OpenCloudOS-Kernel/drivers/media/dvb-core/dvb_net.c

1507 lines
41 KiB
C

/*
* dvb_net.c
*
* Copyright (C) 2001 Convergence integrated media GmbH
* Ralph Metzler <ralph@convergence.de>
* Copyright (C) 2002 Ralph Metzler <rjkm@metzlerbros.de>
*
* ULE Decapsulation code:
* Copyright (C) 2003, 2004 gcs - Global Communication & Services GmbH.
* and Department of Scientific Computing
* Paris Lodron University of Salzburg.
* Hilmar Linder <hlinder@cosy.sbg.ac.at>
* and Wolfram Stering <wstering@cosy.sbg.ac.at>
*
* ULE Decaps according to RFC 4326.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
*/
/*
* ULE ChangeLog:
* Feb 2004: hl/ws v1: Implementing draft-fair-ipdvb-ule-01.txt
*
* Dec 2004: hl/ws v2: Implementing draft-ietf-ipdvb-ule-03.txt:
* ULE Extension header handling.
* Bugreports by Moritz Vieth and Hanno Tersteegen,
* Fraunhofer Institute for Open Communication Systems
* Competence Center for Advanced Satellite Communications.
* Bugfixes and robustness improvements.
* Filtering on dest MAC addresses, if present (D-Bit = 0)
* ULE_DEBUG compile-time option.
* Apr 2006: cp v3: Bugfixes and compliency with RFC 4326 (ULE) by
* Christian Praehauser <cpraehaus@cosy.sbg.ac.at>,
* Paris Lodron University of Salzburg.
*/
/*
* FIXME / TODO (dvb_net.c):
*
* Unloading does not work for 2.6.9 kernels: a refcount doesn't go to zero.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/dvb/net.h>
#include <linux/uio.h>
#include <asm/uaccess.h>
#include <linux/crc32.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include "dvb_demux.h"
#include "dvb_net.h"
static inline __u32 iov_crc32( __u32 c, struct kvec *iov, unsigned int cnt )
{
unsigned int j;
for (j = 0; j < cnt; j++)
c = crc32_be( c, iov[j].iov_base, iov[j].iov_len );
return c;
}
#define DVB_NET_MULTICAST_MAX 10
#undef ULE_DEBUG
#ifdef ULE_DEBUG
static void hexdump(const unsigned char *buf, unsigned short len)
{
print_hex_dump_debug("", DUMP_PREFIX_OFFSET, 16, 1, buf, len, true);
}
#endif
struct dvb_net_priv {
int in_use;
u16 pid;
struct net_device *net;
struct dvb_net *host;
struct dmx_demux *demux;
struct dmx_section_feed *secfeed;
struct dmx_section_filter *secfilter;
struct dmx_ts_feed *tsfeed;
int multi_num;
struct dmx_section_filter *multi_secfilter[DVB_NET_MULTICAST_MAX];
unsigned char multi_macs[DVB_NET_MULTICAST_MAX][6];
int rx_mode;
#define RX_MODE_UNI 0
#define RX_MODE_MULTI 1
#define RX_MODE_ALL_MULTI 2
#define RX_MODE_PROMISC 3
struct work_struct set_multicast_list_wq;
struct work_struct restart_net_feed_wq;
unsigned char feedtype; /* Either FEED_TYPE_ or FEED_TYPE_ULE */
int need_pusi; /* Set to 1, if synchronization on PUSI required. */
unsigned char tscc; /* TS continuity counter after sync on PUSI. */
struct sk_buff *ule_skb; /* ULE SNDU decodes into this buffer. */
unsigned char *ule_next_hdr; /* Pointer into skb to next ULE extension header. */
unsigned short ule_sndu_len; /* ULE SNDU length in bytes, w/o D-Bit. */
unsigned short ule_sndu_type; /* ULE SNDU type field, complete. */
unsigned char ule_sndu_type_1; /* ULE SNDU type field, if split across 2 TS cells. */
unsigned char ule_dbit; /* Whether the DestMAC address present
* or not (bit is set). */
unsigned char ule_bridged; /* Whether the ULE_BRIDGED extension header was found. */
int ule_sndu_remain; /* Nr. of bytes still required for current ULE SNDU. */
unsigned long ts_count; /* Current ts cell counter. */
struct mutex mutex;
};
/**
* Determine the packet's protocol ID. The rule here is that we
* assume 802.3 if the type field is short enough to be a length.
* This is normal practice and works for any 'now in use' protocol.
*
* stolen from eth.c out of the linux kernel, hacked for dvb-device
* by Michael Holzt <kju@debian.org>
*/
static __be16 dvb_net_eth_type_trans(struct sk_buff *skb,
struct net_device *dev)
{
struct ethhdr *eth;
unsigned char *rawp;
skb_reset_mac_header(skb);
skb_pull(skb,dev->hard_header_len);
eth = eth_hdr(skb);
if (*eth->h_dest & 1) {
if(ether_addr_equal(eth->h_dest,dev->broadcast))
skb->pkt_type=PACKET_BROADCAST;
else
skb->pkt_type=PACKET_MULTICAST;
}
if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN)
return eth->h_proto;
rawp = skb->data;
/**
* This is a magic hack to spot IPX packets. Older Novell breaks
* the protocol design and runs IPX over 802.3 without an 802.2 LLC
* layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
* won't work for fault tolerant netware but does for the rest.
*/
if (*(unsigned short *)rawp == 0xFFFF)
return htons(ETH_P_802_3);
/**
* Real 802.2 LLC
*/
return htons(ETH_P_802_2);
}
#define TS_SZ 188
#define TS_SYNC 0x47
#define TS_TEI 0x80
#define TS_SC 0xC0
#define TS_PUSI 0x40
#define TS_AF_A 0x20
#define TS_AF_D 0x10
/* ULE Extension Header handlers. */
#define ULE_TEST 0
#define ULE_BRIDGED 1
#define ULE_OPTEXTHDR_PADDING 0
static int ule_test_sndu( struct dvb_net_priv *p )
{
return -1;
}
static int ule_bridged_sndu( struct dvb_net_priv *p )
{
struct ethhdr *hdr = (struct ethhdr*) p->ule_next_hdr;
if(ntohs(hdr->h_proto) < ETH_P_802_3_MIN) {
int framelen = p->ule_sndu_len - ((p->ule_next_hdr+sizeof(struct ethhdr)) - p->ule_skb->data);
/* A frame Type < ETH_P_802_3_MIN for a bridged frame, introduces a LLC Length field. */
if(framelen != ntohs(hdr->h_proto)) {
return -1;
}
}
/* Note:
* From RFC4326:
* "A bridged SNDU is a Mandatory Extension Header of Type 1.
* It must be the final (or only) extension header specified in the header chain of a SNDU."
* The 'ule_bridged' flag will cause the extension header processing loop to terminate.
*/
p->ule_bridged = 1;
return 0;
}
static int ule_exthdr_padding(struct dvb_net_priv *p)
{
return 0;
}
/** Handle ULE extension headers.
* Function is called after a successful CRC32 verification of an ULE SNDU to complete its decoding.
* Returns: >= 0: nr. of bytes consumed by next extension header
* -1: Mandatory extension header that is not recognized or TEST SNDU; discard.
*/
static int handle_one_ule_extension( struct dvb_net_priv *p )
{
/* Table of mandatory extension header handlers. The header type is the index. */
static int (*ule_mandatory_ext_handlers[255])( struct dvb_net_priv *p ) =
{ [0] = ule_test_sndu, [1] = ule_bridged_sndu, [2] = NULL, };
/* Table of optional extension header handlers. The header type is the index. */
static int (*ule_optional_ext_handlers[255])( struct dvb_net_priv *p ) =
{ [0] = ule_exthdr_padding, [1] = NULL, };
int ext_len = 0;
unsigned char hlen = (p->ule_sndu_type & 0x0700) >> 8;
unsigned char htype = p->ule_sndu_type & 0x00FF;
/* Discriminate mandatory and optional extension headers. */
if (hlen == 0) {
/* Mandatory extension header */
if (ule_mandatory_ext_handlers[htype]) {
ext_len = ule_mandatory_ext_handlers[htype]( p );
if(ext_len >= 0) {
p->ule_next_hdr += ext_len;
if (!p->ule_bridged) {
p->ule_sndu_type = ntohs(*(__be16 *)p->ule_next_hdr);
p->ule_next_hdr += 2;
} else {
p->ule_sndu_type = ntohs(*(__be16 *)(p->ule_next_hdr + ((p->ule_dbit ? 2 : 3) * ETH_ALEN)));
/* This assures the extension handling loop will terminate. */
}
}
// else: extension handler failed or SNDU should be discarded
} else
ext_len = -1; /* SNDU has to be discarded. */
} else {
/* Optional extension header. Calculate the length. */
ext_len = hlen << 1;
/* Process the optional extension header according to its type. */
if (ule_optional_ext_handlers[htype])
(void)ule_optional_ext_handlers[htype]( p );
p->ule_next_hdr += ext_len;
p->ule_sndu_type = ntohs( *(__be16 *)(p->ule_next_hdr-2) );
/*
* note: the length of the next header type is included in the
* length of THIS optional extension header
*/
}
return ext_len;
}
static int handle_ule_extensions( struct dvb_net_priv *p )
{
int total_ext_len = 0, l;
p->ule_next_hdr = p->ule_skb->data;
do {
l = handle_one_ule_extension( p );
if (l < 0)
return l; /* Stop extension header processing and discard SNDU. */
total_ext_len += l;
#ifdef ULE_DEBUG
pr_debug("ule_next_hdr=%p, ule_sndu_type=%i, l=%i, total_ext_len=%i\n",
p->ule_next_hdr, (int)p->ule_sndu_type,
l, total_ext_len);
#endif
} while (p->ule_sndu_type < ETH_P_802_3_MIN);
return total_ext_len;
}
/** Prepare for a new ULE SNDU: reset the decoder state. */
static inline void reset_ule( struct dvb_net_priv *p )
{
p->ule_skb = NULL;
p->ule_next_hdr = NULL;
p->ule_sndu_len = 0;
p->ule_sndu_type = 0;
p->ule_sndu_type_1 = 0;
p->ule_sndu_remain = 0;
p->ule_dbit = 0xFF;
p->ule_bridged = 0;
}
/**
* Decode ULE SNDUs according to draft-ietf-ipdvb-ule-03.txt from a sequence of
* TS cells of a single PID.
*/
static void dvb_net_ule( struct net_device *dev, const u8 *buf, size_t buf_len )
{
struct dvb_net_priv *priv = netdev_priv(dev);
unsigned long skipped = 0L;
const u8 *ts, *ts_end, *from_where = NULL;
u8 ts_remain = 0, how_much = 0, new_ts = 1;
struct ethhdr *ethh = NULL;
bool error = false;
#ifdef ULE_DEBUG
/* The code inside ULE_DEBUG keeps a history of the last 100 TS cells processed. */
static unsigned char ule_hist[100*TS_SZ];
static unsigned char *ule_where = ule_hist, ule_dump;
#endif
/* For all TS cells in current buffer.
* Appearently, we are called for every single TS cell.
*/
for (ts = buf, ts_end = buf + buf_len; ts < ts_end; /* no default incr. */ ) {
if (new_ts) {
/* We are about to process a new TS cell. */
#ifdef ULE_DEBUG
if (ule_where >= &ule_hist[100*TS_SZ]) ule_where = ule_hist;
memcpy( ule_where, ts, TS_SZ );
if (ule_dump) {
hexdump( ule_where, TS_SZ );
ule_dump = 0;
}
ule_where += TS_SZ;
#endif
/* Check TS error conditions: sync_byte, transport_error_indicator, scrambling_control . */
if ((ts[0] != TS_SYNC) || (ts[1] & TS_TEI) || ((ts[3] & TS_SC) != 0)) {
printk(KERN_WARNING "%lu: Invalid TS cell: SYNC %#x, TEI %u, SC %#x.\n",
priv->ts_count, ts[0],
(ts[1] & TS_TEI) >> 7,
(ts[3] & TS_SC) >> 6);
/* Drop partly decoded SNDU, reset state, resync on PUSI. */
if (priv->ule_skb) {
dev_kfree_skb( priv->ule_skb );
/* Prepare for next SNDU. */
dev->stats.rx_errors++;
dev->stats.rx_frame_errors++;
}
reset_ule(priv);
priv->need_pusi = 1;
/* Continue with next TS cell. */
ts += TS_SZ;
priv->ts_count++;
continue;
}
ts_remain = 184;
from_where = ts + 4;
}
/* Synchronize on PUSI, if required. */
if (priv->need_pusi) {
if (ts[1] & TS_PUSI) {
/* Find beginning of first ULE SNDU in current TS cell. */
/* Synchronize continuity counter. */
priv->tscc = ts[3] & 0x0F;
/* There is a pointer field here. */
if (ts[4] > ts_remain) {
printk(KERN_ERR "%lu: Invalid ULE packet "
"(pointer field %d)\n", priv->ts_count, ts[4]);
ts += TS_SZ;
priv->ts_count++;
continue;
}
/* Skip to destination of pointer field. */
from_where = &ts[5] + ts[4];
ts_remain -= 1 + ts[4];
skipped = 0;
} else {
skipped++;
ts += TS_SZ;
priv->ts_count++;
continue;
}
}
if (new_ts) {
/* Check continuity counter. */
if ((ts[3] & 0x0F) == priv->tscc)
priv->tscc = (priv->tscc + 1) & 0x0F;
else {
/* TS discontinuity handling: */
printk(KERN_WARNING "%lu: TS discontinuity: got %#x, "
"expected %#x.\n", priv->ts_count, ts[3] & 0x0F, priv->tscc);
/* Drop partly decoded SNDU, reset state, resync on PUSI. */
if (priv->ule_skb) {
dev_kfree_skb( priv->ule_skb );
/* Prepare for next SNDU. */
// reset_ule(priv); moved to below.
dev->stats.rx_errors++;
dev->stats.rx_frame_errors++;
}
reset_ule(priv);
/* skip to next PUSI. */
priv->need_pusi = 1;
continue;
}
/* If we still have an incomplete payload, but PUSI is
* set; some TS cells are missing.
* This is only possible here, if we missed exactly 16 TS
* cells (continuity counter wrap). */
if (ts[1] & TS_PUSI) {
if (! priv->need_pusi) {
if (!(*from_where < (ts_remain-1)) || *from_where != priv->ule_sndu_remain) {
/* Pointer field is invalid. Drop this TS cell and any started ULE SNDU. */
printk(KERN_WARNING "%lu: Invalid pointer "
"field: %u.\n", priv->ts_count, *from_where);
/* Drop partly decoded SNDU, reset state, resync on PUSI. */
if (priv->ule_skb) {
error = true;
dev_kfree_skb(priv->ule_skb);
}
if (error || priv->ule_sndu_remain) {
dev->stats.rx_errors++;
dev->stats.rx_frame_errors++;
error = false;
}
reset_ule(priv);
priv->need_pusi = 1;
continue;
}
/* Skip pointer field (we're processing a
* packed payload). */
from_where += 1;
ts_remain -= 1;
} else
priv->need_pusi = 0;
if (priv->ule_sndu_remain > 183) {
/* Current SNDU lacks more data than there could be available in the
* current TS cell. */
dev->stats.rx_errors++;
dev->stats.rx_length_errors++;
printk(KERN_WARNING "%lu: Expected %d more SNDU bytes, but "
"got PUSI (pf %d, ts_remain %d). Flushing incomplete payload.\n",
priv->ts_count, priv->ule_sndu_remain, ts[4], ts_remain);
dev_kfree_skb(priv->ule_skb);
/* Prepare for next SNDU. */
reset_ule(priv);
/* Resync: go to where pointer field points to: start of next ULE SNDU. */
from_where += ts[4];
ts_remain -= ts[4];
}
}
}
/* Check if new payload needs to be started. */
if (priv->ule_skb == NULL) {
/* Start a new payload with skb.
* Find ULE header. It is only guaranteed that the
* length field (2 bytes) is contained in the current
* TS.
* Check ts_remain has to be >= 2 here. */
if (ts_remain < 2) {
printk(KERN_WARNING "Invalid payload packing: only %d "
"bytes left in TS. Resyncing.\n", ts_remain);
priv->ule_sndu_len = 0;
priv->need_pusi = 1;
ts += TS_SZ;
continue;
}
if (! priv->ule_sndu_len) {
/* Got at least two bytes, thus extrace the SNDU length. */
priv->ule_sndu_len = from_where[0] << 8 | from_where[1];
if (priv->ule_sndu_len & 0x8000) {
/* D-Bit is set: no dest mac present. */
priv->ule_sndu_len &= 0x7FFF;
priv->ule_dbit = 1;
} else
priv->ule_dbit = 0;
if (priv->ule_sndu_len < 5) {
printk(KERN_WARNING "%lu: Invalid ULE SNDU length %u. "
"Resyncing.\n", priv->ts_count, priv->ule_sndu_len);
dev->stats.rx_errors++;
dev->stats.rx_length_errors++;
priv->ule_sndu_len = 0;
priv->need_pusi = 1;
new_ts = 1;
ts += TS_SZ;
priv->ts_count++;
continue;
}
ts_remain -= 2; /* consume the 2 bytes SNDU length. */
from_where += 2;
}
priv->ule_sndu_remain = priv->ule_sndu_len + 2;
/*
* State of current TS:
* ts_remain (remaining bytes in the current TS cell)
* 0 ule_type is not available now, we need the next TS cell
* 1 the first byte of the ule_type is present
* >=2 full ULE header present, maybe some payload data as well.
*/
switch (ts_remain) {
case 1:
priv->ule_sndu_remain--;
priv->ule_sndu_type = from_where[0] << 8;
priv->ule_sndu_type_1 = 1; /* first byte of ule_type is set. */
ts_remain -= 1; from_where += 1;
/* Continue w/ next TS. */
case 0:
new_ts = 1;
ts += TS_SZ;
priv->ts_count++;
continue;
default: /* complete ULE header is present in current TS. */
/* Extract ULE type field. */
if (priv->ule_sndu_type_1) {
priv->ule_sndu_type_1 = 0;
priv->ule_sndu_type |= from_where[0];
from_where += 1; /* points to payload start. */
ts_remain -= 1;
} else {
/* Complete type is present in new TS. */
priv->ule_sndu_type = from_where[0] << 8 | from_where[1];
from_where += 2; /* points to payload start. */
ts_remain -= 2;
}
break;
}
/* Allocate the skb (decoder target buffer) with the correct size, as follows:
* prepare for the largest case: bridged SNDU with MAC address (dbit = 0). */
priv->ule_skb = dev_alloc_skb( priv->ule_sndu_len + ETH_HLEN + ETH_ALEN );
if (priv->ule_skb == NULL) {
printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n",
dev->name);
dev->stats.rx_dropped++;
return;
}
/* This includes the CRC32 _and_ dest mac, if !dbit. */
priv->ule_sndu_remain = priv->ule_sndu_len;
priv->ule_skb->dev = dev;
/* Leave space for Ethernet or bridged SNDU header (eth hdr plus one MAC addr). */
skb_reserve( priv->ule_skb, ETH_HLEN + ETH_ALEN );
}
/* Copy data into our current skb. */
how_much = min(priv->ule_sndu_remain, (int)ts_remain);
memcpy(skb_put(priv->ule_skb, how_much), from_where, how_much);
priv->ule_sndu_remain -= how_much;
ts_remain -= how_much;
from_where += how_much;
/* Check for complete payload. */
if (priv->ule_sndu_remain <= 0) {
/* Check CRC32, we've got it in our skb already. */
__be16 ulen = htons(priv->ule_sndu_len);
__be16 utype = htons(priv->ule_sndu_type);
const u8 *tail;
struct kvec iov[3] = {
{ &ulen, sizeof ulen },
{ &utype, sizeof utype },
{ priv->ule_skb->data, priv->ule_skb->len - 4 }
};
u32 ule_crc = ~0L, expected_crc;
if (priv->ule_dbit) {
/* Set D-bit for CRC32 verification,
* if it was set originally. */
ulen |= htons(0x8000);
}
ule_crc = iov_crc32(ule_crc, iov, 3);
tail = skb_tail_pointer(priv->ule_skb);
expected_crc = *(tail - 4) << 24 |
*(tail - 3) << 16 |
*(tail - 2) << 8 |
*(tail - 1);
if (ule_crc != expected_crc) {
printk(KERN_WARNING "%lu: CRC32 check FAILED: %08x / %08x, SNDU len %d type %#x, ts_remain %d, next 2: %x.\n",
priv->ts_count, ule_crc, expected_crc, priv->ule_sndu_len, priv->ule_sndu_type, ts_remain, ts_remain > 2 ? *(unsigned short *)from_where : 0);
#ifdef ULE_DEBUG
hexdump( iov[0].iov_base, iov[0].iov_len );
hexdump( iov[1].iov_base, iov[1].iov_len );
hexdump( iov[2].iov_base, iov[2].iov_len );
if (ule_where == ule_hist) {
hexdump( &ule_hist[98*TS_SZ], TS_SZ );
hexdump( &ule_hist[99*TS_SZ], TS_SZ );
} else if (ule_where == &ule_hist[TS_SZ]) {
hexdump( &ule_hist[99*TS_SZ], TS_SZ );
hexdump( ule_hist, TS_SZ );
} else {
hexdump( ule_where - TS_SZ - TS_SZ, TS_SZ );
hexdump( ule_where - TS_SZ, TS_SZ );
}
ule_dump = 1;
#endif
dev->stats.rx_errors++;
dev->stats.rx_crc_errors++;
dev_kfree_skb(priv->ule_skb);
} else {
/* CRC32 verified OK. */
u8 dest_addr[ETH_ALEN];
static const u8 bc_addr[ETH_ALEN] =
{ [ 0 ... ETH_ALEN-1] = 0xff };
/* CRC32 was OK. Remove it from skb. */
priv->ule_skb->tail -= 4;
priv->ule_skb->len -= 4;
if (!priv->ule_dbit) {
/*
* The destination MAC address is the
* next data in the skb. It comes
* before any extension headers.
*
* Check if the payload of this SNDU
* should be passed up the stack.
*/
register int drop = 0;
if (priv->rx_mode != RX_MODE_PROMISC) {
if (priv->ule_skb->data[0] & 0x01) {
/* multicast or broadcast */
if (!ether_addr_equal(priv->ule_skb->data, bc_addr)) {
/* multicast */
if (priv->rx_mode == RX_MODE_MULTI) {
int i;
for(i = 0; i < priv->multi_num &&
!ether_addr_equal(priv->ule_skb->data,
priv->multi_macs[i]); i++)
;
if (i == priv->multi_num)
drop = 1;
} else if (priv->rx_mode != RX_MODE_ALL_MULTI)
drop = 1; /* no broadcast; */
/* else: all multicast mode: accept all multicast packets */
}
/* else: broadcast */
}
else if (!ether_addr_equal(priv->ule_skb->data, dev->dev_addr))
drop = 1;
/* else: destination address matches the MAC address of our receiver device */
}
/* else: promiscuous mode; pass everything up the stack */
if (drop) {
#ifdef ULE_DEBUG
netdev_dbg(dev, "Dropping SNDU: MAC destination address does not match: dest addr: %pM, dev addr: %pM\n",
priv->ule_skb->data, dev->dev_addr);
#endif
dev_kfree_skb(priv->ule_skb);
goto sndu_done;
}
else
{
skb_copy_from_linear_data(priv->ule_skb,
dest_addr,
ETH_ALEN);
skb_pull(priv->ule_skb, ETH_ALEN);
}
}
/* Handle ULE Extension Headers. */
if (priv->ule_sndu_type < ETH_P_802_3_MIN) {
/* There is an extension header. Handle it accordingly. */
int l = handle_ule_extensions(priv);
if (l < 0) {
/* Mandatory extension header unknown or TEST SNDU. Drop it. */
// printk( KERN_WARNING "Dropping SNDU, extension headers.\n" );
dev_kfree_skb(priv->ule_skb);
goto sndu_done;
}
skb_pull(priv->ule_skb, l);
}
/*
* Construct/assure correct ethernet header.
* Note: in bridged mode (priv->ule_bridged !=
* 0) we already have the (original) ethernet
* header at the start of the payload (after
* optional dest. address and any extension
* headers).
*/
if (!priv->ule_bridged) {
skb_push(priv->ule_skb, ETH_HLEN);
ethh = (struct ethhdr *)priv->ule_skb->data;
if (!priv->ule_dbit) {
/* dest_addr buffer is only valid if priv->ule_dbit == 0 */
memcpy(ethh->h_dest, dest_addr, ETH_ALEN);
memset(ethh->h_source, 0, ETH_ALEN);
}
else /* zeroize source and dest */
memset( ethh, 0, ETH_ALEN*2 );
ethh->h_proto = htons(priv->ule_sndu_type);
}
/* else: skb is in correct state; nothing to do. */
priv->ule_bridged = 0;
/* Stuff into kernel's protocol stack. */
priv->ule_skb->protocol = dvb_net_eth_type_trans(priv->ule_skb, dev);
/* If D-bit is set (i.e. destination MAC address not present),
* receive the packet anyhow. */
/* if (priv->ule_dbit && skb->pkt_type == PACKET_OTHERHOST)
priv->ule_skb->pkt_type = PACKET_HOST; */
dev->stats.rx_packets++;
dev->stats.rx_bytes += priv->ule_skb->len;
netif_rx(priv->ule_skb);
}
sndu_done:
/* Prepare for next SNDU. */
reset_ule(priv);
}
/* More data in current TS (look at the bytes following the CRC32)? */
if (ts_remain >= 2 && *((unsigned short *)from_where) != 0xFFFF) {
/* Next ULE SNDU starts right there. */
new_ts = 0;
priv->ule_skb = NULL;
priv->ule_sndu_type_1 = 0;
priv->ule_sndu_len = 0;
// printk(KERN_WARNING "More data in current TS: [%#x %#x %#x %#x]\n",
// *(from_where + 0), *(from_where + 1),
// *(from_where + 2), *(from_where + 3));
// printk(KERN_WARNING "ts @ %p, stopped @ %p:\n", ts, from_where + 0);
// hexdump(ts, 188);
} else {
new_ts = 1;
ts += TS_SZ;
priv->ts_count++;
if (priv->ule_skb == NULL) {
priv->need_pusi = 1;
priv->ule_sndu_type_1 = 0;
priv->ule_sndu_len = 0;
}
}
} /* for all available TS cells */
}
static int dvb_net_ts_callback(const u8 *buffer1, size_t buffer1_len,
const u8 *buffer2, size_t buffer2_len,
struct dmx_ts_feed *feed, enum dmx_success success)
{
struct net_device *dev = feed->priv;
if (buffer2)
printk(KERN_WARNING "buffer2 not NULL: %p.\n", buffer2);
if (buffer1_len > 32768)
printk(KERN_WARNING "length > 32k: %zu.\n", buffer1_len);
/* printk("TS callback: %u bytes, %u TS cells @ %p.\n",
buffer1_len, buffer1_len / TS_SZ, buffer1); */
dvb_net_ule(dev, buffer1, buffer1_len);
return 0;
}
static void dvb_net_sec(struct net_device *dev,
const u8 *pkt, int pkt_len)
{
u8 *eth;
struct sk_buff *skb;
struct net_device_stats *stats = &dev->stats;
int snap = 0;
/* note: pkt_len includes a 32bit checksum */
if (pkt_len < 16) {
printk("%s: IP/MPE packet length = %d too small.\n",
dev->name, pkt_len);
stats->rx_errors++;
stats->rx_length_errors++;
return;
}
/* it seems some ISPs manage to screw up here, so we have to
* relax the error checks... */
#if 0
if ((pkt[5] & 0xfd) != 0xc1) {
/* drop scrambled or broken packets */
#else
if ((pkt[5] & 0x3c) != 0x00) {
/* drop scrambled */
#endif
stats->rx_errors++;
stats->rx_crc_errors++;
return;
}
if (pkt[5] & 0x02) {
/* handle LLC/SNAP, see rfc-1042 */
if (pkt_len < 24 || memcmp(&pkt[12], "\xaa\xaa\x03\0\0\0", 6)) {
stats->rx_dropped++;
return;
}
snap = 8;
}
if (pkt[7]) {
/* FIXME: assemble datagram from multiple sections */
stats->rx_errors++;
stats->rx_frame_errors++;
return;
}
/* we have 14 byte ethernet header (ip header follows);
* 12 byte MPE header; 4 byte checksum; + 2 byte alignment, 8 byte LLC/SNAP
*/
if (!(skb = dev_alloc_skb(pkt_len - 4 - 12 + 14 + 2 - snap))) {
//printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
stats->rx_dropped++;
return;
}
skb_reserve(skb, 2); /* longword align L3 header */
skb->dev = dev;
/* copy L3 payload */
eth = (u8 *) skb_put(skb, pkt_len - 12 - 4 + 14 - snap);
memcpy(eth + 14, pkt + 12 + snap, pkt_len - 12 - 4 - snap);
/* create ethernet header: */
eth[0]=pkt[0x0b];
eth[1]=pkt[0x0a];
eth[2]=pkt[0x09];
eth[3]=pkt[0x08];
eth[4]=pkt[0x04];
eth[5]=pkt[0x03];
eth[6]=eth[7]=eth[8]=eth[9]=eth[10]=eth[11]=0;
if (snap) {
eth[12] = pkt[18];
eth[13] = pkt[19];
} else {
/* protocol numbers are from rfc-1700 or
* http://www.iana.org/assignments/ethernet-numbers
*/
if (pkt[12] >> 4 == 6) { /* version field from IP header */
eth[12] = 0x86; /* IPv6 */
eth[13] = 0xdd;
} else {
eth[12] = 0x08; /* IPv4 */
eth[13] = 0x00;
}
}
skb->protocol = dvb_net_eth_type_trans(skb, dev);
stats->rx_packets++;
stats->rx_bytes+=skb->len;
netif_rx(skb);
}
static int dvb_net_sec_callback(const u8 *buffer1, size_t buffer1_len,
const u8 *buffer2, size_t buffer2_len,
struct dmx_section_filter *filter,
enum dmx_success success)
{
struct net_device *dev = filter->priv;
/**
* we rely on the DVB API definition where exactly one complete
* section is delivered in buffer1
*/
dvb_net_sec (dev, buffer1, buffer1_len);
return 0;
}
static int dvb_net_tx(struct sk_buff *skb, struct net_device *dev)
{
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static u8 mask_normal[6]={0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
static u8 mask_allmulti[6]={0xff, 0xff, 0xff, 0x00, 0x00, 0x00};
static u8 mac_allmulti[6]={0x01, 0x00, 0x5e, 0x00, 0x00, 0x00};
static u8 mask_promisc[6]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
static int dvb_net_filter_sec_set(struct net_device *dev,
struct dmx_section_filter **secfilter,
u8 *mac, u8 *mac_mask)
{
struct dvb_net_priv *priv = netdev_priv(dev);
int ret;
*secfilter=NULL;
ret = priv->secfeed->allocate_filter(priv->secfeed, secfilter);
if (ret<0) {
printk("%s: could not get filter\n", dev->name);
return ret;
}
(*secfilter)->priv=(void *) dev;
memset((*secfilter)->filter_value, 0x00, DMX_MAX_FILTER_SIZE);
memset((*secfilter)->filter_mask, 0x00, DMX_MAX_FILTER_SIZE);
memset((*secfilter)->filter_mode, 0xff, DMX_MAX_FILTER_SIZE);
(*secfilter)->filter_value[0]=0x3e;
(*secfilter)->filter_value[3]=mac[5];
(*secfilter)->filter_value[4]=mac[4];
(*secfilter)->filter_value[8]=mac[3];
(*secfilter)->filter_value[9]=mac[2];
(*secfilter)->filter_value[10]=mac[1];
(*secfilter)->filter_value[11]=mac[0];
(*secfilter)->filter_mask[0] = 0xff;
(*secfilter)->filter_mask[3] = mac_mask[5];
(*secfilter)->filter_mask[4] = mac_mask[4];
(*secfilter)->filter_mask[8] = mac_mask[3];
(*secfilter)->filter_mask[9] = mac_mask[2];
(*secfilter)->filter_mask[10] = mac_mask[1];
(*secfilter)->filter_mask[11]=mac_mask[0];
netdev_dbg(dev, "filter mac=%pM mask=%pM\n", mac, mac_mask);
return 0;
}
static int dvb_net_feed_start(struct net_device *dev)
{
int ret = 0, i;
struct dvb_net_priv *priv = netdev_priv(dev);
struct dmx_demux *demux = priv->demux;
unsigned char *mac = (unsigned char *) dev->dev_addr;
netdev_dbg(dev, "rx_mode %i\n", priv->rx_mode);
mutex_lock(&priv->mutex);
if (priv->tsfeed || priv->secfeed || priv->secfilter || priv->multi_secfilter[0])
printk("%s: BUG %d\n", __func__, __LINE__);
priv->secfeed=NULL;
priv->secfilter=NULL;
priv->tsfeed = NULL;
if (priv->feedtype == DVB_NET_FEEDTYPE_MPE) {
netdev_dbg(dev, "alloc secfeed\n");
ret=demux->allocate_section_feed(demux, &priv->secfeed,
dvb_net_sec_callback);
if (ret<0) {
printk("%s: could not allocate section feed\n", dev->name);
goto error;
}
ret = priv->secfeed->set(priv->secfeed, priv->pid, 32768, 1);
if (ret<0) {
printk("%s: could not set section feed\n", dev->name);
priv->demux->release_section_feed(priv->demux, priv->secfeed);
priv->secfeed=NULL;
goto error;
}
if (priv->rx_mode != RX_MODE_PROMISC) {
netdev_dbg(dev, "set secfilter\n");
dvb_net_filter_sec_set(dev, &priv->secfilter, mac, mask_normal);
}
switch (priv->rx_mode) {
case RX_MODE_MULTI:
for (i = 0; i < priv->multi_num; i++) {
netdev_dbg(dev, "set multi_secfilter[%d]\n", i);
dvb_net_filter_sec_set(dev, &priv->multi_secfilter[i],
priv->multi_macs[i], mask_normal);
}
break;
case RX_MODE_ALL_MULTI:
priv->multi_num=1;
netdev_dbg(dev, "set multi_secfilter[0]\n");
dvb_net_filter_sec_set(dev, &priv->multi_secfilter[0],
mac_allmulti, mask_allmulti);
break;
case RX_MODE_PROMISC:
priv->multi_num=0;
netdev_dbg(dev, "set secfilter\n");
dvb_net_filter_sec_set(dev, &priv->secfilter, mac, mask_promisc);
break;
}
netdev_dbg(dev, "start filtering\n");
priv->secfeed->start_filtering(priv->secfeed);
} else if (priv->feedtype == DVB_NET_FEEDTYPE_ULE) {
struct timespec timeout = { 0, 10000000 }; // 10 msec
/* we have payloads encapsulated in TS */
netdev_dbg(dev, "alloc tsfeed\n");
ret = demux->allocate_ts_feed(demux, &priv->tsfeed, dvb_net_ts_callback);
if (ret < 0) {
printk("%s: could not allocate ts feed\n", dev->name);
goto error;
}
/* Set netdevice pointer for ts decaps callback. */
priv->tsfeed->priv = (void *)dev;
ret = priv->tsfeed->set(priv->tsfeed,
priv->pid, /* pid */
TS_PACKET, /* type */
DMX_PES_OTHER, /* pes type */
32768, /* circular buffer size */
timeout /* timeout */
);
if (ret < 0) {
printk("%s: could not set ts feed\n", dev->name);
priv->demux->release_ts_feed(priv->demux, priv->tsfeed);
priv->tsfeed = NULL;
goto error;
}
netdev_dbg(dev, "start filtering\n");
priv->tsfeed->start_filtering(priv->tsfeed);
} else
ret = -EINVAL;
error:
mutex_unlock(&priv->mutex);
return ret;
}
static int dvb_net_feed_stop(struct net_device *dev)
{
struct dvb_net_priv *priv = netdev_priv(dev);
int i, ret = 0;
mutex_lock(&priv->mutex);
if (priv->feedtype == DVB_NET_FEEDTYPE_MPE) {
if (priv->secfeed) {
if (priv->secfeed->is_filtering) {
netdev_dbg(dev, "stop secfeed\n");
priv->secfeed->stop_filtering(priv->secfeed);
}
if (priv->secfilter) {
netdev_dbg(dev, "release secfilter\n");
priv->secfeed->release_filter(priv->secfeed,
priv->secfilter);
priv->secfilter=NULL;
}
for (i=0; i<priv->multi_num; i++) {
if (priv->multi_secfilter[i]) {
netdev_dbg(dev, "release multi_filter[%d]\n",
i);
priv->secfeed->release_filter(priv->secfeed,
priv->multi_secfilter[i]);
priv->multi_secfilter[i] = NULL;
}
}
priv->demux->release_section_feed(priv->demux, priv->secfeed);
priv->secfeed = NULL;
} else
printk("%s: no feed to stop\n", dev->name);
} else if (priv->feedtype == DVB_NET_FEEDTYPE_ULE) {
if (priv->tsfeed) {
if (priv->tsfeed->is_filtering) {
netdev_dbg(dev, "stop tsfeed\n");
priv->tsfeed->stop_filtering(priv->tsfeed);
}
priv->demux->release_ts_feed(priv->demux, priv->tsfeed);
priv->tsfeed = NULL;
}
else
printk("%s: no ts feed to stop\n", dev->name);
} else
ret = -EINVAL;
mutex_unlock(&priv->mutex);
return ret;
}
static int dvb_set_mc_filter(struct net_device *dev, unsigned char *addr)
{
struct dvb_net_priv *priv = netdev_priv(dev);
if (priv->multi_num == DVB_NET_MULTICAST_MAX)
return -ENOMEM;
memcpy(priv->multi_macs[priv->multi_num], addr, ETH_ALEN);
priv->multi_num++;
return 0;
}
static void wq_set_multicast_list (struct work_struct *work)
{
struct dvb_net_priv *priv =
container_of(work, struct dvb_net_priv, set_multicast_list_wq);
struct net_device *dev = priv->net;
dvb_net_feed_stop(dev);
priv->rx_mode = RX_MODE_UNI;
netif_addr_lock_bh(dev);
if (dev->flags & IFF_PROMISC) {
netdev_dbg(dev, "promiscuous mode\n");
priv->rx_mode = RX_MODE_PROMISC;
} else if ((dev->flags & IFF_ALLMULTI)) {
netdev_dbg(dev, "allmulti mode\n");
priv->rx_mode = RX_MODE_ALL_MULTI;
} else if (!netdev_mc_empty(dev)) {
struct netdev_hw_addr *ha;
netdev_dbg(dev, "set_mc_list, %d entries\n",
netdev_mc_count(dev));
priv->rx_mode = RX_MODE_MULTI;
priv->multi_num = 0;
netdev_for_each_mc_addr(ha, dev)
dvb_set_mc_filter(dev, ha->addr);
}
netif_addr_unlock_bh(dev);
dvb_net_feed_start(dev);
}
static void dvb_net_set_multicast_list (struct net_device *dev)
{
struct dvb_net_priv *priv = netdev_priv(dev);
schedule_work(&priv->set_multicast_list_wq);
}
static void wq_restart_net_feed (struct work_struct *work)
{
struct dvb_net_priv *priv =
container_of(work, struct dvb_net_priv, restart_net_feed_wq);
struct net_device *dev = priv->net;
if (netif_running(dev)) {
dvb_net_feed_stop(dev);
dvb_net_feed_start(dev);
}
}
static int dvb_net_set_mac (struct net_device *dev, void *p)
{
struct dvb_net_priv *priv = netdev_priv(dev);
struct sockaddr *addr=p;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
if (netif_running(dev))
schedule_work(&priv->restart_net_feed_wq);
return 0;
}
static int dvb_net_open(struct net_device *dev)
{
struct dvb_net_priv *priv = netdev_priv(dev);
priv->in_use++;
dvb_net_feed_start(dev);
return 0;
}
static int dvb_net_stop(struct net_device *dev)
{
struct dvb_net_priv *priv = netdev_priv(dev);
priv->in_use--;
return dvb_net_feed_stop(dev);
}
static const struct header_ops dvb_header_ops = {
.create = eth_header,
.parse = eth_header_parse,
};
static const struct net_device_ops dvb_netdev_ops = {
.ndo_open = dvb_net_open,
.ndo_stop = dvb_net_stop,
.ndo_start_xmit = dvb_net_tx,
.ndo_set_rx_mode = dvb_net_set_multicast_list,
.ndo_set_mac_address = dvb_net_set_mac,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
};
static void dvb_net_setup(struct net_device *dev)
{
ether_setup(dev);
dev->header_ops = &dvb_header_ops;
dev->netdev_ops = &dvb_netdev_ops;
dev->mtu = 4096;
dev->flags |= IFF_NOARP;
}
static int get_if(struct dvb_net *dvbnet)
{
int i;
for (i=0; i<DVB_NET_DEVICES_MAX; i++)
if (!dvbnet->state[i])
break;
if (i == DVB_NET_DEVICES_MAX)
return -1;
dvbnet->state[i]=1;
return i;
}
static int dvb_net_add_if(struct dvb_net *dvbnet, u16 pid, u8 feedtype)
{
struct net_device *net;
struct dvb_net_priv *priv;
int result;
int if_num;
if (feedtype != DVB_NET_FEEDTYPE_MPE && feedtype != DVB_NET_FEEDTYPE_ULE)
return -EINVAL;
if ((if_num = get_if(dvbnet)) < 0)
return -EINVAL;
net = alloc_netdev(sizeof(struct dvb_net_priv), "dvb",
NET_NAME_UNKNOWN, dvb_net_setup);
if (!net)
return -ENOMEM;
if (dvbnet->dvbdev->id)
snprintf(net->name, IFNAMSIZ, "dvb%d%u%d",
dvbnet->dvbdev->adapter->num, dvbnet->dvbdev->id, if_num);
else
/* compatibility fix to keep dvb0_0 format */
snprintf(net->name, IFNAMSIZ, "dvb%d_%d",
dvbnet->dvbdev->adapter->num, if_num);
net->addr_len = 6;
memcpy(net->dev_addr, dvbnet->dvbdev->adapter->proposed_mac, 6);
dvbnet->device[if_num] = net;
priv = netdev_priv(net);
priv->net = net;
priv->demux = dvbnet->demux;
priv->pid = pid;
priv->rx_mode = RX_MODE_UNI;
priv->need_pusi = 1;
priv->tscc = 0;
priv->feedtype = feedtype;
reset_ule(priv);
INIT_WORK(&priv->set_multicast_list_wq, wq_set_multicast_list);
INIT_WORK(&priv->restart_net_feed_wq, wq_restart_net_feed);
mutex_init(&priv->mutex);
net->base_addr = pid;
if ((result = register_netdev(net)) < 0) {
dvbnet->device[if_num] = NULL;
free_netdev(net);
return result;
}
printk("dvb_net: created network interface %s\n", net->name);
return if_num;
}
static int dvb_net_remove_if(struct dvb_net *dvbnet, unsigned long num)
{
struct net_device *net = dvbnet->device[num];
struct dvb_net_priv *priv;
if (!dvbnet->state[num])
return -EINVAL;
priv = netdev_priv(net);
if (priv->in_use)
return -EBUSY;
dvb_net_stop(net);
flush_work(&priv->set_multicast_list_wq);
flush_work(&priv->restart_net_feed_wq);
printk("dvb_net: removed network interface %s\n", net->name);
unregister_netdev(net);
dvbnet->state[num]=0;
dvbnet->device[num] = NULL;
free_netdev(net);
return 0;
}
static int dvb_net_do_ioctl(struct file *file,
unsigned int cmd, void *parg)
{
struct dvb_device *dvbdev = file->private_data;
struct dvb_net *dvbnet = dvbdev->priv;
int ret = 0;
if (((file->f_flags&O_ACCMODE)==O_RDONLY))
return -EPERM;
if (mutex_lock_interruptible(&dvbnet->ioctl_mutex))
return -ERESTARTSYS;
switch (cmd) {
case NET_ADD_IF:
{
struct dvb_net_if *dvbnetif = parg;
int result;
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto ioctl_error;
}
if (!try_module_get(dvbdev->adapter->module)) {
ret = -EPERM;
goto ioctl_error;
}
result=dvb_net_add_if(dvbnet, dvbnetif->pid, dvbnetif->feedtype);
if (result<0) {
module_put(dvbdev->adapter->module);
ret = result;
goto ioctl_error;
}
dvbnetif->if_num=result;
break;
}
case NET_GET_IF:
{
struct net_device *netdev;
struct dvb_net_priv *priv_data;
struct dvb_net_if *dvbnetif = parg;
if (dvbnetif->if_num >= DVB_NET_DEVICES_MAX ||
!dvbnet->state[dvbnetif->if_num]) {
ret = -EINVAL;
goto ioctl_error;
}
netdev = dvbnet->device[dvbnetif->if_num];
priv_data = netdev_priv(netdev);
dvbnetif->pid=priv_data->pid;
dvbnetif->feedtype=priv_data->feedtype;
break;
}
case NET_REMOVE_IF:
{
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto ioctl_error;
}
if ((unsigned long) parg >= DVB_NET_DEVICES_MAX) {
ret = -EINVAL;
goto ioctl_error;
}
ret = dvb_net_remove_if(dvbnet, (unsigned long) parg);
if (!ret)
module_put(dvbdev->adapter->module);
break;
}
/* binary compatibility cruft */
case __NET_ADD_IF_OLD:
{
struct __dvb_net_if_old *dvbnetif = parg;
int result;
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto ioctl_error;
}
if (!try_module_get(dvbdev->adapter->module)) {
ret = -EPERM;
goto ioctl_error;
}
result=dvb_net_add_if(dvbnet, dvbnetif->pid, DVB_NET_FEEDTYPE_MPE);
if (result<0) {
module_put(dvbdev->adapter->module);
ret = result;
goto ioctl_error;
}
dvbnetif->if_num=result;
break;
}
case __NET_GET_IF_OLD:
{
struct net_device *netdev;
struct dvb_net_priv *priv_data;
struct __dvb_net_if_old *dvbnetif = parg;
if (dvbnetif->if_num >= DVB_NET_DEVICES_MAX ||
!dvbnet->state[dvbnetif->if_num]) {
ret = -EINVAL;
goto ioctl_error;
}
netdev = dvbnet->device[dvbnetif->if_num];
priv_data = netdev_priv(netdev);
dvbnetif->pid=priv_data->pid;
break;
}
default:
ret = -ENOTTY;
break;
}
ioctl_error:
mutex_unlock(&dvbnet->ioctl_mutex);
return ret;
}
static long dvb_net_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
return dvb_usercopy(file, cmd, arg, dvb_net_do_ioctl);
}
static int dvb_net_close(struct inode *inode, struct file *file)
{
struct dvb_device *dvbdev = file->private_data;
struct dvb_net *dvbnet = dvbdev->priv;
dvb_generic_release(inode, file);
if(dvbdev->users == 1 && dvbnet->exit == 1)
wake_up(&dvbdev->wait_queue);
return 0;
}
static const struct file_operations dvb_net_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = dvb_net_ioctl,
.open = dvb_generic_open,
.release = dvb_net_close,
.llseek = noop_llseek,
};
static struct dvb_device dvbdev_net = {
.priv = NULL,
.users = 1,
.writers = 1,
.fops = &dvb_net_fops,
};
void dvb_net_release (struct dvb_net *dvbnet)
{
int i;
dvbnet->exit = 1;
if (dvbnet->dvbdev->users < 1)
wait_event(dvbnet->dvbdev->wait_queue,
dvbnet->dvbdev->users==1);
dvb_unregister_device(dvbnet->dvbdev);
for (i=0; i<DVB_NET_DEVICES_MAX; i++) {
if (!dvbnet->state[i])
continue;
dvb_net_remove_if(dvbnet, i);
}
}
EXPORT_SYMBOL(dvb_net_release);
int dvb_net_init (struct dvb_adapter *adap, struct dvb_net *dvbnet,
struct dmx_demux *dmx)
{
int i;
mutex_init(&dvbnet->ioctl_mutex);
dvbnet->demux = dmx;
for (i=0; i<DVB_NET_DEVICES_MAX; i++)
dvbnet->state[i] = 0;
return dvb_register_device(adap, &dvbnet->dvbdev, &dvbdev_net,
dvbnet, DVB_DEVICE_NET);
}
EXPORT_SYMBOL(dvb_net_init);