A subsequent patch will add additional atomic operations. These new
operations will use the same opcode field as the existing XADD, with
the immediate discriminating different operations.
In preparation, rename the instruction mode BPF_ATOMIC and start
calling the zero immediate BPF_ADD.
This is possible (doesn't break existing valid BPF progs) because the
immediate field is currently reserved MBZ and BPF_ADD is zero.
All uses are removed from the tree but the BPF_XADD definition is
kept around to avoid breaking builds for people including kernel
headers.
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Björn Töpel <bjorn.topel@gmail.com>
Link: https://lore.kernel.org/bpf/20210114181751.768687-5-jackmanb@google.com
eBPF sample programs
====================
This directory contains a test stubs, verifier test-suite and examples
for using eBPF. The examples use libbpf from tools/lib/bpf.
Build dependencies
==================
Compiling requires having installed:
* clang >= version 3.4.0
* llvm >= version 3.7.1
Note that LLVM's tool 'llc' must support target 'bpf', list version
and supported targets with command: ``llc --version``
Clean and configuration
-----------------------
It can be needed to clean tools, samples or kernel before trying new arch or
after some changes (on demand)::
make -C tools clean
make -C samples/bpf clean
make clean
Configure kernel, defconfig for instance::
make defconfig
Kernel headers
--------------
There are usually dependencies to header files of the current kernel.
To avoid installing devel kernel headers system wide, as a normal
user, simply call::
make headers_install
This will creates a local "usr/include" directory in the git/build top
level directory, that the make system automatically pickup first.
Compiling
=========
For building the BPF samples, issue the below command from the kernel
top level directory::
make M=samples/bpf
It is also possible to call make from this directory. This will just
hide the invocation of make as above.
Manually compiling LLVM with 'bpf' support
------------------------------------------
Since version 3.7.0, LLVM adds a proper LLVM backend target for the
BPF bytecode architecture.
By default llvm will build all non-experimental backends including bpf.
To generate a smaller llc binary one can use::
-DLLVM_TARGETS_TO_BUILD="BPF"
Quick sniplet for manually compiling LLVM and clang
(build dependencies are cmake and gcc-c++)::
$ git clone http://llvm.org/git/llvm.git
$ cd llvm/tools
$ git clone --depth 1 http://llvm.org/git/clang.git
$ cd ..; mkdir build; cd build
$ cmake .. -DLLVM_TARGETS_TO_BUILD="BPF;X86"
$ make -j $(getconf _NPROCESSORS_ONLN)
It is also possible to point make to the newly compiled 'llc' or
'clang' command via redefining LLC or CLANG on the make command line::
make M=samples/bpf LLC=~/git/llvm/build/bin/llc CLANG=~/git/llvm/build/bin/clang
Cross compiling samples
-----------------------
In order to cross-compile, say for arm64 targets, export CROSS_COMPILE and ARCH
environment variables before calling make. But do this before clean,
cofiguration and header install steps described above. This will direct make to
build samples for the cross target::
export ARCH=arm64
export CROSS_COMPILE="aarch64-linux-gnu-"
Headers can be also installed on RFS of target board if need to keep them in
sync (not necessarily and it creates a local "usr/include" directory also)::
make INSTALL_HDR_PATH=~/some_sysroot/usr headers_install
Pointing LLC and CLANG is not necessarily if it's installed on HOST and have
in its targets appropriate arm64 arch (usually it has several arches).
Build samples::
make M=samples/bpf
Or build samples with SYSROOT if some header or library is absent in toolchain,
say libelf, providing address to file system containing headers and libs,
can be RFS of target board::
make M=samples/bpf SYSROOT=~/some_sysroot