|
|
sizeof(struct dwc2_dma_desc),
|
|
hs_ep->desc_list, hs_ep->desc_list_dma);
|
|
hs_ep->desc_list = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_ep_disable - disable given endpoint
|
|
* @ep: The endpoint to disable.
|
|
*/
|
|
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
|
|
{
|
|
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
|
|
struct dwc2_hsotg *hsotg = hs_ep->parent;
|
|
int dir_in = hs_ep->dir_in;
|
|
int index = hs_ep->index;
|
|
unsigned long flags;
|
|
u32 epctrl_reg;
|
|
u32 ctrl;
|
|
|
|
dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
|
|
|
|
if (ep == &hsotg->eps_out[0]->ep) {
|
|
dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
|
|
dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
|
|
|
|
spin_lock_irqsave(&hsotg->lock, flags);
|
|
|
|
ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
|
|
|
|
if (ctrl & DXEPCTL_EPENA)
|
|
dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
|
|
|
|
ctrl &= ~DXEPCTL_EPENA;
|
|
ctrl &= ~DXEPCTL_USBACTEP;
|
|
ctrl |= DXEPCTL_SNAK;
|
|
|
|
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
|
|
dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
|
|
|
|
/* disable endpoint interrupts */
|
|
dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
|
|
|
|
/* terminate all requests with shutdown */
|
|
kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
|
|
|
|
hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
|
|
hs_ep->fifo_index = 0;
|
|
hs_ep->fifo_size = 0;
|
|
|
|
spin_unlock_irqrestore(&hsotg->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* on_list - check request is on the given endpoint
|
|
* @ep: The endpoint to check.
|
|
* @test: The request to test if it is on the endpoint.
|
|
*/
|
|
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
|
|
{
|
|
struct dwc2_hsotg_req *req, *treq;
|
|
|
|
list_for_each_entry_safe(req, treq, &ep->queue, queue) {
|
|
if (req == test)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_ep_dequeue - dequeue given endpoint
|
|
* @ep: The endpoint to dequeue.
|
|
* @req: The request to be removed from a queue.
|
|
*/
|
|
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
|
|
{
|
|
struct dwc2_hsotg_req *hs_req = our_req(req);
|
|
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
|
|
struct dwc2_hsotg *hs = hs_ep->parent;
|
|
unsigned long flags;
|
|
|
|
dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
|
|
|
|
spin_lock_irqsave(&hs->lock, flags);
|
|
|
|
if (!on_list(hs_ep, hs_req)) {
|
|
spin_unlock_irqrestore(&hs->lock, flags);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Dequeue already started request */
|
|
if (req == &hs_ep->req->req)
|
|
dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
|
|
|
|
dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
|
|
spin_unlock_irqrestore(&hs->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_ep_sethalt - set halt on a given endpoint
|
|
* @ep: The endpoint to set halt.
|
|
* @value: Set or unset the halt.
|
|
* @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
|
|
* the endpoint is busy processing requests.
|
|
*
|
|
* We need to stall the endpoint immediately if request comes from set_feature
|
|
* protocol command handler.
|
|
*/
|
|
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
|
|
{
|
|
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
|
|
struct dwc2_hsotg *hs = hs_ep->parent;
|
|
int index = hs_ep->index;
|
|
u32 epreg;
|
|
u32 epctl;
|
|
u32 xfertype;
|
|
|
|
dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
|
|
|
|
if (index == 0) {
|
|
if (value)
|
|
dwc2_hsotg_stall_ep0(hs);
|
|
else
|
|
dev_warn(hs->dev,
|
|
"%s: can't clear halt on ep0\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
if (hs_ep->isochronous) {
|
|
dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!now && value && !list_empty(&hs_ep->queue)) {
|
|
dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
|
|
ep->name);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (hs_ep->dir_in) {
|
|
epreg = DIEPCTL(index);
|
|
epctl = dwc2_readl(hs->regs + epreg);
|
|
|
|
if (value) {
|
|
epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
|
|
if (epctl & DXEPCTL_EPENA)
|
|
epctl |= DXEPCTL_EPDIS;
|
|
} else {
|
|
epctl &= ~DXEPCTL_STALL;
|
|
xfertype = epctl & DXEPCTL_EPTYPE_MASK;
|
|
if (xfertype == DXEPCTL_EPTYPE_BULK ||
|
|
xfertype == DXEPCTL_EPTYPE_INTERRUPT)
|
|
epctl |= DXEPCTL_SETD0PID;
|
|
}
|
|
dwc2_writel(epctl, hs->regs + epreg);
|
|
} else {
|
|
epreg = DOEPCTL(index);
|
|
epctl = dwc2_readl(hs->regs + epreg);
|
|
|
|
if (value) {
|
|
epctl |= DXEPCTL_STALL;
|
|
} else {
|
|
epctl &= ~DXEPCTL_STALL;
|
|
xfertype = epctl & DXEPCTL_EPTYPE_MASK;
|
|
if (xfertype == DXEPCTL_EPTYPE_BULK ||
|
|
xfertype == DXEPCTL_EPTYPE_INTERRUPT)
|
|
epctl |= DXEPCTL_SETD0PID;
|
|
}
|
|
dwc2_writel(epctl, hs->regs + epreg);
|
|
}
|
|
|
|
hs_ep->halted = value;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
|
|
* @ep: The endpoint to set halt.
|
|
* @value: Set or unset the halt.
|
|
*/
|
|
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
|
|
{
|
|
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
|
|
struct dwc2_hsotg *hs = hs_ep->parent;
|
|
unsigned long flags = 0;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(&hs->lock, flags);
|
|
ret = dwc2_hsotg_ep_sethalt(ep, value, false);
|
|
spin_unlock_irqrestore(&hs->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
|
|
.enable = dwc2_hsotg_ep_enable,
|
|
.disable = dwc2_hsotg_ep_disable,
|
|
.alloc_request = dwc2_hsotg_ep_alloc_request,
|
|
.free_request = dwc2_hsotg_ep_free_request,
|
|
.queue = dwc2_hsotg_ep_queue_lock,
|
|
.dequeue = dwc2_hsotg_ep_dequeue,
|
|
.set_halt = dwc2_hsotg_ep_sethalt_lock,
|
|
/* note, don't believe we have any call for the fifo routines */
|
|
};
|
|
|
|
/**
|
|
* dwc2_hsotg_init - initialize the usb core
|
|
* @hsotg: The driver state
|
|
*/
|
|
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
|
|
{
|
|
u32 trdtim;
|
|
u32 usbcfg;
|
|
/* unmask subset of endpoint interrupts */
|
|
|
|
dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
|
|
DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
|
|
hsotg->regs + DIEPMSK);
|
|
|
|
dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
|
|
DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
|
|
hsotg->regs + DOEPMSK);
|
|
|
|
dwc2_writel(0, hsotg->regs + DAINTMSK);
|
|
|
|
/* Be in disconnected state until gadget is registered */
|
|
__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
|
|
|
|
/* setup fifos */
|
|
|
|
dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
|
|
dwc2_readl(hsotg->regs + GRXFSIZ),
|
|
dwc2_readl(hsotg->regs + GNPTXFSIZ));
|
|
|
|
dwc2_hsotg_init_fifo(hsotg);
|
|
|
|
/* keep other bits untouched (so e.g. forced modes are not lost) */
|
|
usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
|
|
usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
|
|
GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
|
|
|
|
/* set the PLL on, remove the HNP/SRP and set the PHY */
|
|
trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
|
|
usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
|
|
(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
|
|
dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
|
|
|
|
if (using_dma(hsotg))
|
|
__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_udc_start - prepare the udc for work
|
|
* @gadget: The usb gadget state
|
|
* @driver: The usb gadget driver
|
|
*
|
|
* Perform initialization to prepare udc device and driver
|
|
* to work.
|
|
*/
|
|
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
|
|
struct usb_gadget_driver *driver)
|
|
{
|
|
struct dwc2_hsotg *hsotg = to_hsotg(gadget);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
if (!hsotg) {
|
|
pr_err("%s: called with no device\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (!driver) {
|
|
dev_err(hsotg->dev, "%s: no driver\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (driver->max_speed < USB_SPEED_FULL)
|
|
dev_err(hsotg->dev, "%s: bad speed\n", __func__);
|
|
|
|
if (!driver->setup) {
|
|
dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
WARN_ON(hsotg->driver);
|
|
|
|
driver->driver.bus = NULL;
|
|
hsotg->driver = driver;
|
|
hsotg->gadget.dev.of_node = hsotg->dev->of_node;
|
|
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
|
|
|
|
if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
|
|
ret = dwc2_lowlevel_hw_enable(hsotg);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
if (!IS_ERR_OR_NULL(hsotg->uphy))
|
|
otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
|
|
|
|
spin_lock_irqsave(&hsotg->lock, flags);
|
|
if (dwc2_hw_is_device(hsotg)) {
|
|
dwc2_hsotg_init(hsotg);
|
|
dwc2_hsotg_core_init_disconnected(hsotg, false);
|
|
}
|
|
|
|
hsotg->enabled = 0;
|
|
spin_unlock_irqrestore(&hsotg->lock, flags);
|
|
|
|
dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
hsotg->driver = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_udc_stop - stop the udc
|
|
* @gadget: The usb gadget state
|
|
* @driver: The usb gadget driver
|
|
*
|
|
* Stop udc hw block and stay tunned for future transmissions
|
|
*/
|
|
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
|
|
{
|
|
struct dwc2_hsotg *hsotg = to_hsotg(gadget);
|
|
unsigned long flags = 0;
|
|
int ep;
|
|
|
|
if (!hsotg)
|
|
return -ENODEV;
|
|
|
|
/* all endpoints should be shutdown */
|
|
for (ep = 1; ep < hsotg->num_of_eps; ep++) {
|
|
if (hsotg->eps_in[ep])
|
|
dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
|
|
if (hsotg->eps_out[ep])
|
|
dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
|
|
}
|
|
|
|
spin_lock_irqsave(&hsotg->lock, flags);
|
|
|
|
hsotg->driver = NULL;
|
|
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
|
|
hsotg->enabled = 0;
|
|
|
|
spin_unlock_irqrestore(&hsotg->lock, flags);
|
|
|
|
if (!IS_ERR_OR_NULL(hsotg->uphy))
|
|
otg_set_peripheral(hsotg->uphy->otg, NULL);
|
|
|
|
if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
|
|
dwc2_lowlevel_hw_disable(hsotg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_gadget_getframe - read the frame number
|
|
* @gadget: The usb gadget state
|
|
*
|
|
* Read the {micro} frame number
|
|
*/
|
|
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
|
|
{
|
|
return dwc2_hsotg_read_frameno(to_hsotg(gadget));
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_pullup - connect/disconnect the USB PHY
|
|
* @gadget: The usb gadget state
|
|
* @is_on: Current state of the USB PHY
|
|
*
|
|
* Connect/Disconnect the USB PHY pullup
|
|
*/
|
|
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
|
|
{
|
|
struct dwc2_hsotg *hsotg = to_hsotg(gadget);
|
|
unsigned long flags = 0;
|
|
|
|
dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
|
|
hsotg->op_state);
|
|
|
|
/* Don't modify pullup state while in host mode */
|
|
if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
|
|
hsotg->enabled = is_on;
|
|
return 0;
|
|
}
|
|
|
|
spin_lock_irqsave(&hsotg->lock, flags);
|
|
if (is_on) {
|
|
hsotg->enabled = 1;
|
|
dwc2_hsotg_core_init_disconnected(hsotg, false);
|
|
dwc2_hsotg_core_connect(hsotg);
|
|
} else {
|
|
dwc2_hsotg_core_disconnect(hsotg);
|
|
dwc2_hsotg_disconnect(hsotg);
|
|
hsotg->enabled = 0;
|
|
}
|
|
|
|
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
|
|
spin_unlock_irqrestore(&hsotg->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
|
|
{
|
|
struct dwc2_hsotg *hsotg = to_hsotg(gadget);
|
|
unsigned long flags;
|
|
|
|
dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
|
|
spin_lock_irqsave(&hsotg->lock, flags);
|
|
|
|
/*
|
|
* If controller is hibernated, it must exit from hibernation
|
|
* before being initialized / de-initialized
|
|
*/
|
|
if (hsotg->lx_state == DWC2_L2)
|
|
dwc2_exit_hibernation(hsotg, false);
|
|
|
|
if (is_active) {
|
|
hsotg->op_state = OTG_STATE_B_PERIPHERAL;
|
|
|
|
dwc2_hsotg_core_init_disconnected(hsotg, false);
|
|
if (hsotg->enabled)
|
|
dwc2_hsotg_core_connect(hsotg);
|
|
} else {
|
|
dwc2_hsotg_core_disconnect(hsotg);
|
|
dwc2_hsotg_disconnect(hsotg);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&hsotg->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_vbus_draw - report bMaxPower field
|
|
* @gadget: The usb gadget state
|
|
* @mA: Amount of current
|
|
*
|
|
* Report how much power the device may consume to the phy.
|
|
*/
|
|
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
|
|
{
|
|
struct dwc2_hsotg *hsotg = to_hsotg(gadget);
|
|
|
|
if (IS_ERR_OR_NULL(hsotg->uphy))
|
|
return -ENOTSUPP;
|
|
return usb_phy_set_power(hsotg->uphy, mA);
|
|
}
|
|
|
|
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
|
|
.get_frame = dwc2_hsotg_gadget_getframe,
|
|
.udc_start = dwc2_hsotg_udc_start,
|
|
.udc_stop = dwc2_hsotg_udc_stop,
|
|
.pullup = dwc2_hsotg_pullup,
|
|
.vbus_session = dwc2_hsotg_vbus_session,
|
|
.vbus_draw = dwc2_hsotg_vbus_draw,
|
|
};
|
|
|
|
/**
|
|
* dwc2_hsotg_initep - initialise a single endpoint
|
|
* @hsotg: The device state.
|
|
* @hs_ep: The endpoint to be initialised.
|
|
* @epnum: The endpoint number
|
|
*
|
|
* Initialise the given endpoint (as part of the probe and device state
|
|
* creation) to give to the gadget driver. Setup the endpoint name, any
|
|
* direction information and other state that may be required.
|
|
*/
|
|
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
|
|
struct dwc2_hsotg_ep *hs_ep,
|
|
int epnum,
|
|
bool dir_in)
|
|
{
|
|
char *dir;
|
|
|
|
if (epnum == 0)
|
|
dir = "";
|
|
else if (dir_in)
|
|
dir = "in";
|
|
else
|
|
dir = "out";
|
|
|
|
hs_ep->dir_in = dir_in;
|
|
hs_ep->index = epnum;
|
|
|
|
snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
|
|
|
|
INIT_LIST_HEAD(&hs_ep->queue);
|
|
INIT_LIST_HEAD(&hs_ep->ep.ep_list);
|
|
|
|
/* add to the list of endpoints known by the gadget driver */
|
|
if (epnum)
|
|
list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
|
|
|
|
hs_ep->parent = hsotg;
|
|
hs_ep->ep.name = hs_ep->name;
|
|
|
|
if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
|
|
usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
|
|
else
|
|
usb_ep_set_maxpacket_limit(&hs_ep->ep,
|
|
epnum ? 1024 : EP0_MPS_LIMIT);
|
|
hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
|
|
|
|
if (epnum == 0) {
|
|
hs_ep->ep.caps.type_control = true;
|
|
} else {
|
|
if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
|
|
hs_ep->ep.caps.type_iso = true;
|
|
hs_ep->ep.caps.type_bulk = true;
|
|
}
|
|
hs_ep->ep.caps.type_int = true;
|
|
}
|
|
|
|
if (dir_in)
|
|
hs_ep->ep.caps.dir_in = true;
|
|
else
|
|
hs_ep->ep.caps.dir_out = true;
|
|
|
|
/*
|
|
* if we're using dma, we need to set the next-endpoint pointer
|
|
* to be something valid.
|
|
*/
|
|
|
|
if (using_dma(hsotg)) {
|
|
u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
|
|
|
|
if (dir_in)
|
|
dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
|
|
else
|
|
dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_hw_cfg - read HW configuration registers
|
|
* @param: The device state
|
|
*
|
|
* Read the USB core HW configuration registers
|
|
*/
|
|
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
|
|
{
|
|
u32 cfg;
|
|
u32 ep_type;
|
|
u32 i;
|
|
|
|
/* check hardware configuration */
|
|
|
|
hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
|
|
|
|
/* Add ep0 */
|
|
hsotg->num_of_eps++;
|
|
|
|
hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
|
|
sizeof(struct dwc2_hsotg_ep),
|
|
GFP_KERNEL);
|
|
if (!hsotg->eps_in[0])
|
|
return -ENOMEM;
|
|
/* Same dwc2_hsotg_ep is used in both directions for ep0 */
|
|
hsotg->eps_out[0] = hsotg->eps_in[0];
|
|
|
|
cfg = hsotg->hw_params.dev_ep_dirs;
|
|
for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
|
|
ep_type = cfg & 3;
|
|
/* Direction in or both */
|
|
if (!(ep_type & 2)) {
|
|
hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
|
|
sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
|
|
if (!hsotg->eps_in[i])
|
|
return -ENOMEM;
|
|
}
|
|
/* Direction out or both */
|
|
if (!(ep_type & 1)) {
|
|
hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
|
|
sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
|
|
if (!hsotg->eps_out[i])
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
|
|
hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
|
|
|
|
dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
|
|
hsotg->num_of_eps,
|
|
hsotg->dedicated_fifos ? "dedicated" : "shared",
|
|
hsotg->fifo_mem);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_dump - dump state of the udc
|
|
* @param: The device state
|
|
*/
|
|
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
|
|
{
|
|
#ifdef DEBUG
|
|
struct device *dev = hsotg->dev;
|
|
void __iomem *regs = hsotg->regs;
|
|
u32 val;
|
|
int idx;
|
|
|
|
dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
|
|
dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
|
|
dwc2_readl(regs + DIEPMSK));
|
|
|
|
dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
|
|
dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
|
|
|
|
dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
|
|
dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
|
|
|
|
/* show periodic fifo settings */
|
|
|
|
for (idx = 1; idx < hsotg->num_of_eps; idx++) {
|
|
val = dwc2_readl(regs + DPTXFSIZN(idx));
|
|
dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
|
|
val >> FIFOSIZE_DEPTH_SHIFT,
|
|
val & FIFOSIZE_STARTADDR_MASK);
|
|
}
|
|
|
|
for (idx = 0; idx < hsotg->num_of_eps; idx++) {
|
|
dev_info(dev,
|
|
"ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
|
|
dwc2_readl(regs + DIEPCTL(idx)),
|
|
dwc2_readl(regs + DIEPTSIZ(idx)),
|
|
dwc2_readl(regs + DIEPDMA(idx)));
|
|
|
|
val = dwc2_readl(regs + DOEPCTL(idx));
|
|
dev_info(dev,
|
|
"ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
|
|
idx, dwc2_readl(regs + DOEPCTL(idx)),
|
|
dwc2_readl(regs + DOEPTSIZ(idx)),
|
|
dwc2_readl(regs + DOEPDMA(idx)));
|
|
}
|
|
|
|
dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
|
|
dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* dwc2_gadget_init - init function for gadget
|
|
* @dwc2: The data structure for the DWC2 driver.
|
|
* @irq: The IRQ number for the controller.
|
|
*/
|
|
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
|
|
{
|
|
struct device *dev = hsotg->dev;
|
|
int epnum;
|
|
int ret;
|
|
|
|
/* Dump fifo information */
|
|
dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
|
|
hsotg->params.g_np_tx_fifo_size);
|
|
dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
|
|
|
|
hsotg->gadget.max_speed = USB_SPEED_HIGH;
|
|
hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
|
|
hsotg->gadget.name = dev_name(dev);
|
|
if (hsotg->dr_mode == USB_DR_MODE_OTG)
|
|
hsotg->gadget.is_otg = 1;
|
|
else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
|
|
hsotg->op_state = OTG_STATE_B_PERIPHERAL;
|
|
|
|
ret = dwc2_hsotg_hw_cfg(hsotg);
|
|
if (ret) {
|
|
dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
|
|
DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
|
|
if (!hsotg->ctrl_buff)
|
|
return -ENOMEM;
|
|
|
|
hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
|
|
DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
|
|
if (!hsotg->ep0_buff)
|
|
return -ENOMEM;
|
|
|
|
if (using_desc_dma(hsotg)) {
|
|
ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
|
|
dev_name(hsotg->dev), hsotg);
|
|
if (ret < 0) {
|
|
dev_err(dev, "cannot claim IRQ for gadget\n");
|
|
return ret;
|
|
}
|
|
|
|
/* hsotg->num_of_eps holds number of EPs other than ep0 */
|
|
|
|
if (hsotg->num_of_eps == 0) {
|
|
dev_err(dev, "wrong number of EPs (zero)\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* setup endpoint information */
|
|
|
|
INIT_LIST_HEAD(&hsotg->gadget.ep_list);
|
|
hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
|
|
|
|
/* allocate EP0 request */
|
|
|
|
hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
|
|
GFP_KERNEL);
|
|
if (!hsotg->ctrl_req) {
|
|
dev_err(dev, "failed to allocate ctrl req\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* initialise the endpoints now the core has been initialised */
|
|
for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
|
|
if (hsotg->eps_in[epnum])
|
|
dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
|
|
epnum, 1);
|
|
if (hsotg->eps_out[epnum])
|
|
dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
|
|
epnum, 0);
|
|
}
|
|
|
|
ret = usb_add_gadget_udc(dev, &hsotg->gadget);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dwc2_hsotg_dump(hsotg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dwc2_hsotg_remove - remove function for hsotg driver
|
|
* @pdev: The platform information for the driver
|
|
*/
|
|
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
|
|
{
|
|
usb_del_gadget_udc(&hsotg->gadget);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (hsotg->lx_state != DWC2_L0)
|
|
return 0;
|
|
|
|
if (hsotg->driver) {
|
|
int ep;
|
|
|
|
dev_info(hsotg->dev, "suspending usb gadget %s\n",
|
|
hsotg->driver->driver.name);
|
|
|
|
spin_lock_irqsave(&hsotg->lock, flags);
|
|
if (hsotg->enabled)
|
|
dwc2_hsotg_core_disconnect(hsotg);
|
|
dwc2_hsotg_disconnect(hsotg);
|
|
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
|
|
spin_unlock_irqrestore(&hsotg->lock, flags);
|
|
|
|
for (ep = 0; ep < hsotg->num_of_eps; ep++) {
|
|
if (hsotg->eps_in[ep])
|
|
dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
|
|
if (hsotg->eps_out[ep])
|
|
dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (hsotg->lx_state == DWC2_L2)
|
|
return 0;
|
|
|
|
if (hsotg->driver) {
|
|
dev_info(hsotg->dev, "resuming usb gadget %s\n",
|
|
hsotg->driver->driver.name);
|
|
|
|
spin_lock_irqsave(&hsotg->lock, flags);
|
|
dwc2_hsotg_core_init_disconnected(hsotg, false);
|
|
if (hsotg->enabled)
|
|
dwc2_hsotg_core_connect(hsotg);
|
|
spin_unlock_irqrestore(&hsotg->lock, flags);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dwc2_backup_device_registers() - Backup controller device registers.
|
|
* When suspending usb bus, registers needs to be backuped
|
|
* if controller power is disabled once suspended.
|
|
*
|
|
* @hsotg: Programming view of the DWC_otg controller
|
|
*/
|
|
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
|
|
{
|
|
struct dwc2_dregs_backup *dr;
|
|
int i;
|
|
|
|
dev_dbg(hsotg->dev, "%s\n", __func__);
|
|
|
|
/* Backup dev regs */
|
|
dr = &hsotg->dr_backup;
|
|
|
|
dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
|
|
dr->dctl = dwc2_readl(hsotg->regs + DCTL);
|
|
dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
|
|
dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
|
|
dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
|
|
|
|
for (i = 0; i < hsotg->num_of_eps; i++) {
|
|
/* Backup IN EPs */
|
|
dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
|
|
|
|
/* Ensure DATA PID is correctly configured */
|
|
if (dr->diepctl[i] & DXEPCTL_DPID)
|
|
dr->diepctl[i] |= DXEPCTL_SETD1PID;
|
|
else
|
|
dr->diepctl[i] |= DXEPCTL_SETD0PID;
|
|
|
|
dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
|
|
dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
|
|
|
|
/* Backup OUT EPs */
|
|
dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
|
|
|
|
/* Ensure DATA PID is correctly configured */
|
|
if (dr->doepctl[i] & DXEPCTL_DPID)
|
|
dr->doepctl[i] |= DXEPCTL_SETD1PID;
|
|
else
|
|
dr->doepctl[i] |= DXEPCTL_SETD0PID;
|
|
|
|
dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
|
|
dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
|
|
}
|
|
dr->valid = true;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dwc2_restore_device_registers() - Restore controller device registers.
|
|
* When resuming usb bus, device registers needs to be restored
|
|
* if controller power were disabled.
|
|
*
|
|
* @hsotg: Programming view of the DWC_otg controller
|
|
*/
|
|
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
|
|
{
|
|
struct dwc2_dregs_backup *dr;
|
|
u32 dctl;
|
|
int i;
|
|
|
|
dev_dbg(hsotg->dev, "%s\n", __func__);
|
|
|
|
/* Restore dev regs */
|
|
dr = &hsotg->dr_backup;
|
|
if (!dr->valid) {
|
|
dev_err(hsotg->dev, "%s: no device registers to restore\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
dr->valid = false;
|
|
|
|
dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
|
|
dwc2_writel(dr->dctl, hsotg->regs + DCTL);
|
|
dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
|
|
dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
|
|
dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
|
|
|
|
for (i = 0; i < hsotg->num_of_eps; i++) {
|
|
/* Restore IN EPs */
|
|
dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
|
|
dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
|
|
dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
|
|
|
|
/* Restore OUT EPs */
|
|
dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
|
|
dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
|
|
dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
|
|
}
|
|
|
|
/* Set the Power-On Programming done bit */
|
|
dctl = dwc2_readl(hsotg->regs + DCTL);
|
|
dctl |= DCTL_PWRONPRGDONE;
|
|
dwc2_writel(dctl, hsotg->regs + DCTL);
|
|
|
|
return 0;
|
|
}
|